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Abstract 18 

Contemporary biological cells are sophisticated and highly compartmentalized. 19 

Compartmentalization is an essential principle of prebiotic life as well and a key feature in bottom-up 20 

synthetic biology research. In this review, we discuss the dynamic growth of compartments as an 21 

Revised manuscript

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

mailto:ivanov@mpi-magdeburg.mpg.de
mailto:dimova@mpikg.mpg.de


  Directed Growth of Biomimetic 

Microcompartments 

 
2 

essential prerequisite for enabling self-reproduction as a fundamental life process. We focus on 22 

micron-sized compartments due to their cellular dimensions. Two types of compartments are 23 

considered, membraneless droplets and membrane-bound microcompartments. We review growth 24 

mechanisms of aqueous droplets such as protein (condensates) or macromolecule-rich droplets 25 

(aqueous two phase systems) and coacervates, for which growth occurs via Ostwald ripening or 26 

coalescence. For membrane-bound compartments, we consider vesicles, composed of fatty acids, 27 

lipids or polymers, where directed growth can occur via fusion or uptake of material from the 28 

surrounding. The development of novel approaches for growth of biomimetic microcompartments 29 

can eventually be utilized to construct new synthetic cells.  30 

 31 

1 Introduction 32 

Despite the long and ongoing debate about the essence of life, there is a widespread consensus about 33 

some common features of all living systems. While some phenomena, such as  metabolism, remain 34 

arguable benchmarks (and place viruses in the twilight zone), it is widely recognized that the 35 

formation of micro- and nanocompartments is an essential ingredient of all forms of life. This spatial 36 

constraint serves numerous purposes, including the segregation and protection from the environment 37 

(to allow for individuality and maintenance), the establishment of gradients (to enable and make use 38 

of out-of-equilibrium conditions), and the role of two- and three-dimensional confinement for self-39 

organization phenomena, all of which serve to overcome the overall “dilution problem”. In order to 40 

fulfil another cornerstone of life – proliferation – compartments also need to change with time by 41 

fusion, growth, and division. In particular, the dynamic growth of compartments is an essential 42 

prerequisite for enabling self-reproduction as a fundamental life process, both in simplistic systems 43 

such as droplets or fatty-acid based vesicles, as well as for lipid vesicle compartments with 44 

membranes that resemble the biomembranes of today’s cells. In this context, we argue that growth 45 

deserves more attention, not only because growth precedes division but also because of the difficulty 46 

to realize growth compared to division, especially in the case of lipid vesicles, where budding and 47 
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division has been observed in response to various factors This growth aspect has also been 48 

recognized in basic theoretical models of living systems such as Ganti’s chemoton [1, 2], for which 49 

the increase of membrane area (referred to as membrane formation) was postulated to be one of three 50 

subsystems, characterizing living entities from a chemical viewpoint. The autopoietic theory was also 51 

centered on the membrane but focused on self-maintenance rather than on (self-)reproduction [3, 4]. 52 

However, such a self-maintaining system could also enter a self-reproduction mode, manifested by 53 

growth, if homeostatic misbalance leads to excess membrane formation as shown in a thought 54 

experiment by Luisi [3].  55 

In this paper, we review the existing approaches for growth of compartments in the context of 56 

bottom-up synthetic biology and protobiology. We consider mainly micron-sized compartments due 57 

to their characteristic cellular dimensions; this feature also ensures that the area and curvature of the 58 

interface or the bounding membrane has less influence on the enclosed solution. Microcompartments 59 

of various origins and chemistries have been used as protocell models, and many studies have 60 

addressed growth and division simultaneously in an ambitious effort to mimic self-reproduction. 61 

Here, we focus on growth and divide the literature examples into two categories: membraneless and 62 

membrane-bound microcompartments, whereby we review aqueous droplets (such as protein- or 63 

macromolecule-rich droplets and coacervates) on the one side, and vesicles, composed of fatty acids, 64 

lipids or polymers, on the other. This is by no means a universal and comprehensive classification of 65 

compartment types in nature1, but rather an attempt to classify reported examples. 66 

                                                 

1 We conceptually include examples of fatty acid vesicles as presumable predecessors, as well as vesicles made of 

synthetic chemicals as prospective successors of today’s cells. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



  Directed Growth of Biomimetic 

Microcompartments 

 
4 

2 Coacervates and protein-rich droplets – volume and area grow simultaneously 67 

In the 1920’s Oparin hypothesized that membrane-free liquid-like droplets formed via complex 68 

coacervation could have been precursors to modern cells [5, 6]. Extensive research has demonstrated 69 

that small molecules and oppositely charged polymers can phase separate to form structures with 70 

emerging liquid-like properties. More recently, it was discovered that certain types of proteins 71 

undergo intracellular phase separation to form membrane-free/membraneless liquid-like protein-rich 72 

droplets. Both of these membraneless microcompartments represent interesting systems to 73 

circumvent the coupling between volume and surface area, and their austerity in comparison to 74 

membrane-bound microcompartments has qualified them as useful models to demonstrate 75 

compartment formation and growth. The relevance of membraneless compartments to bottom-up 76 

synthetic biology, regardless of their chemical composition, remains undisputed, since they 77 

successfully represent or mimic certain biological aspects. Thus, phase-separated droplets represent 78 

useful models of self-organized entities, independent of the natural or man-made origin of the 79 

macromolecules. Form a protobiology perspective, coacervates made of synthetic polymers are 80 

logically excluded as potential ancestors of today’s cells, but such coacervates have played an 81 

important role in the history of protocells, starting with the first experiments on gum arabic and 82 

gelatin.  83 

2.1 Protein-rich droplets 84 

Compartmentalization is a hallmark of the eukaryotic cell. It enables cells to spatially separate their 85 

complex biochemistry into microreactors. Well-known examples of compartments are the 86 

mitochondrion and the nucleus, both of which are surrounded by lipid bilayers. However, in recent 87 

years it has become clear that the eukaryotic cytoplasm is further organized by compartments that 88 

lack membranes. These compartments have been termed biomolecular condensates, also known as 89 
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membraneless organelles [7]. Intracellular condensates form by the process of liquid-liquid phase 90 

separation [8-13]. Phase separation is a highly cooperative and concentration-dependent process: 91 

above a certain saturation concentration, a solution becomes unstable and demixes to form two or 92 

more distinct co-existing aqueous phases, a protein-dense and a protein-poor phase that continuously 93 

exchange molecules and maintain a steep concentration gradient across their interfaces. Recent work 94 

suggests, that the formation of biomolecular condensates is primarily driven by RNA and proteins 95 

that exhibit a large degree of intrinsic disorder and/or multivalency. Among the growing list of 96 

proteins that undergo liquid-like phase separation are the well-studied P-granule proteins LAF1 and 97 

PGL-3 [14, 15], the stress granule proteins FUS and hnRNPA1 [16-18], the centrosome protein SPD-98 

5 [19], as well as the nucleolar proteins Fib1 and Npm1 that form immiscible phases to organize the 99 

nucleolus [20]. When expressed in a test tube, these proteins readily phase-separate to form two-100 

phase systems at physiological concentrations. These protein-rich droplets grow by taking up 101 

material from the environment (Ostwald ripening) or via coalescence of two smaller droplets to form 102 

a larger one; see Figure 1. The condensates exhibit liquid-like characteristics, such that they can 103 

coalesce, wet surfaces and deform under shear stress. The dynamics of these processes is governed 104 

by internal viscosity and surface tension [8, 14, 21]. Importantly, condensates display selectivity, and 105 

client molecules such as interacting proteins or RNA will partition into the condensates. 106 

 107 

Figure 1. (A) Protein-rich droplets can grow by the uptake of material from the surrounding and at 108 

the expense of smaller droplets (Ostwald ripening). (B) Still fluorescence images from a time-lapse 109 
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movie of a Hela cell expressing the YFP-labelled disordered region of the RNA helicase DDX4 110 

(unpublished data). The disordered region forms an intracellular liquid-like droplet. With time, the 111 

bigger droplet grows, whereas the smaller droplets shrink and eventually disappear. (C) 112 

Quantification of the bigger droplet area shown in (B) as a function of time (unpublished data). (D) 113 

Growth of liquid-like protein droplets can also occur via coalescence upon encounter of two or more 114 

droplets that merge to form a bigger one. (E) Still bright field images from a time-lapse movie of 115 

protein droplets formed from the prion protein Sup35 [22]. The protein droplet was held with an 116 

optical tweezers and brought in the vicinity of other droplets, which coalesce leading to growth with 117 

time. (F) Quantification of the droplet area shown in (E) as a function of time. The step-wise increase 118 

in area is indicative of coalescence. 119 

Recent work has identified that the saturation concentration of the FET family of proteins (FUS-120 

EWSR1-TAF15 protein family) is quantitatively determined by the associative cation-pi interactions 121 

between segregated tyrosine and arginine sticker residues [23]. Other types of interactions, such as 122 

pi-pi and electrostatics between charged residues, play important roles as well [24]. For instance, the 123 

disordered region of the condensate protein helicase DDX4 displays a great degree of segregated 124 

charges [25]. Importantly, weak multivalent interactions underlie the nucleation process [11].  125 

In the context of the cell, these systems are driven away from equilibrium, e.g. by chemical reactions. 126 

However, in the test tube, droplet growth continues until the thermodynamic equilibrium has been 127 

reached. Accordingly, mechanisms must exist that regulate the nucleation as well as the size and the 128 

mechanical properties. Liquid-like condensates can also undergo liquid-to-solid transitions [18, 22, 129 

26, 27]. For FET family proteins, the composition of interspacing residues (so-called spacers) that 130 

segregates the stickers plays an important role in modulating the interaction strength and thus the 131 

liquid-to-solid transition [23]. The liquid-to-solid transition of the centrosome forming protein SPD-5 132 

may be mediated by coiled-coil domains to establish a force-resistant meshwork for microtubule-133 

mediated chromosome segregation [19]. Coupling phase separation to gelation may provide an ideal 134 

size-determining mechanism. Moreover, coupling the phase behavior to biochemical reactions that 135 

drive the system away from equilibrium establishes control over nucleation, droplet growth and 136 

under certain circumstances may even provide a mechanism for droplet division [28, 29]. Phase 137 

separation is exquisitely sensitive to environmental changes, including temperature, ionic strength or 138 
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pH, parameters that also fluctuate within cells [30, 31]. Cells have harnessed the phenomenon of 139 

phase separation to orchestrate complex processes and evolved precise mechanisms to control 140 

nucleation of biomolecular condensates. Taken together, it is now possible to predict the saturation 141 

concentration, as well as the material constants for minimal proteinaceous systems. Linking synthetic 142 

phase separation units with enzyme functions provides an opportunity to organize and polarize 143 

biochemical reactions within a synthetic cell. 144 

2.2. Polymer-rich droplets 145 

Coacervate microdroplets are generated from associative liquid-liquid phase separation 146 

(coacervation) processes between oppositely charged polymers or small highly charged molecules. 147 

They form from synthetic polymers (PDDA, polyethylemine, etc.) [32, 33], as well as from 148 

biologically relevant molecules including proteins (BSA) [34], polypeptides (polylysine, 149 

polyarginine) [35, 36], nucleic acids (DNA, RNA) [33, 37, 38], and co-factors (ATP, FAD, NAD) 150 

[39]. In comparison, dissociative liquid-liquid phase separation into two aqueous phases can be 151 

triggered in solutions of neutral macromolecules such as polyethylene glycol (PEG) and dextran, and 152 

more recently, this process was also established in the closed compartment of lipid vesicles [40, 41]. 153 

It is commonly considered that the general mechanism of phase separation occurs via two steps: an 154 

enthalpic contribution to the free energy from the electrostatic interaction between the molecules (in 155 

the case of charged polymers), which draws the molecules towards each other, and an entropic 156 

driving force from the rearrangement of ions and water leading to a lowering of the Gibbs free energy 157 

and the formation of membraneless, chemically enriched microdroplets. It has been proposed that this 158 

mechanism is analogous to liquid-liquid phase separation in biology [42, 43]. The surface tension of 159 

coacervates is low, between 1 µN/m – 1 mN/m [44], and even lower for aqueous two-phase systems 160 

of neutral polymers [45]. The droplets will grow in size over time via coalescence events [46]. The 161 
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rate of coalescence and therefore growth can be tuned by the overall charge ratios of the coacervate 162 

components.  163 

Studies have shown that polymer-rich microdroplets will selectively partition a range of different 164 

molecules leading to molecular localization and further chemical enrichment [39, 47-49]. Moreover, 165 

enzymes, which partition into the microdroplets maintain activity within the highly charged and 166 

crowded interior [50, 51]. Enzymes capable of phosphorylation and dephosphorylation have led to 167 

cycles of growth and degradation of the coacervate droplets [37, 52]. In addition, growth and decay 168 

of coacervate droplets can be instigated by switching the pH of the solution by bubbling carbon 169 

dioxide and ammonia through the dispersion of coacervate droplets [39]. These results indicate that 170 

the physical parameters such as molar ratio of polymers or pH and temperature of coacervate droplets 171 

can be used to tune and drive droplet growth and disassembly. Additionally, the ability of 172 

membraneless coacervate droplets to partition and support enzyme reactions could suggest that these 173 

systems could be plausible models for predicted growth and division cycles driven by flux of 174 

molecules across the interface [29].  175 

3 Fatty acid vesicles as primitive protocells – membrane formation due to fast equilibrium  176 

The vesicular (membrane) systems represent another compartment type with the same structural 177 

features as living cells. Worth noting with respect to the field of minimal cells, and growth in 178 

particular, are the pioneering works of Luisi and Szostak [53, 54], which mainly relied on fatty acid 179 

micelles and vesicles. The latter have been investigated extensively as protocell models because fatty 180 

acids have been proposed to be prebiotically relevant due to their structural simplicity compared to 181 

phospholipids [55]. Therefore, the spontaneous uptake of fatty acids into preformed vesicles has 182 

often been considered as a primitive growth mechanism. As far as structural simplicity is concerned, 183 

the emphasis on fatty acids is analogous to the RNA hypothesis (single-/double-stranded vs. one or 184 
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two hydrophobic tails) but the quest for the origin of life is intrinsically speculative and we will 185 

refrain from statements about the evolutionary relevance of these compartments. Regardless of this 186 

open question, fatty acid vesicles and fatty acids have served as rewarding models for mimicking life 187 

processes, including growth.  188 

We also note that the majority of studies with fatty acids employed small (~30-50 nm) and large 189 

(~100-200 nm) unilamellar vesicles – below the limit of optical resolution – which poses the question 190 

whether those are relevant protocell models from another perspective, namely their small size. A 191 

workshop dedicated to defining the minimal compartment size of life, related to possibilities for 192 

extraterrestrial life and nanobacteria, dealt with this question 20 years ago, see proceedings [56]. The 193 

biologists view regarding the threshold size of primitive compartments was set to diameters of 194 

250±50 nm determined by a requirement for the compartment to accommodate minimum amount of 195 

necessary proteins, genes and ribosomes. Others views were more speculative suggesting ⁓50 nm as 196 

the minimal size required to sustain potential forms of primordial life. The latter notion was 197 

supported by reports on enhanced protein expression in 100 nm liposomes [57]. Considered from a 198 

simplistic chemoton perspective, smaller size implies higher surface-to-volume ratio, which is 199 

associated with enhanced inward flux (proportional to the surface) of membrane precursors and other 200 

metabolites and thus could be considered as beneficial. However, other factors such as packing, 201 

curvature, etc., could result in micrometer size (as in modern cells) optimal for a specific functions. 202 

In this review, we focus on biomimetic microcompartments, while we do not aim to set the size 203 

limits of protocells. However, we include reports on nanocompartments as well, due to their 204 

historical and mechanistic significance. Furthermore, microcompartments such as giant unilamellar 205 

vesicles (GUVs) [58-61] have proven to be a practical system, whose properties, growth and 206 

response to external factors can be monitored and manipulated directly under a microscope. 207 
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Compared to phospholipids, fatty acids exhibit a very quick exchange between the membrane leaflets 208 

as well as faster exchange kinetics between the vesicle and the solution. In addition, stabilizing head 209 

group interactions are more important, which endows distinct properties, such as growth and self-210 

reproduction of vesicles [62-64]. Due to their single-chain structure, the concentration of monomers 211 

in equilibrium with vesicles is significantly higher than for phospholipids, which enables fast flip-212 

flop and exchange of molecules; Figure 2A. These beneficial properties have qualified fatty acids as 213 

a prominent system for studying protocells, including the demonstration of membrane growth [62]. A 214 

notable phenomenon, observed during the growth of oleate vesicles, was the so-called matrix effect, 215 

which exemplified itself when a seed of preformed vesicles was added to the micellar oleate solution, 216 

resulting in a narrow size distribution, corresponding to the size of the seed [65]. The growth of 217 

oleate vesicles was further investigated in detail, which lead to kinetic [66] and molecular dynamics 218 

[67] models. The growth process was also demonstrated under flow [68], whereby filamentous 219 

microcompartments were formed, and also employed as a mechanism for ribozyme activation [69] to 220 

manifest a form of homeostasis. In addition, the filamentous growth of multilamellar oleate vesicles 221 

(⁓4 µm) was used to mimic the full proliferation cycle of growth and division [70] and the chemistry 222 

was extended to other surface-active molecules beyond oleate [71].  223 

While fatty acids and surfactants are efficiently incorporated into existing membranes due to their 224 

optimal physicochemical properties, phospholipids – the membrane constituents of modern living 225 

cells –  form structures, which are stable over a wider range of concentrations (phospholipids exhibit 226 

lower critical micelle concentration, CMC, compared to fatty acids). With respect to this distinction, 227 

the addition of oleate to preformed phospholipid vesicles was used in other attempts to mimic self-228 

reproduction as an intermediate approach. Growth and division has been shown and investigated in 229 

detail in several examples of fatty acid incorporation into smaller liposomes [72-74] and the method 230 

has been later on scaled up to GUVs [75, 76]. In a similar fashion, the addition of detergents and 231 
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other water-soluble membrane active molecules at low concentration leads to their intercalation into 232 

the bilayer, which in turn could lead to an increase in the membrane area. In GUVs this increase 233 

depends on whether the inserting molecules exhibit fast or slow flip-flop. Fast flip-flop induces a 234 

large, visible increase in membrane area and fluctuations [75, 77, 78]. Slow flip-flop molecules 235 

induce an increase in the membrane spontaneous curvature due to their asymmetric incorporation into 236 

the outer leaflet of the membrane, resulting in tubulation [79-81], increased membrane tension and 237 

eventually rupture [75, 77]. Interestingly, the incorporation of simpler amphiphilic molecules or 238 

micelles leads to vesicle growth, often followed by division [70, 82], which is in line with predictions 239 

for phospholipids [83]. The limitation of detergent-like molecules is that at high concentrations, they 240 

lead to membrane permeabilization and eventual solubilization, depending on the membrane phase 241 

state and the CMC of the surfactant [84, 85]. In general, although this mixed approach provides a 242 

tangible system for studies of liposome growth, there is major conceptual drawback in the context of 243 

minimal cells – such microcompartments would lose their chemical identity over several generations 244 

and therefore could not sustain a continuous life cycle. The same drawback applies to another 245 

approach, in which blends of phospholipids and fatty acids or cationic surfactants were fused by  246 

attractive electrostatic interactions [86].     247 

 248 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



  Directed Growth of Biomimetic 

Microcompartments 

 
12 

 249 

Figure 2. Some approaches for establishing growth of giant vesicles. (A) Growth via uptake of fatty 250 

acid molecules, which remain in dynamic exchange with the external and internal GUV solution and 251 

exhibit fast flip-flop across the membrane. (B) Growth via fusion mediated by the formation of 252 

transmembrane metal-ligand complex (left) or fusion protein mimetics (right). (C) Electrofusion 253 

relies on poration of two opposing membranes exposed to strong electric fields. The phase contrast 254 

snapshots on the right illustrate the fusion of two GUVs brought in contact and aligned by means of 255 

AC field, followed by the application of a DC pulse; reproduced from [87]. Copyright (2006) 256 

National Academy of Sciences. The white arrow indicates the direction of the field. (D) Growth of 257 

giant vesicles can be established by efficient fusion of small liposomes with the GUV, where the two 258 

membrane types are oppositely charged. Fusion is illustrated with the cartoon (left) and the confocal 259 

images (right) of one negatively charged GUV (green) exposed to a solution of positively charged 260 

small liposomes (red). Upon fusion, Förster resonance energy transfer leads to decrease in the red 261 

signal and the GUV area increases significantly [88]. The change occurs within seconds. Reprinted 262 

from [88] Copyright (2019), with permission from Elsevier. Scale bars in (C, D) represent 20 µm. 263 

 264 

4 Growth of lipid vesicles – a difficult task, solved by fusion  265 

The system of highest interest for mimicking the proliferation of living cells is the phospholipid 266 

vesicle, which grows as a result of the incorporation of phospholipids in its membrane and eventually 267 

divides. The importance of liposomes arises from the chemical analogy with modern cell membranes. 268 

The cellular self-reproduction found in nature involves very complex biochemical interactions and 269 
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machineries. According to the reductionist concept, research in the context of protobiology and 270 

bottom-up synthetic biology aims to establish this phenomenon in a minimal system, based on 271 

simpler physicochemical mechanisms in a proof-of-concept for the origin and understanding of life. 272 

So far, however, growth of pure lipid vesicles has proved to be a challenge.  Due to the difficulty of 273 

experimental realization of the membrane formation subsystem, however, theoretical studies have 274 

preceded practical examples in the case of phospholipids. Different kinetic [89] and thermodynamic 275 

[83, 90, 91] aspects have been considered and summarized together with other, chemoton-like 276 

approaches in a recent review [92]. On the practical side, the self-reproduction of a biomembrane, i.e. 277 

a phospholipid vesicle building its own membrane, has been addressed several times, but with only 278 

modest success so far.  279 

4.1 Growth via uptake of synthesized membrane components 280 

Efforts for synthesizing membrane components in liposomes date back to the early 90s. In particular, 281 

Luisi and coworkers assembled a four-enzyme cascade for phosphatidylcholine (PC) synthesis and 282 

deduced its incorporation into the membrane based on geometrical considerations (eventually the 283 

liposome size decreased, which was ascribed to the higher spontaneous curvature triggered by the 284 

newly synthesized short-chain PC – a partially undesired outcome with respect to growth) [93]. The 285 

authors did not unequivocally determine, whether the enzymes were present in the interior, whereby 286 

significant dimensional limitations could arise from the small liposome radius (23–26 nm), but they 287 

ascertained the enzyme association with the membrane to maintain an active form. In another study, 288 

the synthesis of phosphatidic acid by acyltransferases, expressed via cell-free methods in vesicles, 289 

was demonstrated but no growth was observed [94]. The latter observation was ascribed to the low 290 

amount of product due to the limited encapsulation, which will be difficult to overcome unless 291 

efficient transport mechanisms for the various precursors are established. Recently, this cell-free 292 

approach was extended to a more comprehensive pathway, starting from acyl-CoA and glycerol-3-293 
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phosphate, and the liposome compartments were equipped with α-hemolysin to facilitate uptake of 294 

small polar molecules [95]. Although the authors did not specifically follow the vesicle growth, they 295 

identified practical barriers causing the low lipid synthesis rate, speculated about transport 296 

mechanisms for acyl-CoA and discussed relevant crowding and confinement effects. Another 297 

example in a similar direction was the biochemical synthesis of palmitate based on a FAS type I 298 

enzyme, encapsulated in liposomes [96], where vesicle growth has indeed been observed but the 299 

incorporation of foreign membrane components remains a conceptual problem.  300 

To circumvent protein synthesis issues, inherent to cell-free systems, an eight-enzyme cascade for the 301 

biosynthesis of phospholipids from fatty acids and glycerol 3-phosphate as building blocks has 302 

recently been assembled in vitro [97]. In the latter study, the enzymes and precursors were not 303 

encapsulated and synthesis occurred outside the liposomes. Experiments measuring the dequenching 304 

of rhodamine dye showed an approximately 30% membrane expansion, which was subsequently 305 

limited by the depletion of substrate. The growth was ascribed to the incorporation of oleic acid into 306 

the preformed liposomes, while the subsequent biosynthetic conversion to phosphatidic acid did not 307 

contribute to further expansion. Despite these limitations, the reconstitution of the biochemical 308 

membrane formation machinery is undisputedly a landmark in the area of bottom-up synthetic 309 

biology.  310 

The continuous search for more realistic growing protocell models has led to the use of phospholipid-311 

like molecules, supplied from outside, instead of internally synthesized. The Sugawara group 312 

demonstrated growth, division and amplified DNA distribution in daughter vesicles [98]. This was 313 

achieved by adding a cationic precursor, which was hydrolyzed into the membrane lipid by an 314 

embedded catalyst. Notably, DNA amplification enhanced the efficiency of both growth and 315 

division. However, the elegant process was ultimately exhausted because it was limited by the 316 

consumption of DNA precursors inside the vesicles and the dilution of membrane catalyst and 317 
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phospholipids. Similar approaches were undertaken by the replacement of the complex biochemical 318 

lipid synthesis pathway with a self-reproducing autocatalyst, which resulted in triazole phospholipids 319 

formation and membrane growth [99]. Both cases seem to function with aggregates and multilamellar 320 

vesicles, and the exotic chemistry of the membranes might hinder interactions with some biological 321 

species (e.g. sensitive membrane proteins), thus potentially limiting other applications in the context 322 

of minimal cells.  323 

4.2 Growth via vesicle fusion 324 

In the case of authentic phospholipids, the only established and practical approach for achieving 325 

growth until now seems to be via vesicle fusion. Membrane fusion is a ubiquitous process in biology 326 

and it is fundamental for a number of cellular processes. It involves merging of two otherwise 327 

separated membranes, forming a compartment, whose area is the sum of the two fusing bilayers. In 328 

other words, increase in membrane area inevitably accompanies fusion, although the former is 329 

scarcely reported because the vast majority of fusion assays are insensitive to it. Driving forces of 330 

various nature have been employed to trigger fusion, some approaches are illustrated in Figure 2. 331 

These range from simple physicochemical triggers such as electrostatic interactions [100-102] and 332 

volume depletion [103] to biochemical approaches, relying on natural protein fusion machinery 333 

[104], as well as combinations thereof [105]. Furthermore, fusion methods have been expanded to 334 

biomimetic strategies [87, 106] in addition to more exotic approaches, involving the use of light (to 335 

heat nanoparticles [107] or isomerize azocompounds [108]) or electric fields [87, 109, 110] to perturb 336 

and porate the bilayer. In some of the examples fusion has led to spontaneous budding, correlating to 337 

predictions made by theoretical models [90], which has been put in the context of growth and 338 

division cycles for self-reproduction [109]. Presumably, the simplest mechanism to induce membrane 339 

fusion is based on membrane tension as has been elucidated by molecular simulations [111]. 340 
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Membrane fusion of small liposomes has been used for decades [112, 113] and only more recently 341 

fusion using giant vesicles has been reported [114]. In cells, membrane fusion is mediated by specific 342 

interactions between fusion proteins and such fusion reactions have been reconstituted in synthetic 343 

systems, in which small liposomes fuse with giant vesicles [104, 115, 116]. However, possibly due to 344 

the low fusion efficiency of protein-reconstituted systems or the low protein density, vesicle growth 345 

has not been detected. Fusion mediated by pH-sensitive lipids has also resulted in undetectable area 346 

increase [117]. In contrast, when mediated by high charge density, the fusion of positively-charged 347 

liposomes induces extensive area increase of the negative GUVs [88, 118], see also Figure 2D. 348 

Although very efficient, the process is limited by eventual charge neutralization.  349 

The fusion of two GUVs can be induced and observed also in a more controllable way. This can be 350 

achieved by bringing a pair of vesicles in contact by manipulation with ultramicroelectrodes [119], 351 

by trapping them within microfluidic devices [120], by applying an electric field [87, 110], or by 352 

direct manipulation using micropipettes [87, 121] or optical tweezers [107, 122]. After initial contact, 353 

fusion can be triggered by the application of a strong DC pulse [87, 123], via ligand-mediated ion 354 

interactions [87], transmembrane domains of fusogenic proteins [124] or through localized 355 

nanoparticle-mediated [107] or laser-mediated [122] heating. The common feature of all these studies 356 

is that an increase in membrane area is clearly observable. Although GUV fusion may result in 357 

visible area increase, the resulting area has never been quantified and fusion efficiency has been 358 

determined by changes in the measured fluorescence rather than the measured volume changes of the 359 

vesicle to characterize vesicular growth. Generally, the excess area results in increased membrane 360 

fluctuations and formation of membrane folds as a consequence of volume expansion lagging behind 361 

the area growth. The GUV-GUV fusion approach in its variations has been used to mix chemical 362 

precursors for nanoparticle formation inside the vesicular compartment [119, 122, 123], to 363 
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controllably obtain vesicles with well-defined compositions [121], and to unravel the formation of 364 

the hemifusion diaphragm [124, 125] and the rapid nature of the fusion neck expansion [87].  365 

Importantly, fusion is not limited to pure phospholipid GUVs, but can be also extended to fusion of 366 

GUVs and cells [126, 127] or GUVs made of synthetic polymers. In contrast to liposomes, fusion of 367 

polymersomes is limited by the restricted mobility and high stability of the polymer membranes 368 

[128-130] associated with slowed down polymer rearrangement, which is a prerequisite for processes 369 

such as fusion. Some strategies have been successful in inducing fusion events in polymer GUVs, 370 

including exposure of vesicles to osmotic pressure gradients [128], ultrasound treatment [131], 371 

membrane perturbation by azobenzene photoisomerization [132] and addition of membrane 372 

disruptive agents into the dispersing medium [133].  373 

In relation to bottom-up synthetic biology and protobiology, although fusion has been traditionally 374 

considered from a biophysical and biochemical perspective, spontaneous liposome growth could in 375 

principle occur (or could have occurred in the evolutionary history) by the discrete steps of vesicle 376 

fusion [134]. In addition, apart from a mechanism for increasing the membrane area, it has been 377 

speculated as a scenario, in which two systems combine their properties and thus increase the degree 378 

of biocomplexity [135], for instance considering that vesicular trafficking is a major transport 379 

mechanism for proteins in natural living cells [136]. This aspect was used to supply feeding 380 

components and trigger gene expression in the case of fusion of oppositely charged vesicles [137]. 381 

5 Synthetic chemistry enables new potential approaches for growth  382 

In parallel to the continuing efforts to form and grow new types of membraneless 383 

microcompartments, enable efficient fusion via new approaches, and ideally reconstitute the natural 384 

machinery for phospholipid synthesis, there is another possible pathway, which brings synthetic 385 

chemistry in the foreground of bottom-up synthetic biology. This aspect has been already partially 386 
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addressed by the demonstration of life-like properties of dichloromethane and nitrobenzene oil 387 

droplets, which grow, divide and partition cargo [138, 139]. The versatility of synthetic reactions was 388 

also used to augment phospholipid vesicles and make them grow [98, 99] as noted above. With 389 

respect to this, advances in the preparation of functional amphiphilic block copolymers provide 390 

powerful synthetic tools for the engineering of artificial compartments that could grow upon 391 

stimulation by light, temperature or pH. Here the stimuli would induce the build-up of membrane 392 

stresses that could relax through fusion events. In this way the chemistry of living systems could be 393 

extended far beyond natural building blocks, enabling not only the reverse engineering or re-394 

engineering, but also the de novo engineering of life. Besides a powerful toolbox, which may enable 395 

futuristic applications, the latter concept of synthetic (in its conventional semantics of chemical) has 396 

resorting implications on the understanding of life as a display of self-organization and will expand 397 

our search criteria for other forms of life.   398 
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