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Abstract

Extractive distillation is a widely accepted and commercialized process for separating azeotropic

mixtures compared to conventional distillation. The search for high-performing solvents, or

entrainers, needed in extractive distillation is a challenging task. The heuristic guideline or

experiment based method for the screening of entrainers is usually not very efficient and limited

to the existing, well-known solvents. In this contribution, we propose a multi-stage theoretical

framework to design solvents for extractive distillation. A multiobjective optimization based

computer-aided molecular design (MOO-CAMD) method is developed and used to find a list of

Pareto-optimal solvents. In the MOO-CAMD method, two important solvent properties (i.e.,

selectivity and capacity) that determine the extractive distillation efficiency are simultaneously

optimized. The next step involves a further screening of the Pareto-optimal solvents by

performing rigorous thermodynamic calculation and analysis. Finally, for each of the remaining

solvents, the extractive distillation process is optimally designed and the best candidate showing

the highest process performance is ultimately identified. The overall design framework is

illustrated through an example of the n-hexane and methanol separation.
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Introduction

Distillation is perhaps the most important separation technique in the chemical and

petrochemical industries and thus the optimal design of distillation processes can greatly

influence the profitability of a plant. The operation of distillation columns is based on the varying

volatilities of the components targeted for separation. However, sometimes the relative volatility

is close to unity or azeotropes exist and conventional distillation is unable to achieve the desired

separation. The primary methods used industrially for the separation of close-boiling and

azeotropic mixtures are heterogeneous azeotropic distillation and homogeneous extractive

distillation, otherwise known simply as extractive distillation. Compared to the heterogeneous

azeotropic distillation, extractive distillation is generally more energy efficient, which is

especially true when heat integration is considered.1 In extractive distillation, a suitable

separating solvent, the entrainer, is added to the original mixture in order to increase the relative

volatility of the compounds which consequently promotes the separation. Thus, the selection of

the entrainer can have a deciding effect on the performance of an extractive distillation process.

Two primary methods for solvent selection exist. One is the so-called “experience-and-

experiment”, where solvent candidates are initially selected based on experience or by using

heuristics.2,3 Afterwards, phase equilibrium experiments or residue curve map (RCM)

calculations are performed for each of the selected solvents. Based on the results, the best

performing solvent can be identified. Despite its ease of application, this method is limited by its

reliance on experience and that it can be time-consuming. The method is therefore limited to the

well-known separation systems and a relatively small number of existing solvents. The other

approach takes advantage of modern molecular property models, numerical algorithms, and

computing power that have enabled the development and use of computer-aided molecular



design (CAMD) methods. CAMD, introduced by Gani and Brignole4, is a blanket term for the

use of computational based strategies in the rational selection or design of molecules that possess

known, desirable properties based on a given set of molecular building groups. CAMD

approaches have been broadly implemented for designing solvents used in reactions5-13 and for

separations14-24.

In general, CAMD problems are formulated and solved as optimization problems where the

groups used to build the molecule are left as optimization variables. For CAMD-based separation

solvent design, two important solvent thermodynamic properties, i.e., selectivity and capacity

(see the next section for the definition), are usually posed as the objective function with solvent

physical properties such as boiling point written as constraints. Lek-utaiwan et al.25 used the

ICAS ProCAMD software26 where CAMD methods are implemented to find suitable entrainers

for extractive distillation processes. The properties considered include separation selectivity,

melting and boiling temperatures. Kossack et al.27 optimized the selectivity while designing

solvents for the separation of acetone and methanol. They found that using the selectivity as the

single objective is not a satisfactory solvent selection criterion. They recommended to use the

product of selectivity and capacity as the CAMD objective function. Chen et al.28 and Lei et al.29

set lower bounds for both selectivity and capacity in their CAMD program to design entrainers

for hydrocarbon separation using extractive distillation. Despite the consideration of both criteria,

the effect of solvents on the process performance has not been investigated. It is clear that the

process operating conditions can influence the solvent selection. Not only that, but the selected

solvent also determines the optimal operating conditions of the process. The best way to capture

this interaction is to perform integrated solvent and process design. However, considering the



difficulty in solving these integrated design problems to global optimum, solvent and process

design are usually performed sequentially.30-35

In this work, we propose a multi-objective optimization based CAMD method to design solvents

for extractive distillation processes, which efficiently captures the tradeoff between solvent

selectivity and capacity. The resulting solvents are further screened via the prediction and

analysis of RCMs. For each of the remaining solvents, the extractive distillation process is

optimally designed and the best solvent showing the highest process performance is finally

identified. This multi-step design framework is illustrated with a selected example of the n-

hexane and methanol separation where the simple distillation is not applicable due to the

existence of azeotrope. The results obtained in each step will be presented and discussed

separately in the following sections.

Thermodynamic fundamentals

When using extractive distillation to separate a two-component mixture, a suitable solvent is

added to increase the relative volatility of the two components. It then becomes possible to

separate the mixture with one pure component as the distillate and the other removed together

with the solvent in the bottoms. The second component can then be easily separated from the

high boiling solvent in a second distillation column. The relative volatility of the components A

and B with an ideal vapor phase is defined by
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y and x are the molar fractions in the vapor and liquid phases, respectively. γ is the activity

coefficient. Psat is the saturated vapor pressure. Since the vapor pressure ratio remains constant at

a given temperature, solvent influences the relative volatility only by changing γA/γB. This ratio

is called solvent (separation) selectivity, SAB.
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If one were to conduct a rigorous comparison of solvents, this would require determining their

respective selectivities at a consistent solvent composition. However, the selectivity usually

increases linearly with the solvent concentration. Thus, predicting the selectivity at the infinite

dilution condition provides a reasonable estimation of the solvent’s overall selectivity.
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Another important measure to assess the potential of a solvent as the extractive distillation

entrainer is its solution capacity toward the solute. The infinite dilution capacity toward B is

determined by
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It is worth noting that both the selectivity and capacity are important solvent properties for the

economic efficiency of a solvent-based separation process. There is however a trade-off between

selectivity and capacity, where increase in the former usually leads to a decrease in the latter.36

Therefore, a simultaneous consideration of these two properties is very important when selecting

solvents.



CAMD-based solvent design

Typically, given a set of molecular building groups and objective properties, the CAMD method

finds all the different combinations of groups satisfying both molecular structural constraints and

property specifications.37,38 The successful application of CAMD for solvent design relies on the

accurate prediction of solvent physical and thermodynamic properties. The physical properties,

such as viscosity and boiling point, can be estimated by simple group contribution (GC)

models.39 The thermodynamic properties are usually predicted by GC-based thermodynamic

models, such as UNIFAC40-42 and SAFT-γ Mie43.

The molecular design space is fully defined by the selected building groups. Previously, a limited

number of groups were considered for solvent design,44,45 primarily due to the lack of group-

specific thermodynamic parameters. The UNIFAC (Dortmund) consortium interaction parameter

matrix (delivery 2016) contains 6506 parameters for 1730 group pairs. This large number of

available group interaction parameters makes it possible to design solvents within a large

molecular space. This work employs the modified UNIFAC (Dortmund) model46 and considers a

large number of building blocks consisting of 50 functional groups and 21 single-group

molecules (see Table S1 in the Supporting Information).

Owing to the discrete group decisions, the solvent design problems are composed as mixed-

integer nonlinear multi-objective optimization problems. In the present work, the solvent

selectivity and capacity are maximized subject to solvent structural and property constraints. A

detailed mathematical formulation of the problem is given below.
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Subject to:

(1) Structure and performance relationships

As previously mentioned, two objective functions determined by the following are used.
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The infinite dilution activity coefficients of n-hexane (A) ¥
Ag  and methanol (B) ¥

Bg are predicted

using the reformulated UNIFAC (Dortmund) model approximated with a mixture of xA = 0.01;

xS = 0.99 and xB = 0.01; xS = 0.99 at a temperature of 325 K. The activity coefficient of

component i in a mixture is determined by the following equations, where i and ii represent

component indexes.
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The UNIFAC theory considers two contributions to the activity coefficient: a combinatorial part

( C
ig ) and a residual part ( R

ig ).
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Ci, R1i, R2i, R3j, and R4i,j are intermediate variables.

The van der Waals volume Ri and surface area Qi for component i are:

j
j
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where rj and qj are the specific group volume and surface area, respectively.

The group interaction parameters are found in the following equation.
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Here, amj,j, bmj,j and cmj,j are pairwise group-dependent parameters and ni,j is the number of groups

j in component i. In the current case study, three components are considered: n-hexane, methanol

and the unknown solvent. Thus, nA,j and nB,j are known for hexane and methanol molecules. This

leaves nS,j as the decision variable to be optimized, which represents the number of groups j



comprising the solvent molecule. Notably, all equations and expressions used in this work,

excluding those contained within the UNIFAC model, only consider the number of groups

present in the solvent molecule. This allows us to simplify the notation by omitting the subscript

S in nS,j for those equations not pertaining to UNIFAC.

(2) Molecular structural constraints

When optimizing the structure of a solvent molecule by means of a group contribution method,

certain structural constraints are required to ensure that the molecular structure of the solvent is

physically feasible. These typically include structural feasibility rules as well as constraints to

limit the complexity of the molecule.

a) Structural feasibility

One of the common feasibility limitations pertains to the cyclical nature of the molecule. The

decision as to which type is considered is determined by three binary variables: y1 for acyclic, y2

for bicyclic, and y3 for monocyclic. Since no two general structures may occur concurrently,

these binary variables must sum to one.

y1 + y2 + y3 = 1       (18)

This is rearranged with the introduction of a new variable m to directly indicate the type of

molecule.

m − (y1 − y2) = 0       (19)

where m = {−1, 0, 1} represent bicyclic, monocyclic, and acyclic molecules, respectively.

The octet rule (eq. 20) and the modified bonding rule (eq. 21) have to be satisfied. The former

ensures that the molecule has no groups with unmatched bonds (i.e., zero valency) and the latter



prevents two neighboring groups from being linked by more than one bond.38 j, mj and k are

group indexes. vj represents the valency of group j.
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In total, 71 building blocks consisting of 50 functional groups and 21 single-group molecules are

considered (thus N equals 71). The blocks are tabulated in Table S1 together with their IDs,

valences, and maximum number of allowed appearances in the molecule. The building groups

are further classified into several subset groups. The abbreviated name of each subset and the

corresponding ID numbers of the included groups are given in Table 1.

The following constraint prevents more than one single-group solvent from being generated.
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If the optimal solvent is found to be a single-group molecule, no other groups are allowed to be

added, and the following constraint accounts for this:
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where nmax is the maximum number of groups allowed in the solvent molecule.

Additionally, in the case of aromatics, the total number of aromatic groups (Ag) must equal 6 if

the molecule is monocyclic or 10 if it is bicyclic.
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Eq. 25 − 27 are indispensable for distinguishing among the 3 different hydroxyl groups included

in the modified UNIFAC model.

nCH2 − nOH (p) ≥ 0       (25)

nCH − nOH (s) ≥ 0       (26)

nC − nOH (t) ≥ 0       (27)

A constraint is included to ensure that the total number of functional groups is no greater than the

total number of main groups.
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b) Structural complexity

In addition to the structural feasibility constraints, structural complexity limitations are also

essential for CAMD. The first of these takes the size of typical solvent molecules into account.

This is done by limiting the total number of groups involved in creating a molecule using Eq. 29

where nmin is 1 and nmax is set to 6. Additionally, the maximum number allowed for each specific

group, nupp(j), is defined (see Table S1).
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0 ≤ integer nj ≤ ݊
௨, (j = 1, 2, …, N)       (30)

The total number of main groups and functional groups is also limited.
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In aromatic molecules, the groups ACCH, AC, and ACCH2 exist if the binary variables y4, y5,

and y6 take the value of one, respectively. y7, another binary variable, takes 1 only when both y5

and y3 are 1.

nACCH /100 ≤ y4 ≤ nACCH       (33)

nAC /100 ≤ y5 ≤ nAC       (34)

nACCH2 /100 ≤ y6 ≤ nACCH2       (35)

100 y7 ≥ y3 + y5 − 1       (36)

100 (y7−1) − y3 − y5 + 2 ≤ 0       (37)

The AC group is only allowed to appear at most once in monocyclic molecules and must appear

twice in bicyclic molecules.

2y2 + y7 − nAC = 0       (38)

Molecular complexity is further abated by only allowing a maximum of one AC, ACCH or

ACCH2 group to be included in monocyclic molecules.

y4 + y6 + y7 ≤ 1       (39)

Since the ACCH group has two non-aromatic bonds, one of them is restricted to −CH3 to prevent

the generation of too complex molecules.

y4 ≤ nCH3       (40)

Additional actions taken to reduce molecular complexity include placing limits on the total

number of functional groups (chain-ending and non-chain-ending). Since double and triple bond



containing groups are rarely found in entrainer molecules, the allowed number for these groups

is zero.
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(3) Property constraints

In addition to structural constraints, important physical properties that can be predicted by group

contribution methods have to be limited as well. One essential characteristic is the melting point

of the solvent. The temperature constraint (eq. 44) is used to guarantee that the designed

molecules are liquid at room temperature. In order to facilitate the solvent recovery by

distillation, a lower bound is placed on the normal boiling point of the solvent (eq. 45).
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where upp
mT  = 315 K, low

bT  = 363 K, the constants Tm0 is 147.45 K and Tb0 is 222.54 K. Group

contributions tm,j and tb,j can be found from Marrero and Gani39.

The above multiobjective optimization based CAMD problem is solved using the solution

method introduced by Burger et al.43 After solving the optimization problem, we obtain a set of

Pareto-optimal solutions, namely butane-1,4-diamine, DMSO, 1,2-ethanediol, 1,4-butanediol,



glycerol, and water. As depicted in Figure 1, butane-1,4-diamine shows the highest solution

capacity towards methanol and the lowest separation selectivity. In contrast, water possesses an

extremely high selectivity, however, a very low capacity. The tradeoff between these two

performance indexes is well captured by three aliphatic alcohols, i.e., 1,2-ethanediol, 1,4-

butanediol, and glycerol. Considering the extremely low selectivity of butane-1,4-diamine and

the possible reaction with methanol, we only take into account the other five entrainers in the

subsequent steps.

RCM analysis

The calculation of residue curve maps (RCMs) is based on the simulation of a batch distillation

process where the liquid mixture in a vessel is vaporized and the formed vapor phase is removed

continuously.47 In this process, the liquid composition changes continually with time. The

trajectory of liquid-phase composition is known as a residue curve and the RCM is the collection

of all such curves for a given system. According to Doherty and Malone47, the analysis of RCMs

enables the assessment of the suitability of a solvent to promote a mixture separation by

extractive distillation.

The simple distillation process is governed by a set of differential equations.

yxx
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x represents the liquid-phase mole fraction vector. y denotes the analogous equilibrium vapor-

phase mole fractions. ξ is the warped time, a nonlinear transformation of the real time. The RCM

can be obtained by integrating eq 46 where the φ-γ method is used to represent the vapor-liquid



equilibrium condition. In this work, the vapor fugacity coefficient φ is 1 due to the ideal gas

assumption and the liquid activity coefficient γ is predicted by the modified UNIFAC (Dortmund)

model.

We have determined the RCMs for the n-hexane/methanol/solvent systems. The RCM with

water as the solvent is shown in Figure 2. As demonstrated, there are two binary azeotropes, one

azeotrope between n-hexane and methanol and the other formed between n-hexane and water.

These two azeotropic points divide the whole composition map into two distinct regions. In this

case, it is not possible to obtain all the pure components by distillation. Therefore, water is not a

suitable entrainer for separating n-hexane and methanol by extractive distillation. Due to the fact

that the RCMs are very similar for the other four systems, we only show the one with 1,4-

butanediol as the solvent in Figure 3. In this RCM, all the residue curves originate from the

azeotrope between n-hexane and methanol and terminate at the pure solvent. Only one

distillation region can be identified on the map. Therefore, it is possible to obtain all the

components as pure products by distillation.

Based on the RCM prediction and analysis, four solvents, namely DMSO (Tb = 189 °C), 1,2-

ethanediol (197 °C), 1,4-butanediol (230 °C), and glycerol (290 °C), are retained as high-

potential entrainers for the n-hexane and methanol separation. They will be more rigorously

evaluated through the optimal design and analysis of the extractive distillation process.

Extractive distillation process design

An extractive distillation process is fundamentally comprised of an extractive column and a

regeneration column. According to the classical setup, the entrainer is normally fed to the



extractive column at the top. The light component, in this work n-hexane, is withdrawn from the

distillate, while the heavy component methanol and the entrainer form the bottoms. The entrainer

is subsequently separated from methanol in the regeneration column and recycled back to the

extractive column. Please note that n-hexane (68 °C) has a higher normal boiling point than

methanol (64.7 °C). However, it becomes the light component because the entrainer molecules

combine much more closely with methanol.

In this case study, the flow rates of methanol and n-hexane in the feed stream are both set to 500

kmol/h and both the extractive and regeneration columns are operated at atmospheric pressure.

For reducing the complexity, the two columns are designed sequentially. Aspen Plus V8.8 is

used as the process simulation platform. The entrainer is fed into the top of the extractive column.

Based on a preliminary simulation study on the extractive column (1st column) with the four

entrainers, it is found that the best feeding location for the hexane/methanol mixture is at about

0.85× ୲ܰ୭୲
ଵ ( ୲ܰ୭୲

ଵ  denotes the total number of stages in this column) and the optimal reflux ratio of

the column R1 is around 0.01. Under these fixed conditions, ୲ܰ୭୲
ଵ  and the solvent-to-feed molar

ratio (S/F) are optimized for each entrainer to minimize the reboiler heat duty (ܳୖଵ ), with a

constraint of achieving a 0.995 molar purity of hexane in the distillate stream, ୌୣ୶ୟ୬ୣଵୈݔ . The

solvent regeneration column (i.e., 2nd column) has been optimally designed in a similar way

where the total number of stages ୲ܰ୭୲
ଶ  and reflux ratio R2 of the column are the key design

variables. The objective is to minimize the reboiler heat duty (ܳோଶ). The molar purity of the

solvent in the bottom product ୱ୭୪୴ୣ୬୲ଶݔ  is specified to be no less than 0.9999. The feed is located

in the middle of the column.

Figure 4 shows the influence of ୲ܰ୭୲
ଵ  and S/F on ୌୣ୶ୟ୬ୣଵୈݔ  and ܳோଵ  of the extractive column based

on different entrainers. Note that it is impossible to satisfy the ୌୣ୶ୟ୬ୣଵୈݔ  purity requirement using



DMSO as the solvent. Therefore, it is not considered as an effective solvent for the investigated

separation system. For all the other solvents, i.e., 1,2-ethanediol, 1,4-butanediol, and glycerol, a

very similar phenomenon can be observed. As shown in Figure 4, for satisfying the purity

specification, the required amount of solvent decreases with the increasing number of stages. To

increase the solvent flow rate generally results in a higher reboiler duty (ܳୖଵ) and the increasing

of ୲ܰ୭୲
ଵ  leads to a larger capital investment. Considering the above facts, we can identify

reasonable values for both S/F and ୲ܰ୭୲
ଵ . After finding the operation conditions for the extractive

column, the design variables for the regeneration column ( ୲ܰ୭୲
ଶ  and R2) can be optimally selected

in a similar way based on the sensitivity study shown in Figure 5.

The operation conditions of the extractive and regeneration columns are indicated by the white

circles shown in Figure 4 and Figure 5, respectively. Table 2 summarizes the operating

conditions and reboiler heat duties of the extractive distillation process based on different

entrainers. As shown, arising from the much higher boiling temperature and enthalpy of

vaporization, the glycerol-based process has a substantially higher energy consumption (ܳோଵ  + ܳோଶ)

than those of the other two processes. The 1,4-butanediol process shows a slightly lower heat

duty than the 1,2-ethanediol process. Besides, the 1,4-butanediol process is expected to consume

a smaller capital investment due to its less solvent usage and distillation stages. In view of the

above observations, 1,4-butanediol is considered as the best solvent for the n-hexane and

methanol separation. Figure 6 illustrates the optimal flowsheet of the extractive distillation

process using 1,4-butanediol as the entrainer.



Conclusion

This paper proposes a systematic framework for the optimal design of entrainers for extractive

distillation processes. A multi-objective optimization based CAMD method is developed and

used to find a set of promising entrainers, which are further screened via rigorous

thermodynamic analysis. The extractive distillation process is optimally designed for each of the

remaining solvents and the best candidate showing the highest process performance is finally

identified. The whole design framework has been illustrated on a selected example of the n-

hexane and methanol separation. 1,4-Butanediol is found to be the best entrainer for this

separation.

In extractive distillation, it would be wise to also consider several implicit solvent properties

such as cost, safety, and toxicity. However, these properties have not been explicitly considered

in our CAMD formulation. The reason is that the currently available GC models for predicting

the toxicity and environmental impact of solvents cover only a small number of structural groups.

There is even no model to estimate the availability and price of solvents. Based on these

considerations, we suggest these criteria to be checked individually for the high-potential

solvents generated by CAMD.

This work restricts the entrainers to only organic solvents. However, ionic liquids (ILs), a new

type of solvent, have received much attention and many novel applications have been developed.

Due to their unique and benign properties, ILs as extractive distillation entrainers may offer a

series of advantages.48 Since the proposed method is not restricted to certain solvent types, such

as the conventional organic solvents considered here, it can be easily extended for IL design

provided that the thermodynamic parameters between the solutes and IL groups are available.



References

1. Lei, Z.; Li, C.; Chen, B. Extractive distillation: a review. Sep. Purif. Rev. 2003, 32 (2), 121-

213.

2. Laroche, L.; Bekiaris, N.; Andersen, H. W.; Morari, M. The curious behavior of

homogeneous azeotropic distillation-implications for entrainer selection. AIChE J. 1992, 38

(9), 1309-1328.

3. Ivonne, R. D.; Vincent, G.; Xavier, J. Heterogeneous entrainer selection for the separation of

azeotropic and close boiling temperature mixtures by heterogeneous batch distillation. Ind.

Eng. Chem. Res. 2001, 40 (22), 4935-4950.

4. Gani, R.; Brignole, E. A. Molecular design of solvents for liquid extraction based on

UNIFAC. Fluid Phase Equilibr. 1983, 13, 331-340.

5. Gani, R.; Jiménez-González, C.; Constable, D. J. Method for selection of solvents for

promotion of organic reactions. Comput. Chem. Eng. 2005, 29, 1661-1676.

6. Stanescu, I.; Achenie, L. E. A theoretical study of solvent effects on Kolbe–Schmitt reaction

kinetics. Chem. Eng. Sci. 2006, 61, 6199-6212.

7. Folić, M.; Adjiman, C. S.; Pistikopoulos, E. N. Design of solvents for optimal reaction rate

constants. AIChE J. 2007, 53, 1240-1256.

8. Folić, M.; Adjiman, C. S.; Pistikopoulos, E. N. Computer-aided solvent design for reactions:

maximizing product formation. Ind. Eng. Chem. Res. 2008, 47, 5190-5202.

9. Struebing, H.; Ganase, Z.; Karamertzanis, P. G.; Siougkrou, E.; Haycock, P.; Piccione, P. M.;

Armstrong, A.; Galindo, A.; Adjiman, C. S. Computer-aided molecular design of solvents for

accelerated reaction kinetics. Nat. Chem. 2013, 5, 952-957.

10. Zhou, T.; McBride, K.; Zhang, X.; Qi, Z.; Sundmacher, K. Integrated solvent and process

design exemplified for a Diels-Alder reaction. AIChE J. 2015, 61, 147-158.

11. Zhou, T.; Lyu, Z.; Qi, Z.; Sundmacher, K. Robust design of optimal solvents for chemical

reactions — A combined experimental and computational strategy. Chem. Eng. Sci. 2015,

137, 613-625.

12. Zhou, T.; Wang, J.; McBride, K.; Sundmacher, K. Optimal design of solvents for extractive



reaction processes. AIChE J. 2016, 62, 3238-3249.

13. Austin, N. D.; Sahinidis, N. V.; Konstantinov, I. A.; Trahan, D. W. COSMO-based

computer-aided molecular/mixture design: A focus on reaction solvents. AIChE J. 2018, 64

(1), 104-122.

14. Marcoulaki, E. C.; Kokossis, A. C. On the development of novel chemicals using a

systematic optimisation approach. Part II. Solvent design. Chem. Eng. Sci. 2000, 55, 2547-

2561.

15. Kim, K. J.; Diwekar, U. M. Integrated solvent selection and recycling for continuous

processes. Ind. Eng. Chem. Res. 2002, 41, 4479-4488.

16. Karunanithi, A. T.; Achenie, L. E. K.; Gani, R. A new decomposition-based computer-aided

molecular/mixture design methodology for the design of optimal solvents and solvent

mixtures. Ind. Eng. Chem. Res. 2005, 44, 4785-4797.

17. Karunanithi, A. T.; Achenie, L. E. K.; Gani, R. A computer-aided molecular design

framework for crystallization solvent design. Chem. Eng. Sci. 2006, 61, 1247-1260.

18. McLeese, S. E.; Eslick, J. C.; Hoffmann, N. J.; Scurto, A. M.; Camarda, K. V. Design of

ionic liquids via computational molecular design. Comput. Chem. Eng. 2010, 34, 1476-1480.

19. Roughton, B. C.; Christian, B.; White, J.; Camarda, K. V.; Gani, R. Simultaneous design of

ionic liquid entrainers and energy efficient azeotropic separation processes. Comput. Chem.

Eng. 2012, 42, 248-262.

20. Chávez-Islas, L. M.; Vasquez-Medrano, R.; Flores-Tlacuahuac, A. Optimal molecular design

of ionic liquids for high-purity bioethanol production. Ind. Eng. Chem. Res. 2011, 50 (9),

5153-5168.

21. Valencia-Marquez, D.; Flores-Tlacuahuac, A.; Vasquez-Medrano, R. Simultaneous optimal

design of an extractive column and ionic liquid for the separation of bioethanol-water

mixtures. Ind. Eng. Chem. Res. 2011, 51 (17), 5866-5880.

22. Samudra, A. P.; Sahinidis, N. V. Optimization-based framework for computer-aided

molecular design. AIChE J. 2013, 59, 3686-3701.

23. Austin, N. D.; Sahinidis, N. V.; Trahan, D. W. A COSMO-based approach to computer-aided

mixture design. Chem. Eng. Sci. 2017, 159, 93-105.



24. Zhang, J.; Qin, L.; Peng, D.; Zhou, T.; Cheng, H.; Chen, L.; Qi, Z. COSMO-descriptor based

computer-aided ionic liquid design for separation processes: Part II: Task-specific design for

extraction processes. Chem. Eng. Sci. 2017, 162, 364-374.

25. Lek-utaiwan, P.; Suphanit, B.; Douglas, P. L.; Mongkolsiri, N. Design of extractive

distillation for the separation of close-boiling mixtures: Solvent selection and column

optimization. Comput. Chem. Eng. 2011, 35 (6), 1088-1100.

26. Jensen, N.; Coll, N.; Gani, R. An integrated computer aided system for generation and

evaluation of sustainable process alternatives. Technological Choices for Sustainability 2004,

183-214.

27. Kossack, S.; Kraemer, K.; Gani, R.; Marquardt, W. A systematic synthesis framework for

extractive distillation processes. Chem. Eng. Res. Des. 2008, 86 (7), 781-792.

28. Chen, B.; Lei, Z.; Li, Q.; Li, C. Application of CAMD in separating hydrocarbons by

extractive distillation. AIChE J. 2005, 51 (12), 3114-3121.

29. Lei, Z.; Arlt, W.; Wasserscheid, P. Separation of 1-hexene and n-hexane with ionic liquids.

Fluid Phase Equilibr. 2006, 241 (1-2), 290-299.

30. Eden, M. R.; Jorgensen, S. B.; Gani, R.; El-Halwagi, M. M. A novel framework for

simultaneous separation process and product design. Chem. Eng. Process. 2004, 43, 595-608.

31. Eljack, F. T.; Eden, M. R.; Kazantzi, V.; Qin, X.; El-Halwagi, M. M. Simultaneous process

and molecular design − A property based approach. AIChE J. 2007, 53, 1232-1239.

32. Papadopoulos, A. I.; Linke, P. Multiobjective molecular design for integrated process-solvent

systems synthesis. AIChE J. 2005, 52, 1057-1070.

33. Papadopoulos, A. I.; Linke, P. Efficient integration of optimal solvent and process design

using molecular clustering. Chem. Eng. Sci. 2006, 61, 6316-6336.

34. Bardow, A.; Steur, K.; Gross, J. Continuous-molecular targeting for integrated solvent and

process design. Ind. Eng. Chem. Res. 2010, 49, 2834-2840.

35. Song, Z.; Zhang, C.; Qi, Z.; Zhou, T.; Sundmacher, K. Computer-aided design of ionic

liquids as solvents for extractive desulfurization. AIChE J. 2018, 64 (3), 1013-1025.

36. Krummen, M.; Gruber, D.; Gmehling, J. Measurement of activity coefficients at infinite

dilution in solvent mixtures using the dilutor technique. Ind. Eng. Chem. Res. 2000, 39 (6),



2114-2123.

37. Gani, R.; Nielsen, B.; Fredenslund, A. A group contribution approach to computer-aided

molecular design. AIChE J. 1991, 37, 1318-1332.

38. Odele, O.; Macchietto, S. Computer aided molecular design: A novel method for optimal

solvent selection. Fluid Phase Equilibr. 1993, 82, 47-54.

39. Marrero, J.; Gani, R. Group-contribution based estimation of pure component properties.

Fluid Phase Equilibr. 2001, 183, 183-208.

40. van Dyk, B.; Nieuwoudt, I. Design of solvents for extractive distillation. Ind. Eng. Chem. Res.

2000, 39, 1423-1429.

41. Cheng, H. C.; Wang, F. S. Trade-off optimal design of a biocompatible solvent for an

extractive fermentation process. Chem. Eng. Sci. 2007, 62, 4316-4324.

42. Zhou, T.; Zhou, Y.; Sundmacher, K. A hybrid stochastic–deterministic optimization

approach for integrated solvent and process design. Chem. Eng. Sci. 2017, 159, 207-216.

43. Burger, J.; Papaioannou, V.; Gopinath, S.; Jackson, G.; Galindo, A.; Adjiman, C. S. A

hierarchical method to integrated solvent and process design of physical CO2 absorption

using the SAFT-γ Mie approach. AIChE J. 2015, 61 (10), 3249-3269.

44. Wang, Y.; Achenie, L. E. K. Computer aided solvent design for extractive fermentation.

Fluid Phase Equilibr. 2002, 201, 1-18.

45. Gebreslassie, B. H.; Diwekar, U. M. Efficient ant colony optimization for computer aided

molecular design: case study solvent selection problem. Comput. Chem. Eng. 2015, 78, 1-9.

46. Jakob, A.; Grensemann, H.; Lohmann, J.; Gmehling, J. Further development of modified

UNIFAC (Dortmund): Revision and extension 5. Ind. Eng. Chem. Res. 2006, 45 (23), 7924-

7933.

47. Doherty, M. F.; Malone, M. F. Conceptual Design of Distillation Systems; McGraw-Hill:

New York, 2001.

48. Lei, Z.; Dai, C.; Zhu, J.; Chen, B. Extractive distillation with ionic liquids: a review. AIChE J.

2014, 60 (9), 3312-3329.



Table 1: Group classes, ID numbers, and abbreviated names of the subset groups

Group class Group ID number Abbreviation

Main groups 1-4 Mg

Double and triple bond groups 5-9 Dtbg

Aromatic groups 10-14, 18, 31, 38-41, 47 Ag

Non-chain-ending functional groups 6-8, 20, 23, 26, 27, 30, 35, 36, 43, 50 Nceg

Chain-ending functional groups 5, 9, 15-17, 19, 21, 22, 24, 25, 28,
29, 32-34, 37, 42, 44-46, 48, 49 Ceg

Single-group molecules 51-71 Sg



Table 2: The operating conditions and reboiler heat duties of the extractive distillation process

based on different entrainers

Solvent 1,2-Ethanediol 1,4-Butanediol Glycerol

୲ܰ୭୲
ଵ 18 14 10

S/F 1.30 0.78 0.90

ܳோଵ  (kW) 9473.5 9548.6 8328.8

୲ܰ୭୲
ଶ 8 9 17

R2 0.085 0.038 0.150

ܳோଶ (kW) 11698.4 11549.8 18519.5

ܳோଵ  + ܳோଶ (kW) 21171.9 21098.4 26848.3



     Figure 1: Solution of the MOO-CAMD based solvent design problem
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Figure 2: Residue curve map for the n-hexane/methanol/water ternary system

Hexane

MethanolWATER

HEXANE

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Water



Figure 3: Residue curve map for the n-hexane/methanol/1,4-butanediol ternary system
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Figure 4: The influence of ୲ܰ୭୲
ଵ  and S/F on ୌୣ୶ୟ୬ୣଵୈݔ  and ܳோଵ  using 1,2-ethanediol (a), 1,4-

butanediol (b), and glycerol (c) as the solvent

4 6 8 10 12 14 16 18 20 22

0.5

1.0

1.5

2.0

2.5

3.0

6000

7450

8900

10350

11800

13250

14700

16150

17600

Q1
R(kW)

S/
F

4 6 8 10 12 14 16 18

0.5

1.0

1.5

2.0

2.5

3.0

5900

8813

11725

14638

17550

20463

23375

26288

29200

Q1
R(kW)

S/
F

st

4 6 8 10 12

0.5

1.0

1.5

2.0

2.5

3.0

5900

8738

11575

14413

17250

20088

22925

25763

28600

Q1
R(kW)

S/
F

st

1
totN 1

totN

1
totN 1

totN

1
totN 1

totN

(a)

(b)

(c)

0.995

4 6 8 10 12 14 16 18 20 22

0.5

1.0

1.5

2.0

2.5

3.0
S/

F

0.643

0.668

0.693

0.718

0.743

0.768

0.793

0.818

0.843

0.868

0.893

0.918

0.943

0.968

0.993

x1D
Hexane

0.995

4 6 8 10 12 14 16 18

0.5

1.0

1.5

2.0

2.5

3.0

S/
F

0.610

0.635

0.660

0.685

0.710

0.735

0.760

0.785

0.810

0.835

0.860

0.885

0.910

0.935

0.960

0.985

x1D
Hexane

0.995

4 6 8 10 12

0.5

1.0

1.5

2.0

2.5

3.0

S
/F

0.600

0.630

0.660

0.690

0.720

0.750

0.780

0.810

0.840

0.870

0.900

0.930

0.960

0.990

x1D
Hexane



Figure 5: The influence of ୲ܰ୭୲
ଶ  and R2 on ୱ୭୪୴ୣ୬୲ଶݔ  and ܳோଶ using 1,2-ethanediol (a), 1,4-

butanediol (b), and glycerol (c) as the solvent
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Figure 6: The optimal flowsheet of the extractive distillation process using 1,4-butanediol (1,4-

BD) as the solvent
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