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Abstract  

Hexagonal boron nitride (h-BN) is the only known material aside from graphite with a structure 

composed of simple, stable, non-corrugated atomically thin layers. While historically used as 

lubricant in powder form, h-BN layers have become particularly attractive as an ultimately thin 

insulator. Practically all emerging electronic and photonic device concepts rely on h-BN 

exfoliated from small bulk crystallites, which limits device dimensions and process scalability. 

Here, we address this integration challenge for mono-layer h-BN via a chemical vapour 

deposition process that enables crystal sizes exceeding 0.5 mm starting from commercial, 

reusable platinum foils, and in unison allows a delamination process for easy and clean layer 

transfer. We demonstrate sequential pick-up for the assembly of graphene/h-BN 

heterostructures with atomic layer precision, while minimizing interfacial contamination. Our 

process development builds on a systematic understanding of the underlying mechanisms. The 

approach can be readily combined with other layered materials and opens a scalable route to 

h-BN layer integration and reliable 2D material device layer stacks.  

 

Keywords: h-BN, 2D materials, CVD, transfer, catalyst, graphene, platinum



3 

 

Scalable manufacture remains a central challenge in the application of two-dimensional layered 

materials (2DLMs). In recent years, major advances have been made regarding chemical 

vapour deposition (CVD) of 2DLMs such as graphene (Gr)1,2 and hexagonal boron nitride (h-

BN).3,4 Many studies have revealed the details of the growth processes on select, generally 

catalytic, substrates.5–7 The focus thereof has been on achieving ever-larger single-crystalline 

regions by lowering the nucleation density8,9 and/or by merging aligned domains.10,11 However, 

emerging applications require integration into device stacks. The most versatile route for this 

is 2DLM transfer from the CVD growth catalyst to the designated device, often including the 

vertical stacking of 2DLMs to form van der Waals heterostructures. A number of transfer 

methods have been proposed for CVD Gr and h-BN, including wet transfer,12,13 dry transfer,14–

16 electrochemical delamination17,18 and lift-off-transfer.19 Progress in developing these 

methods has not kept pace with large-area 2DLM crystal growth and the introduction of 

contamination and damage remain major constraints, which is exceptionally severe in case of 

heterostructures that rely on atomically clean interfaces.20,21  

Heterostructure devices fabricated entirely using exfoliated 2DLM now achieve carrier 

mobility values close to theoretically-predicted limits.22–24 As exfoliation is an inherently non-

scalable approach to fabrication, significant efforts have been made to replace each of the 

constituent layers using CVD 2DLMs in a step-wise manner.25,26 The approach for high 

mobility Gr channels has been to use h-BN flakes exfoliated from bulk crystallites to peel off 

CVD Gr from the growth substrate, thus minimising transfer related defects and interface 

contamination. Using dry transfer, Cu catalysed CVD Gr has been shown to exhibit electron 

and hole mobilities well above 50,000 cm2/Vs at room temperature25 and ballistic transport 

lengths of 28 µm have been demonstrated at temperatures below 2 K, limited solely by device 

dimensions, i.e. the size of exfoliated h-BN flakes.26 While highlighting the potential for 
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applications particularly in optoelectronics and sensing, these examples still rely on mechanical 

exfoliation from bulk h-BN crystallites, giving limited, random flake size and varying thickness. 

Such dependence on flake exfoliation is a major bottleneck for further advances toward 

scalable device integration. 

Here, we focus on addressing this challenge of reliably integrating CVD h-BN into 2DLM 

heterostructures for scalable manufacture. This demands new holistic process development, 

not only growth of large h-BN mono-layer crystals, but also their viable, clean transfer and 

device interfacing for which we take high-mobility Gr channels as application relevant model 

system to assess quality. We investigate h-BN growth and transfer in unison, in particular in 

the context of the choice of growth catalyst since both processes critically rely on h-BN 

interactions with the catalyst. Strong metal/h-BN interactions are preferable for applications 

where the h-BN remains on the metal, such as for magnetic tunnel junctions.27,28 To enable 

effective transfer, however, only weak adhesion to the growth substrate is desired. Cu, which 

is widely employed as a catalyst for CVD Gr and h-BN,7,12 exhibits a weak interaction with 

both materials.29,30 The high vapour pressure of Cu at typical growth temperatures31 leads to 

concerns not only about reactor contamination and a restricted high temperature parameter 

space, but also contamination of the 2DLM by trace Cu, which is a constraint for CMOS 

integration.21 We therefore focus on Pt, which is also a weakly interacting catalyst27 but with a 

lower vapour pressure and higher melting point.32 h-BN interaction with Pt has been studied in 

detail for the Pt(111) surface.33,34 Reported CVD h-BN domain sizes on Pt to date are typically 

only a few µm.35,36 Much larger domain sizes have been reported for graphene CVD on Pt,37 

but in all cases 2DLM transfer relied on conventional electrochemical delamination.  

Based on an understanding of the growth process, we present a CVD process to achieve large 

monolayer h-BN domains with lateral sizes exceeding 0.5 mm. Importantly we show that as-



5 

 

grown h-BN mono-layers can be easily and cleanly transferred using an entirely delamination-

based approach, which also enables the reuse of the substrate. We demonstrate sequential pick-

up to create h-BN films of controlled layer thicknesses and graphene/h-BN heterostructures, 

while minimizing interfacial contamination and showing high device performance. Our work 

opens a pathway to integrate CVD h-BN in high quality 2DLM heterostructures. 

Results 

Overview of growth process 

Fig. 1 gives an overview of our CVD process and how h-BN growth proceeds. In its basic 

form, our process, which we refer to as a sequential step growth (SSG), consists of two coupled 

borazine exposures at different pressures (Fig. 1a). In contrast, widely used single exposure at 

fixed temperature and pressure is referred to as “standard” growth (SG). We use borazine 

(B3H6N3) as a combined boron (B) and nitrogen (N) precursor, which is isostructural to 

benzene and has a high vapour pressure of 340 mbar at room temperature.38 In conjunction 

with our cold-wall CVD reactor system (base pressure < 2 × 10-6 mbar, further details in 

Experimental Methods), a well-controlled precursor atmosphere can be maintained, in contrast 

to the use of ammonia borane, which can exhibit a complex and evolving decomposition profile 

especially for hot-wall CVD reactor conditions.39 Our main findings relate to fundamental 

interactions with the catalytic growth substrate and hence are transferable to other B and N 

precursors. In particular, we note that while borazine represents a precursor with pre-defined 

stoichiometry (B:N = 1), it dissociates on the Pt surface. This means that the interaction of the 

constituent elements with the catalyst will dictate the actual supply of the elements during 

CVD.7 We use commercially available polycrystalline Pt foils (25 µm, 99.99%, Alfa Aesar) as 

growth substrates, which are remotely heated using an IR laser with a beam shaper that creates 
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a homogeneous field with a top-hat profile. This minimises sample cross-contamination. The 

low thermal mass allows fast ramping to and from growth temperatures (Tgr) of up to 1300 °C. 

If not stated otherwise, all SEM images are taken immediately after growth with around 30 min 

or less atmospheric exposure for transfer. This is important as the secondary electron (SE) 

contrast for h-BN mono-layers can change on Pt, as we will discuss below. Further details are 

given in the Experimental Section.  

The first exposure in SSG (Fig. 1a), at relatively high borazine pressure (Psd), promotes 

recrystallization and grain growth of the Pt foil which is initially highly poly-crystalline (Fig. 

1b). The h-BN nucleation density and homogeneity are then controlled by briefly removing the 

precursor during the homogenization stage (thomo; see Fig. 1a), which leads to the dissolution 

and removal of excess h-BN. In the second exposure phase (texp) the nuclei are then laterally 

expanded into large mono-layer h-BN crystals via exposure at low borazine pressure (Pexp). 

Upon further exposure, these merge into a continuous h-BN mono-layer film. The h-BN mono-

layers thus grown can then be delaminated directly from the Pt, which can be reused for further 

growth (see SI, Fig. S9).  

 

Investigation of growth mechanism using in-situ XPS 

It remains unclear from previous literature on Pt catalysed h-BN CVD whether growth occurs 

isothermally or via precipitation on cooling.36 Hence, we make use of in-situ and ex-situ 

characterisation to establish a first order understanding of the underlying growth mechanisms 

as basis for further process development. In-situ X-ray photoelectron spectroscopy (XPS) 

provides surface-sensitive information on the growth mechanism of h-BN (see experimental 

section for details).4,7 Fig. 2 shows in-situ XPS measurements of a Pt foil during a basic one-
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step borazine exposure (process diagram Fig. 2a). XPS measurements are taken throughout the 

CVD process, i.e. during heating to Tgr, subsequent borazine exposure at constant pressure psd 

and cool-down. Fig. 2b shows the evolution of B1s and N1s core-level spectra taken during 

borazine exposure (3×10-4 mbar), at a Tgr of 1100 ºC (step II.1 – II.2). Both the B1s and N1s 

spectra show the emergence of a peak that grows in intensity with time, consistent with the 

isothermal growth of h-BN on the Pt surface. XPS spectra measured toward the end of borazine 

exposure show a main B1s peak centred at a binding energy of ~191.5 eV and N1s peak centred 

at ~399.0 eV (Fig. 2c). We observe the π→π* plasmon shake up satellite at ~200 eV 

corresponding to sp2 bonded h-BN, which can be more clearly discerned when multiple spectra 

are summed to improve the signal to noise ratio (see SI, Fig. S2). Analysis of the relative peak 

intensities also confirms that the B:N ratio is ~1. Based on ex-situ measurements using 

transmission electron microscopy (TEM) and Raman spectroscopy (see below and SI), we 

exclude significant formation of cubic BN and multilayer h-BN. Hence we assign the given 

XPS signatures to mono-layer h-BN, consistent with previous literature.7,30,40  

After the first exposure step in SSG and when removing the precursor (temperature kept at Tgr 

= 1100 °C), the B1s and N1s peaks disappear within less than 2 minutes (Fig. 2c). The B1s and 

N1s peaks do not reappear upon cooling at these conditions. There are multiple possible 

explanations for the disappearance of the Pt supported h-BN mono-layer. One process that has 

been reported in the context of removing Gr grown on Pt is etching with H2 at 1060 ºC.41 Other 

studies have investigated the stability of h-BN on SiO2, a non-catalytic substrate, in an oxygen 

containing atmosphere and found the onset of degradation at 850 ºC42 and complete removal 

at 1000 ºC.43 The stability of h-BN may be further reduced when on a catalyst such as the 

growth substrate, as in the case of h-BN on Cu where depending on the state of oxygen 

intercalation, the h-BN can dissociate completely at 700 ºC.7 Given the absence of any gas after 
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precursor removal and a base pressure of below 1 x 10-8 mbar, we exclude the possibility of 

significant etching for our experiments. Instead, we suggest that at the given growth 

temperatures h-BN is not stable on the growth catalyst once the precursor has been removed, 

and either desorbs, is dissolved into the bulk or both. The bulk solubility of B in Pt is reported 

to be ~2.5 at% at Tgr = 1100 °C.44 We could not find any relevant ternary phase diagrams in 

literature, or reliable data on N solubility in Pt, but it has previously been assumed that the N 

solubility in bulk Pt is negligible.35 Simple thermodynamic bulk solubility considerations are 

typically inadequate for describing growth of nanomaterials where kinetic processes and local 

supersaturations are often dominant.45 Furthermore, under certain conditions (see SI, Fig. S4) 

we have observed precipitation effects indicating not only boron (see also Fig. 3) but also 

nitrogen solubility, consistent with the h-BN layers dissolving into the catalyst bulk (Fig. 2c). 

As well as revealing the presence and evolution of h-BN on the Pt surface, we are also able to 

monitor the chemical state of the Pt catalyst with in situ XPS. Fig. 2d presents the Pt 4f core 

level spectra for bare (prior to borazine exposure) and h-BN covered Pt surfaces at two different 

X-ray excitation energies taken at Tgr = 950 °C. Photoelectrons collected with higher X-ray 

energy have longer inelastic mean free paths (λIMFP ≈ 4.5 Å at 225 eV, λIMFP ≈ 7.6 Å at 

525eV),46 and thus higher information depth, i.e. the data represents depth resolved information 

about the catalyst surface composition. We observed no changes in the Pt4f spectrum compared 

to the clean surface indicating the absence of any significant B and N phases near the surface.  

The results for CVD of h-BN on Pt are consistent with a first-order kinetic growth model 

previously introduced for other transition metal catalysts, which takes into account precursor 

and elemental flux balances.7,45 The key findings regarding the optimized CVD process in Fig.1 

are that h-BN grows isothermally on Pt and no further growth occurs upon cooling due to 

precipitation. This is in contrast h-BN growth on Fe, where the contribution to growth due to 
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precipitation is significant and thus control thereof is crucial for growth of large grain size h-

BN.4 At the chosen CVD conditions, h-BN growth appears to be driven by a local B and N 

supersaturation at the surface. At high temperatures (Tgr = 1100 ºC, Fig. 2c) the Pt supported 

h-BN mono-layer film dissociates and at least partly dissolves into the Pt bulk once the borazine 

flux is removed. Within the parameter space covered by our in- and ex-situ experiments (max. 

borazine pressure of 10-2 mbar; max. temperature of 1400ºC; max. exposure time of 30 min) 

we only observe monolayer h-BN on Pt. This is independent of the cooling rate which we have 

varied from 10 ºC/min to immediate quenching (temperature drop of >500ºC in a period of 

~5s). This is in contrast to h-BN growth on Fe, where multi-layer h-BN formation is observed.4 

 

Details of growth process 

Fig. 3 shows the effect of annealing of the Pt foil and how the choice of CVD atmosphere prior 

to growth impacts its texture and crystallinity. h-BN growth is linked to the nature of the growth 

substrate, analogous to graphene CVD. Different catalyst foil facets show different catalytic 

growth activities and lead to varying 2DLM nucleation density, domain alignment and domain 

shape evolution.47 Hence optimising the crystallinity of the catalyst foil is an important part of 

the CVD process. A first indication of the crystallinity can be obtained through SEM. Crystal 

domains with different orientations will differ in brightness due to channelling contrast. The 

lack thereof gives a strong indication of a single Pt crystal facet. We carried out a systematic 

set of experiments with commercial Pt foils that were annealed in vacuum for 15 min, similar 

to the general SSG process outlined in Fig. 1, and then subjected to an additional 2 min of 

annealing under different gas environments (Fig. 3a). For annealing in vacuum (at base 

pressure < 2 x 10-6 mbar), H2 (10-3 mbar) or NH3 (10-3 mbar), SEM shows a binary distribution 
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of grain sizes. The majority of the Pt grains have a lateral size around 50 µm – 100 µm (Fig. 

3b, Loc. 1). A few selected Pt grains grow significantly larger, reaching millimetre-scale (Fig. 

3b, Loc. 2). In contrast, when annealed in borazine for 2 min, at otherwise identical conditions, 

the Pt surface shows uniform SEM contrast across a few mm2 of sample area, indicative of a 

dominant single in-plane orientation (Fig. 3b). No evidence of h-BN growth is observed at this 

stage. X-ray diffraction measurements (XRD) were taken to investigate the Pt foil texture in 

more detail after borazine annealing. The 2θ-ω scan presented in Fig. 3c shows a dominant Pt 

(1 1 1) orientation following annealing. This is to be expected given that (1 1 1) is the lowest 

energy interface for FCC crystals, such as Pt. The texture map in Fig. 3d of the Pt (1 1 1) 

reflection (at 2θ = 39.73º) shows one pole in the symmetric position (χ ~ 0º) and 3 poles at χ ~ 

70° and spaced by φ = 120° from each other. This is evidence that the vast majority of the Pt 

grains have the same orientation, i.e. the grains are not rotated relative to each other. The foil 

is not completely single-crystalline as highlighted by the additional weaker poles, for example 

the one at χ ~ 70º and φ = 90°, which indicate that there are some grains, albeit a minority 

(potentially in the bulk of the foil), that are rotated with respect to the dominant orientation. 

We note that the Pt surface roughness is not significantly altered by this crystallisation, with 

an average roughness measured by atomic force microscopy (AFM) of Ra = 5.3 nm for the 

poly-crystalline and Ra = 4.7 nm for the crystallized foil (see SI, Fig. S11). 

There are a number of reports on thermal recrystallization of Cu foils for improved graphene 

CVD, using extended thermal pre-treatment48,49 and thermal gradients.11 We also explore 

thermal gradients (see SI, Fig. S1), and emphasize that longer annealing times lead to improved 

foil crystallisation. Here, however, we focus on the accelerated crystallisation observed for 

borazine exposure which has benefits as part of an integrated process. Upon thermal annealing, 

recrystallization is at first driven by a reduction of dislocation energy, followed by grain growth 
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driven by the minimisation of the overall energy associated with grain-boundaries (GB). The 

latter involves normal grain growth where all grains grow uniformly, as well as abnormal grain 

growth (also known as secondary crystallization) where one type of grain will grow 

significantly faster than the others driven by the difference in surface energies between 

different grain orientations.50–54 Our data shows that such abnormal growth in Pt is significantly 

enhanced by the presence of borazine. For Pt thin films it has been frequently observed that the 

presence of oxygen is detrimental to the formation of grains with (1 1 1) surface orientation.51,55 

In this context B, which can readily adsorb in Pt grain boundaries,56 is frequently used as 

deoxidizer,57 and the addition of B to Pt has been seen to cause GB unpinning.54 We therefore 

attribute the accelerated abnormal Pt grain growth to GB unpinning via removal of pre-existing 

solutes. Another potential mechanism could be B causing solute drag by decorating and pinning 

selective GBs, leaving only high mobility GBs able to grow. 

Having established the rationale for the catalyst foil crystallisation step, we now consider each 

subsequent step in the SSG process (Fig. 1a), i.e. seeding, homogenization and domain 

expansion. We carried out a systematic set of SG experiments and focus on the role of key 

parameters, particularly exposure times (tsd, thomo, texp), exposure pressures (Psd, Pexp) and 

temperatures (Tgr), for each individual step of the integrated SSG process. In Fig. 4, a series of 

SEM images show the outcome of SG growth experiments at precursor pressures (Psd=1×10-5 

mbar) corresponding to those used in the first SSG step (Fig. 1a). The topmost images in Fig. 

4b and 4c represent the outcome of seeding for tsd = 3 min and tsd = 5 min prior to 

homogenization (i.e. thomo = 0 min). A more detailed series is given in Fig. S5 in the SI. For tsd 

= 3 min a few h-BN domains of very similar sizes have nucleated. At tsd = 5 min these h-BN 

domains have grown in size, but secondary h-BN nucleation has occurred as evidenced by the 

many additional smaller domains. We note that the onset of secondary nucleation varies and 



12 

 

starts occurring from tsd = 3min onwards. This highlights a key challenge for controlling the 

microstructure of the resulting h-BN. A high precursor exposure pressure is desirable to 

minimise incubation time and achieve rapid nucleation and growth (compare to Fig. S6 in SI 

for SG at lower Psd), however the accompanying secondary nucleation is detrimental to 

achieving large domain sizes. We thus introduce a homogenization stage in SSG, and figs. 4b 

and 4c show the effects of increasing thomo. After thomo = 5 min all smaller h-BN secondary 

nuclei have disappeared (Fig. 4c) and for thomo = 10 min also the larger h-BN domains are 

removed or significantly reduced in size. Our XPS data (Fig. 2) showed that existing h-BN 

nuclei are unstable and start to dissociate when borazine is removed. Given a constant rate of 

dissociation, it is expected that smaller nuclei will disappear first, consistent with our data. This 

allows us to control the h-BN nucleation density, which justifies our choice thomo = 5 min to 

achieve optimal growth results (Fig. 1a). It should be noted that the overall parameters are 

highly interdependent. Thus the suggested time of thomo = 5 min is optimized for the given set 

of parameters of temperature, precursor pressure, seeding time and catalyst dimensions. 

Following homogenization (see Fig. 1a, IV-VII) we then implement a domain growth stage at 

lower borazine pressure of 2.5 × 10-6 mbar. Through this separation of nucleation and domain 

growth, we can effectively supress secondary nucleation and thus achieve extremely large h-

BN crystal sizes.  

Characterization of h-BN crystal alignment 

A combination of characterization techniques is used to assess the quality of the h-BN films. 

Fig. 5a shows a representative bright field (BF) transmission electron microscopy (TEM) 

image. The h-BN film is only indirectly visible by the presence of a suspended particle (see 

dotted circle, Fig. 5a), which highlights that the h-BN is uniform and has little contrast and/or 

features. The selected area electron diffraction pattern in dark field (DF) TEM (Fig. 5b) shows 
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sets of hexagonal diffraction patterns consistent with single crystal mono-layer h-BN. To 

determine the crystal orientation over a reasonably large area, DF-TEM diffraction patterns 

from various points across the h-BN film were recorded and analysed. We define α as the angle 

between the vertical and the closest first-order diffraction spot in a clockwise direction (Fig. 

5b). The resulting distribution of α is summarised in Figs. 5c and d. For most recorded 

diffraction patterns α lies within a margin of ±2.5° of the median (αmed). The peaks at -30° and 

30° correspond to identical orientations due to the hexagonal lattice symmetry. This 

distribution of orientations is in good agreement with previous studies,58 and highlights that 

the h-BN is highly crystalline. Over the mapped area (~2 × 2 mm) the TEM signature is as 

expected for a single crystal, although we cannot rule out small rotations below the limit of 

resolution or defects induced by imperfect merging of domains. Figs. 5e, f show the edge of 

the film, with only one fringe visible, consistent with mono-layer h-BN. The region marked 

with the white arrow in Fig. 5f corresponds to a fold. The contrast between the h-BN mono-

layer edge and folded edge can be clearly seen. We further assessed the layer number and 

homogeneity of as-grown h-BN through SEM and AFM. In all SEM images, where h-BN was 

immediately imaged, the h-BN domains have homogenous contrast, which indicates a constant 

number of layers across the whole observed region. AFM measurements show a ∼0.4 nm step 

height for h-BN after transfer onto SiO2 (see SI, Fig. S10), consistent with mono-layer h-BN 

thickness. 

 

Peeling transfer 

The SEM images of h-BN flakes shown so far (Figs. 1 and 4), were taken immediately after 

growth (reactor to SEM transfer time of around 30 min or less). Fig. 6a shows a SEM image 
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recorded 5 hours after removing the sample from the growth chamber, during which time it 

was stored in ambient environment. Unlike the SEM immediately post-growth of an h-BN 

domain of similar size and grown under identical conditions (see Fig. 1b V), where the h-BN 

appears uniformly darker relative to the Pt(111) substrate, in Fig. 6a the contrast of the h-BN 

domain is not uniform. The observed lighter edge region (marked “Decoupled” in Fig. 6a) and 

contrast change is triggered by the intercalation of oxygen species. This has been previously 

observed in SEM and for instance LEEM for various systems of 2DLM on weakly interacting 

substrates.27,59,60 The change takes place at room temperature within the time scale of hours 

(see SI, Fig S12), similar to G/Pt27 and G/Cu.61 The fact that intercalation occurs uniformly 

from the edges in Figs. 6a and S12 is a further indication of the quality of the h-BN, as the 

presence of large defects (such as grain boundaries or pinholes) within a h-BN domain would 

reveal itself by the onset of local intercalation. In fact, even for domains that have partially 

merged, we observe intercalation to only proceed from the edges and not from where any 

potential GB would be located (see SI, Fig. S13).  

The observed intercalation at the interface between h-BN and Pt is an indication of their weak 

interaction, and a key motivation of our work. Here, we introduce a dry transfer approach to 

transfer h-BN grown on Pt, as schematically shown in Fig. 6b. A polyvinyl acetate (PVA) 

stamp is applied to the as-grown h-BN film through drop-casting. The PVA/h-BN stack is then 

delaminated mechanically (Fig. 6b I). For monolayer h-BN transfer this stack is then stamped 

down onto the target substrate (Fig. 6b IV) and the stamp is removed by dissolution in water. 

In line with previous experiments on delamination of Gr from Cu,16,25 we observe an 

improvement in the ease of transfer by leaving the sample in an ambient environment for an 

extended period (typically >24h). We relate this effect to the decoupling of the h-BN layer, 
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consistent with the time dependent change in SE contrast of h-BN on Pt (Fig. 6a; Fig S12 & 

S13 in SI). 

The given method of dry transfer is not limited to monolayer transfer, but can also be used for 

the assembly of 2DLM stacks. After picking up the first h-BN layer, the same PVA/h-BN stack 

can be used for repeated exfoliation of further 2DLM layers. This is performed by simply 

stamping the stack onto another as-grown 2DLM on its growth substrate (Fig. 6b II) followed 

by mechanical delamination (Fig. 6b III), which results in the pick-up of an additional 2DLM 

layer. Such an approach seeks to keep interfacial contamination to a minimum as the second 

2DLM layer is only ever in contact with the growth catalyst and the first 2DLM layer. Through 

sequential pickup in this way, it is possible to assemble stacks of 2DLMs. This approach is not 

limited to a specific 2DLMs. However, it requires the adhesion between stamp and 2DML to 

be higher than between 2DLM and substrate, highlighting the need for weakly interacting 

substrates. We use the sequential pick up of 2DLM to fabricate a variety of structures, with Fig. 

6c (left) showing an optical image of multilayer h-BN on SiO2 obtained by four sequential 

peelings of CVD mono-layer h-BN. A heterostructure of CVD h-BN and CVD Gr grown on 

Cu (Gr between h-BN and SiO2) was also fabricated and an optical image of the result is shown 

in Fig. 6c (right). Since the transfer does not involve any modification of the growth catalyst, 

the Pt foil can be reused for additional growth cycles. In fact, Pt substrates were used for 

multiple growth runs (see SI, Fig. S9). 

In order to assess the quality of the stacks and to confirm their structure, we employ Raman 

spectroscopy. The Raman spectrum of h-BN is characterised by the E2g peak at ~1370 cm-1, 

which due to its non-resonant nature is very weak.62 However, its peak position and relative 

intensity can offer an insight into the thickness of the h-BN.62–64 Fig. 6d  shows such Raman 

characterization of multilayer h-BN obtained through repeated exfoliation. The Raman spectra 
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given in Fig. 6d (left) show an increase in E2g peak area, which is proportional to the number 

of sequential transfers. This demonstrates that using our transfer method we are able to pick-

up an additional layer during each cycle. Furthermore, it should be noted that the full-width at 

half maximum (FWHM) of the E2g peak of monolayer h-BN is ~13cm-1, which is comparable 

to exfoliated h-BN.62 Since the FWHM is often cited as an indicator of material quality, it 

highlights the high quality of our CVD h-BN.64 Fig. 6d (right) reflects the results of Raman 

mapping across 100 µm x 100 µm, whereby the quantitative analysis is based on fitting 

Lorentzian curves to the E2g peak. The linear relationship between peak area and layer number 

is maintained across the mapped region, indicating the quality of the transfer method. 

Furthermore, in agreement with previous studies,63 we observe a slight red-shift in the E2g peak 

position with increasing layer number from 1369.7cm-1 for monolayer h-BN to 1368.7cm-1 for 

four-layer h-BN, which indicates a clean interface as this shift relates to the interaction between 

layers.62,63 The Raman characterization of h-BN/Gr heterostructures is more challenging, due 

to the large difference in signal intensity of Gr and h-BN. The Raman spectrum of an all CVD 

heterostructure is shown in Fig. 6e. Due to the proximity of peaks, minor imperfections in the 

Gr will result in the Gr D-peak (1350cm-1)65 overlapping with and potentially swamping the h-

BN peak (1370cm-1). In Fig. 6e the Gr D-peak/G-peak ratio is less than 0.025, still the h-BN 

peak is only just visible in the magnification of the plot (inset), demonstrating that Gr can be 

directly delaminated from the growth catalyst using h-BN. 

 

Integration of CVD h-BN in Gr/h-BN heterostructures 

The fabrication of high quality Gr/h-BN heterostructures has been a significant challenge even 

when relying entirely on exfoliation.23,66 Thus, to demonstrate the feasibility of our approach 
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and to narrow-down the parameter space for device processing, we focus here on just the 

insertion of a CVD h-BN layer via a model structure consisting of monolayer CVD-h-BN as a 

capping layer on monolayer exfoliated (exf) Gr. Fig. 7a shows an optical image of the 

assembled stack. Using a PVA/CVD h-BN stack, which we obtain by delaminating an as grown 

h-BN layer from Pt, we pick up exf-Gr from a SiO2/Si wafer. The h-BN is not observed 

optically as it uniformly covers the sample. It becomes apparent in Fig. 7a II and III, which 

presents the result of a peak force (PF-) AFM measurement of the transition region from CVD 

h-BN/exf-Gr to CVD h-BN only. The measured step height for the exf-Gr layer is ~0.4 nm and 

the surface is atomically smooth, which are indications of an interface without significant 

amounts of trapped residues. Fig. 7b shows the result of the Raman analysis. The Gr G peak 

and 2D peak position of each spectrum is plotted with the strain and doping axis for reference.67 

The colour of each point indicates the FWHM of the Gr 2D peak. The median of the Gr G peak 

and 2D peak positions are 1584.7 cm-1 and 2684.6 cm-1 respectively, compared to 1581.6 cm-

1 and 2676.9 cm-1 for suspended exf-Gr.67 The median FWHM of the Gr 2D peak is 26.2 cm-1, 

which is similar to previous studies, where exf-h-BN/exf-Gr on SiO2 has a 2D peak FWHM of 

about 25 cm-1.68 The measurement points are aligned along the strain axis, indicating that the 

sample is undoped, but is affected by strain.  

The sheet conductivity of a representative CVD h-BN/exf-Gr field effect transistor (FET) 

device (where the Si substrate acts a back gate) is shown in Fig. 7c. The position of the charge 

neutrality point (CNP), at -0.2V, confirms that the graphene is highly intrinsic. The devices are 

shaped as Hall bars, allowing independent measurement of gate-dependent conductivity and 

charge carrier concentration (by applying an out of plane magnetic field). The Hall mobility 

(µH) is then extracted assuming a Drude model for conductivity, leading to a peak µH = 7200 

cm2V-1s-1 at room temperature. The charge carrier density without the application of a back-
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gate voltage is n0 = 4.8 x 1010 cm-2, confirming the low doping level indicated by the Raman 

analysis. We note that such low doping is achieved without the need for any high temperature 

annealing to remove residuals post-transfer. We repeated the analysis for three independent 

devices and find the values reproducible. The performance of the given devices underscores 

the cleanliness of the graphene/h-BN interface and is, to the best of our knowledge, the highest 

for heterostructures using CVD h-BN. Further improvements in mobility should be achievable 

by introducing an additional h-BN layer underneath the Gr to screen the roughness and charged 

impurities of the SiO2.66 The given stack serves as a first demonstrator for our proposed 

approach of growing h-BN via CVD and integrating it into heterostructure devices with the 

goal to replace exfoliated h-BN.  

Conclusions 

Improving current 2DLM integration strategies requires careful consideration of the growth 

catalyst. Here, we demonstrate that Pt is a suitable weakly interacting catalyst that enables not 

only h-BN growth with mono-layer control and crystal sizes in excess of 0.5 mm, but also 

direct transfer by delaminating as-grown layers to achieve clean processing. We establish that 

h-BN grows isothermally on Pt within the given CVD parameter space, driven by a local B and 

N supersaturation at the surface, and that when the precursor flux is removed the h-BN layer 

starts to dissolve. We find that initial B dissolution and decoration of Pt GBs leads to 

significantly accelerated Pt crystallisation. These insights allowed us to devise an integrated 

CVD growth process, that we referred to as SSG, which based on two coupled borazine 

exposures not only transforms poly-crystalline Pt foils into a dominant (111) orientation but 

enables independent control of h-BN nucleation and domain expansion, i.e. the CVD of highly 

crystalline mono-layer h-BN. We have demonstrated a delamination transfer method that 
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makes use of the weak Pt/h-BN interaction, to directly delaminate the as-grown films from the 

catalyst. We thereby preserve the catalyst for regrowth and can achieve a clean transfer process. 

This approach allows the precise control of the thickness of the h-BN layer, something that has 

not been achieved for exfoliated h-BN, but is critical to many applications. Scalable 

manufacture, especially of clean 2DLM heterostructures, has been a main bottleneck for the 

whole field. While further process optimization is still required, our study opens a viable 

pathway towards achieving this elusive goal. 
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Experimental Methods 

h-BN Growth 

All samples are grown in a custom-built Laser CVD reactor. An 808 nm continuous wave (CW) 

IR Laser with a maximum power of 60W is used for heating. It is positioned outside of the 

CVD chamber. The light is coupled into the chamber through a laser window. In order to 

achieve a homogeneous beam profile, a beam shaper is used that creates a top-hat (instead of 

Gaussian) profile at the focal point, which has a size of 5 mm x 5 mm. Due to very localized 

heating, only the sample itself is significantly heated, thus the system under discussion falls in 

the category of cold-wall reactors. We measure the temperature using an IR pyrometer with a 

wavelength of 1.6 µm, a focal spot diameter of 3 mm and the emissivity is set at 0.25.69 The 

estimated uncertainty is ±50 °C. 

If not specified otherwise, the Pt foil (25 µm, 99.99%, Alfa Aesar) is mounted on a tantalum 

(Ta) foil (25 µm, 99.9%, Goodfellow), which acts as the susceptor, enabling homogenous 

heating across a larger area than the size of the beam at the focal point. The Ta susceptor is 

clamped using sapphire in a custom-made mounting stage, and the Pt foil does not come into 

contact with anything but the susceptor, thus avoiding contamination and thermal dissipation. 

After loading the sample into the chamber, it is pumped down to a base pressure of less than 2 

x 10-6 mbar before starting growth. The pressure is measured using a full range pressure gauge 

consisting of Pirani and cold cathode gauges for different pressure regimes. All gases except 

borazine are injected into the chamber using mass flow controllers. The flow of borazine 

(>97%, Fluorochem) is controlled using a manual leak valve.  
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Transfer 

Peeling transfer As the carrier layer for exfoliating the h-BN post-growth, we use a solution 

of 5g PVA (Mw 9000-10000, 80% hydrolized, Sigma Aldrich) and 1g glycerol as a softener 

(>99%, Sigmal Aldrich) in 100ml of de-ionized (DI) water. In the first step, we drop-cast the 

solution on the sample and dry at 80ºC for 20 min. Then, the stamp/h-BN film is peeled off 

using tweezers, stamped onto the target substrate at 125ºC, and annealed for 5 min. In the case 

of multilayer h-BN or h-BN/graphene heterostructures, the target substrate is another CVD 

grown 2DLM sample and the peeling process is repeated. In the final step, the stamp with the 

2DLM layer is put down onto the substrate of choice and the carrier layer is dissolved in DI 

water at 50ºC for at least 3h. 

Bubbling transfer The samples are spin-coated with Poly(methyl methacrylate) (PMMA, 

495k) at 3000rpm for 40s then baked at 180 ºC for 1.5 min During the actual transfer process, 

NaOH solution (1M, a.q.) is used as electrolyte, and the sample (h-BN coated with PMMA) is 

used as the negative electrode and a Pt wire as the positive electrode. The typical settings are 

~4.5V and ~0.3A. PMMA supported h-BN fully delaminates from Pt within 5 minutes. The 

sample is then rinsed in DI water three times, with each rinse lasting ~45 minutes, and then 

transferred onto the desired substrate. 

 

Characterization 

Raman measurements were performed with a Renishaw inVia confocal Raman Microscope. 

514 nm of 532 nm lasers were used depending on equipment availability. Spectra were taken 

with a 50x objective lens. A step size of 2 µm was used for all maps. The SEM images were 

taken in the FEI Magellan SEM using an acceleration voltage of 1 kV. The TEM images (FEI 
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Osiris TEM) were taken with an acceleration voltage of 40kV. The knock-on damage of h-BN 

is minimized under such a low acceleration voltage. The samples are transferred using bubbling 

transfer in this case, as direct peeling requires PVA dissolution in DI water to release the h-BN 

film and the water’s high surface tension is likely to damage the suspended h-BN. For the 

bubbling transfer only low surface tension solvents are used to release the h-BN. 

In-situ XPS measurements were performed at the BESSY II synchrotron at the ISISS end 

station of the FHI-MPG. The setup consists of a reaction cell (base pressure ≈ 10−8 mbar) 

attached to an analyzer with a differentially pumped electrostatic lens system (Phoibos 150 

NAP, SPECS GmbH).70 XP core level spectra were collected in normal emission geometry 

using a x-ray beam with a spot size of ~80 µm × 150 µm. All spectra are background-corrected 

(linear) and their binding energies are referenced to the contemporaneously measured Fermi 

edges. The temperature is measured using a dual-wavelength pyrometer. 

AFM was measured in peak force tapping mode using a Bruker Dimension Icon AFM. In this 

mode, the feedback loop keeps the peak force of tip-sample interaction constant. 

XRD was carried out on a Philips X’pert MRD diffractometer with a Cu Ka1 X-ray source (l 

= 1.5405974 Å) and a 4-bounce Ge(220) asymmetric monochromator. The spot size is 5 mm 

x 15 mm. 

 

Heterostructure assembly, Device Fabrication & Measurement 

Continuous monolayer CVD h-BN on Pt was picked up/delaminated from Pt using the peeling 

procedure described above. The sample is then used to pick up Gr, which was prepared in 

advance by mechanical exfoliation from a bulk crystal onto a SiO2/Si wafer. For heterostructure 

assembly, the PVA/h-BN layer is pressed onto the wafer with Gr at 30 ºC and then peeled off. 
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This stack is then stamped onto another wafer at a temperature of 130 ºC. The sample is heated 

at 130 ºC for 5 min, before dissolving the PVA film in DI water.  

In order to probe the electronic transport properties of the heterostructure we fabricate four-

terminal transport geometries following an established method.22,24 We begin by deposition of 

an aluminium (Al) etch mask fabricated by electron-beam (e-beam) lithography, followed by 

thermal evaporation of 30 nm of Al, and lift-off. Following this, the exposed regions of Gr/h-

BN are etched with a reactive ion etcher (RIE) using CF4 gas under a forward RF power of 

20W. The Al mask is then removed by wet etching. Finally, metal contact leads are deposited 

by patterning with e-beam lithography followed by DC sputtering of 5/70 nm of Cr/Cu and lift-

off.  

Four-terminal transport measurements are performed in a Lakeshore Cryogenic probe station 

at a pressure of ~4x10-8Torr and a temperature T=290K. The resistance is measured using a 

dual lock-in amplifier set-up at a frequency of ~13Hz and bias current ~100nA. The gate 

voltage is swept using an SMU.  
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Figures 

 

Figure 1 (a) Process flow diagram of SSG. The growth temperature is Tgr=1200 °C. Precursor pressure during 

seeding is Psd=1x10-5 mbar and Pexp=2.5x10-6 mbar during domain expansion (b) SEM images of h-BN on Pt at 

different stages of growth. Growth was stopped at the respective stages, by removing the precursor and turning 

off the laser heating. In image IV, after annealing of nuclei, damage to existing domains is clearly visible (dotted 

outline).   
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Figure 2 In-situ XPS measurements during h-BN growth on Pt foil. Details on the conditions are given in the 

experimental section. (a) Schematic process flow diagram highlighting at which point of the process the spectra 

shown in (c), (d), and (e) were taken. (b) Evolution of the B 1s and N 1s XP core level with borazine (3×10-4 

mbar) exposure time (spectra taken between II.1-II.2) for a Pt foil at 1100 °C (c) B 1s and N 1s XP spectra taken 

at an excitation energy of hν = 620 eV for Tgr = 1100 °C with precursor present, Tgr = 1100°C in vacuum and 

RT in vacuum. The peak positions of B1s/N1s are 191.6eV/399.0eV. Shortly after removing borazine, the B/N 

peaks disappear and do not reappear during cooling. (d) Depth resolved Pt 4f XP spectra taken for Pt covered 

with h-BN and bare Pt at Tgr = 950°C. No difference in peak positions and/or additional peaks are visible, 

confirming the absence of potential Pt compounds.   
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Figure 3 One-step process at identical Tgr=1200°C for 2 min, but with different gas environments. (a) Process 

flow diagram for recrystallization baseline experiment. All parameters were held constant, only type of gas and 

the pressure was varied. (b) SEM images of Pt foils after annealing. For each experimental condition, SEM images 

of two locations on the same substrate were provided to highlight the differences in texture. When annealing in 

vacuum, H2, or NH3, although certain polycrystalline regions remain (top images),  it is apparent that the growth 

of large single crystal regions has occurred (bright region in bottom images). In contrast, the sample treated with 

borazine shows no polycrystalline regions. (c) XRD measurement of Pt foils as purchased and after 

recrystallization in borazine (Psc = 10-5 mbar, Tgr = 1200 °C, tan = 15 min and. tsd = 2 min). The spectra have been 

offset for better visibility (Post–Anneal spectrum was multiplied with a factor of 104). All Pt related peaks are 

marked. The peaks marked with * originate from the Ta susceptor on which the Pt foil is mounted. While there 

are multiple orientations for the pristine foil, the dominating orientation is (1 1 1) after annealing. (d) Texture map 

of the Pt (1 1 1) reflection at 2θ = 39.73º. The Pt foil behaves like a single crystal, with one pole in the symmetric 

position (χ ~ 0º) and 3 poles at χ ~ 70° and φ = 120° apart from each other. A minor pole is visible at χ ~ 70º and 

φ = 90°, which indicates a minority of differently oriented grains.  
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Figure 4 (a) Schematic process flow diagram for SG experiment to highlight the effect of seeding and 

homogenization. (b)-(c) SEM images of growth result. Growth was stopped at the respective stages, by 

removing the precursor and turning off the laser heating All parameters were kept constant, except of tsd, which 

is varied between the series [3min in (e) and in 5 min (f)] and thomo, which is varied within each of the series.  
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Figure 5 (a) BF-TEM images of h-BN. The dotted circle marks a particle on the suspended h-BN, which is 

otherwise indiscernable. (b) DF-TEM image corresponding to (a). α is defined as the angle between the vertical 

and the closest first order diffraction spot in clockwise direction. (c) Scatter map of the rotational deviation from 

αmed (median value of α). (d) Distribution of orientation as deviation from αmed. (e) & (f) High magnification BF-

TEM image of the edge of the h-BN film. Only one fringe is found (black arrow), which confirms the monolayer 

nature of BN. A small dent can be seen (white arrow) caused by folding of the layer. The contrast between single 

layer edge and folded edge is clearly visible.   
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Figure 6 (a) SEM image of h-BN on Pt. The image is taken 5 hours after removing the sample from the reactor. 

The dotted lines mark the outer edge of the domains and the limit between the coupled (black) and decoupled 

(white) regions. (b) Process flow diagram of exfoliation based transfer. The PVA stamp is drop-cast onto the as-

grown h-BN, which can then be peeled off and used for sequential exfoliation. After transfer onto the target 

substrate the stamp is dissolved in water (c) Optical images after transfer onto SiO2 of 4-layer h-BN and h-BN 

/Gr (Gr in contact with SiO2) (d) The left graph shows the Raman spectrum of h-BN after transfer onto SiO2 

depending on the layer number. The spectra have been offset for better visibility. Si marks the 3rd order silicon 

peak at ~1450cm-1 71. The peak at ~1370cm-1 corresponds to h-BN 63. The right-hand plot presents the peak area 

after fitting with a Lorentzian curve, against the peak position for multiple measurements of different numbers 

of h-BN layers. For better visibility, only points between the 1st and 3rd quartile are shown for each sample. The 

median of the peak position is 1369.7 cm-1, 1369.4 cm-1,1368.7 cm-1 and the median normalized peak area is 1, 

2.24 and 4.03 for monolayer, bilayer and 4-layer h-BN. (e) Raman spectrum of h-BN/Gr stack after transfer (Gr 

in contact with SiO2). Inset shows magnified region to highlight the h-BN peak  
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Figure 7 (a.I) Optical image of monolayer CVD h-BN on exfoliated Gr transferred onto a 90 nm SiO2/Si wafer 

(Gr between h-BN and SiO2). h-BN is not discernible as it uniformly covers the sample. (a.II) Peak force atomic 

force microscope (PF-AFM, details in experimental section) of area marked in (a.I). (a.III) Profile of line marked 

in (a.II). Step height of transition from h-BN only to h-BN/Gr region is about ~0.4 nm, as expected for single 

layer graphene, indicating a clean interface. (b) Peak position of the G- and 2D-peak of Gr measured by Raman 

spectroscopy. Colour of cross relates to FWHM of the 2D peak (See associated colour bar). The dotted blue line 

is the strain axis (slope 2.2), dotted orange line the doping axis (slope 0.7) and the charge neutrality point is (1582 

cm -1, 2677 cm-1).67 (c) Transfer curve obtained via 4-terminal measurement, details given in experimental 

methods section. The position of the Dirac point is marked. An optical image of the Hall bar measured is shown 

in the inset. The scale bar indicates 10 µm. 
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Sample Mounting 

During all our growth experiments the Pt foil was placed on a Ta foil, which acted as the 

susceptor for the laser. It spread the thermal energy and thus allows us to achieve homogeneous 

heating of the Pt sample, which is bigger than the laser spot size of about 5 mm x 5 mm. The 

result of heating the sample directly is shown in Fig. S1. In this case, the central region of the 

foil is significantly hotter (see Fig. S1b) compared to the edge of the sample (see Fig. S1a). 

This results in inhomogeneous growth, which motivated the application of a susceptor for 

uniform heating. 

 

Figure S1 Direct heating of Pt foil. Sample was annealed at 1250 °C for 1h in 0.5 mbar H2. SEM mages (a) and 

(b) are taken from different location of the foil as shown schematically in the diagram.  
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In-situ XPS Analysis 

Analysis of BN compound 

 

Figure S2 Summed B 1s XPS core level spectrum consisting of 7 spectra acquired consecutively during 

borazine (3×10-4 mbar) exposure for a Pt foil at 1100 °C, between 200-1100 s after borazine introduction. The 

improved signal to noise ratio allows the π→π* plasmon shake up satellite to be more clearly resolved. 

Shift of XPS peaks associated with h-BN 

Although the B1s and N1s peaks remain at a relatively constant BE for the majority of the 

borazine exposure, the peak in the B1s spectrum in Fig. 2 from the main article shows an initial 

increase in BE (from ~191.2 eV to ~191.5 eV). Throughout our XPS measurements of h-BN 

growth on Pt, we also observe that the B1s and N1s peak positions change as the photon energy 

is varied, which for the synchrotron beamline used for these measurements also corresponds to 

changing the x-ray flux. The size of the shift generally increases as the x-ray flux is increased, 

consistent with charging of the h-BN. Given the insulating properties of h-BN, we therefore 

attribute the shifting B1s peak position at the start of growth to the gradual charging of the h-

BN layer as it forms on the Pt surface. To account for this, the B1s and N1s spectra presented 
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here are measured with the same photon energy (and thus flux) to ensure that any charging 

affects both spectra in a similar way, such that their relative peak positions should not be altered. 

Indeed, the relative B1s and N1s positions match closely with those previously reported.1–6 

However, it should be noted that the values of peak position should not be taken as absolute. 

There may also be shifts be related to changes in the interaction between h-BN and the Pt 

substrate with temperature and gas environment, but these are not readily disentangled from 

the observed charging effects. 

 

 

Figure S3 (a) Schematic process flow diagram highlighting at which point of the process the spectra shown in 

(b) were recorded. (b) B1s and N1s XP spectra taken at an excitation energy of hν=620eV for Tgr = 950 °C and 

RT. The positions of the peak centres are 190.6eV/398.1eV at Tgr and 190.0eV/397.6eV 
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h-BN precipitation 

In order to check, whether the h-BN is dissolved into the bulk during the homogenization step 

in SSG, we performed a series of experiments with the goal of growth by precipitation. Samples 

were grown at high temperature (Tgr = 1275 ºC) following the SSG procedure. After SEM 

analysis the same samples were loaded again into the reactor and annealed at a lower 

temperature (Tpr = 950 ºC) without any precursor. After this step, smaller secondary nuclei are 

formed in addition to the previous ones. We attribute this to growth by precipitation, due to 

supersaturation achieved by lowered solubility. These secondary nuclei are not formed during 

initial SSG, as the samples are quenched.  
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Figure S4 (a) Schematic process flow diagram highlighting at which point of the process the spectra shown in 

(b) were recorded. First the sample was grown using SSG as shown in Fig 1, but at higher temperature. (b) (I.a) 

& (I.b) are SEM images taken of the samples immediately after SSG growth. The sample was quenched post SSG 

by turning off the heater immediately. (I.b) shows the area marked in (I.a) at higher magnification. (II.a), (II.b) & 

(II.c) are SEM images taken of the same sample after precipitation growth. The images are taken more than 24h 

after the process. In this period, the samples were kept in ambient, resulting in the change of contrast associated 

with intercalation (see Fig 6a in main text and Fig. S13) (II.b) shows the area marked in (II.a) at higher 

magnification; same for (II.c) and (II.b). Smaller h-BN islands have formed in addition to the previous ones, 

despite absence of precursor. 
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The fact that growth can take place by precipitation shows that both boron and nitrogen, even 

in small amounts, are absorbed into the bulk during SSG. This also explains why in our 

experiments repeating the cycle of homogenization and domain expansion multiple times (i.e. 

repeating the steps III – V from Fig. 1) does not result in a noticeable increase in domain size 

or decrease in nuclei density. The initial motivation for the homogenization step is the 

reduction of secondary nuclei. It relies on the fact that primary and secondary nuclei differ in 

size but dissociate at the same rate. However, after a first cycle of homogenization and domain 

expansion, the given domains will be similar in size. Thus, an additional homogenization step 

does not result in the desired size-filtering effect. Furthermore, we observe that the dissociation 

of the domains is considerable slower during homogenization given a previous growth cycle. 

In previous literature the growth of Gr was tuned by repeatedly growing and dissociating as-

grown domains.7 This was achieved by gas induced etching of the Gr. The attenuation of the 

dissociation during repeated homogenization in our experiments further corroborates that here 

it is mainly driven by bulk absorption. Once a significant quantity of species is present in the 

catalyst, additional absorption in slowed or even halted, which corresponds to our experimental 

observation. 
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Detailed investigation of parameter space for SSG 

In order to explore the parameter space of SSG, we performed series of experiments, where 

individual parameters were changed and the impact on the growth process was analysed. Figs 

S5 – S8 show the result of these experiments. 

Variation of seeding time (tsd)  

 

Figure S5 (a) Process flow diagram for SG at Tgr=1200°C and precursor pressure of Psd=1x10-5mbar, while 

varying the growth time tsd. (b) SEM images of the samples after growth. For each SEM image the growth was 

stopped at the respective time by quenching the sample. After 3 min, the onset of nucleation begins (nuclei 

marked by white dotted circles). These grow in size, however, at 5 min, secondary nucleation sets in. While 

there will be very large islands formed eventually (>0.4mm after 6 min), there is a large number of smaller 

nuclei that prevent their continued growth due to coalescence. 
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Variation of seeding pressure (Psd = 2.5 x 10-6 mbar instead of 1 x 10-5 mbar) 

 

Figure S6 (a) SG at Tgr=1200°C. The precursor pressure of Psd is varied. In order to show the effect on nucleation 

and growth, the growth was stopped at different times tsd. (b) Comparison of nucleation between Psd = 2.5 x 10-6 

mbar (shown here) and Psd = 1 x 10-6 mbar (shown in Fig. S5). Due to the lower precursor pressure, a much higher 

incubation time is required before the onset of nucleation. After 15 min of precursor exposure, the first nuclei are 

formed. When extending the exposure time, more nuclei form, as evidenced after 20 min. The scale bar applies 

to all SEM images.  
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Variation of growth temperature (Tgr) 

 

Figure S7 (a) SG of h-BN at different temperatures Tgr, while keeping all other parameters constant. (b) For 

each SEM image the growth was stopped at the respective time by quenching the sample. An increase of 

temperature leads to reduced nucleation (different scale bars chosen for improved visibility). Increasing the 

temperature further does not have significant impact on nucleation reduction, but growth is slowed. 

  



49 

 

Effect of Pt crystallinity 

 

Figure S8 (a) SG of h-BN for different growth temperatures Tgr and crystallinity of foil. (b)  For each SEM 

image the growth was stopped at the respective time by quenching the sample. (Left) Baseline sample grown 

using standard growth (SG) process at Tan = Tgr = 1125 °C. (Mid) Result of increased growth temperature. All 

growth parameter chosen identical to left image, but growth temperature was increased to Tan = Tgr = 1175 °C 

(Right) Change of crystallinity of foil. Identical growth parameter as baseline sample, but foil was pre-annealed 

at Tan = 1200 °C for 30 min. The uniform contrast in the background indicates single crystal Pt in field of view. 
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Additional sample characterization 

 

Figure S9 (a) Growth of h-BN film on Pt foil. Lack of contrast due to continuous film of h-BN. Image is taken 

of h-BN grown on Pt foil, which has been used for a previous growth/transfer cycle. During first run a 

continuous film of h-BN was grown and transferred off using the methods described in the experimental 

methods section. Before regrowth, the only catalyst preparation step consists of sonicating the sample in water, 

to remove potential residues of PVA. The second run was performed using a SG process as outlined in Fig. S2 

using the conditions: Tgr = 1175ºC, tsd = 10min to achieve a continuous layer of h-BN. (b) Raman spectrum of 

sample from image (a). The sample regrown on a previously used Pt foil was transferred using peeling transfer 

onto SiO2 (300 nm)/Si wafer. The h-BN/ Si peak intensity ratio (~1, compare with Fig. 6) and peak position 

(1370.1 cm-1) indicate monolayer h-BN. The h-BN is of high quality as shown by the FWHM of around 13.5 

cm-1, which compares well to the FWHM of monolayer bulk exfoliated h-BN.8 
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Figure S 10 Peak force atomic force microscope (PF-AFM, details in experimental section) measurement of h-

BN transferred onto SiO2 using direct exfoliation. Prior to the measurements, the sample was heated to 250°C in 

ambient condition for 5 min. to remove atmospheric adsorbents. (a) Height profile of central region of film. The 

average deviation from mean (Ra) and root mean square average deviation from mean (Rrms) are given for the field 

of view. Due to the extremely low roughness of the surface, the only visible feature is the wrinkle in the central 

region. (b) Step height measurement at the edge of the film. The height is ~0.4nm, which corresponds to 

monolayer h-BN. More wrinkles are found on the edge, compared with (A), which is potentially induced by the 

transfer process. 
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Figure S 11 White light interferometer (WLI) (a)-(c) and PF-AFM (d)-(g) measurements of h-BN on Pt after 

growth for polycrystalline [(a), (d), (f) & (g)] recrystallized [(b) & (e)] Pt foil. In (a) and (b) the surface map by 

WLI and the corresponding optical image are shown. Common features are highlighted by dotted circle for 



53 

 

better visibility. The origin of the apparent difference in roughness is highlighted in (c). The surface profile of 

the recrystallized foil shows, that the higher roughness originates from a large-scale curvature of the foil. The 

comparison of PF-AFM images of polycrystalline (d) and recrystallized (e) foil, shows that on small scales, the 

roughness is similar. (f) & (g) are magnified images of (d) & (f), corner of an h-BN island. It should be noted 

that the h-BN is mainly visible due to a change in measured roughness and not step height. 

 

 

Figure S 12 SEM images of the evolution of decoupling of h-BN on Pt for two different samples. Both samples 

were grown using SG. (a) Sample grown at Tgr=1150°C to retain polycrystalline structure of Pt foil. (b) Sample 

grown at Tgr=1200°C after Pt foil recrystallization 
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Figure S 13 SEM image of sample grown at Tgr=1200°C after Pt foil recrystallization. Image taken about 45 min 

after growth process. The areas with white dotted lines (A) and blue dotted lines (B) are two h-BN islands in the 

process of merging. (C) marks another island. Due to the difference in size, (C) has already completely decoupled. 

Islands (A) & (B) are in the process of decoupling. The red box marks the most likely location for the grain 

boundary between islands (A) and (B), if any were present. Intercalation is not observed from this location. 
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Additional device data 

 

Figure S 14 Extracted Hall mobility as a function of charge carrier density for the Hall bar in Fig7c. The Hall 

mobility is extracted as 𝝁𝑯 = 𝝈/𝒏𝒆 where 𝒏 is extracted by measuring the Hall voltage with a magnetic field 

out of plane B= 0.5 T applied to the sample.  

  



56 

 

Crystallinity of the Pt substrate 

 

Figure S 15 EBSD measurement of the catalyst complementary to the XRD results shown in Fig. 3 of the main 

manuscript. (A) SEM image (left) and EBSD (right) image of the same location on a Pt foil as received. The 

colour indicates the grain orientation. The image clearly shows an plethora of different orientations on the 

polycrystalline foil. (B) SEM image (left) and EBSD (right) image of a foil a Pt foil, which has been subject to 

borazine annealing (Psc = 10-5 mbar, Tgr = 1200 °C, tan = 15 min and. tsd = 2 min). The entire imaged area has the 

Pt (1 1 1) orientation, in agreement with the XRD data given in Fig. 3. 
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