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ABSTRACT: Identifying traits that underlie variation in individual
performance of consumers (i.e., trait utility) can help reveal the eco-
logical causes of population divergence and the subsequent conse-
quences for species interactions and community structure. Here, we
document a case of rapid divergence (over the past 100 generations,
or ~150 years) in foraging traits and feeding efficiency between a lake
and stream population pair of threespine stickleback. Building on
predictions from functional trait models of fish feeding, we analyzed
foraging experiments with a Bayesian path analysis and elucidated the
traits explaining variation in foraging performance and the species
composition of ingested prey. Despite extensive previous research
on the divergence of foraging traits among populations and ecotypes
of stickleback, our results provide novel experimental evidence of trait
utility for jaw protrusion, gill raker length, and gill raker spacing when
foraging on a natural zooplankton assemblage. Furthermore, we dis-
cuss how these traits might contribute to the differential effects of lake
and stream stickleback on their prey communities, observed in both
laboratory and mesocosm conditions. More generally, our results il-
lustrate how the rapid divergence of functional foraging traits of con-
sumers can impact the biomass, species composition, and trophic
structure of prey communities.
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Introduction

Adaptive divergence of consumer populations often in-
volves the rapid evolution of multiple foraging traits, which
can underlie both individual performance of consumers
and the effect of consumers on their prey communities
(Matthews et al. 2011; Schoener 2011; Thompson 2013).
There is growing evidence that contemporary phenotypic
evolution can affect not only population dynamics (Kokko
and Lopez-Sepulcre 2007; Smallegange and Coulson 2013)
and interactions among pairs of species (Becks et al. 2010;
Hiltunen and Becks 2014) but also the composition and
structure of species-rich communities (Harmon et al. 2009;
Weber et al. 2017; terHorst et al. 2018). Because of these
wide-reaching effects, a sound understanding of the traits
underlying variation in individual performance—trait util-
ity—is critical for understanding the interaction between
evolving organisms and their environments (Schluter 2000;
Thompson 2013).

The complex relationships among multiple traits, indi-
vidual performance, and environmental context often make
it difficult to establish the links between trait evolution and
the trait-mediated impacts of organisms on ecosystems. Ev-
idence for trait utility is typically obtained from phenotype
by environment correlations (Schluter 2000), functional trait
models (Wainwright and Richard 1995), and experimental
manipulation of trait variation (Wainwright and Shaw 1999).
However, even for well-studied organisms, it is often chal-
lenging to identify the heritable traits responsible for effects
on individual performance and subsequently for effects on
prey communities and ecosystem dynamics (Matthews et al.
2011).
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The threespine stickleback (Gasterosteus aculeatus) is a
particularly useful starting point for integrative analyses
of the community consequences of consumer trait evolu-
tion. Previous work with stickleback has studied trait util-
ity for a limited set of traits, including body size (Schluter
1993), gill raker characteristics (Robinson 2000), and jaw
kinematics (McGee et al. 2013; Higham et al. 2017) as well
as the heritability (Schluter et al. 2004; Berner et al. 2010,
2011) and plasticity (Day et al. 1994; Wund et al. 2012; Las-
kowski and Bell 2013; Lucek et al. 2014b) of these traits in
a variety of environmental contexts. A separate body of
work has also investigated the ecosystem effects of closely
related stickleback species (Harmon et al. 2009; Des Roches
et al. 2013), lineages (Best et al. 2017), and ecotypes (Mat-
thews et al. 2016; Brunner et al. 2017). Yet there remains
a critical gap between the two approaches. Whereas
organism-focused studies of trait utility work to mechanis-
tically link morphology with the capture of specific prey
items (McGee et al. 2013; Higham et al. 2017), ecosystem-
focused studies test for impacts of consumer trait distri-
butions on whole seminatural communities in mesocosm
experiments (e.g., Harmon et al. 2009). A missing link
between these two approaches is a solid understanding of
variation, over time and space, in the community context
of trait utility—more specifically, how natural variation
in prey communities can influence the trait evolution of
consumers and how this, in turn, may shape prey com-
munities and feed back to affect consumer trait evolution
(Holt 1995; Schoener 2011; Hendry 2016; Matthews et al.
2016).

Here, we investigate how an unusually rapid case of adap-
tive population divergence, occurring over the past 150 years
between a lake and a stream population of threespine stick-
leback (Marques et al. 2016), has led to divergence in sev-
eral foraging traits—traits that could mediate both individ-
ual feeding performance and community-wide effects on
prey species. Trait divergence between pairs of lake and
stream stickleback populations is both widespread and com-
mon, although the nature and extent of divergence varies
among population pairs, likely due to the environmental
contrasts between lakes and streams and the influence of
both adaptive and nonadaptive processes (Raeymaekers
et al. 2017; Stuart et al. 2017). Foraging trait divergence be-
tween pairs is often characterized by lake populations hav-
ing more and longer gill rakers than stream populations
(Kaeuffer et al. 2011; Lucek et al. 2013; Stuart et al. 2017).
This might reflect adaptations to foraging in open-water hab-
itats (where zooplankton are more prevalent), compared
with feeding on larger invertebrates and insects in streams
(Kaeufter et al. 2011; Lucek et al. 2012). However, there is
a lack of experimental evidence for the utility of these and
other functional foraging traits, and this limits our ability
to make inferences about the underlying ecological drivers

of natural selection. Gill rakers can aid planktivorous fish re-
tain prey during selective filter feeding (Zaret 1980) and are
often divergent in their structure (e.g., number, length, spac-
ing) between limnetic and benthic ecotypes of postglacial
freshwater fish (e.g., rainbow trout [Budy et al. 2005], white
fish [Roesch et al. 2013], alewives [Post et al. 2008], stickle-
back [Bentzen and McPhail 1984; Schluter 1996]). However,
in addition to gill rakers, foraging traits involved in prey pur-
suit and capture rather than retention can also affect for-
aging efficiency of planktivorous fish (Holzman et al. 2011;
Higham et al. 2017). Jaw protrusion, for instance, influ-
ences the striking distance and directional suction poten-
tial of predator attacks (Wainwright et al. 2007; Holzman
et al. 2008; Holzman and Wainwright 2009), while displace-
ment advantage (the ratio of output to input displacement)
constrains the opening velocity of the lower jaw (Barel 1983;
Westneat 1994). Collectively, these traits might underlie
not only individual performance and feeding efficiency (re-
ducing prey biomass) but also prey selection (altering prey
community composition and size structure). Furthermore,
the prey species of plankton communities vary widely in
their vulnerability to predation, with the more evasive spe-
cies being more predatory (e.g., cyclopoid copepods) than
the less evasive species (e.g., many herbivorous cladocer-
ans). As a result, rapid evolution of stickleback foraging traits
that govern feeding efficiency and preference (i.e., between
copepods and cladocerans) could play a role in shaping both
the species composition and the trophic structure of prey
communities.

In this study, we combine detailed individual morphology
with foraging experiments using a natural lacustrine zoo-
plankton community as prey for stickleback. We chose stick-
leback individuals from a recently diverged pair of lake
and stream ecotypes, which we raised under common lab-
oratory conditions. Our results reveal novel evidence for
the utility of jaw protrusion and gill rakers (width and
length)—heritable foraging traits associated with the cap-
ture of zooplankton prey by stickleback. We further show
that several foraging traits are divergent in this lake-
stream pair and investigate the link between these traits
and the differential foraging efficiency and diet composi-
tion of stickleback when feeding on a natural zooplank-
ton assemblage. To establish the link from foraging traits
through performance to environmental impacts, we then
compare the biomass reduction of different zooplankton
prey species from our laboratory foraging experiments with
changes in biomass of the same species in a previous meso-
cosm experiment using the same lake and stream ecotypes
(Matthews et al. 2016). Overall, we illustrate how diverg-
ing multivariate phenotypes interact with the natural var-
iability in prey community composition to determine both
differential performance and community-wide effects of
these lake and stream ecotypes.
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Material and Methods
Sample Collection

Parental threespine stickleback (Gasterosteus aculeatus) eco-
types were caught from the southeastern shores of Lake
Constance (lake ecotype; 47°29'55"N, 9°33'25"E) and sev-
eral kilometers upstream at Aubach in Oberriet (stream
ecotype; 47°19'38"N, 9°34'24"E) in both 2013 and 2014
(fig. 1A). From these parents we bred cohorts of lake (2013:
three families; 2014: 30 families) and stream (2013: five
families; 2014: four families) fish. All juveniles were reared
on Artemia and zooplankton for the first 2 months and
later fed bloodworms (Chironomidae spp. larvae) daily
and live zooplankton biweekly. These fish were adults (~1
and 2 years old) at the time of the foraging experiment in
2015. To compare morphology between these laboratory
fish and wild stickleback, we also captured adult fish from
the same populations in 2015. Fish collections, husbandry,
and experimental procedures were according to fishing
permits obtained from the canton of Saint Gallen and ani-
mal care permits obtained from the veterinary office of the
canton of Lucerne.

Experimental Procedure and Behavioral Measures

For all foraging experiments we used a complete random-
ized block design of multiple trials, each with factorial com-
binations of age (1+; 2+) and ecotype (lake; stream), repli-
cated 22 times (N = 88 fish used for foraging trials). Within
each trial we used a single sex where possible and tried to
minimize size differences between individuals. Prior to each
trial the fish were not fed for 24 h. We initially placed the fish
into 10-L tanks (20 cm x 20 cm x 30 cm) behind a partition
and allowed the fish to acclimate for 5 min (see fig. Al;
figs. A1, A2 are available online). During this time, a sample
of live zooplankton (500 mL), collected on the same day
from Lake Lucerne, was added and allowed to disperse on
the other side of the partition. An additional random 500-mL
sample of zooplankton was preserved for quantification of
initial composition. The zooplankton composition of Lake
Lucerne is comparable to that of Lake Constance and
includes a combination of both herbivorous (e.g., Daphnia
longispina, Daphnia galeata [mean * SE: 0.69 == 0.01 mm],
Bosmina longirostris [mean *+ SE: 0.42 + 0.01 mm]) and om-
nivorous (e.g., Eudiaptomus gracilis [mean * SE: 0.51 =
0.01 mm], Cyclops vicinus [mean * SE: 0.54 + 0.01 mm])
taxa. In this community context, the predatory zooplankton
tend to be more evasive than the herbivores because they are
copepods with superior escape responses (Yen et al. 2015).

For each trial, we started all replicates simultaneously by
raising the partition in each of the four tanks and allowing
the fish to feed freely for 8 min. We video recorded each
fish (GoPro Hero 3 Silver). Later, the playback of those
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videos and the software JWatcher 1.0 (http://www.jwatcher
.ucla.edu/) was used to quantify the total number of strikes,
the time spent between strikes (i.e., search time), and the
time until the first strike (ie., latency time). The researcher
analyzing these videos (D. W. Schmid) was blind to the iden-
tity (ecotype) of each fish. At the end of each trial, stickleback
were sacrificed with an overdose of MS-222. Both gut
contents and the estimated initial zooplankton samples
were inspected to quantify prey species composition, abun-
dance, and size via a dissecting microscope (Leica; fig. A2).
Using the zooplankton counts from the initial sample and
the final gut, we computed an index of prey electivity (Van-
derploeg and Scavia 1979): E* = (W, —n ) (W, —n" 1)},
where 7 is the number of different prey types available and
W, = (rip; )(ripi "), with r; and p; indicating the num-
ber of prey type i in the gut and initial environment, respec-
tively. The index ranges from —1 to +1, with more negative
and more positive values reflecting lower or higher repre-
sentation, respectively, of a prey species in the gut relative
to its availability in the zooplankton assemblage. Last, forag-
ing efficiency on single prey items was calculated as FE =
total number of prey consumed/total number of strikes re-
corded, and foraging efficiency on biomass was calculated
as FE;,, = total biomass consumed/total number of strikes
recorded.

Morphological Measures

After dissection, all sacrificed fish and our wild-caught fish
(an additional 41 stream and 47 lake stickleback) were
stained, as outlined in McGee et al. (2013). Next, each stick-
leback was photographed three times: dorsally, laterally with
closed mouth, and laterally with opened mouth (fig. 1B).
From these pictures we used 14 landmarks to measure
four component traits related to feeding (table 1; see ta-
ble Al; tables A1-A4 are available online). In addition, the left
pectoral fin was removed at the base, spread, and photographed.
We used another six landmarks to quantify two component
traits and one functional system related to swimming (table
1; see table Al). Finally, we extracted the pharyngeal appa-
ratus, counted all of the gill rakers on the ventral and dorsal
limb of the first arch (gill raker number), and measured the
length of the second-most-dorsal gill raker on the ventral
limb (gill raker length; Berner et al. 2008). Last, the gap be-
tween this raker and the next-most-ventral gill raker (gill
raker spacing) was measured.

All linear and area component traits or measures were
first log or square root transformed, respectively. Subse-
quently, we either size standardized these traits to account
for variation in standard length between ecotypes and ages,
as described previously (McGee et al. 2013), or incorporated
both standard length and raw trait values in the analysis. All
functional systems, except for fineness ratio, were calculated
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from standardized data. The suction index model predicts
suction potential within the buccal cavity empowered by
force generation through the epaxialis and hence is the ma-
jor determinant of overall suction performance in fish (Car-
roll et al. 2004; Wainwright et al. 2007). The index is calcu-
latedasSI = (CSAgyu X (Lin/Low))/(Gape x Buccal Length),
a function of the amount of force generated through the
epaxial muscle (CSAg,.,), the moment arm of the epaxialis
(Li») and neurocranial outlever (L,,), and the projected area
of the buccal cavity as a product of buccal length and gape
(fig. 1B; table 1). The cross-sectional area of the epaxial mus-
cle is the product of CSAg,.. = 7 x (E, x (E,/2))/2, where
E, and E, are the epaxial height and width, respectively. Dis-
placement advantage—one of several traits that influences
jaw opening velocity (Westneat 1994)—was computed as
DA = JaWougever/JaWiniewer» @and  pectoral fin aspect ratio
was estimated as A = h’/S,., where h and S, are pectoral
fin leading edge and area, respectively (table 1; Wainwright
etal. 2002). Jaw protrusion, eye and gape size, and gill raker
length and width were always used as size-standardized
measures (fig. 1B; table 1). Fineness ratio (i.e., a measure
of streamlined body shape), f = SL/(ABD x E’), was the
quotient of non-size-standardized data, with SL as standard
length, ABD as anterior body depth, and E,, as epaxial width
(fig. 1B; table 1; Walker 2004). Morphological differences
between wild and laboratory fish may arise from dissim-
ilarities in development or reproductive status (McGee and
Wainwright 2013) or prey environment (e.g., through phe-
notypic plasticity; Lucek et al. 2014b). However, differences
within laboratory fish reared under identical conditions
more likely have a genetic origin (Marques et al. 2016).

Ecotype Differences in Traits, Behavior, and Prey Selection

We tested for effects of ecotype and sex on size-standardized
traits using linear models (LMs) and a generalized linear
model (GLM) for count data (e.g., gill raker number [Poisson
distribution]). This was performed for both laboratory-reared
and wild-caught fish. To test for differences in latency time,
search time, strike frequency, total prey consumed, and forag-
ing efficiency, we used linear mixed effects models with eco-
type, sex, and age and their two-way interactions as fixed ef-
fects and trial as a random factor. A Friedman test was run to
estimate differences in prey electivity (E") between ecotypes
within trials for each age class separately.

Full-Experiment Bayesian Regression Model

For a more comprehensive approach, we also fit a Bayesian
path analysis to explain the total number of prey captured
during each trial (i.e., a proxy of efficiency) based on eco-
type, sex, and size; our suite of functional traits (jaw protru-
sion, eye area, gape, gill raker width, gill raker length, dis-

placement advantage, suction index, pectoral fin aspect ratio,
and fineness ratio); a behavioral trait (number of strikes);
the total number of prey available to the fish; and a random
effect of experimental trial. We repeated a similar model
analysis where we split the total number of prey into two
groups: evasive (copepod species) and nonevasive (cladoc-
eran species) prey. Use of a single Bayesian model includ-
ing all predictor and response variables (e.g., from ecotype
through traits to performance) allowed us to compare the
direct effects of ecotype, sex, and size with the effects of
our suite of relevant foraging traits. In addition, the model
allowed us to directly include both size (standard length)
and raw trait values as predictors of feeding success, which
is biologically more reasonable because capture success is
determined by absolute trait values (e.g., gill raker size rel-
ative to prey size) rather than by residual values from size
correction. The significance of effects in the model was based
on whether 95% credible intervals of effect size (e.g., ecotype,
size, or trait) overlapped with zero.

All analyses were performed using R (R Core Team 2016),
and the data have been deposited in the Dryad Digital Re-
pository: https://dx.doi.org/10.5061/dryad.8rk23t4 (Schmid
et al. 2019). All model residuals were checked for normal-
ity and homoscedasticity; consequently, where necessary
variables were transformed to meet model assumptions. Our
regression analyses were performed in a Bayesian frame-
work using STAN (Gelman et al. 2013). STAN is a Markov
chain Monte Carlo (MCMC) sampler similar in spirit to
BUGS and JAGS (Biirkner 2017 and references therein).
However, STAN’s MCMC sampler uses Hamiltonian MCMC
in conjunction with a no U-turn sampler (NUTS); there-
fore, it is much more computationally efficient than typi-
cal Gibbs or Metropolis-Hastings algorithms and requires
many fewer sampling iterations to achieve convergence.
This improved computational efficiency makes it possible
to run the type of “whole experiment model” described
above. To set up the analysis, all continuous variables were
transformed to have a mean of 0 and a standard deviation
of 0.5, with a normal prior of mean 0 and standard devi-
ation 1 for both slope and intercept terms (Carpenter et al.
2017). All models were run for at least 10,000 MCMC
iterations with four chains (equivalent to 1 million gener-
ations for a traditional MCMC sampler), and we verified
that all four chains converged using the estimated poten-
tial scale reduction statistic Rhat (Carpenter et al. 2017).

Results
Functional Traits

Our (G)LM and path analysis approaches report broadly
consistent effects of ecotype for several traits (fig. 2A-2E).
For example, fineness ratio, displacement advantage, and
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Figure 2: Ecotype differences in morphology and foraging efficiency. Average suction index (A) was higher in stream than in lake fish; lake
fish consistently projected their jaw farther (B) and displayed a higher displacement advantage (C) than stream fish; gill raker spacing (D) and
gape (E) did not differ significantly between laboratory reared ecotypes; and foraging efficiency on pelagic prey by lake stickleback (F) was
twice as high as by stream ecotypes irrespective of age and sex (F, 3 = 20.82, P < .001).
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jaw protrusion were larger in lake fish (fig. 3, red lines orig-
inating from ecotype), whereas suction index was higher in
stream fish ([G]LMs: table 1; Bayesian model: table 2, fig. 3,
blue lines originating from ecotype). Neither approach re-
vealed differences in eye size or gill raker traits (number,
width, length) between ecotypes (table 2; fig. 3). Unlike the
results from the LMs, the path analysis additionally revealed
that laboratory-reared stream fish had a larger gape than
lake fish (table 2; fig. 2E). As expected, in the path analysis
size had strong effects on all traits except our ratio-based
functional indices (e.g., displacement advantage; table 2).
Trait divergence in wild fish was largely consistent with
that in laboratory-reared fish, but the effects of sex in wild
fish were more pronounced than those in laboratory-
reared fish (table A3).

Foraging Behavior and Efficiency

All foraging-related behaviors differed consistently be-
tween ecotypes (table A2). Most notably, pelagic foraging
efficiency, in terms of both captured number (F, 4 =
20.82, P < .001) and biomass of prey per strike (F, 5 =
5.58,P = .021), was higher for lake fish than for stream fish
regardless of age and sex (fig. 2F). On average, stream fish
consumed more prey (F, s, = 4.73,P = .033) but required
more strikes to do so (F, s = 53.2, P < .001). Search time
increased with age (F, s = 4.07, P = .048), and females
showed a higher frequency of strikes than males (F, , =
5.99, P = .017).

Prey Selectivity and Trait-Mediated Community Change

Prey from the family Bosminidae were the most abundant
in the zooplankton mixture, followed by Daphniidae, Diap-
tomidae, and Cyclopidae (fig. A2). Yet lake stickleback, re-
gardless of their age, preferentially captured more prey of
the family Cyclopidae (indicated by a significantly positive
selectivity index [E']; age 1: x> = 4.55, P = .033; age 2:
x*> = 18.18, P < .001) and either avoided or were unsuc-
cessful at capturing prey from Bosminidae, Daphniidae,
and Diaptomidae (indicated by E" ranging between —0.5
and 0.5; fig. A2; table A3). Stream stickleback showed no clear
preference for either of the four prey types (fig. A2; table A3).

Trait Utility

Our path analysis to explain total prey capture success
(fig. 3A) revealed positive effects of jaw protrusion and gill
raker length and a negative effect of gill raker spacing (ta-
ble 2). In contrast with our LMs, the path analysis showed
that lake fish captured more prey overall than stream fish
(fig. 34, red line from ecotype to total prey) while making
fewer strikes (fig. 3A, blue line from ecotype to strikes).

Whereas the latter result is consistent, the difference in
overall prey consumption likely stems from differences based
on sample means in comparison with estimated marginal
means. Our path analysis incorporating prey evasiveness
revealed that the capture success of evasive prey (i.e., cope-
pods) increased with greater jaw protrusion and suction in-
dex and reduced gill raker spacing (fig. 3B; table A4). In this
same analysis we found that capture success of nonevasive
prey is positively related to gill raker length and pectoral fin
aspect ratio. In addition to the indirect effects via functional
and behavioral traits and consistent with the results from
the prey electivity index, we found more evasive prey in
the guts of lake fish and more nonevasive prey in the guts
of stream fish (fig. 3B; table A4).

Discussion

Differentiation in foraging traits is common during adap-
tive population divergence in general (Schluter 2000; Grant
and Grant 2002; Herrel et al. 2008) and during adaptive
population divergence of stickleback in particular (Berner
et al. 2009; Raeymaekers et al. 2017; Stuart et al. 2017).
However, even for well-studied models of adaptive diver-
gence, it remains a challenge to link divergence of specific
components of multivariate phenotypes to the community-
and ecosystem-wide effects of consumers. Here, we use a
pair of lake and stream ecotypes of stickleback from Lake
Constance with both phenotypic (Lucek et al. 2010, 2014a)
and genomic (Marques et al. 2016) divergence that has
evolved within only ~100 generations. In this specific pop-
ulation pair, we report new evidence for morphological di-
vergence in several important foraging traits and in feeding
efficiency on zooplankton (fig. 2). We also establish a link
between individual variation in key foraging traits, such
as jaw protrusion and gill raker morphology, and feeding
performance on a natural prey assemblage (fig. 3). Our path
analyses help elucidate which foraging traits underlie the
differential success in the capture of prey species with vary-
ing degrees of evasiveness (fig. 3B). Below, we elaborate on
how the observed differences in traits and foraging effi-
ciency between ecotypes might help explain the distinct
ecological effects of this particular lake and stream popula-
tion (Matthews et al. 2016; Brunner et al. 2017), illustrating
how rapid trait evolution of consumers can have conse-
quences for the biomass structure and species composition
of prey communities (fig. 4).

Rapid Morphological Differentiation of Lake
and Stream Stickleback

Previous work on functional trait models and kinematics
identified several candidate traits that could play an important
role in the capture of zooplankton by stickleback (McGee
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Table 2: Assessing trait utility in relation to total prey captured via Bayesian path analysis

Response Explanatory Estimate Estimate error 95% CI
Total prey consumed Strikes .02 0 .01 to .02
Total prey consumed Standard length 43 24 —.05t0 .9
Total prey consumed Sex (M) .01 .07 —.13 to .14
Total prey consumed Ecotype (stream) —-.23 .09 —.4 to —.05
Total prey consumed Gill raker length 29 .09 11 to 47
Total prey consumed Gill raker width —.32 11 —.54 to —.11
Total prey consumed Gape —.12 .17 —.45to 21
Total prey consumed Jaw protrusion 29 .1 .09 to .48
Total prey consumed Eye area —.34 .18 —.69 to .01
Total prey consumed Pectoral fin aspect ratio 1 1 —.09to.3
Total prey consumed Suction index .08 .08 —.07 to .23
Total prey consumed Displacement advantage .16 .09 —.02 to .34
Total prey consumed Fineness ratio —.09 .08 —.25 to .07
Total prey consumed Total prey available .01 0 0 to .01
Gill raker length Standard length 71 .09 .52 to .89
Gill raker length Sex (M) .15 .09 —.03 to .33
Gill raker length Ecotype (stream) —.01 .09 —.18 to .16
Gill raker width Standard length 7 .09 .52 to .87
Gill raker width Sex (M) .07 .09 —.1to0 .24
Gill raker width Ecotype (stream) 12 .08 —.05 to .28
Gape Standard length 93 .05 .83 to 1.03
Gape Sex (M) 21 .05 .11 to .31
Gape Ecotype (stream) 1 .05 .01 to .2
Jaw protrusion Standard length .68 .08 .52 to .84
Jaw protrusion Sex (M) .06 .08 —.09 to .21
Jaw protrusion Ecotype (stream) —.44 .08 —.59 to —.29
Eye area Standard length .95 .05 .85 to 1.04
Eye area Sex (M) .07 .05 —.02 to .17
Eye area Ecotype (stream) —.04 .04 —.13 to .05
Pectoral fin aspect ratio Standard length .78 .08 .63 to .94
Pectoral fin aspect ratio Sex (M) .02 .08 —.13 to .17
Pectoral fin aspect ratio Ecotype (stream) —.13 .08 —.27 to .02
Suction index Standard length 17 11 —.04 to .38
Suction index Sex (M) —.11 1 —.32 to .09
Suction index Ecotype (stream) 42 1 22 to .61
Displacement advantage Standard length 17 11 —.05 to .38
Displacement advantage Sex (M) .08 11 —.13 to .29
Displacement advantage Ecotype (stream) -5 .1 —.69to —.3
Fineness ratio Standard length 1 12 —.13 to .33
Fineness ratio Sex (M) —.01 11 —.23to .21
Fineness ratio Ecotype (stream) -.33 11 —.55 to —.12
Strikes Standard length —.12 .03 —.18 to —.06
Strikes Sex (M) —-.22 .03 —.27 to —.16
Strikes Ecotype (stream) 73 .03 .68 to0 .79

Note: Shown is a full Bayesian path analysis on total prey in relation to all foraging traits, strike frequency, and total prey

availability (using trial as a random effect) as well as ecotype, sex, size, and their effects on traits. The directionality of the effect

size is given by sign. Effects for which the 95% credible interval (CI) does not overlap zero are significant.

etal. 2013). As predicted from this previous work, we found
that lake ecotypes have greater jaw protrusion, greater
opening jaw displacement advantage, and a more streamlined
body shape, whereas stream stickleback have a higher suction
force. For some traits these differences were larger in wild fish:
wild stream stickleback exhibited larger suction potential

than stream stickleback raised in the laboratory, and wild
lake stickleback exhibited greater displacement advantage
than laboratory-reared lake stickleback. It is possible that
wild stream fish develop stronger epaxial muscles—the major
determinant of suction force (Camp et al. 2015)—than fish
reared in the laboratory on frozen chironomid larvae and
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Figure 4: Biomass reduction relative to either the starting biomass in the foraging trials or the biomass in the mesocosms without stickleback
(after 1 week). In both experiments, lake stickleback removed a proportionally higher amount of biomass of prey from upper trophic levels
(i.e., Cyclopidae). The mesocosm experiment further highlights that in the long term lake stickleback have a higher impact on the zooplank-
ton community than stream stickleback (Matthews et al. 2016). This may be because in the foraging trials they capture zooplankton more
efficiently than stream fish, which had to strike much more often to capture a similar amount of prey in the short-term foraging experiment.

Colors indicate taxa: orange

live zooplankton. Similarly, wild fish that regularly feed
on live prey in open-water environments might develop a
greater displacement advantage, in line with previous work
on the morphological plasticity of body shape and jaw mor-
phology (Lucek et al. 2014b). The wild fish were also at a
more advanced reproductive stage than the laboratory-
reared fish, and this could contribute to greater sexual di-
morphism (McGee and Wainwright 2013).

Overall, the observed morphological differences between
lake and stream ecotypes in our study (fig. 2) are broadly
consistent with those from closely related teleost species
occupying different habitats where distinct foraging envi-
ronments drive divergence (Schluter 1996; Seehausen and
Wagner 2014) and with those differences in foraging traits
observed between other stickleback populations (McGee
et al. 2013; Higham et al. 2017; Thompson et al. 2017). The
lake-stream pair we studied has a notable lack of divergence
in gill raker traits, which is uncommon for other instances
of adaptive divergence between lake-stream populations
(Kaeuffer et al. 2011; Stuart et al. 2017) and between ben-

Daphniidae; red = Bosminidae; light blue = Diaptomidae; dark blue

Cyclopidae.

thic and limnetic species (Day et al. 1994). However, the
pair we chose has a particularly rapid pace of divergence,
likely resulting from a combination of divergent selection
between lake and stream habitats as well as from the ongo-
ing hybridization among multiple ancient lineages of stick-
leback that are present in the Lake Constance watershed
(Lucek et al. 2010; Marques 2016; Best et al. 2017). This re-
gion of Switzerland is a zone of secondary contact between
multiple lineages of stickleback that have different evolu-
tionary histories of adaptation to freshwater environments
(Lucek etal. 2012). The main population in Lake Constance
is from an eastern Baltic lineage, but there is some evidence
for adaptive introgression from western lineages that might
have accelerated divergence between lake and stream geno-
types (Lucek et al. 2012; Marques et al. 2016).

Trait Utility in Stickleback

Jaw protrusion was positively associated with capture suc-
cess of zooplankton and evasive copepods. This supports

This content downloaded from 141.005.009.063 on February 11, 2019 02:49:50 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



000 The American Naturalist

the prediction that evolution of greater jaw protrusion is
an adaptation for capturing zooplankton in general (Bell-
wood et al. 2015) and hints at its utility in capturing eva-
sive zooplankton in particular (Holzman and Wainwright
2009; Yen et al. 2015). The utility of jaw protrusion is con-
sistent with previous morphological work on a limnetic-
benthic stickleback species pair (from Paxton lake), which
predicted but was unable to show empirically that greater
jaw protrusion would increase the capture success of eva-
sive zooplankton species (McGee et al. 2013). This is be-
cause jaw protrusion can rapidly place the strongest por-
tion of the flow field next to the prey item before it has
a chance to initiate an escape response. This is also consis-
tent with our expectations from our particular lake-stream
study system, where we have found that evasive copepods
are a common prey item found in guts of wild lake fish
(Lucek et al. 2012) and that lake fish cause stronger reduc-
tions of copepods in mesocosms over the short term (e.g.,
over 1-3 weeks) than stream fish (Matthews et al. 2016).
More generally, our foraging trials provide the first exper-
imental evidence for trait utility of jaw protrusion in a teleost
fish—an essential step toward understanding both the
causes and the consequences of adaptive phenotypic evolu-
tion of fish in general (Roesch et al. 2013) and of stickle-
back in particular (Schluter 1993; Holzman et al. 2008; Higham
et al. 2017).

Our results also provide some experimental support for
the oft-assumed utility of gill raker traits for zooplank-
ton foraging efficiency (Zaret 1980). Specifically, we dem-
onstrate that increased gill raker spacing reduces, while in-
creased gill raker length improves, zooplankton capture
success. Indeed, previous studies have outlined how these
aspects of gill raker morphology form the mechanistic basis
for how gill raker traits can improve the ingestion of small
particles from the water column, specifically by redirecting
the flow of particles into the esophagus (Sanderson et al.
2001). However, only one previous study of Coregonus
whitefish (Roesch et al. 2013), which did not quantify gut
contents after the feeding trials, addressed gill raker utility
in relation to zooplankton capture success. Occupation of a
zooplanktivorous niche is a common outcome among
instances of postglacial freshwater fish divergence (Berner
et al. 2010; Kaeuffer et al. 2011; Stuart et al. 2017). However,
our results also illustrate greater complexity of this
zooplanktivorous niche and suggest that the species com-
position and relative abundance of the prey community
might influence adaptations to zooplanktivory. For exam-
ple, our study provides novel evidence for the utility of gill
raker length in the capture of nonevasive zooplankton (i.e.,
cladocerans) and both jaw protrusion and gill raker spacing
for the capture of evasive zooplankton (i.e., copepods). No-
tably, such effects of rakers on prey capture was observed
despite a lack of divergence in raker traits between ecotypes.

While our study reveals strong links between functional
traits and feeding performance, we nevertheless observed di-
rect effects of ecotype on total prey capture (higher for lake
fish) and on both evasive (higher for lake fish) and nonevasive
(higher for stream fish) prey capture, suggesting that unmea-
sured trait differences might explain additional variance
(fig. 3). For example, it is likely that quantification of foraging
kinematics could help explain variation in prey capture that
remains unexplained by the traits we measured. Complex ki-
nematic traits such as ram speed (Higham et al. 2017) and
strike accuracy (Kane and Higham 2015), for instance, are
highly likely to contribute to prey capture success, depending
on the prey community context. In our analysis, the total
number of strikes was a strong predictor of successful prey
capture, but without high-speed video we could not link in-
dividual strikes with specific prey items so as to directly
quantify performance on different prey items. Furthermore,
it is likely that the basis of prey selection by stream and lake
ecotypes is not simply a matter of functional traits and could
also reflect unmeasured behavioral traits. In addition to
measuring kinematic traits, we suggest that future work
could examine, for example, whether behavioral feedbacks
(e.g., positive feedback of learning) based on successful and
unsuccessful strikes could help further explain individual var-
iation in feeding performance on natural prey assemblages
(Svanback and Bolnick 2007; Melidn et al. 2014).

Trait-Mediated Community-Wide Effects

Our short-term foraging trials in the laboratory suggest that
divergence in foraging traits and prey preference of predators
can culminate in differential effects on prey communities, but
how do such results scale up to larger and more natural
ecosystems? To explore this, we quantified prey-specific bio-
mass reduction from our foraging trials and from a previously
published mesocosm study, which used the same fish popu-
lations and ecotypes (Matthews et al. 2016), and then com-
pared how selectivity and trait-mediated performance can
change zooplankton community composition and trophic
structure. The lake ecotype reduced the relative biomass of
cyclopoid copepods, the rarest prey (fig. A2), in both the lab-
oratory setting and the mesocosm setting (foraging trial:
~34%; mesocosm experiment: 88%), whereas the stream eco-
type had weaker impacts (foraging trial: ~21%; mesocosm ex-
periment: 4%; fig. 4). Overall, lake fish exploited the pelagic
prey community more effectively than stream fish in the
mesocosm (Daphniidae: 98%; Bosminidae: 97%; Diaptomi-
dae: 97%; fig. 4; Matthews et al. 2016). Yet stream fish also
strongly reduced the biomass of multiple species (Daph-
niidae: 57%; Bosminidae: 88%; Diaptomidae: 85%; fig. 4).
The difference in exploitation of cyclopoid copepods, how-
ever, is particularly striking. Cyclopoid copepods are voracious
predators in the plankton community, have strong top-down
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effects on grazers of both the algal- and the microbial-based
food chain (Fryer 1957; Matthews and Mazumder 2003),
and, despite their evasiveness, may embody a highly profit-
able prey to target (Chepkwemoi et al. 2013). In connection
with the link between jaw protrusion/gill raker morphology
and capture success of copepod prey, the foraging trials and
mesocosms experiments suggest that trait differences under-
lying performance (and potentially preference) of a top pred-
ator can alter the trophic structure of prey communities and
may help explain some of the indirect effects of stickleback on
ecosystem functioning (Harmon et al. 2009; Best et al. 2017).

Our results also provide new insights about the community
context of trait divergence between lake and stream stickle-
back. In our particular study system, phenotypic differences
between lake and stream fish have evolved rapidly over the
past 150 years, potentially facilitated by introgression follow-
ing secondary contact between two distant lineages (Lucek
etal. 2010,2012; Marques et al. 2016). The greater jaw protru-
sion of the lake stickleback might help explain why their diet
in the natural lake environment is dominated by evasive
copepods (Lucek et al. 2012). Although we find some evi-
dence for trait utility of gill rakers, we did not find divergence
in gill raker spacing and length between our lake and stream
populations, even though such divergence is common in other
lake-stream pairs (Kaeuffer et al. 2011; Lucek et al. 2013; Stuart
et al. 2017). This might reflect differences among systems in
(i) the time available for divergence, (ii) the strength and agents
of divergent selection, and/or (iii) the genomic substrate for
adaptation (ie., given the presence of hybridizing lineages;
Lucek et al. 2010). We also found that the stream fish had a
greater suction index, which might explain why their natural
diet in streams is dominated by prey associated with sub-
strates (e.g., rocks, sediment, macrophytes), such as chirono-
mid larvae, isopods, and ostracods (Lucek et al. 2012). When
lake fish migrate into streams to breed, their diet rapidly
converges to be more similar to the stream fish diet. However,
more foraging experiments in benthic environments are nec-
essary to identify those traits that are useful when foraging on
benthic prey.

The present study links divergence in foraging traits of
stickleback mechanistically with both individual perfor-
mance in a community context (i.e., stickleback feeding
on a natural zooplankton community) and the subsequent
community-wide effects (i.e., of stickleback feeding on the
zooplankton community). Our work highlights how rapid
trait evolution of consumers can affect prey biomass and
community structure and contributes to the growing body
of evidence across multiple systems and taxa indicating
that trait evolution can impact community and ecosystem
dynamics (e.g., Grant and Grant 2002; Hiltunen and Becks
2014; Hendry 2016). While such research highlights the
interplay between evolutionary and ecological dynamics
(Schluter 2000; Matthews et al. 2011; Schoener 2011; McPeek
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2017), we propose that more experimental tests of trait utility
in different environmental contexts are necessary to improve
our understanding of the community context of trait evolu-
tion (McPeek 2017; terHorst et al. 2018) and the mechanistic
basis of feedbacks between trait and community change (Lion
2018; Patel et al. 2018).
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