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SUMMARY

Global investigation of histone marks in acute
myeloid leukemia (AML) remains limited. Analyses
of 38 AML samples through integrated transcrip-
tional and chromatin mark analysis exposes 2 major
subtypes. One subtype is dominated by patients
with NPM1 mutations or MLL-fusion genes, shows
activation of the regulatory pathways involving
HOX-family genes as targets, and displays high
self-renewal capacity and stemness. The second
subtype is enriched for RUNX1 or spliceosomemuta-
tions, suggesting potential interplay between the 2
aberrations, and mainly depends on IRF family regu-
lators. Cellular consequences in prognosis predict a
relatively worse outcome for the first subtype. Our in-
tegrated profiling establishes a rich resource to
probe AML subtypes on the basis of expression
and chromatin data.
INTRODUCTION

As a typical hematopoietic neoplasm, acute myeloid leukemia

(AML) is frequently a fatal disease (Döhner et al., 2015). It is

genetically and clinically heterogeneous (Grimwade et al.,

2016), mainly due to the combinations of distinct driver muta-

tions. Epigenetic modifiers are frequently mutated in AML

(Wouters and Delwel, 2016) and affect gene transcription by
Cell Re
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the addition or removal of histone modification, chromatin

accessibility, and DNA methylation. Due to highly flexible adap-

tation to environmental exposures, these epigenetic changes

have the potential to improve the prediction of drug responses

and targeted treatment using specific inhibitors (Jones et al.,

2016). Numerous studies have focused on mapping epigenetic

perturbations in AML, mainly DNA methylation, and found

some pivotal regulators shaping the AML epigenome and leuke-

mia development (Ley et al., 2013; Cauchy et al., 2015; Figueroa

et al., 2010; Li et al., 2016a;McKeown et al., 2017). These studies

largely focused on single epigenomic features, which could not

reveal systematic chromatin modifications and crosstalk among

different epigenetic marks in AMLs. Further characterization by

integrating multi-layer datasets, especially histone chromatin

immunoprecipitation sequencing (ChIP-seq), would shed more

light on epigenetic dynamics in response to AML progression.
RESULTS

AML Classification and Subtype-Specific Features
To comprehensively interrogate the epigenetic signatures

and cellular consequences driving the classification of AML

subtypes, we combined high-quality ChIP-seq, RNA-seq,

DNaseI-seq, and whole-genome bisulfite sequencing (WGBS)

profiling on a selection of 38 AMLs representing the abundant

genetic heterogeneity (Figures S1A–S1H; Tables S1, S2, S3,

and S4). Based on the combination of 6 histone marks, 12 chro-

matin states (Figure 1A), including 7 active states (states 1–7)

and 5 repressed states (states 8–12), were defined. Genomic
ports 26, 1059–1069, January 22, 2019 ª 2018 The Authors. 1059
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Figure 1. Chromatin State Definition and Subtype Assignment across AMLs

(A) Combinatorial patterns of 6 histone marks in a 12-state model. The emission probability was learned from ChromHMM based on spatial patterns of histone

modifications in chromatin and used to define the chromatin state. A darker shade of blue indicates greater enrichment of the profiled histonemarks in a particular

state.

(B) Dynamic patterns of chromatin states. The lines indicate genome coverage fraction of each state consistently labeled with that state in at most n (n = 1–38)

samples. Approximately 90% of genomic bins with the EnhS state could be found in a small subset of at most 12 samples, and only 1% were commonly shared

(legend continued on next page)
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distribution, DNA accessibility, and methylation levels for each

chromatin state in our study is similar to previous findings in

normal cell types (Figures S2A and S2B) (Kasowski et al.,

2013; Kundaje et al., 2015). In line with a previous study (Glass

et al., 2017), AML-associated enhancer regions (EnhS and

EnhW) displayed greater differential methylation levels (Fig-

ure S2C), while methylation profiles were more similar at pro-

moters (TssF and TssA).

Similarly, the strong enhancer state (EnhS) dominated by

H3K4me1 and H3K27ac exhibited the most sample-specific

pattern based on cumulative fraction curves (Figure 1B). This

triggered the exploration of AML classification based on the

H3K4me1 signal in EnhS regions. Consensus clustering revealed

a separation in 2major molecular clusters (C1 and C2) displaying

high consensus values (0.801 and 0.949) and silhouette width

profiles (0.724 and 0.932) (Figure 1C), while the separation in 3,

4, or more clusters did not provide significantly better classifica-

tion. We further estimated approximately unbiased p values

for all clusters and found high values (>0.90) for both subtypes

(Figure 1D). The comparison between consensus matrices

(k = 2–4) and the pvclust dendrogram indicated that the 2 results

were identical, supporting the robustness of the partitioning into

2 groups. Finally, clustering of H3K27ac, which is also enriched

in the EnhS state, revealed that the samples assigned to the

same subtypes by H3K4me1 were always in close proximity

(Figure S2D), again validating the H3K4me1-based clustering

results.

Principal-component analysis with EnhS H3K4me1 density

showed clear separation into 2 groups lacking subtype-specific

distribution in the patients’ age, gender, and disease status

(Figure S2E). Using H3K27ac for differential analyses at the

defined strong enhancer state, a total of 3,629 and 4,400 regions

were identified as C1- or C2-specific active enhancers, respec-

tively. Examining the local epigenetic landscape at these

enhancers confirmed increased H3K4me1 and H3K27ac and

revealed reduced repressive marks, as well as a positive corre-

lation with gene expression (Figures S2F–S2H). Moreover, C2-

specific signature genes were upregulated in NPM1 mutated

and mixed lineage leukemia (MLL) fusion AMLs, while C1-spe-

cific signature genes overlapped with those expressed in

t(8;21) AMLs (Figure S2H).

We performed the same clustering analyses using other epige-

netic data and evaluated their consistency between subtype

identifications. Two major groups with high silhouette values
among 24 or evenmore samples. In contrast, the quiescent regions labeled as Emp

samples, and the fraction of this state uniquely detected in 1 sample was <3%.

(C) Consensus matrices (left) and silhouette scores (right) of 38 AML samples usin

0 (highly dissimilar profiles) and 1 (highly similar profiles), colored white to dark b

(D) Hierarchical epigenome clustering of the same data using the pvclust packag

using 2 different approaches. The dots below the dendrogram reveal consensus c

(in Figure 1C) but another subgroup from C2, which could be matched with clus

(E) Comparison of AML classification on the basis of different datasets. Statistica

test, followed by the Benjamini-Hochberg (B-H) correction. ***p < 0.001 and *p <

(F) Mutation profiles in the 2 AML subtypes. All of the patients with NPM1 insert

location fusion products. The strength of association between eachmutation and

0.05, **p < 0.01, and ***p < 0.001.

(G) Differential methylation profiles at global CpG islands between 2 subtypes. A

See also Figures S1, S2, and S3 and Tables S1, S2, S3, S4, and S5.
were detected by the H3K27me3-established ReprPC state

(Figure S2I), representing almost the same cluster as the

H3K4me1-derived state (adjusted p < 0.001; Figures 1E and

S2J). Hierarchical clustering based on gene expression and

DNA accessibility characterized 4 clusters and showed signifi-

cant similarity with the 2 EnhS-based subtypes. Our results

reveal the identification of 2 clear epigenetic subgroups of

AML, despite the genetic heterogeneity of the AML samples.

We determined which mutated genes are subtype specific via

Fisher’s exact test. Within our AML cohort, NPM1 mutations

were found only in subtype C2 (adjusted p < 0.001) (Figures 1F

and S3A; Table S5), while 2 other commonly mutated genes,

FLT3-ITD and DNMT3A, also revealed C2-specific patterns.

Given this enrichment of the DNA methyltransferase DNMT3A

in the C2 subtype, we explored differential methylation levels be-

tween the 2 subtypes. This revealed more hypomethylated CpG

islands in the C2 group (Figure 1G) and exposed several differen-

tially methylated genes such as HOXA9. The lower methylation

levels in the C2 subtype may be related to deficient DNMT3A

function or suggest a more unrestricted chromatin structure

conferring stronger stemness property for the C2 group. In

contrast to C2, patients with mutated RUNX1 or 2 alternative

splicing genes (SRSF2 and SF3B1) were specifically allocated

in the C1 subtype, while no significant differences between the

2 subtypes in mutational occurrences of the myeloid differentia-

tion factor CEBPA were found. This suggests that epigenetic

patterns in AML blasts with CEBPA mutations are dominated

by other co-occurring leading aberrations such as NPM1,

FLT3, and structural variants, rather than by CEBPA mutation.

We also found that some types of cytogenetic abnormalities

seemed subtype specific. For instance, patients with 2 chromo-

somal variations functionally involving the RUNX1 gene, t(8;21)

and inv(16), clustered together in the C1 subtype, while the

t(9;11)-associated MLL-AF9 fusion event was found in the C2

subtype (Figures 1F, S3B, and S3C). Given these findings, we

named C1 the RUNX1/spliceosome group and C2 the NPM1/

MLL group.

Comparing our data with those from The Cancer Genome

Atlas (TCGA) (Ley et al., 2013) revealed that our chromatin-based

clustering is highly reminiscent of the CpG sparse based sub-

types defined by TCGA (Figure S3D). We also examined the

mutational spectrum in the AML subtypes inferred from the clus-

tering of other marks (Figures S3E–S3I, top). This revealed that

while our enhancer-based clustering congregated samples
ty state were themost constitutive, with 65%consistently marked amongR30

g H3K4me1 signals in strong enhancer state. Consensus values range between

lue. The average consensus score for each subtype is shown in the box.

e. Values on the branch indicate bootstrap support scores >1,000 samplings

lusters for k = 2–4. The 3-cluster classification did not split the intermediate box

ter results from the pvclust method.

l significance of overlap among multiple clusters is assessed by Fisher’s exact

0.05.

ion and FLT3-ITD were validated by RNA-seq data, as well as all of the trans-

subtypes is assessed by Fisher’s exact test followed by the B-H correction. *p <

CpG site with combined rank score <3,000 was considered significant.
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with the same mutations (Figure 1F), this was not shown when

clustering was based on H3K36me3 or H3K9me3. These results

revealed that our epigenetic signature partly recapitulates the

intrinsic subtypes from other large-scale population studies,

but it also exposes a previously unidentified view on cellular con-

ditions and phenotypic plasticity that defines 2 epigenetic sub-

groups of AML.

The Super-Enhancer Landscape of AML
To explore super-enhancer domains across AML patients, we

used our H3K27ac data and assigned each putative super-

enhancer (SE) to its nearest gene up to 1 Mb away. The SEs

exhibited larger size, higher H3K27ac signal, and stronger upre-

gulation in transcriptional levels than defined EnhS and EnhW

(Figures 2A, 2B, and S4A) (Cauchy et al., 2015; Li et al.,

2016b). Of 4,100 defined SEs, 186 have significantly different

H3K27ac enrichment between the 2 AML subtypes identified

above and showed a strong positive correlation with the expres-

sion levels of the nearest deregulated genes (r = 0.777;

Figure 2C), like HOXA/HOXB gene clusters and their cofactors

MEIS1 and PBX3. This correlation was not dependent on

subtype, as clustering based on other marks revealed a consis-

tent correlation between the presence of an SE and gene activity

(Figures S3E–S3I, bottom).

The HOXA gene cluster was covered by SEs specifically in the

NPM1/MLL (C2) group, displaying significantly higher H3K27ac

occupancy and lower H3K27me3 signal, as compared to the

C1 subtype (Figure 2D). We next examined the expression pat-

terns of HOXA and HOXB genes and found that almost all HOX

genes were more abundantly expressed in subtype C2 (Fig-

ure S4B). Allocating 179 AML patients from TCGA (Ley et al.,

2013) into 2 groups based on the subtype-specific mutations

landscape identified in the present study, we also found highly

similar expression patterns for HOX genes (Figure S4B). Finally,

to compare the epigenetic and transcriptomic features at HOXA

regions in AML to normal cell types, we included CD34+ progen-

itor cell, monocyte, and neutrophil data. We found that normal

CD34+ cells were enriched for C2-specific SEs and higher

HOXA expression than monocyte and neutrophil cells (Fig-

ure S4C). Similarly, the GRK5 gene in the C1 subtype was occu-

pied by high H3K27ac and low H3K27me3 signals, similar to the

2 differentiated cells (Figure 2E). These results suggest that

AMLs in the RUNX1/spliceosome cluster (C1) represent more

differentiated cells, while those in the NPM1/MLL group (C2)

may display a more progenitor-like cellular phenotype.

Transcriptomic Changes in the 2 Epigenetic Subtypes
We identified a total of 2,515 significant differentially expressed

genes (DEGs) between the RUNX1/spliceosome (C1) and the

NPM1/MLL (C2) subtypes (Figure 3A). Examining the expression

patterns of these genes revealed intra-group homogeneity with

average Spearman correlations of 0.912 in C1 and 0.909 in C2

(Figure S4D). The C2 upregulated gene set represented enriched

expression signatures of genetic perturbations induced by

NPM1, MLL, and NUP98 defects and contained many genes

that are essential for the proliferative properties of stem cells

and development (Figure 3B). For C1 upregulated genes, we

found enrichment for perturbation pathways related to CBF
1062 Cell Reports 26, 1059–1069, January 22, 2019
andMYH11 fusion events and genes increased in the inflamma-

tory, immune, and differentiation properties of AML cells (Fig-

ure 3B), again suggesting that C1 represents more differentiated

AMLs, while C2 characterizes an earlier stage. Our results also

showed strong positive correlation of global gene expression

patterns with the TCGA dataset at a Pearson coefficient of

0.716 (Figure S4E). In addition, many epigenetic factors such

as homeobox gene families and cofactors, transcription

factors, and epigenetic complex showed differential expression

between the 2 subtypes (Figure S4F; Table S6). As a key factor

in epigenetic programming, CEBPA showed increased expres-

sion levels in AMLs andmonocytic cells, but no significant differ-

ence between C1 and C2 (Figure S4G), suggesting that CEBPA

is not the main driving factor in establishing the epigenomic sub-

types, which is in line with mutations in CEBPA being present in

both.

To assess the cellular consequence for each subtype, we

calculated leukemia stem cell (LSC) scores by using a 3-gene

signature model (LSC3) (Ng et al., 2016). Based on amedian cut-

off in predicted LSC3 scores, all of the AML samples could be

discretized into high and low groups. We found that the pre-

dicted prognosis status of patients showed a significant associ-

ation with AML subtype C1 or C2 (p = 0.022, Fisher’s exact test)

(Figure 3C). The patients with adverse outcomes were more

frequently located in the C2 subtype (73.7%), and 68.4% of

cases in the favorable group belonged to the C1 subtype, which

was validated by several independent predictors such as MSI2

and PBX3 (Figures 3C and S4H) (Byers et al., 2011; Li et al.,

2013, 2016b). To explore epigenetic biomarkers for prognosis

prediction, we also calculated the LSC3 values using H3K27ac

and H3K27me3 signals in promoters and H3K36me3 signals in

the gene body for the 3 gene signatures. We found that the C2

subtype possessed a significantly higher percentage of samples

belonging to the high-LSC3 group than C1 from both transcrip-

tomic and epigenetic data, in which the lower LSC3 score in-

ferred from H3K27me3 indicated higher stemness due to its

negative correlation with gene expression (Figures 3D and S4I).

Also, when only focusing on the 19 AML samples with normal

karyotypes, we found that almost all of the samples in C2 have

larger LSC3 values inferred from gene expression, while epige-

netic marks indicated clear differences (Figure S4J). Our results

reveal that patients belonging to group C1 harbor more differen-

tiated AMLs and have relatively favorable prognoses compared

to patients in group C2, and suggest that, despite the small sam-

ple size used in this study, epigenetic patterns in the 3-gene

model may have predictive value.

Relation between Mutations in RUNX1 and Splicing
Factors
Given that AMLs carrying mutated RUNX1 or splicing factors are

specifically in the C1 subtype, we speculated that mutated

RUNX1 protein could deregulate the same genes targeted by

mutated spliceosome factors (Dvinge et al., 2016). We per-

formed RUNX1 ChIP-seq in the RUNX1 mutant (RUNX1mt) ex-

pressing AMLs and found that RUNX1 peaks showed significant

enrichment in promoter regions; they also colocalized with active

epigenetic marks, especially DNaseI hypersensitive sites (Fig-

ures S5A–S5C). Subsequently, we identified 475 genes linked



A B

C D

E

Figure 2. Genome-Wide Landscape and Subtype-Specific Features of Super-Enhancers

(A) The genomic length and H3K27ac intensity of SEs in AML. EnhS, strong enhancer state; EnhW, weak enhancer state; SE, super-enhancer.

(B) Ranked enhancer plots and their regulatory effects in a representative sample. SEs are orange, and several known AML-associated genes proximal to SEs are

highlighted. The figure at right shows the expression differences of genes associated with different types of enhancers. ***p < 0.001.

(C) Correlation between differentially expressed genes (DEGs) and differentially regulatory SEs (DSEs). A total of 212 deregulated genes were assigned to 186

DSEs within a 1-Mb distance. LFC, log2 fold change.

(D) Chromatin states H3K27ac and H3K27me3 signal at the HOXA cluster loci in 2 AML subtypes. For each 200-bp bin from ChromHMM segmentation analysis,

we selected the most frequent chromatin state to show in each subtype. All y axis scales are reads per kilobase million (RPKM)-normalized units.

(E) Dynamic H3K27ac and H3K27me3 intensity and expression levels of theGRK5 gene in AML patients, normal CD34+ progenitors, monocytes, and neutrophils.

See also Figure S4.
to differential splicing events (Figure 4A) by comparing patients

carrying mutations in spliceosome factors with other patients

in the C1 subtype. These differentially spliced hits were then
compared with the gene list, the promoters of which were occu-

pied by RUNX1 in RUNX1mt AMLs. We found significant overlap

between the 2 datasets by hypergeometric testing using all
Cell Reports 26, 1059–1069, January 22, 2019 1063
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Figure 3. Subtype-Specific Transcriptomic Signatures

(A) Volcano plot of gene expression changes between 2 subtypes.

(B) Functional enrichment analysis for differentially expressed genes. The dot size represents the percentage of identified genes against background.

(C) Contingency table comparing putative AML subtypes with different cellular consequences in prognosis predicted from a 3-gene signature model. All AML

samples were partitioned into 2 groups based on the LSC3 median cutoff. Samples with higher LSC3 score have greater stemness properties.

(D) Leukemic stem cell score derived from 3 signature genes using gene expression, H3K27ac, and H3K27me3 for the 2 subtypes. The H3K27me3-dependent

LSC3 score shows opposite trend due to negative regulation with gene expression.

See also Figure S4 and Table S6.
RefSeq genes as background (p < 2.20 3 10�16; Figure 4B).

Among the overlapping genes, EZH2, an important component

of the PRC2 complex, was found to have higher exon usage in

patients with splicing factor mutations (Figure 4C), which is in

line with a recent study (Kim et al., 2015). Usage of this exon

could lead to a truncated protein product due to a premature

stop codon by open reading frame prediction. We also found

that its promoter showed the presence of high-affinity binding

of RUNX1 in samples with the aberrant RUNX1 gene (Figure 4C,

right). Our results suggest that the effects of mutating RUNX1 or

splicing factors may converge on the epigenome.

Mixture Deconvolution and Gene Regulatory Network in
2 Subtypes
Weestimated the attributable fraction of each cell type to quantify

their contributions in our AML samples using assay for transpo-
1064 Cell Reports 26, 1059–1069, January 22, 2019
sase accessible chromatin with high-throughput sequencing

(ATAC-seq) and DNaseI-seq data. First, we compared DNaseI-

seq data with ATAC-seq data from monocyte cells and showed

high concordance between the profiles (average Spearman cor-

relation r = 0.818; Figure S6A), suggesting that these datasets

can be directly compared. We found a total of 783 C1-open and

3,676 C2-open DNaseI hypersensitive sites (DHSs) (Figure S6B).

Overlap analysis in conjunction with DNA accessibility signatures

from 5 different cell types indicates that the RUNX1/spliceosome

(C1) subtype is more similar to late-stage cell types, while the

NPM1/MLL (C2) subtype maintains signatures from early precur-

sor cells. Second, we performed a deconvolution analysis based

on DHSs marked as strong enhancers in AML to define cell sub-

populations by integrating ATAC-seq data from 8 other normal

cell types (Corces et al., 2016). A cell-mixture decomposition

approach predicted that the C2 subtype compromised an
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Figure 4. Potential Interplay between Aberrant RUNX1 Protein and Spliceosome Complex
(A) Differentially spliced events between splicing factor mutant and other AMLs in C1. A3SS/A5SS, alternative 30/50 splice sites; MXE, mutually exclusive exons;

RI, retained introns; SKE, skipped exons.

(B) Overlap between differentially spliced hits and target genes bound by mutated RUNX1.

(C) Skipped exons and RUNX1 binding patterns at EZH2 loci. Different exon usage between mutated splicing factors and 3 selected other samples (left). Oc-

cupancy of RUNX1 at the EZH2 promoter (right).

See also Figure S5.
average of 63.46% early cells (mainly hematopoietic stem cells

[HSCs], multipotent progenitors [MPPs], and common myeloid

progenitors [CMPs]), suggesting a more stem-enriched property.

In contrast, most cell types (79.27%) in the C1 subtype were from

late-stage, differentiated cells (mainly granulocyte-monocyte pro-

genitor [GMP] and monocytes [Mono]) (Figure 5A). A moderate

positive correlation (r = 0.585) between the estimated LSC3 score

and fractions of early cells showed that patients with the C2 sub-

type generally have higher early cell percentages and more stem

cell properties (Figure 5B).

To explore the key transcription factors (TFs) driving the 2

different AML subtypes, the subtype-specific DHSs and cell

type-unique open regions (HSC, CMP, GMP, megakaryo-

cyte-erythroid progenitor [MEP], and Mono) were used for

motif discovery (Figure 5C). In addition, for the enriched mo-

tifs, we examined the expression levels of the corresponding

transcription factors (Figure S6C). Hierarchical cluster results

by enrichment degree confirmed the earlier cell stage and

C2 correlation (Figure 5C). Specifically, we found that the

MEF2 and interferon regulatory factor (IRF) motif families, as

well as motifs with a basic helix-loop-helix (bHLH) binding

domain, were more enriched in the C1 subtype. In contrast,

in the C2 subtype sequence motifs for key hematopoietic
regulators such as RUNX1 and homeobox genes were

overrepresented.

Moreover, we foundmany high-quality footprints that could be

inspected by the average DNaseI activity profiles, such as the

well-known CCCTC-binding factor (CTCF) footprint with strong

protection from DNaseI cleavage (Nakahashi et al., 2013) (Fig-

ure S6D). We linked these putative footprints to their potential

target genes based on the footprint purity score and distance

and then inferred subtype-specific gene regulatory networks.

Subsequently, the connection number of TFs was compared be-

tween the 2 subtypes to identify differentially connected regula-

tors. We found that most upregulated TFs in one subtype also

tended to have more target genes and high motif enrichment in

the same group, like homeobox genes and IRF families in C2

and C1, respectively (Figure 5D).

We next scrutinized subtype-specific networks from deregu-

lated TFs to explore the interactions between a core set of key

regulators in each subtype. For each network, these highly con-

nected TF hubs also presented tight interactions between them

(Figure 5E). In the C2-specific network diagram, we found that

homeobox genes were major components and have an average

of 310 targets, although the hub with the most connections is

FOXC1 (1,950 connections). In contrast, the pivotal TFs in the
Cell Reports 26, 1059–1069, January 22, 2019 1065
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C1 network could regulate relatively more genes, mainly domi-

nated by E2F2, KLF4, and IRF families (Figure 5E). Another 2

TFs,RARA and PLAG1, functionally involved in cell development

and differentiation, also showed important regulatory roles in the

C1 subtype (Grimwade et al., 2016; Singh et al., 2017). These re-

sults revealed the core transcriptional network that drives epige-

netic regulation in the 2 subtypes of AML.
DISCUSSION

A comprehensive knowledge of epigenetic signatures is of

importance, as in general, these better reveal cellular conditions

and phenotypic plasticity than transcriptomic (or genomic)

markers alone. RNA-seq data generally suffer from differences

in RNA stability, high variation in gene expression levels, and

substantial contributions to the overall transcriptome by minor

(polluting) cell populations. In contrast, the epigenetic status

of, especially, enhancers can better demarcate differentiation

trajectories and the clonal composition of the cell population

(Corces et al., 2016), which is generally heterogeneous in AML

samples. Hence, subtype classification based on the epigenome

has the potential to converge patients with similar response to

external exposure, such as drugs, into the same group, allowing

the identification of clinical indicators for early diagnosis and

prognosis.

Here, clustering analysis of H3K4me1 or H3K27me3 uncovers

almost the same AML classification patterns to reveal 2 major

epigenomic subtypes, C1 and C2. As an enhancer mark,

H3K4me1 seems cell type and disease specific and captures

cell identity as well as cluster purity, as suggested previously

(Kasowski et al., 2013; Kundaje et al., 2015). Similarly,

H3K27me3 has also been suggested to contribute tomaintaining

cell identity, at least in part by regulating lineage-specific TF

expression (Conway et al., 2015). The substantial overlap among

clustering results from different datasets (ChIP-seq, RNA-seq,

DNaseI-seq) points to the robustness of our clustering, and it

demonstrated that most epigenetic signatures are strongly inter-

related and share a cooperative effect on AML pathogenesis. In

contrast, some other marks such as H3K9me3 seem less infor-

mative and are more granular. For these marks, increasing their

sample size seems warranted.

Our data suggest that theNPM1/MLL (C2) subtype has greater

stemness phenotypes owing to the higher enrichment of LSCs,

implying that the C2 subtype is likely to be more aggressive

and resistant to therapy than the C1 subtype. This finding is sup-

ported by the mutational status, as almost all of the samples in
Figure 5. Distinct Cell Populations, Motif Enrichment, and Regulatory

(A) Predicted average fractions of 8 different lineages for 2 AML subtypes. Early c

(HSC), lymphoid-primed multipotent progenitor cell (LMPP), and multipotent pro

granulocyte-macrophage progenitor cell (GMP), megakaryocyte-erythroid proge

(B) Consistency of stemness property between mixture deconvolution and 3-ge

leukemic stem cell values.

(C) Motif enrichment based on unique open chromatin sites in 2 AML subtypes

enrichment in each cell type.

(D) Differentially connected transcription factors between the 2 subtypes. Upregu

(E) Key deregulated hubs in the subtype-specific regulatory network. Node size

See also Figure S6.
the C2 subtype carry FLT3-internal tandem duplication (ITD),

IDH1, or t(9;11) aberrations, and abnormally high expression

levels of HOXA9, both of which are generally associated with

poor prognosis (Bond et al., 2016; Collins and Hess, 2016; Golub

et al., 1999; Jung et al., 2015; Li et al., 2012). The 3-gene LSC

signature (Ng et al., 2016) using gene expression, H3K27ac,

and H3K27me3 suggest inferior cellular consequences in clinical

outcomes for the C2 subtype. In addition, the C2 subtype shows

epigenomic signatures observed in normal early progenitor cells,

suggesting that this subtype largely maintains the epigenetic

status of the progenitor lineage. In contrast, the epigenetic

signature of theRUNX1/spliceosome (C1) group is characterized

by increased repressive marks and a closed chromatin state,

likely representing late-stage cells.

In summary, using epigenomic signatures, 2 major AML sub-

types are proposed that exhibit distinct mutational characteris-

tics and regulatory mechanisms and that confer different stem-

ness properties. Our findings facilitate a better molecular

understanding of the ontogeny of AML, and may ultimately

help to improve therapy decision making by designing certain

specific epidrugs to reprogram local epigenetic patterns of

target genes.
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DESeq2 Love et al., 2014 http://bioconductor.org/packages/release/bioc/html/

DESeq2.html

Cufflinks Trapnell et al., 2010 http://cole-trapnell-lab.github.io/cufflinks/
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PIQ Sherwood et al., 2014 https://bitbucket.org/thashim/piq-single
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Other
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Joost H.A.

Martens (j.martens@ncmls.ru.nl).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients Acquisition
A total of 38 samples with AML and 2 APLs (acute promyelocytic leukemia) were selected, given that the sample composition in this

study should well represent the complexmutational landscape of AML, and all samples should contain enoughmaterials of high qual-

ity for multi-omics profiling. Each sample was subjected to ChIP-Seq (six histone marks: H3K4me1, H3K4me3, H3K9me3, H3K27ac,

H3K27me3 and H3K36me3) and strand-specific total RNA-Seq, while for the majority of samples DNaseI-Seq (n = 29), targeted

mutational analysis (n = 29) andWGBS (n = 21) were also conducted (Table S1). The clinical and biological characteristics of the sam-

ples are detailed in Table S1. The study and sample usage were approved by the ethics committees of the contributing institutions.

Leukemic samples were either obtained from bone marrow or peripheral blood for subsequent processing. To obtain relative pure

cell populations and the largest fraction of leukemic cells (�10 million cells are needed to perform all the experiments) we used fluo-

rescence-activated cell sorting (FACS) based on expression of cell surface markers CD33 or CD34 (Figure S1A; Table S1). For the

majority of samples, CD33 enrichment was used and the detailed purification method is listed in Table S1. The cytogenetic informa-

tion of all subjects was determined at the time of disease diagnosis. Most of samples have undergone mutational analyses by a

custom 21-gene sequencing-based assay to assess for frequently mutated genes in AMLs like NPM1, FLT3 and DNMT3A. As

APL patients are a separate entity and are treated differently, these patients (n = 2) were excluded from the analysis and processed

separately (de Thé, 2015; Petraglia et al., 2018; Singh et al., 2018).

METHOD DETAILS

Mutation Spectrum Analyses
Genomic DNA was extracted, amplified and subjected to a custom 21-gene sequencing-based assay as previously described

(Berger et al., 2017). The 21 target genes (Table S2) are common driver genes with a mutation frequency > 5% in AML, and those

well-known variants for each gene were probed in our study. The identified mutation results are shown in Table S3. Considering

that the 4-bp insertion inNPM1 and the internal tandemduplication (ITD) in FLT3 are relatively easy to detect, we also confirmed these

variants through visual inspection of the RNA-Seq tracks by Integrative Genomics Viewer (IGV) tool (Robinson et al., 2011), and also

predicted their status in samples without genomic information. For four genes with high frequency in our study, we used Fisher’s

exact test to identify gene pairs with significant exclusivity and co-occurrence.
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ChIP-Sequencing
A total of six histone marks were selected for ChIP-Seq, including H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3 and

H3K36me3 (Diagenode C15410194, C15410003-50, C15410193, C15410196, C15410195 and C15410192). Chromatin harvest

and sequencing experiments were carried out based on the standard Blueprint protocol (http://www.blueprint-epigenome.eu).

For ChIP of each histone mark, around 1 million cells were collected. Purified cells were first cross-linked using 1% formaldehyde

(Sigma), and then sonicated to obtain DNA fragments of about 200-300 bp by a Diagenode Bioruptor. Sheared chromatin was incu-

bated with specific antibodies against the six histone markers. After immunoprecipitation, the protein-DNA cross-links were

reversed, and the isolated DNA was used for quantitative PCR and sequencing analysis. Meanwhile, a portion of chromatin was

processed under the same conditions but without immunoprecipitation step, as a control dataset (input DNA). For each sample,

an Illumina library was prepared with the Kapa Hyper Prep Kit, and then subjected to 42 bp single-end sequencing on the Illumina

HiSeq 2000 machine.

The RUNX1 ChIP-Seq was performed as described (Mandoli et al., 2016) using RUNX1 antibody (Abcam ab23980) which recog-

nizes both wild-type and mutated RUNX1 protein. After the regular ChIP procedure, four AML samples carrying RUNX1 mutation

were sequenced on the HiSeq 2000 platform with 42 bp paired-end reads.

DNaseI-Sequencing
DNaseI-Seq data was generated using the standard protocol of the Blueprint Consortium. Leukemic cells per donor were collected,

and nuclei were isolated using Buffer A [15mMNaCl, 60mMKCl, 1mM EDTA (pH 8.0), 0.5mMEGTA (pH 8.0), 15mM Tris-HCl (pH 8.0)

and 0.5mM Spermidine] supplemented with 0.015% IGEPAL CA-630 detergent. Nuclei were incubated for 3 minutes at 37�C during

DNaseI treatment. The reaction was terminated with stop buffer [50mM Tris-HCl (pH 8.0), 100mM NaCl, 0.10% SDS, 100mM EDTA

(pH 8.0), 1mMSpermidine and 0.3mMSpermine]. The sample was subsequently fractionated via 9%Sucrose gradient for 24 hours at

25,000 rpm at 16�C. Fractions containing fragments smaller than 1 kb were purified and further processed according to the Illumina

library preparation protocol. After quality assessment, the eligible library was sequenced by Illumina HiSeq 2000machine and gener-

ated 42 bp single-end reads.

Whole Genome Bisulfite Sequencing
Detailed WGBS protocols were conducted as previously described (Kulis et al., 2015). Genomic DNA was sonicated to 50-500 bp

using a Covaris E220 and fragments of size 150-300 bp were selected using AMPure XP beads (Agencourt Bioscience). We con-

structed DNA libraries using the Illumina TruSeq Sample Preparation kit (Illumina Inc., San Diego, CA, USA) based on the Illumina

standard protocol. And the DNA underwent two rounds of bisulfite conversion using the EpiTexy Bisulfite kit (QIAGEN). The treated

DNA fragmentswere enriched through seven cycles of PCR using the PfuTurboCxHotstart DNA polymerase (Stratagene). The quality

of library was assessed using the Agilent 2100 BioAnalyzer (Agilent), and the concentration of viable sequencing fragments

(molecules carrying adaptors at both extremities) was determined using quantitative PCR with the Library Quantification kit from

KAPA Biosystem. Then paired-end DNA sequencing (two reads of 100 bp each) was carried out using the Illumina HiSeq 2000

instrument.

Strand-specific RNA Sequencing
Total RNA was isolated from leukemic cells using the RNeasy RNA extraction kit (QIAGEN, Netherlands) with on-column DNaseI

treatment. Ribosomal RNA was removed using the Ribo-Zero rRNA Removal kit (Illumina) following the manufacturer’s recommen-

dations. The RNA concentration was monitored with a Qubit Flurometer (Invitrogen), and the RNA quality was evaluated by the

Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA) prior to library preparation. First strand cDNA synthesis was per-

formed using SuperScript III (Life Technologies), followed by synthesis of the second cDNA strand. Then, strand-specific cDNA

library with around 200 bp insert size was constructed using the TruSeq Stranded RNA Sample Preparation kit (Illumina) based

on the manufacturer’s instructions. For each library, paired-end sequencing (76 nucleotides each end) was then performed on an

Illumina HiSeq 2000 machine.

AML Subtype Classification
Subtype discovery was conducted by ConsensusClusterPlus package (Wilkerson and Hayes, 2010) with top 1% variable peaks or

genes (use top 1,000 when under 1,000) which were chosen according to interquartile range (IQR) of normalized peak density or gene

expression. ConsensusClusterPlus was run with 1,000 iterations, 80% sample resampling from 2 to 12 clusters (k = 2 to 12) using

hierarchical clustering based on Euclidean distance metric and Ward.D2 linkage method. The consensus clustering is a resam-

pling-based method for evaluating stability of the clustering, and the consensus value is the proportion of times (n = 0 �1 inclusive)

that the pair’s items (samples) are clustered together across the resampling iterations (i = 1,000 in the present study). We also

computed silhouette score to assess the coherence of clusters by evaluating the similarity of patients within or between subtypes.

In parallel to this approach, we also used another R package pvclust (Suzuki and Shimodaira, 2006) with the 1,000 iterations of boot-

strapping to check the significance and robustness of the clustering based on the same datasets and methods. The optimal number
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of AML subtypes was mainly determined by consensus cluster and silhouette value changes. The same clustering analyses were

done based on histone marks, gene expression, DNA accessibility and methylation level, to compare the consistency of different

datasets.

ChIP-Seq Data Analysis
Sequenced reads were aligned against the UCSC human reference genome (GRCh37/hg19) with Burrows-Wheeler Aligner (BWA)

program (Li and Durbin, 2009) with default parameters. Each sample with higher read coverage than matched input data was

randomly subsampled using Picard DownsampleSam command (http://broadinstitute.github.io/picard/), to increase peaks detec-

tion specificity (Chen et al., 2012). The resultant BAM files were subjected to removal of potential PCR and optical duplicates using

Picard MarkDuplicates option. Fragment length and quality measurement for each dataset were determined using PhantomPeak-

QualTools based on strand cross-correlation approach (https://code.google.com/archive/p/phantompeakqualtools/). Two metrics

named normalized strand cross-correlation coefficient (NSC) and relative strand cross-correlation coefficient (RSC) were used for

data quality assessment. Peak calling was performed using MACS2 (Zhang et al., 2008) with the estimated fragment size. All peaks

were called with input data as the background control. H3K4me1, H3K9me3, H3K27me3 and H3K36me3 peaks were detected using

the broad setting (–broad) with a q-value of 0.05, while H3K4me3 and H3K27ac were called using the narrow setting (default) with a

q-value of 0.01. For RUNX1 transcription factor, the binding sites were detected using default parameters except for a p-value cutoff

of 13 10�6. Peaks overlapping with the consensus excludable ENCODE blacklist and on sex chromosomes were discarded to avoid

confounding by repetitive regions and gender-specific bias. All alignment files were extended to the estimated fragment length and

scaled to RPKM-normalized read coverage files using deepTools (Ramı́rez et al., 2016) for visualization.

To characterize chromatin states for each individual epigenome, the six histone marks were integrated by applying ChromHMM

hiddenMarkov model (HMM) algorithm (Ernst and Kellis, 2012). ChromHMMwas run with default parameters and using input control

as background. We trained 13 models ranging from 8 to 20 states, and decided a 12-state model since it could capture the major

biologically meaningful combinations. The 12 chromatin states were subsequently defined based on the co-occurrence frequency

of individual features. To explore the overall variability of the 12 states across AML patients, we first calculated the number of

each 200-bp bin labeled with that state in at least one patient for each state, and the corresponding cumulative fraction in at

most n patients (n = 1–38) was computed (Kundaje et al., 2015). The chromatin state with faster cumulative frequency changesmeans

this state is more variable than others.

Super enhancers (SEs) in each sample were predicted by the ROSE algorithm (Whyte et al., 2013) using H3K27ac as the surrogate

mark. Briefly, all H3K27ac peaks within ± 2.0 kb around transcription start sites (TSSs) were first excluded. The remaining peaks

closer than default distance of 12.5 kb were stitched together, and subsequently ranked by normalized H3K27ac level corrected

by input background. Finally, SEs were separated from typical enhancers based on the inflection point of H3K27ac signal curve.

Differential SEs between AML subtypes were identified using DESeq2 (Love et al., 2014) with an adjusted p-value less than 0.1

and absolute fold change greater than 1.5. Super enhancer assignment to the nearest genes was determined by BEDTools (Quinlan

and Hall, 2010).

RNA-Seq Data Analysis
For expression analyses, the hg19 reference genome index was first generated using STAR aligner (Dobin et al., 2013) with UCSC

gene annotation. Paired-end reads were mapped to the indexed genome in two-pass mode with default parameters, to increase

alignment accuracy and sensitivity. Stranded gene-level read counts were enumerated at the same time, and used as input for

DESeq2 package (Love et al., 2014) to distinguish differential expressed genes among different AML subtypes. Only autosomal

genes were analyzed and these greater than 1.5 fold changed at adjusted p-value < 0.1 were considered significantly deregulated.

Expression quantification for each RefSeq gene was performed by Cuffnorm function in Cufflinks (Trapnell et al., 2010), to estimate

Fragments Per Kilobase per Million aligned reads value (FPKM).

Besides normal mapping, we also turned on detection of chimeric alignments with –chimSegmentMin 20 option, in order to identify

genome-wide fusion genes. We used the STAR-Fusion pipeline (https://github.com/STAR-Fusion/STAR-Fusion) to predict recurrent

fusion genes based on junction files from the STAR aligner. Only those fusion genes with sum of junction reads and spanning frag-

ments greater than nine were retained, to ensure true positives of predictions.

In addition, we usedMISO suites (Katz et al., 2010) with default options to detect alternative splicing events in our study. TheMISO

annotations contained five types of events: skipped exons (SKE), alternative 30/50 splice sites (A3SS, A5SS), mutually exclusive exons

(MXE) and retained introns (RI). We first computed percentage splicing index (PSI) value of each event and inferred differentially

spliced genes by pairwise comparisons between groups using t test. Significant differences were only considered for p-value <

0.01 and absolute difference in PSI mean of the groups R 0.1.

In order to evaluate clinical outcomes for each AML patient, we used a linear combination of expression value of validated gene

signatures and computed a leukemia stem cell (LSC) score (Ng et al., 2016). A reweighted 3-gene signaturemodel was used because

this model is more optimal to capture survival differences within small populations. The signature scores (LSC3) were calculated us-

ing log2-transformed FPKM after incrementing by 1, and a high LSC3 value suggests a greater fraction of leukemia blasts that

conferred resistance to standard AML therapy. As suggested, a median threshold in our data was used to classify scores into

high and low groups, in which above- and below-median scores were linked to adverse and favorable outcomes, respectively.
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DNaseI-Seq Data Analysis
All DNaseI-Seq reads were mapped to the hg19 reference genome using BWA (Li and Durbin, 2009) with default settings. Non-

uniquely mapped reads and PCR duplicates were removed. From these filtered mapped reads, we used F-Seq tool (Boyle et al.,

2008) to identify candidate DNaseI hypersensitive sites (DHSs) using default parameters except for a 300 bp feature length and

the threshold parameter of 6. To alleviate artificial differences due to genome mappability, a custom 42 bp background track was

constructed using GEM tools (Derrien et al., 2012; Marco-Sola et al., 2012) and bffBuilder program (provided by F-Seq) as control.

After peak calling, we fitted the DNaseI signal data to a gamma distribution to calculate p-value for each peak, and significant DHSs

were determined at a loose p-value of 0.05 cutoff. All DHSs on sex chromosomes were removed from the analysis to allow for com-

parison across both male and female patients.

Differentially accessible regions were detected using DESeq2 package (Love et al., 2014) with the same cutoffs as in previous an-

alyses, after removing peaks with the total read counts less than five. Motif discovery in the differential DHSs was employed by the

findMotifsGenome function in HOMER tool (Heinz et al., 2010) with random background and other default parameters. To compare

motif signatures between different subtypes and cell types, we calculated fold change defined as the percentage of target sequence

with this motif divided by percentage of background sequences with the same motif.

Transcription factor (TF) footprints were detected using PIQ package (Sherwood et al., 2014) based on the input motifs set from

JASPAR database and other collections (Mathelier et al., 2016; Matys et al., 2006). We concatenated all DNaseI alignment files from

the same subtypes to provide sufficient sequencing depth for footprinting analyses. Purity scores for the genomic occupation of each

TF were predicted to evaluate TF binding affinity. Only those transcription factors with at least 500 high-purity (>0.7) binding sites

within a DHS were kept for the following analyses. To infer transcriptional regulatory networks, we conducted similar analyses based

on these putative footprint sites as previous studies (Qu et al., 2015; Rendeiro et al., 2016). We computed an interaction score be-

tween each transcription factor and each gene, based on its footprint purity score and the distance from a nearby gene. Only those

interactions greater than 1.0 were kept and used as edge weight to construct network. The gene regulatory network for each AML

subtype was visualized by Cytoscape software (Shannon et al., 2003). To examine differences between AML subtype networks, we

focused on these source-target interactions comprising at least one differentially expressed gene (TF or target gene). Subsequently,

we divided the degree of each node by the total number of edges in each network, and calculated the percentage difference between

two subtypes for the same TF.

WGBS Data Analysis
The common set of called CpG sites including methylation signal and coverage were provided by Centro Nacional de Análisis

Genómico (CRG-CNAG). The detailed analyses protocol was performed as described previously (Kulis et al., 2015). WGBS read

alignments were generated using GEM software (Marco-Sola et al., 2012) with respect to a converted hg38 reference genome.

Only read pairs mapped to the same chromosome with the consistent orientation and reasonable edit distance from the reference

were selected for the following analyses. Estimation of genotype and cytosine methylation levels were carried out using software

developed at the CNAG, taking into account the observed bases, base quality scores and the strand origin of each read pair. For

each genomic position, we generated estimates of themost likely genotype and themethylation proportion (for genotypes containing

a C on either strand). A Phred-scaled likelihood ratio for the confidence in the genotype call was estimated for the called genotype at

each position. For each sample, CpG sites were selected where both bases were called as homozygous CC followed by GG with a

Phred score of at least 20, corresponding to an estimated genotype error level of%1%. Sites with coverage greater than 5003were

filtered to avoid repetitive regions (centromere/telomere). After quality control procedure, a common set of called CpG sites for all

analyzed samples was generated, and used for all downstream analyses.

To investigate the differential DNAmethylation levels between AML subtypes, the obtained CpG sites were formatted as inputs for

RnBeads package (Assenov et al., 2014). The significance of differential methylation in each site or region was determined by a com-

bined rank score with a threshold of 3,000. All preliminary analyses were done based on hg38 reference genome, so we converted all

methylation coordinate results to hg19 assembly using bwtool software (Pohl and Beato, 2014) for data integration and visualization.

AML Deconvolution
To systematically map the compositional difference of blood cells in bulk AML samples, we applied the CIBERSORT (Cell type

Identification By Estimating Relative Subsets Of knownRNA Transcripts) deconvolutionmethod (Newman et al., 2015) to DNA acces-

sibility data resource. This approach can quantify the relative fractions of cell-type-specific signatures in bulk tumors based on ma-

chine learning approach. We downloaded ATAC-seq data for eight primary human blood cells from GSE74912 accession (Corces

et al., 2016). The dataset comprised four early cell types, hematopoietic stem cell (HSC), multipotent progenitor cell (MPP),

lymphoid-primed multipotent progenitor cell (LMPP), common myeloid progenitor (CMP), and four late cell types, granulocyte-

macrophage progenitor cell (GMP), megakaryocyte-erythroid progenitor cell (MEP), monocyte cell (Mono) and common lymphoid

progenitor (CLP). We first evaluated the correlation between ATAC-Seq and our DNaseI data. We only focused on DHSs overlapped

with strong enhancer (EnhS) from ChromHMMbecause of high individual variability and cell type specificity of these distal regulatory

elements. The RPKM value for each predicted DHSs was calculated to be the input for AMLs deconvolution analyses using 1,000

permutation tests. Only samples with an empirical p-value less than 0.1 were included in the following analyses.
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Gene Ontology and Pathway Analysis
To assess the regulatory functions for those subtype-specific elements, we downloaded C2 and C5 collections from Molecular

Signatures Database (MSigDB) and performed gene set enrichment analysis (Subramanian et al., 2005). Functional annotation

was determined using the hypergeometric test in R by investigating the overlap of genes in identified gene list with genes in archived

gene sets. Multiple testing correction was conducted using the Benjamini-Hochberg method, and only those terms with corrected

p-values less than 0.01 were called significantly over-represented.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical significance of the overlap among any peak or gene sets was determined by the hypergeometric test. Comparison

between different groups was tested using Fisher’s exact test for dichotomous variables and Mann-Whitney test for continuous

variables.

DATA AND SOFTWARE AVAILABILITY

The custom codes used in this study are available at https://github.com/eleven919/JMartensLab.
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