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Abstract. Spatially non-local aspects of turbulent transport in tokamak plasmas are

examined with global gyrokinetic simulations using the ORB5 code. Inspired by very

accurate measurements in the TCV tokamak in L-mode, we initialize plasma profiles

with constant logarithmic gradients in the core and constant linear gradients in the

‘pedestal’ (ρ ∈ [0.8, 1]). The main finding is that transport in the core is strongly

affected by the presence of pedestal gradients. This non-local pedestal-core coupling

appears to be correlated with the appearance of repetitive avalanches that propagate

across both pedestal and core regions. Below a certain threshold value in pedestal

gradient, no well defined frequency is found for avalanches. Above this threshold,

a well-defined frequency shows up, which roughly matches that of the local GAM

frequency near the plasma edge and is thus well below the local GAM frequency in the

core: this behaviour is very similar to the global coherent mode structure observed in

TCV. Above this threshold in pedestal gradient, the core transport increases sharply:

there is therefore a non-locality in marginality. The Probability Density Functions

(PDFs) of density, temperature, temperature gradient and potential are found to have

nearly Gaussian distributions, whereas the heat flux can have, in the presence of

avalanches, a more or less strongly positiveley skewed PDF, which could be fitted

by a log-normal distribution. The skewness of the heat flux is found to be radially

and non-locally dependent: its value in the plasma core critically depends on the

presence of gradients in the pedestal. The relation flux vs gradient is examined in

detail. The local instantaneous flux vs gradient relation shows a hysteresis behaviour

during an avalanche but no clear correlation, unlike the flux and zonal flow (ZF)

shearing rate, which are anti-correlated: flux is higher when shearing rate is lower. This

leads to corrugated time-averaged radial profiles of transport, heat and temperature

gradient, with heat diffusivity having local maxima where ZF shearing rate goes to

zero and temperature gradient has local minima. Finally, we show how the flux vs

gradient relation can be analyzed locally for series of simulations with different averaged

gradients.



1. Introduction

Non-local effects of turbulence in magnetized plasmas have been evidenced since some

time already in global, first-principle-based gyrokinetic simulations of turbulence [1].

Non-local effects are responsible for the finite size (or finite ρ∗) effects on the heat

diffusivity in ITG turbulence [2, 3]. Here, ρ∗ = ρs/a, with ρs the ion sound Larmor

radius and a the plasma minor radius. These studies were conducted using global

gyrokinetic codes and all examined plasma profiles with finite gradients in the plasma

core, typically for ρ/a < 0.8, but flat profiles in the outer regions, ρ/a > 0.8. In

Ref.[3], ion heat transport was shown to scale as a function of an effective size parameter

ρ∗eff = ρs/∆, with ∆ the radial extent of the plasma which is unstable for the ITG.

Turbulence spreading [4] is a possible explanation of this result, with bursts of turbulence

originating in unstable regions propagating into the linearly stable regions. In Ref.[5],

non-locality was investigated focusing on the edge-core interplay.

In real experiments, the plasma gradients extend up to the edge. The logarithmic

gradients, R/LT = R|∇T |/T , with R the plasma major radius, are typically higher in

the edge than in the core. This is true even in L-mode discharges, as shown in particular

in Ref.[6], where a series of dedicated experiments on TCV were carried out measuring

the edge profiles with an unprecedented accuracy. More precisely, it appeared that

the plasma profiles are characterized by a roughly constant R/LT between the sawtooth

inversion radius and the edge of the ‘pedestal’ around ρ/a = 0.8, and a roughly constant

∇T in the ‘pedestal’ region, typically 0.8 < ρ/a < 1.

The present study is inspired from these TCV measurements and is a continuation

of previous works [7]. Global gyrokinetic simulations with the ORB5 code [8, 9] are

carried out in both core and pedestal regions, varying the gradients independently in

these regions, with the aim of detecting spatially non-local effects on ITG turbulence.

Such global simulations, with temperatures that strongly vary from the core to the

edge (up to a factor of about 20 for the cases considered in this paper), are particularly

challenging, because they require high resolution and long times. Fortunately, the ORB5

code has recently been completely refactored and made more efficient thanks to several

algorithmic implementation improvements, in particular for its massive parallelization

[10, 11].

There seems to be a relation between spatially non-local transport and the

occurence of avalanches. These are intermittent bursts that propagate radially and are

responsible for carrying part of the turbulent fluxes. It was shown in global gyrokinetic

simulations [12, 13, 14] that avalanches propagate in radial zones, with a direction of

propagation that depends on the sign of the time-averaged shearing rate of the E × B
zonal flow (ZF). The plasma appears thus to self-organize in a flow structure with

radially corrugated temperature gradients and heat transport.

In TCV experiments, a radially coherent propagating feature was observed on

temperature and density fluctuations using various diagnostics [15, 16]. The propagation

spans both core and edge. Originally thought to be a Geodesic Acoustic Mode (GAM)
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[17], it actually shows a frequency that matches that of the GAM at the edge, but is

well below the GAM frequency in the core. Thus, the possibility is that this feature

might be due to, or affected by, nonlinear effects. In global gyrokinetic simulations the

presence of these regular radially propagating oscillations was confirmed in some cases

[7, 18]. We shall see that the presence of the coherent mode propagating down to the

core depends on the presence of gradients in the pedestal, and is a nonlinear, avalanche-

like feature, consistent with the conjecture proposed in Ref.[19]. Global GAM-like

features have also been found in other tokamaks, for example in T10 [20] with, similar

to the TCV findings, a constant frequency spanning most of the plasma cross-section,

matching the local GAM frequency near the edge. In HL-7 [21] multiple modes have been

observed, which have been interpreted as kinetic GAMs resulting from mode conversion

at the continuum GAM. In Ref.[22], inward and outward propagating GAMs have been

simulated with the global gyrokinetic code ELMFIRE for TEM-dominated TEXTOR

parameters.

Since a fraction of the turbulent heat flux is carried by these intermittent events, we

shall obtain the PDFs of various fluctuating quantities (density, temperature, potential,

heat flux) in order to characterize the turbulence. It will be seen that while the PDF of

density, temperature and potential are very close to Gaussian, that of the heat flux can

substantially deviate from it, with a positive skewness reflecting the presence of large

events with a higher probability than for Gaussian. We shall also investigate how the

skewness of the flux varies radially and whether non-local effects are showing up.

The remainder of the paper is organized as follows. In the next section the model

and numerical simulation setup are introduced. In section 3 a series of simulations with

exactly the same profiles in the core, but with different pedestal gradients is shown and

analysed. In section 4 we examine the statistical properties of fluctuations. In section

5 we focus on the relation between heat flux and gradient in a regime of avalanches. A

summary of main findings and outlook is given in section 6.

2. Physical model and numerical parameters

Our main tool for the investigations is the multi-species, electromagnetic, global

gyrokinetic code ORB5 [8, 9, 10] based on a Lagrangian Particle-In-Cell (PIC), finite

elements approach. The equations used in the code have been obtained from a systematic

variational formulation of dynamics, and the code has been thoroughly cross-verified

against various codes, see e.g. Ref.[23]. In this work, we shall use the electrostatic

approximation and assume Boltzmann electrons. The latter assumption is well known

to lead to an underestimation of ion transport in the ITG regime and of course misses

TEM- and ETG-induced transport completely. Thus, in this paper no attempt is made

to match the heat flux with the experimental one, which would require, in addition to

the kinetic electron response,the inclusion of collisions, which can play an important

role near the edge. In section 3 we shall describe in more detail which feature of the

TCV experiment we take into account.
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The ORB5 code includes a control variates (δf) scheme and is truly global, both in

the geometrical sense (the domain extends from the magnetic axis to the last closed flux

surface) and in the physics sense, i.e. all plasma profiles are fully evolved consistently,

similarly to a so-called ’full-f ’ code. (The polarization density, however, is linearized

with respect to a background density n0.)

Particular care has been put on the source terms. Since it is a PIC code, the

statistical sampling error needs to be not only reduced, but also controlled unless the

nonlinear simulations are quickly drown in noise. Various noise control schemes have

been implemented in ORB5: a modified Krook operator, a coarse graining procedure,

and a quadtree smoothing algorithm. Also, various heating schemes are included in the

code, which can be run in ’gradient-driven’ or ’flux-driven’ mode.

For the kind of studies in this paper, in particular close to marginality, the results

were found to be very sensitive to the way the source terms are implemented. In

particular, if sources do not conserve desirable momenta of the total distribution

function, it can result in both quantitative (heat transport modified by a factor of more

than 2) and qualitative differences (e.g. disapearance of the coherent mode). Therefore,

we shall use here a Krook operator modified such as to exactly conserve, in radial bins,

the density, parallel momentum, and zonal flow residual phase space structures [24],

S = −γKδf + Scorr , (1)

with Scorr such that〈∫
d~vMi (γKδf + Scorr)

〉
= 0, i = 1..3, M =

{
1, v‖,

(v‖
B
−
〈v‖
B

〉
b

)}
, (2)

where 〈.〉 means a flux-surface average and < . >b means a bounce-average. The

’correction term’ Scorr is obtained in the following way. Defining the matrix Sij and

the vector δSj as:

Sij(s, t) =

〈∫
d~vMiMjf0

〉
, δSj(s, t) = γK

〈∫
d~vδfMj

〉
, (3)

We solve the linear system Sijgj = δSi for the coeffs gi and we have:

Scorr =
3∑
i=1

gif0Mi . (4)

The Krook operator does not conserve kinetic energy, and therefore the temperature

will tend to relax to the initial profiles. It serves thus both purposes of a noise control

and heating operator. The value of the coefficient γK has to be chosen high enough so

as to be effectively controlling the noise down to an acceptable level but small enough

so as to not modify crucially the physics under investigation. This is empirically chosen

and requires careful verification. Typically, its value is a few percent of the maximum

linear growth rate, and we check that the results are not too sensitive to it.

Temperature and density profiles are chosen such as to reflect the TCV findings,

namely different functional forms in the core and the pedestal. With the definition of

the radial coordinate ρV =
√
V (ψ)/V (ψa), where V (ψ) is the volume enclosed by the
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magnetic surface ψ = const, ψ is the poloidal flux, and ψa its value at the last closed

flux surface, we specify:

T (ρV ) = min (T0, Tped exp (−κT (ρV − ρV,ped))) ρ ≤ ρV,ped

T1(1− µT (ρV − ρV,edge)) ρV,ped < ρ ≤ ρV,edge (5)

where T0, T1, ρV,ped, ρV,edge, κT and µT are given input parameters and Tped =

T1 (1 + µT (ρV,edge − ρV,ped)). Density profiles are defined in a similar way, with

parameters n0, n1, κn and µn.

Toroidal, magnetic, straight-field line coordinates are used for the finite element

representation of perturbed fields: (s, θ∗, ϕ), where s =
√
ψ/ψa, θ∗ is the poloidal

coordinate and ϕ the geometrical toroidal angle, such that ~B · ∇ϕ/~B · ∇θ∗ is constant

on a magnetic surface.

Boundary conditions are the unicity condition for φ at the magnetic axis (s = 0)

and φ = 0 at the plasma boundary (s = 1), which sets (unrealistically) turbulent field

fluctuations to zero there. On the other hand, we do not impose δf = 0 at the boundary.

Instead, for numerical particles (markers) that leave the plasma, we put them back into

the plasma at a position which would conserve the particle energy, magnetic moment and

toroidal canonical momentum but put their weight to zero in order to avoid unphysical

accumulation of perturbed density at the boundary. Re-inserting a marker after it has

left the plasma is essential in long simulations, otherwise the continuous loss of markers

would lead to an unacceptable degradation of the quality of sampling statistics. We have

checked other options for the boundary condition, e.g. reinserting the leaving markers

but keeping their original weight, but this led in some cases to an unphysical pile-up

of the density right near to the boundary. We have also verified that the sharp electric

field structures that sometimes appear at the very edge (ρV >∼ 0.99) do not have a

measurable impact on the solution inside: adding a localised screening factor to the

electric field in that very edge region does not affect much the solution further inside.

The magnetic configuration is an axisymmetric ideal MHD equilibrium obtained

with the CHEASE code [25] from a reconstructed equilibrium from the TCV experiment

[6], with aspect ratio 3.64, an elongation 1.44, triangularity 0.2. The q profile is

monotonic with q0 = 0.78, qa = 3.29.

Unless specified otherwise, simulations are run with Np = 256×106, Ns×Nθ∗×Nϕ =

256 × 512 × 256. A field-aligned Fourier filter is applied with nmax = 128, ∆m = 5,

which keeps only the modes almost aligned with the background magnetic field, i.e.

m ∈ [nq−∆m,nq+∆m], for all n ∈ [0, nmax] where (m,n) are the poloidal and toroidal

mode numbers, respectively, and ∆m is a user-specified value. It works by considering

the Discrete Fourier transformed matrix problem resulting from the discretization of the

quasi-neutrality equation on 3D quadratic or cubic B-spline finite elements and removing

modes outside the filter. With the use of the straight-field-line poloidal coordinate θ∗,

it was shown in Ref.[8] that the numerical results converge very rapidly with ∆m, and

a value of ∆m = 5 is well within convergence. We note that with the application of this

filter, the maximum value of the parallel wavenumber which is retained in the simulation
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is

|k‖,max| =
Bϕ

B

|∆m|
qR

(6)

which gives a makimum value of |k‖ρs| ≈ |∆m|(a/R)ρ∗. Modes outside the field-aligned

Fourier filter are violating the gyrokinetic ordering and are therefore removed from the

simualation. Such filtering has the additional benefit to decrease the statistical sampling

error due to the finite number of markers by at least one order of magnitude. Moreover,

it allows for larger time steps, ∆t = 20Ω−1i in the simulations of this paper: indeed,

∆t is limited by the constraint max(|k‖v‖|∆t) << 1. Also, we have found that the

use of quadratic B-spline elements was giving as accurate results as cubic B-splines:

indeed, the numerical error is dominated by the marker sampling error, rather than by

truncature errors of the finite element solver. On the other hand, using linear B-splines

results in a truncature error of the field solver which exceeds that of the sampling. So,

in this paper we use quadratic B-splines.

For the heat source and noise control, a Krook coefficient γK = 1.4 × 10−4[Ωi]

is used, with corrections so as to ensure conservation of density, parallel momentum

and zonal E × B flows. We shall verify that the simulation results are only weakly

sensitive to the value of this parameter and will find that ensuring parallel and zonal

E × B flow conservation by this source term is essential. It must be noted that the

simulations presented here are temperature-gradient driven, with the other moments of

the distribution function left free to evolve consistently with the turbulent transport.

Simulation time is tsim = 4× 105[Ω−1i ] ≈ 3000[a/cs,ped], with cs,ped the ion sound speed

at the pedestal position ρV,ped.

3. Pedestal-core nonlocal coupling

We consider a series of T profiles defined by Eq.(5) with κT = 3.7, ρV,ped = 0.8,

ρV,edge = 1, i.e. the core profiles are kept identical, and vary the pedestal profiles by

choosing various values for µT from 0 to 15. The value of ρ∗ at the top of the pedestal

is 1/133. In all simulations we keep the same density profile with κn = 2.3, µn = 5 and

Te = Ti everywhere. We have checked that for all sets of parameters, in particular

all values of µT considered, the assumptions of gyrokinetic ordering were satisfied

everywhere in the plasma: ρs/LT << 1, δn/n << 1, δT/T << 1, vE×B/vthi << 1.

For these parameters, when using a more complete kinetic trapped electron model,

the dominant linear modes are still in the ITG regime. Note that in the TCV

experiments the ratio Te/Ti can be strongly varied, and in many experimental instances

the dominant modes are TEMs. Here, we do not attempt to match the experimental

heat fluxes, the only fact that is inspired from experiment is the different funcional

radial dependencies for core and pedestal profiles. For example, the profiles found in

the plasma current scan in Fig.6 of Ref.[6] correspond roughly to our profiles with µT
varied from 9 to 15.
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Figure 1. Left: T profiles with various pedestal gradients. Middle: a zoom of the

pedestal profiles. Right: effective ion heat diffusivity in the core vs time, for different

pedestal gradients. the labels indicate the value of the µT parameter. The vertical lines

indicate the region over which χ is averaged: ρv ∈ [.55, .75].

Figure 2. Left: dT/dρv profiles with various pedestal gradients. Middle: R/LT

profiles. Right: effective ion heat diffusivity vs radius, time-averaged over the quasi-

steady-phase of the simulations, for different pedestal gradients. Labels and vertical

lines: see Fig.1.

Figure 3. Time- and radius-averaged ion heat diffusivity χ in the core vs temperature

gradient in the pedestal. Data point labels are values of µT .
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Figure 4. Left: radial profile of parallel flows. Right: radial profile of zonal E × B
flows. Time-averaged data over the quasi-steady phase of the simulations. Labels and

vertical lines: see Fig.1.

Figure 5. Top row: contours of E × B shearing rate vs radius and time. Bottom

row: frequency spectra. Left column: below the transition, µT = 6. Right column:

above the transition, µT = 12. The white dashed lines are the local GAM frequencies

as defined in Eq.(20) of Ref.[26]. The black dashed lines are the local GAM frequencies

as in Ref.[27].

Figure 1 shows the T profiles used and the effective ion heat diffusivity in the

core vs time for the various pedestal temperature profiles considered. Figure 2 shows

the temperature gradient profiles, the R/LT profiles, and the time-averaged ion heat

diffusivity vs radius. The striking feature is the strong dependence of core transport on

the gradients in the pedestal. Looking at the data more carefully, it appears that there

is some kind of threshold for the strength of this non-local effect: for a minor change in

the pedestal profiles (µT from 6 to 9), there is a strong effect on χ. For higher values of

the pedestal gradient, µT > 12, the effect seems to saturate.
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Figure 6. Ion heat diffusivity normalized to the gyroBohm value at the edge for

2 pairs of simulations, κT = 3.1, µT = 12, using sources with and without parallel

and E × B flows conservation, respectively, and for two values of the Krook source

coefficient, γK = 1.4× 10−4[Ωi] and γK = 2.8× 10−4[Ωi].

This is confirmed when we plot in Fig.3 the radially-averaged (ρv ∈ [.55, .75]),

time-averaged χ in the core as a function of the normalized pedestal gradient

(1/Tped|dT/dρv|ped. The sharp transition is clearly visible: there seems thus to be a

critical pedestal gradient value above which transport in the core is abruptly enhanced.

In order to understand if the turbulent regime has changed below and above the

critical pedestal gradient, we examine the behaviour of flows. Figure 4 shows the time-

averaged parallel and zonal E × B flows vs radius for various pedestal temperature

profiles. The shearing rates in the core do not seem to be much affected, but there is

a reversal of flow direction in the pedestal, which occurs at the same critical pedestal

gradients, between µT = 6 and µT = 9, as the core transport sharp transition, see Fig.3.

The fluctuating part of the ZFs exhibits a remarkable transition change in

behaviour. We show in Fig.5, top row, contours of the zonal E × B shearing rate

vs radius and time, below (left, µT = 6) and above (right, µT = 12) transition. Above

the critical pedestal gradient, avalanches are triggered at a regular pace and propagate

radially at constant velocity from the edge up to the plasma core. Frequency spectra

of the zonal E × B shearing rate confirm this, Fig.5, bottom row: below the critical

pedestal gradient, there is no well-defined frequency for avalanches. Above critical

pedestal gradient, a radially coherent oscillation appears. Its frequency coincides with

the local GAM frequency at the plasma edge. Being constant over radius, the frequency

is well below the local GAM frequency in the core. The frequency of these regular

avalanches matches well that of the observations on TCV of a ’coherent mode’, even

though the physical model used here is too simple to justify a quantitative comparison.

For more realistic simulations, including the trapped electron response, more relevant to

the TCV cases, see Ref.[28], where a similar coherent mode is observed at roughly the

same frequency, i.e. nearly matching the edge GAM frequency. For a detailed study of

the linear GAM dynamics including kinetic electrons and relevant for the Asdex-Upgrade

tokamak, see Ref.[19].
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It is crucial that these observations are not an artefact of the source term added to

the system and in particular that the results are not critically dependent of the value

of the Krook coefficient γK which was set somewhat arbitrarily. Here, we have found

essential that the source conserves parallel and zonal E × B flows. Indeed, Figure 6

shows the result of two pairs of simulations in which the value of γK was varied by a

factor of 2, γK = 1.4 × 10−4[Ωi] and γK = 2.8 × 10−4[Ωi]. In one pair of simulations,

the source term was conserving parallel and zonal E × B flows. In the other pair, the

source term was not conserving those flows. Remarkably, the non-conservation of flows

causes an increase in ion heat transport by a factor of more than 2 and, moreover,

causes the prediction of heat transport to be more sensitive to the value of γK than the

case with flow conservation. In addition, without flow conservation, the global coherent

’GAM-like’ avalanche feature disappears. The conclusion is that it is essential that the

source terms do conserve the parallel and E ×B flows.

In order to determine the linear or nonlinear nature of the ’coherent mode’, we have

conducted a numerical experiment in which the turbulent field perturbations δφn6=0 were

abruptly turned off in the middle of quasi-steady phase: the coherent mode immediately

disappears from n = 0 E×B flows signals. Thus, the process of excitation of the coherent

mode is through nonlinear coupling of turbulence to the zonal component of E×B flows.

It is therefore justified to identify the presence of the coherent mode as a manifestation

of regular avalanches.

Thus, avalanches appear as the vehicle through which transport is ’delocalized’ from

the pedestal region to the core. However, care must be taken before a too simplistic

explanation is given: in the TEM cases studied in Ref.[28] using the same core and

edge profile parametrization and the same TCV equilibrium as here, avalanches are

observed at about the same frequency as reported here, propagating over a similar

wide radial range straddling core and pedestal regions. However, avalanches propagate

mostly outward, so it is not obvious to find a causality relation between the edge GAM

frequency and the avalanche coherent frequency. The following sections focus on the

role of avalanches on statistical properties of fluxes and gradients, and on the relation

between these.

4. Statistical properties

We examine here how the fluctuations statistics behave as a function of radius, for

a case κT = 3.1, µT = 12. Figure 7 shows the probability density functions for

various quantities: temperature, density and potential all show normal (Gaussian)

PDFs, whereas the heat flux exhibits a long tail, representative of large events. This

reflects in a positive skewness. The PDF of heat flux can be fitted by a log-normal

distribution, which is indicated by the dashed line. A log-normal distribution can result

from the product of independent random variables, unlike the Gaussian PDF which

results from the sum of independent random variables. Such behaviour (normal PDFs

for gradients, but skewed PDFs for fluxes) were also observed in flux-driven simulations
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Figure 7. Top, from left to right: PDFs of temperature, density and non-zonal

perturbed potential, at ρv = 0.6. Bottom, left: PDFs of heat flux and of temperature

gradient at ρV = 0.6. Right: PDFs of heat flux at various radial positions. Simulation

with core and pedestal gradients, κT = 3.1, µT = 12.

Figure 8. Skewness of the PDF of the turbulent power heat flux as a function of

radius in the core region, for various pedestal gradients, and the same value of core

gradient, κT = 3.7. Labels indicate the values of µT .

of ITG turbulence in Ref.[29].

Taken at different radii, the skewness of the temperature, density and potential all

show a Gaussian statistics and thus zero skewness. The heat flux skewness, however,

shows a strong radial dependence, increasing as we move into the core. This could be

related to the direction of avalanche propagation, which is inward in this case, although

this would need verification in cases where avalanches would propagate outward.

The comparison of the statistical properties for different values of the pedestal

gradient shows that mostly the temperature, density and potential fluctuations are

invariably well described by Gaussian PDFs. The skewness of the heat flux as a

function of radius, on the other hand, shows an interesting behaviour below or above
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Figure 9. Left: contours of heat flux vs radius and time, zooming around a single

avalanche event (small box). Middle: instantaneous local heat flux vs R LT . The

arrows indicate the direction of time evolution. Right: instantaneous local heat flux

vs ZF E ×B shearing rate.

Figure 10. Left: time-averaged heat power vs R/LT . Right, time-averaged heat

power vs (1/T1)(dT/dρv), in the core (ρv = 0.7) and in the pedestal (ρv = 0.9). The

data points labels indicate the corresponding values of (κT , µT ). The unit power for

this study is n1miρ
2
s,1c

3
s,1, where the subscript 1 indicates values at the edge (ρV = 1).

the ’critical’ µT , as shown in Fig.8. Below the critical µT (0 or 3), the skewness is

almost constant between ρv = 0.55 and ρv = 0.65. For larger values of µT the skewness

is monotonically decreasing function of radius, but, interestingly, it is does not have a

monotonic behaviour with respect to the value of pedestal gradient: the skewness first

increases, reaching a maximum for µT = 9, which is at the upper edge of the sharp

transport transition observed in Fig.3, and then decreases.

5. Avalanches and flux vs gradient relation

Focusing now on what happens during the passage of an avalanche at a given radius,

Fig.9, we can observe a non-trivial relation between the local, instantaneous heat flux

and temperature gradient: it is characterized by a hysteresis, the flux first increasing

at high gradient value, then the gradient decreasing at high flux value, then the flux

decreasing at low gradient value. This behaviour repeats at each avalanche. So, the

heat flux appears to lead the evolution of the gradient.
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Remarkably, the local, instantaneous heat flux shows a decreasing function of the

ZF E × B shearing rate, with some hysteresis as well. This is at least consistent with

the paradigm of turbulence suppression by sheared zonal flows. Interestingly, in Refs

[22] and [30], a correlation was made with the value of the radial electric field rather

than its radial derivative.

The time-averaged flux vs gradient relationship at different radial positions shows

a non-trivial behaviour as well. This was best seen in a larger plasma size (ITER

simulations in Ref.[14]): global effects lead to corrugated profiles of temperature gradient

and ZF shearing rate (’staircase’, [12]). Transport is maximal at radial positions where

the ZF E×B shearing rate is minimal and results in a local minimum of the temperature

gradient. This leads to a decreasing heat transport vs gradient.

Taking the radial average of the time-averaged fluxes and gradients, and considering

different global simulations with various averaged gradients in both core and pedestal,

leads to a more familiar, monotonically increasing χ vs gradient relation. The global,

time-averaged, radially averaged flux vs gradient relation ’looks like’ a local one. But,

as we have seen, this does not mean that transport is local. Coming back to the TCV-

like simulations, considering various core and edge gradients [7], taking the time- and

radius-averaged (over, respectively, the core and pedestal regions), we can analyze the

flux vs gradient relation ’as if it were local’ and conclude to a stiffness and a critical

normalized logarithmic gradient R/LT in the core much larger than in the pedestal,

see Fig.10, left. We note that multiplying the power by a factor of 2.5 leads to only a

modest increase of the core logarithmic gradient κT from 3.1 to 3.5, i.e. by about 13%

only, whereas the linear gradient in the pedestal µT is increased from 12 to 18, i.e.by

50%. This is very much in line with experimental findings on TCV, see Figs 8 and 10

of Ref.[6]. Interestingly, when represented as function of the normalized linear gradient,

(1/T1)(dT/dρV ), the stiffness and the critical gradient in the core and in the pedestal

are almost identical, Fig.10, right.

6. Conclusions

The radially non-local nature of ITG turbulent transport has been evidenced in a

series of global gyrokinetic simulations. In particular, a strong relation exists between

transport in the core and the presence of gradients in the pedestal. The behaviour of

core transport as a function of pedestal gradient shows a critical behaviour (Fig.3).

The statistical properties of fluctuations show normal (Gaussian) PDFs for

temperature, temperature gradient, density and potential, whereas the heat flux can be

strongly positively skewed. This skewness also exhibits a non-local behaviour (Fig.8).

The non-locality is associated with the presence of avalanches. Above the (non-

local) criticality, these show a repetitive, regular pattern, propagating at constant speed

from the pedestal to the core, with a frequency matching that of the local GAM

frequency at the edge but much below the local GAM frequency in the core (Fig.5,

very similarly to TCV observations [15, 16].
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The leading role of E ×B ZFs for the avalanche propagation has been analysed in

detail. The local, instantaneous flux vs gradient relation appears to be regulated by the

local, instantaneous E ×B zonal shearing rate.

Taking appropriate time averages, the transport in the core is much stiffer than

in the pedestal, when measured as a function of the logarithmic gradient R/LT , but

not so when measured as a function of the linear gradient dT/dρv. The effective critical

R/LT is much higher in the pedestal than in the core, but the effective critical dT/dρv is

almost the same. (Fig.10). These findings are consistent with experimental observations

on TCV [6].

These simulations were all done with the adiabatic electron assumption, which is

known to lead to largely underestimated values of power fluxes and no particle flux.

Also, collisions play an important role near the edge. Future works will address the

same non-locality investigations but with the inclusion of kinetic electron dynamics and

collisions, in order to approach more realistic values of fluxes, so as to allow for a more

quantitative comparison with experimental observations.

Finally, this paper has evidenced the importance of non-local effects, and therefore

in principle the boundary conditions can have a global effect. While the in the present

work care has been taken in order to verify that the boundary conditions have a minimal

impact on the results, future investigations should attempt at replacing these boundary

conditions with a more realistic coupling of core, edge and SOL plasmas.
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