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Abstract This paper studies a class of power-law kinetics, PL-ILK, for whose subset,
PL-TIK, analogues of the Deficiency Zero Theorem and the Deficiency One Theorem
(DOT) for mass action systems are valid. The DOT also includes the necessary and
sufficient condition of Boros for uniqueness in the non-weakly reversible case. To
our knowledge, this is the first set of kinetics beyond mass action kinetics (MAK) for
which the DOT has been shown to be valid. A further interesting property of PL-TIK is
a certain “robustness” relative to dependence of linkage classes: existence of a positive
equilibrium for each linkage class implies the existence of a positive equilibrium for the
whole network. For MAK systems, the PL-ILK property is equivalent to the reactant
deficiency of the linkage class containing the zero complex being one, and zero for all
other linkage classes. As shown in the Supplementary Materials, an initial survey of
MAK and BST systems already reveals numerous examples with PL-ILK kinetics.
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List of symbols

δ Deficiency of a CRN
ψK Factor map of a complex factorizable kinetics K
Ia Incidence matrix of a CRN
Ak k-Laplacian matrix
S̃ Kinetic flux subspace
R̃ Kinetic reactant subspace
K Kinetic subspace of a CKS
Y Molecularity map/matrix of complexes
π Product map
ρ Reactant map

Yres Reactant matrix
SR Reactant stoichiometric subspace.

K (N ) Set of all chemical kinetics on a CRN N
E+ Set of positive equilibria
f Species formation rate function of a CKS
S Stoichiometric subspace of a CRN

1 Introduction

The concept of deficiency, which was introduced by Feinberg and Horn in back-
to-back papers in 1972, has played a central role in the development of Chemical
Reaction Network Theory, particularly in its first three decades. This non-negative
integer is, as Shinar and Feinberg pointed out in [16], essentially ameasure of the linear
dependency of the network’s reactions. The two main Theorems, the Deficiency Zero
Theorem (DZT) and the Deficiency One Theorem (DOT), describe the set of positive
equilibria E+(N , K ) of MAK systems on networks of low deficiency (we will hence
call these two results the Low Deficiency Theorems for MAK systems). The DZT
includes the equivalence E+(N , K ) �= ∅ if and only if N is weakly reversible, the
parametrization

E+(N , K ) =
{
x ∈ R

m
>

∣∣∣log(x) − log(x∗) ∈ (S)⊥
}

with x∗ a positive equilibrium and S the stoichiometric subspace, and the uniqueness
of positive equilibria in each stoichiometric class. AsM. Feinberg emphasized in [10],
the Deficiency One Theorem generalizes most of the DZT’s content: it shows that, for
t-minimal networks with independent linkage classes (ILC) and linkage class deficien-
cies bounded by 1 (in zero deficiency, ILC and linkage class deficiency bounded by
0 are automatically fulfilled), monostationarity holds in each stoichiometric class and
weak reversibility is a sufficient condition for the existence of a unique equilibrium
in each class. The DZT was developed by Horn, Jackson and Feinberg in the seven-
ties while a complete proof of the DOT was published by Feinberg in 1995. In 2012,
Boros completed the DOT scenario by deriving a necessary and sufficient condition
for uniqueness in the non-weakly reversible case.
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Although the pioneers ofCRNTstudied kinetics beyondmass action from the begin-
ning (the fundamental work of Horn and Jackson in 1972 was entitled “General Mass
Action Kinetics”), it was not until 2012 that Müller and Regensburger extended the
Deficiency Zero Theorem to a set of power-law kinetic systems they called “General-
izedMass Action Kinetics” (GMAK) systems. In this and a subsequent paper in 2014,
GMAK systems were characterized by their kinetic deficiency which, when equal to
zero, implies that their underlying networks have zero deficiency. They provided a
characterization of E+(N , K ), which in this case consists entirely of complex bal-
anced equilibria, and an analogous parametrization. They also provided conditions for
uniqueness using the sign vector spaces associated with certain subspaces. A detailed
discussion of their results in comparison with this paper’s results is provided in Sect. 6.

In this paper, we introduce the set PL-ILK kinetics, which is characterized by the
linear independence of the kinetic order matrix rows per linkage class, with branching
reactions represented as one row and the zero row of inflow reactions (if present)
excluded (s. T matrix definition in Sect. 3). Our main results include the Deficiency
Zero Theorem and the Deficiency One Theorem (including the non-weakly reversible
extension) for a subset of this kinetics set. The study started with the impression of
the last author that the methods used by Boros in his PhD thesis to prove the DZT
and DOT for MAK systems—with their strong digraph theory flavor - could work for
more general kinetics. The first author undertook this exploration in his MS thesis and
discovered the set PL-LLK (PL-ILK for CRNs without inflow reactions) and, mixing
extensions of Boros’ techniques with his own, established fundamental properties of
its subset, PL-RLK. By fortuitous circumstance, the kinetics set generalized concepts
and results of the last two authors on the theory of reactant subspaces discussed in
[1], so that some of those (e.g. kinetic flux subspaces) could be used in this paper.
The extension to PL-TIK, including the final Low Deficiency Theorems, was then
completed in collaborative effort. To our knowledge, the Deficiency One Theorem for
PL-TIK is the first extension of Feinberg’s result beyond mass action kinetics.

The set PL-TIK exhibits a further remarkable property, a certain “robustness” rel-
ative to dependency of linkage classes: E+(L i , Ki ) �= ∅ for each linkage class L i

implies that E+(N , K ) �= ∅ (s. Theorem 4). On the other hand, without independence
of linkage classes, even the PL-TIK property does not guarantee the converse result
(s. Example 4).

We document in Supplementary Materials the results of an initial survey of bio-
chemical systems, which showed that numerous examples of MAK and BST systems
display linkage class linearly independent kinetics. However, almost all of them have
higher deficiency, so they are outside of the scope of the Low Deficiency Theorems—
this finding highlights the need for further research.

The paper is organized as follows: In Sect. 2,we collect all the concepts and previous
results needed in the Introduction and the later sections. In Sect. 3, we introduce the set
PL-ILK and its relevant subsets in the overall context of power law kinetics. In Sect. 4,
we prove our first main result that, for a PL-TIK system, the existence of positive
equilibria for each linkage class implies the existence of such for the whole network,
even without independence of the linkage classes. We also, after developing tools we
need for the Low Deficiency Theorems, derive the Deficiency Zero Theorem for PL-
TIK systems. In Sect. 5, we prove the Deficiency One Theorem for PL-TIK systems.
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Table 1 List of abbreviations

Abbreviation Meaning

BST Biochemical systems theory

CBK Complex balanced kinetics

CKS Chemical kinetic system

CRN Chemical reaction network

CRNT Chemical reaction network theory

GMAK Generalized mass action kinetics

GCRN Generalized chemical reaction network

MAK Mass action kinetics

ODE Ordinary differential equation

PLK Power-law kinetics

PL-FSK Power-law factor span surjective kinetics

PL-ILK Inflow-excluded linkage class linear independent kinetics

PL-IRK Inflow-excluded reactant set linear independent kinetics

PL-LLK Linkage class linear independent kinetics

PL-RDK Power-law reactant-determined kinetics

PL-RLK Reactant set linear independent kinetics

PL-TIK T̂ -rank maximal kinetics

RDK Reactant-determined kinetic orders

RSS Reactant-determined stoichiometric subspace

SFRF Species formation rate function

We conduct a detailed comparison with the results of Müller and Regensburger in
Secion 6 and provide concluding remarks in Sect. 7. In the Supplementary Materials
to this paper, we discuss examples of MAK and BST networks of biological systems
which exhibit linear independent kinetics.

We provide a list of frequently used abbreviations in Table 1.

2 Fundamental concepts of chemical reaction networks and chemical
kinetic systems

In this section, we collect the fundamental concepts and propositions about chemical
reaction networks and chemical kinetic systems (CKS) needed for our results. In
particular, we expound the standpoint that a CRN is a digraph with a vertex-labelling,
i.e., its stoichiometry. In our view, this approach enables easier application of (general)
digraph theory results to CRNT as well as better appreciation of CRNT in the graph
theory community, particularly of its novel contributions to (general) digraph theory.
We focus on the CKS side of power-law kinetics (PLK) systems.

2.1 Chemical reaction networks as vertex-labelled digraphs

Our first object of interest is the following:
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Definition 1 Achemical reaction network (CRN) is a digraph (C ,R)where each ver-
tex has positive degree and stoichiometry, i.e., there is a finite setS (whose elements
are called species) such that C is a subset of RS≥ . Each vertex is called a complex
and its coordinates in R

S≥ are called stoichiometric coefficients. The arcs are called
reactions.

The property of stoichiometry, which can be viewed as a vertex labelling, is what
makes a CRN special: it allows the embedding of the graph’s vertices in the real vector
space RS≥ , called species composition space (or simply, species space). The elements
of the latter are interpreted as (chemical) compositions, i.e., the coordinate values
are concentrations of the different (chemical) species. Since the species set S plays
an important role in the theory, it is standard notation to specify a CRN as a triple
(S ,C ,R) to indicate the pair ((C ,R) ,S ).

If S = {X1, X2, · · · , Xm}, then each Xi can be identified with the vector with
1 in the i th coordinate and zero elsewhere. One often then adds the property that
S =⋃y∈C supp y, i.e., each species appears in at least one complex.

In chemistry, the stoichiometric coefficients are integers, but we do not require this
in the CRN definition since it is rarely used in the proofs. We explicitly add the integer
property as an assumption in propositions where it is needed.

We denote the number of species with m, the number of complexes with n, and the
number of reactions with r .

Two useful maps are associated with each reaction:

Definition 2 The reactant map ρ : R → C maps a reaction to its reactant complex
while the product map π : R → C maps it to its product complex. We denote |ρ(R)|
with nr , i.e., the number of reactant complexes.

2.1.1 Stoichiometry-independent properties of CRNs

Connectivity in a digraph constitutes one of its fundamental properties, and they apply
toCRNs, but have slightly differingnames since a connected component is traditionally
called a linkage class in CRNT. Hence, a strong linkage class is a subset of a linkage
class where any two elements are connected by a directed path in each direction. A
terminal strong linkage class is a strong linkage class such that there is no reaction
from a complex in the strong linkage class to a complex not in the strong linkage class.
We denote the number of linkage classes with l, those of the strong linkage class with
sl, and the number of terminal strong linkage classes with t . Clearly sl ≥ t ≥ l.

Each linkage class L i forms a subnetwork and we designate the number of com-
plexes and reactions in L i with ni and r i , respectively, i = 1,. Let

e1, e2, . . . , el ∈ {0, 1}n (1)

be the characteristic vectors of the sets C 1,C 2,…,C l , respectively, where C i is the set
of complexes in linkage class L i .

Definition 3 A chemical reaction network is weakly reversible if sl = l. It is called
t-minimal if t = l. The non-negative integer t − l is called the terminality of the CRN,
i.e., it is t-minimal if it has zero terminality.
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Remark 1 A weakly reversible network is easily translated into digraph theory ter-
minology: it is a digraph whose connected components are strong digraphs. On the
contrary, there seems to be no digraph theory concept corresponding to a t-minimal
network.

The terminal strong linkage classes can be of two kinds: cycles (not necessarily
simple) and singletons (which we call “terminal points”). We have the following
useful classification of CRNs according to the types of their terminal strong linkage
classes.

Definition 4 Let nr be the number of reactant complexes of a CRN. Then n−nr is the
number of terminal points. A CRN is called cycle-terminal if and only if n − nr = 0,
i.e., each complex is a reactant complex. It is called point-terminal if and only if
n − nr = t and point- and cycle-terminal if n − nr < t .

The incidence matrix, a central concept in digraph theory, is defined as follows:

Definition 5 The incidence matrix Ia is an n × r matrix where each row corresponds
to a complex and each column to a reaction, satisfying

(Ia)(i, j) =
⎧⎨
⎩

−1, if i is the reactant complex of reaction j ∈ R,

1, if i is the product complex of reaction j ∈ R,

0, otherwise.
(2)

Note that in most graph theory books, the incidence matrix is defined as Ia . A
well-documented result in graph theory provides the following facts about Im Ia :

Proposition 1 ([4]) rank Ia = n − l and Im Ia = (span (e1, e2, . . . , el))⊥ .

The following Proposition from M. Feinberg [9] is a novel contribution of CRNT
to digraph theory:

Proposition 2 A network is weakly reversible if and only if ker Ia contains a positive
vector.

If the CRN also has an arc labeling, i.e., a map k : R → R>, then we can associate
to it a k-Laplacian matrix as follows:

Definition 6 The k-Laplacian matrix of an arc CRN is an n × n matrix such that

(Ak)i j =
{
k ji , if i �= j,
k j j −∑n

x=1 k jx , if i = j.
(3)

where k ji is the label (often called the rate constant) associated to the reaction from
C j to Ci .

The following theorem, denoted as the Structure Theoremof the k-LaplacianKernel
(STLK) in [3], is not only the basis for important results in early CRNT (cf. [9]), it is
also its most significant contribution to (general) digraph theory to date. For t ∈ N,
1, t := {1, 2, . . . , t}.
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Theorem 1 (Structure Theorem of the Laplacian Kernel) Let (C ,R, k) be a labeled
directed graph with k : R → R. Let C ′′ = C\∪t

k=1C
k . Denote by A′′

k the submatrix
of Ak with rows and columns corresponding to V ′′. Then
1. A′′

k is invertible,
2. dim ker Ak = t , and
3. there exists a basis y1, y2, . . . , yt ∈ R

n≥0 inker Ak such that supp(yk) = C k ∀k ∈
1, t (i.e., k ∈ {1, 2, . . . , t}).
Computations show that the determinant of A′′

k is nonzero, implying that it is invert-
ible. It is important to take note that each column is a linear combination of some
columns of Ia . Hence, we have the following corollary.

Corollary 1 IfN is t-minimal, then Im Ia = Im Ak.

2.1.2 Stoichiometry-dependent properties of a CRN

In a CRN, a matrix of complexes Y holds the stoichiometry information: it is well-
defined after an indexing of the complexes, say y1, . . . , yn , is set. We call the i-th
coordinate of y j its stoichiometric coefficient with respect to the species Xi .

Definition 7 The matrix of complexes Y is the m × n matrix whose (i, j)th element
is the stoichiometric coefficient of y j with respect to Xi .

We now introduce two matrices which play important roles in the Linear Geometry
of species (composition) space:

Definition 8 The stoichiometric matrix N is the m × r matrix defined by N = Y Ia .
Its columns are the reaction vectors π(Ri ) − ρ(Ri ) for i = 1, .., r . Its image Im N
is called the stoichiometric subspace S, whose dimension s is called the rank of the
network. Clearly S is generated by the reaction vectors.

The cosetswith respect to the stoichiometric subspace form the basis for the concept
of stoichiometric classes:

Definition 9 For x ∈ R
m≥, the set (x + S) ∩ R

m≥0 is called a stoichiometric class.

Definition 10 The reactant matrix Yres is them×nr matrix Y without the columns of
the terminal points. Its columns are the reactant complexes ρ(R1), ρ(R2), . . ., ρ(Rr ).
Its image Im Yres is called the reactant subspace R, whose dimension q is called the
reactant rank of the CRN. Clearly R is generated by the reactant complexes.

Arceo et al. [1] conducted an initial systematic study of the reactant subspace R’s
connection to kinetic behavior and identified the set of RSS networks as particularly
interesting.

Definition 11 A CRN has the RSS (reactant-determined stoichiometric subspace)
property (or type RSS) if S is contained in R.

Example 1 Any cycle-terminal network is an RSS network. There are however many
RSS networks with terminal points. A simple example from [6] is the following:
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R1 : 2X1 → X1 + X2
R2 : X1 + X2 → 2X1
R3 : X1 + X2 → 2X2

S = 〈X1 − X2〉 is one-dimensional while R = 〈X1 + X2, 2X1〉 = R
2.

A characterization of RSS networks is easily found in [1]:

Proposition 3 LetN be a network with matrix of complexes Y and reactant subspace
R. Then N is RSS if and only if R = Im Y .

In otherwords, in anRSSnetwork, every complex is a linear combination of reactant
complexes. RSS networks will be studied in more detail in Sect. 5.

Since linkage classes partition both the set of complexes and the set of reactions,
the linear maps Y , Ia and N can be decomposed by restricting their domains to the
complexes or reactions in a linkage class. Hence we can write Y = [

Y 1, . . . , Y l
]
,

Ia = [I 1a , . . . , I la
]
and N = [N 1, . . . , Nl

]
.

Alignment with linkage classes also determines an interesting subset of RSS net-
works:

Definition 12 An RSS network is linkage class aligned if for each linkage class, the
stoichiometric subspace of the linkage class is contained in its reactant subspace.

Example 2 For any cycle-terminal CRN, S is contained in R. Since every linkage class
of a cycle-terminal network is also cycle-terminal, then a cycle-terminal network is a
linkage class aligned RSS network.

2.1.3 Deficiency and reactant deficiency

Definition 13 The deficiency of a CRN is the integer δ = n − l − s.

The non-negativity of a CRN’s deficiency follows from its geometric interpretation:

Proposition 4 ([7]) δ = dim(ker Y ∩ Im Ia).

To introduce an alternative way way of defining deficiency, Boros [6] constructed
the n × l matrix L = [e1, e2, . . . , el] and the matrix Ŷ defined as:

Ŷ =
[

Y
L�
]

. (4)

The matrix Ŷ is called the augmented matrix of complexes. The rank of Ŷ is the
deficiency, as shown by the proposition below.

Proposition 5 δ = dim ker Ŷ and ker Ŷ = ker Y ∩ Im Ia

For t-minimal networks, one has an alternative for the definition of the deficiency,
as shown by the corollary that follows. This will be very useful for our development
of deficiency theory for power-law kinetics.
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Corollary 2 If N is t-minimal, then ker Ŷ = ker Y ∩ Im Ak and δ = dim(ker Y ∩
Im Ak).

Furthermore, we can define the deficiency not only for the whole network, but also
for each linkage class L i . Considering the stoichiometric matrix N in block form,
i.e., N = [N 1, . . . , Nl

]
, we let si = rank Ni .

Definition 14 The deficiency of linkage class L i (denoted by δi ) is defined by the
formula δi = ni − 1 − si .

Moreover, if we consider Ŷ in block form, such as

Ŷ = [Ŷ 1, Ŷ 2, . . . , Ŷ l ], (5)

we obtain directly the following result.

Proposition 6 δi = dim ker Ŷ i .

We next introduce the concepts of reactant deficiency and rank difference from [1]:

Definition 15 The reactant deficiency δρ := nr − q, i.e., the difference between the
number of reactant complexes and the reactant rankq. Furthermore, the rank difference
Δ(N ) is defined as s − q.

The following result summarizes the relationship between deficiency and reactant
deficiency of a CRN.

Theorem 2 ([1]) Let N be a CRN with terminality τ(N ), rank difference Δ(N ),
deficiency δ and reactant deficiency δρ .

1. IfN is cycle-terminal, then 0 ≤ δ − δρ = l + Δ(N ) ≤ l.
2. IfN is point-terminal, then δ − δρ = τ(N ) − Δ(N ).
3. IfN is point- and cycle-terminal, then δ − δρ < τ(N ) − Δ(N ).

2.1.4 Independence of linkage classes

A network property of considerable importance in our further discussion is that of
independence of linkage classes (ILC).

Definition 16 A CRN N with the property δ = δ1 + δ2 + · · · + δl is called a
network with independent linkage classes, ILC or ILC-network. Otherwise, if δ �=
δ1 + δ2 + · · · + δl , it is called a network with dependent linkage classes or DLC-
network.

The following characterization is well-established in CRNT:

Proposition 7 δ ≥ δ1 + · · · + δl . Moreover, the following are equivalent:

1. N is an ILC-network.
2. Im N = Im N 1 ⊕ Im N 2 ⊕ · · · ⊕ Im Nl .
3. Im Ŷ = Im Ŷ 1 ⊕ Im Ŷ 2 ⊕ · · · ⊕ Im Ŷ l .
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2.2 Fundamentals of chemical kinetic systems

2.2.1 Basic concepts

Definition 17 A kinetics K for a reaction network (S ,C ,R) is an assignment to
each reaction j ∈ R of a rate function K j : ΩK → R≥0 where ΩK is a set such that
R
m
>0 ⊆ ΩK ⊆ R

m≥0, c ∧ d ∈ ΩK , and

K j (c) ≥ 0, ∀c ∈ ΩK . (6)

The pair (N , K ) is called a chemical kinetic system (CKS).

We add the definition relevant to our context:

Definition 18 A chemical kinetics is a kinetics K satisfying the positivity condition:
for each reaction j : y → y′, K j (c) > 0 if and only if supp y ⊂ supp c.

Definition 19 The species formation rate function (SFRF) of a CKS is the vector field
f (x) = NK (x) =

∑
y→y′

Ky→y′(x)(y′ − y).

dx/dt = f (x) (7)

is the ODE or dynamical system of the CKS. A zero of f is an element c of RS such
that f (c) = 0. A zero of f is an equilibrium or steady state of the ODE system. For a
differentiable f , a steady state c is called non-degenerate if the Ker(Jc( f ))∩S = {0},
where Jc( f ) is the Jacobian matrix of f at c.

The function g = IaK : RS → R
C is called the “complex formation rate func-

tion”, as its value is the difference between production and degradation for each
complex. Consequently, a positive vector in ker Ia results in “complex balancing”,
justifying the term that will be used in Definition 21. The positive vectors in ker Ia ,
which are in Im K , will be highlighted by the definitions in the next section.

Recall that we introduced decompositions for the maps Y , Ia , N with respect to the
set of linkage classes andwrote them in the form Y = [Y 1, . . . ,Y l

]
, Ia = [I 1a , . . . , I la

]
and N = [N 1, . . . , Nl

]
. We now use the partition of the reaction set into subsets Ri

for each linkage class to obtain the corresponding decomposition K = [K 1, . . . , Kl
]
,

with Ki : R
S → R

R . We then define a linkage class decomposition for SFRF
f = f 1 + f 2 + · · · + f l with f i = Ni K i .

2.2.2 Positive equilibria of chemical kinetic systems

Definition 20 A positive equilibrium x is an element ofRm
> for which f (x) = 0. The

set of positive equilibria of a chemical kinetic system is denoted by E+(N , K ).

Definition 21 A positive vector c in R
S is called complex balanced (CB) if K (x)

is contained in ker Ia . A CKS is called complex balanced if it has complex balanced
equilibria.

123



368 J Math Chem (2018) 56:358–394

Complex balanced systems played an essential role in the development of CRNT,
and in the following propositions, we recall useful results from the early work of F.
Horn, R. Jackson and M. Feinberg ([12],[11],[7]). A very instructive review can also
be found in [8].

Proposition 8 ([11]) If a chemical kinetic system has complex balanced equilibria,
then the underlying CRN is weakly reversible.

Proposition 9 ([7]) If a chemical kinetic system has deficiency 0, then its equilibria
are all complex balanced.

Given the decomposition of the SFRF f = f 1 + · · · + f l with respect to the
linkage classes, we can consider the sets of positive equilibria E+(N i , Ki ) of the f i

and their relationships to the positive equilibria of the whole system. Clearly, for any
network and any kinetics, the intersection∩i E+(L i , Ki ) is contained in E+(N , K ).
The following theorem demonstrates the impact of the structural property of ILC on
the kinetic behavior of the system:

Theorem 3 Let N be a network with ILC, and K a chemical kinetics on N .
Then E+(N , K ) = ∩i E+(N i , Ki ). In particular, E+(N , K ) �= ∅ implies
E+(N i , Ki ) �= ∅ for each linkage class Li .

Proof An element f (x) in Im f = Im(NK ) = N (Im K ) lies in Im N = S. Since S
is the direct sum of the Si , then f (x) has a unique representation as a sum of elements
of the Si . Hence f (x) = 0 if and only if f i (x) = 0 for each linkage class Li . ��

In general, E+(N i , Ki ) �= ∅ for each linkage class Li does not imply the exis-
tence of a positive equilibrium for thewhole system, evenunder ILC.Hence identifying
kinetics sets with this property is an interesting research area. Furthermore, for most
biochemical systems, the underlying networks have dependent linkage classes (DLC),
further enhancing the challenge to understand the relationships between positive equi-
libria on the linkage classes and those of the whole network.

2.3 Power-law kinetics

Definition 22 A kinetics K : Rm
> → R

r is a power-law kinetics if

Ki (x) = ki x
Fi ∀i ∈ 1, r (8)

with ki , Fi j ∈ R+. Power-law kinetics is defined by an r ×m matrix F = [Fi j ], called
the kinetic order matrix, and vector k ∈ R

r , called the rate vector.

Power-law kinetics form a large group of kinetics [12]. Arceo et al. [2] present a
kinetics landscape with algebraic properties which include power-law systems. The
general form of PLK systems make it flexible for modeling purposes in many areas
of science such as chemistry, ecology and epidemics [17].
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Furthermore, the SFRF of a PLK system can be written as

f (x) =
∑
i∈R

ki	
i=1
r x

Fi j
j · N.,i for x ∈ R

m
>. (9)

where N·,i is the i th column of stoichiometric matrix N .
An example of PLK is the well-known Mass Action Kinetics (MAK) where the

kinetic order matrix is the transpose of the molecularity matrix [6,9]. Hence, we can
write the SFRF of a MAK as:

f (x) =
∑

(i, j)∈R
ki	

i=1
r x

Y ji
j · N.,i for x ∈ R

m
> (10)

In [3], the set of power-law kinetics with Reactant-Determined Kinetic orders of a
network N (PL − RDK (N )) is introduced. It is defined as follows:

Definition 23 A PLK system has reactant-determined kinetics (of type PL-RDK) if
for any two reactions i , j with identical reactant complexes, the corresponding rows
of kinetic orders in F are identical, i.e., fik = f jk for k = 1, . . . ,m.

If the given kinetics is of type PL-RDK, we can define the factor map of a CKS.
The definition below comes from Arceo et al. [3].

Definition 24 The factor map ψK : Rm → R
n is defined as

(ψK )c(x) =
{

(x F )i , if c is a reactant complex of reaction i,
0, otherwise.

(11)

Another set of power-law kinetics of special interest for us is the set of factor span
surjective systemsPL − FSK (N ).We use the following characterizationwhich
was derived in [2] as our working definition:

Definition 25 A PL-RDK kinetics is factor span surjective if and only if all rows with
different reactant complexes in the kinetic order matrix F are pairwise different (i.e.,
ρ(r) �= ρ(r ′) implies Fr,· �= Fr ′,·).

The SFRF of a PL-RDK kinetics has the following decomposition:

f = Y ◦ Ak ◦ ψK (12)

PL − FSK (N ) is a large and important subset ofPL − RDK (N )which
reflects important properties of its subset of MAK systems. For example, as shown
in [2], the Feinberg-Horn Theorem on the coincidence of kinetic and stoichiometric
subspaces extends precisely to this set of power-law kinetics

The Power-Law Kinetics Landscape in Fig. 1 provides an overview of kinetics
subsets studied so far in CRNT.
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PLK(N) 

PL-RDK(N) PL-SSK(N) 

SCK(N) 

MAK(N) 

PL-NIK(N) 

PL-FSK(N) 

LEGEND (listed in historical order) 
MAK(N) = Mass Ac�on Kine�cs (Guldberg-Waage 1864-1879) 
PLK(N)  = Power Law Kine�cs (Savageau 1969) 
PL-RDK(N) = Power Law Reactant-Determined Kine�cs (Arceo et al. 2015) 
PL-NIK(N) = Power Law  Non-Inhibitory Kine�cs (Arceo et al. 2015) 
PL-FSK(N) = Power Law Factor Span Surjec�ve Power Law Kine�cs (Arceo et al. 2015) 
PL-SSK(N)  = Power Law Span Surjec�ve Power Law Kine�cs (Arceo et al. 2015) 
SCK(N) = Semi-Constant Kine�cs (Arceo et al. 2017) 

The Power Law Kine�cs Landscape 

Fig. 1 The power-law kinetics landscape

Table 2 Truncated CRNT Maps

Notation Name Definition

Yres Matrix of reactant complexes m × nr truncated matrix Y

Ak,res or Ak,ρ Reactant-restricted Laplacian n × nr truncated matrix Ak
ψK ,pr Reactant-projected factor map

L pr Truncated L matrix

3 The set of PL-ILK kinetics: definition and basic properties

In this section, we present new subsets of PL-RDK systems to which we extend some
results of Deficiency Theory for MAK systems. To define these classes of kinetics, a
T-matrix from the kinetic order matrix of PL-RDK system is derived.

3.1 Notations

Let nr be the number of distinct reactant complexes. Recall the notion of factor maps
in Definition 24. The corresponding components of non-reactant complexes are zero.
Hence, we truncate some of our main objects in CRNT. Notations are summarized by
Table 2. We emphasize that the truncated parts of Yres and Ak,res are the non-reactant
columns. On the other hand, non-reactant rows are those neglected in ψK ,pr and L pr .
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3.2 Definition of the PL-ILK kinetic set

Recall the kinetic order matrix in Definition 22. From Müller and Regensburger [15],
we introduce the matrix Ỹ . It is an m × n matrix defined as:

(Ỹ )i j =
{
Fki , if j is a reactant complex of reaction k

0, otherwise

In order to focus on the reactant complexes and related spaces, we define the T-
matrix as follows:

Definition 26 Them×nr T-matrix is the truncated Ỹ where the non-reactant columns
are deleted. The block matrix T̂ ∈ R

(m+l)×nr is defined as

T̂ =
[

T
L�
pr

]
, (13)

where L�
pr is the truncated matrix L as in Table 2.

The T-matrix defines a map T : R
ρ(R) → R

S which defines a new important
subspace of RS :

Definition 27 The kinetic reactant subspace R̃ is the image of T . Its dimension is
called the kinetic reactant rank q̃ and the cosets x + R̃, x ∈ R

S , are the kinetic
reactant classes.

Analogous to the other CRNT matrices, we consider T̂ and T in block form T̂ =[
T̂ 1, . . . , T̂ l

]
and T = [T 1, . . . , T l

]
, where T̂ i and T i correspond to the linkage class

L i .
We are now in the position to define the first two classes of power-law reactant-

determined kinetics: linkage class linear independent power-law kinetics (PL-LLK)
and reactant set linear independent power-law kinetics (PL-RLK).

Definition 28 A chemical kinetics K is called linkage class linear independent (of
type PL-LLK) if the columns of T corresponding to each linkage class are linearly
independent.

Definition 29 A chemical kinetics K is said to be reactant set linear independent (of
type PL-RLK) if the columns of T are linearly independent.

Clearly, PL − LLK (N ) contains PL − RLK (N ). In [1], Arceo et al.
relate LLK and RLK properties to mass action kinetics. They state that in order for a
MAK system to have the RLK property, the reactant deficiency must be zero. On the
other hand, the LLK property in MAK implies that the reactant deficiency for each
linkage class is zero.

One of the immediate concerns regarding these classes of power-law kinetics is
their applicability. Note that some MAK systems and most of the chemical reaction
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networks of BST systems studied by Arceo et al. [2] have inflow reactions. These
reactions have zero kinetic orders, making the columns of T linearly dependent, thus
implying the limitations of PL-LLK and PL-RLK. In order to address this issue,
we introduce another two classes of power-law kinetics: PL-ILK and PL-IRK. Here,
inflow reactions are excluded.

Definition 30 Akinetics K is called inflow-excluded linkage class linear independent
(of type PL-ILK) if the non-inflow columns (i.e., columns of the complexes associ-
ated to non-inflow reactions) of T corresponding to each linkage class are linearly
independent.

Definition 31 A kinetics K is said to be inflow-excluded reactant set linear inde-
pendent (of type PL-IRK) if the non-inflow columns (i.e., columns of the complexes
associated to non-inflow reactions) of T are linearly independent.

It turns out that our main results hold for a set of kinetics betweenPL − ILK
(N ) and PL − IRK (N ) (and correspondingly between PL − LLK (N )

and PL − RLK (N )) which we now define:

Definition 32 A PL-ILK kinetics is T̂ -rank maximal (to type PL-TIK) if its column
rank is maximal. The subset PL-TLK of PL-LLK kinetics is analogously defined.

Example 3 The following simple network shows that PL-TIK is a proper subset of
PL-ILK:

R1 : 0 → X1
R2 : X1 → X2
R3 : X2 → X1
R4 : 2X1 → 2X2
R5 : 2X2 → 2X1

Solving for Y and T , we have

Y = T =
0 X1 X2 2X1 2X2[ ]
0 1 0 2 0 X1
0 0 1 0 2 X2

(14)

Clearly, under mass action, the kinetic system is PL-ILK since the columns of each
linkage class associated with non-inflow complexes are linearly independent. How-
ever, constructing T̂ shows that it is not PL-TIK since the column rank is 3.

T̂ =

X1 X2 2X1 2X2⎡
⎢⎣

⎤
⎥⎦

1 0 2 0 X1
0 1 0 2 X2
1 1 0 0 L
0 0 1 1 L

(15)
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PL-RDK(N) 

PL-ILK(N) 

PL-IRK(N) 

PL-LLK(N) 

PL-RLK(N) 

PL-FSK(N) 

PL-ILK and related kine�cs sets 

PL-TIK(N) 

PL-TLK(N) 

Fig. 2 PL-ILK and related kinetics sets

Example 4 In the SupplementaryMaterials, we show that theMAK-systemof calcium
dynamics of olfactory cilia is in PL-LLK, but not in PL-TLK.

Clearly,PL − IRK (N ) is contained inPL − ILK (N ). Figure 2 illus-
trates the connections between the presented classes of PL-RDKsystems. For networks
without inflow, we have:

1. PL − ILK (N ) = PL − LLK (N ),
2. PL − IRK (N ) = PL − RLK (N ), and
3. PL − IRK (N ) is contained inPL − ILK (N ).

On the other hand, if there are inflows, the results will be:

1. PL − ILK (N ) contains PL − IRK (N ), and
2. PL − LLK (N ) = PL − RLK (N ) = ∅.
Moreover, if we have only one linkage class,

1. PL − T IK (N ) = PL − IRK (N ) = PL − ILK (N ), and cor-
respondingly

2. PL − T LK (N ) = PL − RLK (N ) = PL − LLK (N ).

Proposition 10 Let K be a PL-TIK. Then

1. dim(ker(T̂ )) = 0; and
2. Im T̂ = Im T̂ 1 ⊕ Im T̂ 2 ⊕ · · · ⊕ Im T̂ l .

Proof Statement (1) is a direct consequence of columns of T̂ being linearly indepen-
dent. For statement (2), linear independence of columns implies Im T̂ = Im T̂1 ⊕
Im T̂2 ⊕ · · · ⊕ Im T̂nr (T̂i is the ith column of T̂ ). Hence, Im T̂ = Im T̂ 1 ⊕ Im T̂ 2 ⊕
· · · ⊕ Im T̂ l . ��
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Table 3 Summary of CRN
properties of the total CRN
representation of the “linear
pathway with inhibition”

Network properties Value

Species 4

Complexes 7

Reactant complexes 5

Reactions 5

Linkage classes 2

Strong linkage classes 7

Terminal sl-classes 2

Deficiency 1

Example 5 Consider the BSTmodel of a “linear pathway with inhibition” (taken from
Voit [18]). In [3], Arceo et al. provide the total CRN representation of this model:

R1 : 0 → X4
R2 : X4 + X3 → X1 + X3
R3 : X1 → X2
R4 : X2 → X3
R5 : X3 → 0.

Table 3 provides the network properties of this CRN system. Clearly, this is a
t-minimal network. Moreover, we have two linkage classes. The first linkage class
contains X1, X2, X3, X4 and the zero-complex, and the other includes only two
complexes, namely, X4 + X3 and X1 + X3. Both linkage classes have deficiency zero,
making the CRN a DLC network. The kinetic order matrix provided by Voit [18] is
given as:

F =

X1 X2 X3 X4⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

0 0 0 0 R1
0 0 −2 1 R2
0.5 0 0 0 R3
0 1 0 0 R4
0 0 0.75 0 R5

. (16)

It is easy see that this example is of type PL-RDK. Furthermore, wewant to examine
if the example is of type PL-ILK. The Ỹ and T-matrix are provided below:

Ỹ =

0 X4 + X3 X1 X2 X3 X4 X1 + X3⎛
⎜⎝

⎞
⎟⎠

0 0 0.5 0 0 0 0 X1
0 0 0 1 0 0 0 X2
0 −2 0 0 0.75 0 0 X3
0 1 0 0 0 0 0 X4

(17)
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T =

0 X4 + X3 X1 X2 X3⎛
⎜⎝

⎞
⎟⎠

0 0 0.5 0 0 X1
0 0 0 1 0 X2
0 −2 0 0 0.75 X3
0 1 0 0 0 X4

(18)

Due to the existence of an inflow reaction, the system is neither PL-LLK nor PL-
RLK.However, it can be verified that if we neglect the zero column of T corresponding
to the inflow reaction to X4, columns of T are linearly independent. Thus, the kinetics
of the biological model is of types PL-ILK and PL-IRK.

L =

L 1 L 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

0 1 0
1 0 X4 + X3
0 1 X1
0 1 X2
0 1 X3
0 1 X4
1 0 X1 + X3

, L̄ =

L 1 L 2

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

0 1 0
1 0 X4 + X3
0 1 X1
0 1 X2
0 1 X3

, and

T̂ =

0 X4 + X3 X1 X2 X3⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

0 0 0.5 0 0 X1
0 0 0 1 0 X2
0 −2 0 0 0.75 X3
0 1 0 0 0 X4

0 1 0 0 0 L 1

1 0 1 1 1 L 2

.

It is easy to see that the kinetics is PL-TIK.Amanual check shows that all the properties
in Proposition 10 hold.

Recall the truncated CRNT objects presented in Table 2 and the notion of SFRF in
Sect. 2. Since Ak,ρ · ψK ,pr = Ak · ψK , we can modify the set of positive equilibria
E+ as

E+ = {x ∈ R
m+
∣∣Y · Ak,ρ · ψK ,pr = 0

}
(19)

and the set of positive equilibria for the linkage class L i as

E+(L i , K ) =
{
x ∈ R

m+
∣∣∣Y i · (Ak,ρ)i · (ψK ,pr )

i = 0
}

. (20)

4 Positive equilibria of PL-TIK systems

4.1 Non-emptiness of the set of positive equilibria of a PL-TIK system

We saw in Theorem 3 that, for any kinetics on a network with ILC, the existence of a
positive equilibriumof thewhole system implies the existence of a positive equilibrium
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for each linkage class. For MAK systems on a network with ILC, Boros showed in
[6] Theorem 3.6 that the converse holds: E+(L i , K ) �= ∅ for each linkage class L i

implies E+(N , K ) �= ∅. A striking property of PL-ILK kinetics is that the converse
property also holds, even without ILC. We adopt some of his techniques to show this
remarkable “DLC-robustness” in the next theorem.

Theorem 4 Let (S ,C ,R, K ) be PL-TIK. If for each linkage class L i (considered
as a subnetwork) E+(L i , K ) �= ∅, then E+(N , K ) �= ∅.
Proof Consider Y , Ak,ρ , ψK ,pr (x), T̂ and T in block forms:

Y =
[
Y 1, . . . ,Y l

]
, (Ak,ρ) =

⎡
⎢⎣

(Ak,ρ)1 0
. . .

0 (Ak,ρ)l

⎤
⎥⎦ ,

ψK ,pr (x) =
⎡
⎢⎣

(ψK ,pr )
1(x)

...

(ψK ,pr )
l(x)

⎤
⎥⎦ , T̂ =

[
T̂ 1, . . . , T̂ l

]
and

T =
[
T 1, . . . , T l

]

where Y i , (Ak,ρ)i , ψ i
K ,π (x), T̂ i and T i correspond to linkage classL i .

Assume E+(L i , K ) �= ∅ for all i ∈ 1, l (i.e., i ∈ {1, 2, . . . , l}). Without loss of
generality, we fix r ∈ 1, l. We obtain that E+(L r , K ) �= ∅ if and only if there exists
vr ∈ R

nr+ such that (ψK ,pr )
r (x) = vr and Yr · (Ak,ρ)r · vr = 0. Equivalently, since

log((ψK ,pr )
r (x)) = (T r )� log(x) and log : Rn+ → R

n is a bijection, E+(L r , K ) �=
∅ if andonly if there existsvr ∈ R

nr+ such that log(vr ) ∈ Im(T r )� andYr ·(Ak,ρ)r ·vr =
0. We define 1r as a vector in R

nr+ with all coordinates having value equal to one. In
order to proceed, we need the following claim:

log(vr ) ∈ Im(T r )� if and only if log(vr ) ∈ Im(T̂ r )�. (21)

Indeed, since Im(T̂ r )� = Im
[
(T r )�1r

]
, Im(T r )� ⊂ Im(T̂ r )�. Thus, if log(vr ) ∈

Im(T r )�, then log(vr ) ∈ Im(T̂ r )�.
For the converse, consider the fact that log(γ rvr ) = log(vr ) + log(γ r1r ) for all

γ r ∈ R+. Hence if log(γ rvr ) ∈ Im(T̂ r )�, we see that there exists
[
log x
log γ r

]
such that

(T̂ r )�
[
log x
log γ r

]
= log(γ rvr ). (22)

In particular, if γ r = 1, we have

log(vr ) = log(1 ·vr ) = log vr + log 1 = [(T r )� : 1r ]
[
log x
0

]
= (T r )� log x . (23)

Thus, log(vr ) ∈ Im(T r )�.
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Because of this claim, we see that E+(L r , K ) �= ∅ if and only if there exists
vr ∈ R

nr+ such that log(vr ) ∈ Im(T̂ r )� and Yr (Ak,ρ)rvr = 0. Fix v1, . . . , vl

such that log(vr ) ∈ Im(T̂ r )� and Yr · (Ak,ρ)r · vr = 0 for all r ∈ 1, l. Hence,{
z ∈ R

m+1+
∣∣∣(T̂ r )� · z = log(vr )

}
�= ∅.

Moreover, Proposition 10 implies that Im T̂ = Im T̂1 ⊕ Im T̂2 ⊕· · ·⊕ Im T̂l . Using
Corollary B.2 of [5], we have

l⋂
r=1

{
z ∈ R

m+1+
∣∣∣(T̂ r )� · z = log(vr )

}
�= ∅.

Thus, there exist u ∈ R
m and w ∈ R

l such that
⎡
⎢⎣
log(v1)

...

log(vl)

⎤
⎥⎦ =

⎡
⎢⎣

(T̂ 1)�
...

(T̂ l)�

⎤
⎥⎦
[
u
w

]
.

Let x ∈ R
n+ and γ 1, . . . , γ l ∈ R+ such that log(x) = u and − log(γ r ) = wr for

all r ∈ 1, l.
⎡
⎢⎣
log(v1)

...

log(vl)

⎤
⎥⎦ =

⎡
⎢⎣

(T̂ 1)�
...

(T̂ l)�

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

log(x)
− log(γ 1)

− log(γ 2)
...

− log(γ l)

⎤
⎥⎥⎥⎥⎥⎦

Hence, for all r ∈ 1, l and for all i ∈ C r , we have

γ rvri =
m∏
j=1

x
(T ) j i
j = (ψK ,pr )i (x).

Thus, (ψK ,pr )
r (x) = γ rvr and it follows that

Y · Ak,ρ · ψK ,pr (x) =
l∑

r=1

Yr · (Ak,ρ)r · (ψK ,pr )
r (x)

=
l∑

r=1

γ r · Yr · (Ak,ρ)r · vr

=
l∑

r=1

γ r · 0

= 0.

Hence, x ∈ E+(N , K ). ��
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.

the terminal points.

SRPSRS

RES

RSPRSS

TRS (R S=0)

NRS (R S≠0)NRS \
(RSS SRS)

Fig. 3 Network landscape in terms of the intersection of R and S

Remark 2 Proposition 10 shows that T̂ -rank-maximality is analogous to ILC because
the latter case is defined as S = Im N being the direct sum of the Im N = Im N1 ⊕
Im N2 ⊕ · · · ⊕ Im Nl . Thus, all MAK systems with ILC are PL-TIK.

Example 6 We consider a counterexample to the converse of Theorem 4. It is shown in
theSupplementaryMaterials that theS-systemmodel of anti-inflammatory signaling in
macrophages is of type PL-TIK. According to A-matrix theory of S-systems discussed
in Chapter 6 of [18], there is a positive steady state for all rate constants, but at least
one of the 7 linkage classes (X2 → 0) is not weakly reversible and has deficiency 0
and, hence, does not have any positive equilibrium.

4.2 Kinetic spaces associated with PL-RDK systems

For the formulation of the Low Deficiency Theorems for PL-TIK kinetics, we need
kinetic analogues of subspaces of the stoichiometric subspace of the network.

Definition 33 A reaction j has a reactant product complex (of typeRR) if its product
complex is also a reactant complex, i.e., π( j) ∈ ρ(R). Otherwise, it is said to have
non-reactant product complex (of typeRN R). The partitionR = RR ∪RN R is called
the reactant product partition of R.

The reactant product partitiongenerates a networkdecompositionN = NR+NN R

and a concomitant expression for the stoichiometric subspace S = SR + SN R . We call
SR the reactant stoichiometric subspace. Since each reaction vector of SR is also in R,
SR is a subspace of S ∩ R and hence can be the nullspace (e.g. for TRS networks, s.
Fig. 3).

Example 7 Even if SR is non-trivial, it canbe aproper subspace of S as in the deficiency
zero network 2X1 ↔ X1 + X2 → X2, where S = R

2 and SR = 〈X1 − X2〉. Note
that the CRN is RES, i.e. S = R.
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Note also that S = SR implies that the network is RSS.
For the incidence matrix, we have the following variant:

Definition 34 The restricted incidence matrix Ia,R is the restriction of Ia to the sub-
space RRR . Its image is contained in Rρ(R).

We can now introduce the kinetic analogue of SR , which is used in the abovemen-
tioned parametrization and unique intersection results of the DOT:

Definition 35 The kinetic reactant flux subspace S̃R is the subspace T (Im(Ia,R)) of
the kinetic reactant space R̃. For q ∈ R

m≥, the set (q + S̃R) ∩ R
m≥ is called the kinetic

reactant flux class. A kinetic reactant flux classQ is said to be positive ifQ∩R
m
> �= ∅.

Arceo et al. [1] introduced the kinetic flux subspace S̃ of a PL-RDK system on an
RSS network. It is defined as follows:

Definition 36 For a PL-RDK system on an RSS network, the kinetic flux subspace S̃
is the subspace T (Y−1

res (S)) of R̃. s̃ = dim S̃ is called the kinetic rank.

As shown in [1], for a PL-RDK on a cycle-terminal network, the kinetic flux
subspace coincides with the kinetic order subspace S̃MR introduced by Müller and
Regensburger in [15]. Moreover, for a MAK system on an RSS network, it coincides
with the stoichiometric subspace.Recall also from [1] that a PL-RDK kinetics is called
Y-kernel aligned (YKA) if ker Yres ⊂ ker T .

The following proposition describes the relationship between S̃R and the kinetic
flux subspace S̃ of PL-RDK kinetics on RSS networks:

Proposition 11 Let N be an RSS network and (N , K ) be a PL-RDK system with
T-matrix T .

1. S̃R is a subspace of S̃.
2. If SR = S, then S̃ = S̃R + T (ker Yres). In particular, if K is YKA-aligned, then

S̃ = S̃R.

Proof 1. Im(Ia,R) is a subspace of Y−1
res (SR), which is contained in Y−1

res (S). Hence
the images under T have the same containment relation.

2. This is also straightforward. ��
Corollary 3 If N has zero reactant deficiency and S = SR, then for any PL-RDK
kinetics, S̃R = S̃.

Remark 3 If N is cycle terminal, SR = S and S̃R = S̃MR (since Ia,R = Ia) and
hence S̃R = S̃. It follows from Proposition 11 that, in this case T (ker Yres) ⊂ S̃R .

4.3 Tools on the finiteness and uniqueness of positive equilibria

In this section, we will use the kinetic reactant flux subspace to examine the finiteness
and uniqueness of positive equilibria.
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Remark 4 Each columnof T (Ia,R) corresponds to a reaction (i, j),where j is a reactant
product complex in such a way that the corresponding column is T·, j − T·,i .

The followingproposition and corollariesmake claims similar toBoros’ Proposition
4.3 and its consequences [6].

Proposition 12 Let (S ,C ,R, K ) be a PL-ILK system. Let Pr1 : Rm ×R
l → R

m be

the first projection map, i.e., Pr1(v) = v1 for v =
[

v1

v2

]
∈ R

m ×R
l . Then Pr1|ker T̂�

is a bijection between ker T̂� and (S̃R)⊥.

Proof We want to show Pr1|ker T̂� is both surjective and injective. Let w ∈ (S̃R)⊥.
Remark 4 implies 〈

T·, j − T·,i , w
〉 = 0, ∀(i, j) ∈ RR . (24)

Hence,
〈
T., j , w

〉 = 〈T.,i , w
〉
. Clearly,

〈
T.,i , w

〉
depends only on the linkage classL i

of complex Ci ∈ C . Let ξr = 〈T.,i , w
〉
for the linkage class L r .

To prove surjectivity, we want to show that for w ∈ (S̃R)⊥, there exists v ∈ ker T̂�
such that Pr1(v) = w. From arguments found in [6], let v ∈ R

m+l such that v =[
w�,−ξ1, . . . − ξl

]�
. This implies that

T̂�v = T�w + L pr

⎡
⎢⎣

−ξ1
...

−ξl

⎤
⎥⎦ = 0. (25)

Therefore, v ∈ ker T̂� and Pr1(v) = w. On the other hand, to prove injectivity, we
want to show that if Pr1(v1) = Pr1(v2), then v1 = v2. Let w = Pr1(v1) = Pr1(v2).
We can write v1 = [w�, u�

1 ]� and v2 = [w�, u�
2 ]�. Thus, it suffices to show that

u1 = u2. Since v1 ∈ ker T̂�,

0 = T̂�v1 = T�w + L pru1 =
⎡
⎢⎣

〈
T.,1, w

〉
...〈

T.,l , w
〉

⎤
⎥⎦+ L pru1. (26)

Note that
〈
T.,i , w

〉
depends on the linkage class of complex Ci . Thus, the equation

above can be written as
⎡
⎢⎣

ξ1
...

ξl

⎤
⎥⎦+ L pru1 = 0. (27)

It implies that Lu1 =
⎡
⎢⎣

−ξ1
...

−ξl

⎤
⎥⎦. Analogously, Lu2 =

⎡
⎢⎣

−ξ1
...

−ξl

⎤
⎥⎦. Therefore Lu1 = Lu2.

Since columns of L are linearly independent, L is of full column rank. Thus, u1 = u2,
implying Pr1|ker T̂� is injective. ��
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The connection presented by Proposition 12 will be the key for Corollaries 4 and
5.

Corollary 4 Let (S ,C ,R, K ) be a PL-ILK system. Fix w ∈ (S̃R)⊥ and x∗ ∈ R
m+

such that there exists γ ∗ ∈ R
l+ such that T̂�

[
log(x∗)

− log(γ ∗)

]
= w. Then for x ∈ R

m+ the

following are equivalent:

1. There exists γ ∈ R
l+ such that T̂�

[
log(x)

− log(γ )

]
= w.

2. The vector log(x) − log(x∗) ∈ (S̃R)⊥.

Proof The equivalence is an immediate consequence of Proposition 12. ��
Corollary 5 Let (S ,C ,R, K ) be a PL-ILK system. Fixw ∈ (S̃R)⊥. Then for all q ∈
R
m+, there exists (x, γ ) ∈ R

m+ ×R
l+ such that x ∈ (q+ S̃R) and T̂�

[
log(x)

− log(γ )

]
= w.

Proof The statement is an immediate consequence of Corollary 4 and Lemma 3.3 of
[6]. ��

4.4 A Deficiency Zero Theorem for PL-TIK system

In this part, we use the results in the previous sections to prove a Deficiency Zero The-
orem for both a single linkage class and multiple linkage classes. As can be observed,
properties of T̂ , from Proposition 10, play important roles.

Remark 5 Theorem 5 below restates Boros’ Theorem 4.6 [6] for the PL-TIK case.

Theorem 5 Let (S ,C ,R, K ) be a PL-TIK system which satisfies l = 1 and δ = 0.
Then

1. E+(N , K ) �= ∅ if and only ifN is strongly connected;
2. if E+(N , K ) �= ∅ and x∗ ∈ E+(N , K ), then

E+(N , K ) ={
x ∈ R

m+
∣∣∣log(x) − log(x∗) ∈ (S̃R)⊥

}
; and

3. if E+(N , K ) �= ∅, then |E+(N , K ) ∩ Q| = 1 for each positive kinetic class Q.

Proof ByProposition 4, δ = dim(ker Y∩Im Ia). Hence, if δ = 0, then ker Y∩Im Ia =
{0}. Clearly,

E+ = {x ∈ R
m+
∣∣I · K (x) = 0

}

= {x ∈ R
m+
∣∣Ak · ψK (x) = 0

}

= {x ∈ R
m+
∣∣Ak,res · ψK ,pr (x) = 0

}
.
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We now prove (1). The forward direction was proven by Feinberg in 1972 [9]. For the
converse, assume N is strongly connected. Thus, we have only one terminal strong
linkage class. By Theorem 1, we can find a y ∈ R

n+ such that ker Ak = span y.
Because ψK ∈ R

n≥ for all x ∈ R
m+, finding an element in E+(N , K ) is equivalent to

finding some γ ∈ R+ and x ∈ R
m+ such that γ y = ψK (x). Note thatψK = ψK ,pr and

n = nr since our network is strongly connected. Taking the logarithm of γ y = ψK (x)
coordinate-wise yields log(γ )e + log(y) = T�, where e is the vector in R

n whose
coordinates are all equal to 1. Hence, x ∈ E+(N , K ) if and only if there exists
γ ∈ R+ such that

log(y) = T̂� ·
[

log(x)
− log(γ )

]
. (28)

Since dim(ker(T̂ )) = 0, T̂� has full range, log(y) ∈ Im T̂�. Because log and− log
are bijective, we obtain E+(N , K ) �= ∅.

Statements (2) and (3) follow immediately from Corollaries 4 and 5, respectively.
Note that, in this strongly connected case, SR = S and S̃R = S̃MR ��

Example 8 To illustrate Theorem 5, we consider the system

R1 : X1 → 2X2
R2 : 2X2 → X1

The kinetic order matrix is F =
[
0.01 0
0 0.5

]
. Hence, Ỹ and T will be

Ỹ = T =
[
0.01 0
0 0.5

]
. (29)

This system is of type PL-TIK. By Theorem 5, E+ �= ∅. For statements (2) and (3) of
Theorem 5, we compute the kinetic reactant flux subspace S̃R .

S̃R = T ◦ (Ia,R) =
[
0.01 0
0 0.5

] [−1 1
1 −1

]
=
[−0.01 0.01

0.5 −0.5

]
. (30)

Furthermore, one can easily check that if k12 = k21 = 1, then

E+ =
{[

x1
x2

]
∈ R

3+ such that x0.52 − x0.011 = 0

}
. (31)

Clearly,

[
1
1

]
∈ E+. Thus, by statement (2),

E+ =
{[

x1
x2

]
∈ R

3+

∣∣∣∣∣log
[
x1
x2

]
− log

[
1
1

]
∈ ker

[
-0.01 0.01
0.5 -0.5

]�}
. (32)

Statement (3) is illustrated by Fig. 4 where Q1,Q2 ∈ Q.
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Fig. 4 Intersection of the set of
equilibria and the kinetic class

The following corollary extends the previous result to CRN with multiple linkage
classes.

Corollary 6 Let (S ,C ,R, K ) be aPL-TIK systemand δ = 0. Then E+(N , K ) �= ∅
if and only if (C ,R) is weakly reversible.

Proof Note that because of Proposition 7, all deficiency-zero networks have ILC.
Hence, this result is a direct consequence of Theorems 4 and 5. ��

5 Deficiency One Theorem for PL-TIK

In the next two sections, we will prove the DOT for PL-TIK systems under the weakly
reversible and non-weakly reversible conditions. Thoughwe extend Boros’ statements
[6] to the PL-TIK systems, the proofs are very different.

5.1 Weakly reversible case

We prove the DOT for a single linkage class deficiency-one PL-TIK system. As with
the DZT, we will extend it to weakly reversible systems. To start, we have this lemma
from [6]. Note that, in this case, SR = S and S̃R = S̃MR

Lemma 1 (Remark 4.8 of [6]) Let (S ,C ,R, K ) be a single linkage class PL-TIK
system and N be strongly connected. Let 0 �= h ∈ R

n such that h ∈ ker Y ∩ Im Ak.
Then there exist ȳ ∈ R

n+ and y∗ ∈ R
n≥0 such that Ak ȳ = 0 and Ak y∗ = h.

These ȳ and y∗ will play a significant role in the proof of the following theorem.

Theorem 6 Let (S ,C ,R, K ) be a single linkage class PL-TIK systemwhich satisfies
δ = 1, and N be strongly connected. Then

1. E+(N , K ) �= ∅;

123



384 J Math Chem (2018) 56:358–394

2. if x∗ ∈ E+(N , K ), then

E+(N , K ) =
{
x ∈ R

m+
∣∣∣log(x) − log(x∗) ∈ (S̃R)⊥

}
; and

3. |E+(N , K ) ∩ Q| = 1 for each positive kinetic class Q.

Proof SinceN is strongly connected, we have l = t = 1,ψK ,pr = ψK , Ak,res = Ak ,
C = Cr and n = nr . Since δ = 1, Corollary 2 implies dim(ker Y ∩ Im Ak) = 1. Let
0 �= h ∈ R

n such that h ∈ ker Y ∩ Im Ak . By Lemma 1, there exist ȳ ∈ R
n+ and

y∗ ∈ R
n≥0 such that Ak ȳ = 0 and Ak y∗ = h. Let x ∈ R

m+. Recall that x ∈ E+(N , K )

if and only if Y · Ak ·ψK (x) = 0. Hence, x ∈ E+(N , K ) if and only if Ak ·ψK (x) ∈
ker Y . To proceed, we need the following claim:

Ak ·ψK (x) ∈ ker Y if and only if there exist α, γ ∈ R such that ψK (x) = αy∗ + γ ȳ.
(33)

Multiplying both sides of the expression ψK (x) = αy∗ + γ ȳ by Ak results in αh =
Ak · ψK (x). Since αh ∈ ker Y , Ak · ψK (x) ∈ ker Y . For the other direction, note that
Ak ·ψK (x), h ∈ ker Y ∩ Im Ak and dim(ker Y ∩ Im Ak) = 1. Thus, there exists α ∈ R

such that Ak · ψK (x) = αh = αAk y∗. This implies Ak · (ψK (x) − αy∗) = 0. But
dim ker Ak = 1 and ȳ ∈ ker Ak . Hence, there exists γ ∈ R such that ψK (x) − αy∗ =
γ ȳ.

Therefore, using the claim, x ∈ E+(N , K ) if and only if there exist α, γ ∈ R

such that ψK (x) = αy∗ + γ ȳ. Taking the logarithm of both sides of ψK (x) =
αy∗ + γ ȳ yields T� log(x) = log(αy∗ + γ ȳ) for some α, γ ∈ R. It is equivalent to

T̂�
[

log(x)
− log(γ )

]
= log

(
α

γ
y∗ + ȳ

)
. Thus, x ∈ E+(N , K ) if and only if there exist

α, γ ∈ R such that

log

(
α

γ
y∗ + ȳ

)
= T̂�

[
log(x)

− log(γ )

]
. (34)

Since dim(ker(T̂ )) = 0, T̂� has full range. Thus, log

(
α

γ
y∗ + ȳ

)
∈ Im T̂�. Because

log and − log are bijective, we can find α, γ ∈ R and x ∈ R
m satisfying (34). Thus,

E+(N , K ) �= ∅. Statements (2) and (3) follow immediately from Corollaries 4 and
5, respectively. ��
Corollary 7 Let (S ,C ,R, K ) be a PL-TIK system which satisfies δ = 1. If N is
weakly reversible then E+(N , K ) �= ∅.
Proof This is a direct consequence of Theorems 4 and 6. ��

5.2 Non-weakly reversible case

For this subsection, we need to define the following:

1. Cr—set of reactant complexes
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2. C ′—set of complexes in the terminal strong linkage class

Let C ′′ = C\C ′. Let nr = |Cr |, n′ = |C ′|, and n′′ = |C ′′|. Consider Ak ∈ R
n×n ,

ψK : Rm → R
n and a vector h ∈ R

n in the block forms

Ak =
[
A′
k ∗
0 A′′

k

]
∈ R

(n′+n′′)×(n′+n′′)

ψK =
[

ψ ′
K

ψ ′′
K

]
: Rm → R

(n′+n′′)

h =
[
h′
h′′
]

∈ R
(n′+n′′)

(35)

Let h ∈ ker Y ∩ Im Ak . Denote as H′′ the product of (A′′
k )

−1 and h′′.

Lemma 2 [Remark 4.8 of [6]] Let (S ,C ,R, K ) be a single linkage class PL-TIK
system andN be not strongly connected. Let 0 �= h ∈ R

n such that h ∈ ker Y ∩Im Ak

and H′′ ∈ R
n′′
+ ∪ R

n′′
− (i.e., either all the coordinates of H′′ are positive or all the

coordinates of H′′ are negative). Then

1. there exists ȳ ∈ R
n+ such that Ak ȳ = 0;

2. if H′′ ∈ R
n′′
+ then there exists y∗ ∈ R

n≥0 such that Ak y∗ = h; and

3. if H′′ ∈ R
n′′
− then there exists y∗ ∈ R

n≥0 such that Ak y∗ = −h.

Having in hand Lemma 2, we can prove the Deficiency One Theorem for the non-
strongly connected case using arguments very similar to those used in the proof of
Theorem 6.

Theorem 7 Let (S ,C ,R, K ) be a PL-TIK system which satisfies δ = 1, l = t = 1,
and N be not strongly connected. Then

1. E+(N , K ) �= ∅ if and only if H′′ ∈ R
n′′
+ ∪ R

n′′
− ;

2. if E+(N , K ) �= ∅, and x∗ ∈ E+(N , K ), then

E+(N , K ) ={
x ∈ R

m+
∣∣∣log(x) − log(x∗) ∈ (S̃R)⊥

}
; and

3. if E+(N , K ) �= ∅, then |E+(N , K ) ∩ Q| = 1 for each positive kinetic reactant
flux class Q.

Proof Since δ = 1 and l = t , Corollary 2 implies dim(ker Y ∩ Im Ak) = 1.
For the forward direction, suppose E+(N , K ) �= ∅. Let h be a nonzero element

of ker Y ∩ Im Ak . Since E+(N , K ) �= ∅, there exist x∗ ∈ E+(N , K ) and α ∈ R

such that AkψK (x∗) = αh. Then A′′
kψ

′′
K (x∗) = αh′′. Because of Equation 35 and

Theorem 1, α(A′′
k )

−1h′′ = ψ ′′
K (x∗). Moreover, H′′ = 1

α
(ψ ′′

K )r (x∗) where (ψ ′′
K )r (x∗)

is the vector of reactant complexes from ψ ′′
K (x∗). Since (ψ ′′

K )r (x∗) ∈ R
n′′
+ , we obtain

H′′ ∈ R
n′′
+ ∪ R

n′′
− .
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For the converse, we assume H′′ ∈ R
n′′
+ . By Lemma 2, there exists ȳ ∈ R

n+ and
y∗ ∈ R

n≥0 such that Ak ȳ = 0 and Ak y∗ = h. Let x ∈ R
m+. Recall that x ∈ E+(N , K )

if andonly if Ak ·ψK (x) ∈ ker Y (orY ·Ak ·ψK (x) = 0).Hence, as the claim in the proof
of Theorem 6 implies, x ∈ E+(N , K ) if and only if there exist α, γ ∈ R such that
ψK (x) = αy∗ + γ ȳ. Equivalently, x ∈ E+(N , K ) if and only if there exist α, γ ∈ R

such thatψK ,pr (x) = αz∗+γ z where z∗ and z are the truncated y∗ and ȳ respectively.
(i.e., the components corresponding to non-reactant complexes are deleted). The same
argument follows as in the proof of Theorem 6. We take the logarithm of both sides of
ψK ,pr (x) = αz∗ + γ z̄. This yields T� log(x) = log(αz∗ + γ z̄) for some α, γ ∈ R.

This is equivalent to T̂�
[

log(x)
− log(γ )

]
= log

(
α

γ
z∗ + z̄

)
. Thus, x ∈ E+(N , K ) if

and only if there exist α, γ ∈ R such that

log

(
α

γ
z∗ + z̄

)
= T̂�

[
log(x)

− log(γ )

]
. (36)

Since dim(ker(T̂ )) = 0, T̂� has full range. Thus, log

(
α

γ
z∗ + z̄

)
∈ Im T̂�. Because

log and − log are bijective, we can find α, γ ∈ R and x ∈ R
m satisfying (36). Thus,

E+(N , K ) �= ∅. Analogously, if H′′ ∈ R
n′′
− holds, take 0 �= −h ∈ ker Y ∩ Im Ak

instead of h. ��

We extend Theorem 7 to a t-minimal non-weakly reversible PL-ILK system. Let
(H′′)i be the vector with values from H′′ associated to linkage class L i .

Corollary 8 Let (S ,C ,R, K ) be a t-minimal non-weakly reversible PL-TIK system
where each linkage class has deficiency 0 or 1. E+(N , K ) �= ∅ if

1. each linkage class L i with δ = 0 is strongly connected; and
2. each non-strongly connected linkage classL i has δ = 1 and contains a terminal

strong linkage class which satisfies (H′′)i ∈ R
(ni )′′
+ ∪ R

(ni )′′
− .

Proof This is a direct consequence of Theorems 4, 6 and 7. ��

Example 9 To illustrate Corollary 8 , we consider a systemwith CRN as shown below.

R1, L1 : 2X1 → X1 + X2, k12
R2, L2 : X1 + X2 → 2X1, k21
R3, L3 : X1 + X2 → 2X2, k23
R4, L4 : X1 → X2, k45
R5, L5 : X2 → X1, k54

It is important to note that the deficiency of the whole network is 2 while the
deficiency of the first and second linkage classes are 1 and 0, respectively. Hence, the
network has dependent linkage classes.
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The kinetic order matrix is

F =

X1 X2⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

0.01 0 R1
0.1 0.5 R2
0.1 0.5 R3
0.15 0 R4
0 0.8 R5

. (37)

Clearly, this is a PL-RDK system. Matrices Ỹ and T will be

Ỹ =
2X1 X1 + X2 X1 X2 2X2( )
0.01 0.1 0.15 0 0 X1
0 0.5 0 0.8 0 X2

, and

T =
2X1 X1 + X2 X1 X2( )
0.01 0.1 0.15 0 X1
0 0.5 0 0.8 X2

. (38)

Constructing T̂ , we have

T̂ =

⎡
⎢⎢⎣
0.01 0.1 0.15 0
0 0.5 0 0.8
1 1 0 0
0 0 1 1

⎤
⎥⎥⎦ . (39)

Thus, this system is of type PL-TLK but not PL-RLK. Note that the network under
consideration is t-minimal (i.e., l = t = 2) and the columns are linearly independent.
Taking into account the first condition of Corollary 8 , the strongly connected linkage
class (e.g. the second linkage class) has zero deficiency. For the second condition, note
that (C 1)′ = 2X2, (C 1)′′ = 2X1, X1 + X2, and

A1
k =

⎡
⎣

−k12 k21 0
k12 −k21 − k23 0
0 k23 0

⎤
⎦ , Y 1 =

[
0 1 2
2 1 0

]
, h1 =

⎡
⎣

1
−2
1

⎤
⎦ ,

(h1)′′ =
[

1
−2

]
, (A1

k)
′′ =

[−k12 k21
k12 −k21 − k23

]
,

(
(A1

k)
′′)−1 = − 1

k12k23

[
k21 + k23 k21

k12 k12

]
,

and (H1)′′ =
(
(A1

k)
′′)−1

(h1)′′ = 1

k12k23

[
k21 − k23

k12

]
.

Therefore, to satisfy the last condition of Corollary 8 , E+ �= ∅ if k21 > k23.
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6 Relationships between PL-TIK and GMAK systems

6.1 The bijection between PL-RDK and GMAK systems

S. Müller and G. Regensburger developed their theory of Generalized Mass Action
Kinetics (GMAK) systems in a 2012 paper [14] and a subsequent one in 2014 [15]. The
GMAK concepts in those papers are different, hence we denote them GMAK-12 and
GMAK, respectively. We show below that in cycle-terminal networks, a GMAK-12
system is a special case of a GMAK system.

We recall the definitions for a GMAK system [15]:

Definition 37 AGeneralized Chemical Reaction Network (GCRN) (G, y, ỹ) is given
by a digraph G = (V, E) without self-loops, and two functions

y : V → R
m and ỹ : Vs → R

m (40)

assigning to each vertex a (stoichiometric) complex and to each source a kinetic
complex.

In the above definition, V = {1, . . . , n} is a finite set of vertices and E ⊆ V × V is
a finite set of edges. An edge e = (i, j) ∈ E is denoted by i → j to emphasize that
it is directed from the source i to a target j . Moreover, the set Vs is the set of source
vertices, that is,

Vs = {i |i → j ∈ E} . (41)

Müller and Regensburger do not require the map y to be injective. However, for
compatibility with the commonly used definition of a CRN, we restrict ourselves to
GCRNswhere y is the inclusion, i.e. the pair (G, y) is a CRN in the sense of Definition
1, with C = V , R = E and ρ (R) = Vs .

Furthermore, for a digraph with an inflow reaction 0 → X , Müller and Regens-
burger allow the image of the zero complex under the kinetic complex map ỹ to be
non-zero. This property has useful applications, e.g. it was used by Johnston for his
method of network translation [13]. Again, for compatibility with models of biochem-
ical systems, we focus on GCRNs with the property that ỹ(0) = 0.

The image of a reactant complex under ỹ is called a kinetic complex, as it is used
to define part of the kinetics in the following definition:

Definition 38 A generalized mass action system (Gk, y, ỹ) is a GCRN (G, y, ỹ)
where edges (i, j) ∈ E are labeled with constants ki j ∈ R>. Assuming GMAK,
the rate of the reaction is determined by the source kinetic complex ỹ(i) and the
positive rate constant ki j :

vi→ j (x) = ki j x
ỹ(i). (42)

Remark 6 A GMAK-12 system is a 5-tuple
(
S ,C , C̃ ,R, k

)
, whereby (S ,C ,R)

is a CRN, k ∈ R
R
> is an edge-labeling, a bijection ỹ : C → C̃ is given, and the rate

function is given as in a GMAK-system. On a cycle-terminal network, i.e.,C = ρ(R),
embed C̃ in RS , then we obtain a bijection between GMAK-12 systems and GMAK
systems with injective ỹ.
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Definition 39 AGMAKsystem (G, y, ỹ, k) is an element ofGMAKc (called the set of
compatible GMAK systems) if its GCRN (G, y, ỹ) has the following “compatibility”
properties:

1. y is injective.
2. If the digraph G has an inflow reaction 0 → X , then ỹ(0) = 0.

We next prove that GMAKc systems can be identified with PL-RDK(N ), where
N = (G, y).

Proposition 13 The set of GMAKc systems for a pair (G, y) maps bijectively to
PL − RDK (N ), where N = (G, y). Under this bijection, those with injective
ỹ are mapped toPL − FSK (N ).

Proof Given a GMAKc system (G, y, ỹ, k), we can define the CRN N = (G, y)
since y is injective. To define the PL-RDK system, we set the T-matrix column for a
reactant complex y equal to ỹ(y). If there is an inflow reaction, T maps w0 to 0 since
ỹ(0) = 0. The kinetics K = IkψK , with k the rate vector from the GMAK system and
the factor map ψK (x) = xT�. The mapping is clearly injective. Surjectivity follows
from the reverse process, setting (G, y) = N , ỹ(y) = T (y) and taking k from Ik . The
injectivity of ỹ is equivalent to the columns of the T-matrix being pairwise different,
which was shown in [5] (Corollary 3) to be equivalent to factor span surjectivity. ��
Remark 7 Ona cycle-terminal networkG, the set ofGMAK-12 systems are bijectively
mapped to GMAK systems with injective ỹ. Consequently, we can define GMAKc-12
as the image of GMAKc under this bijection. This also induces a bijection between
GMAKc-12 and PL-FSK(N ) on cycle-terminal networks.

Focusing on GMAKc and using our PL-RDK terminology, we recall further con-
cepts and results of Müller-Regensburger which we need in the following discussion.

Definition 40 Let N be a cycle-terminal network with n complexes and l linkage
classes and K a PL-RDK kinetics. The kinetic order subspace S̃ of the system (N , K )

is the span
{
T (y′) − T (y)

∣∣y → y′}, where T is the T-matrix map. If s̃ = dim S̃, then
the kinetic deficiency is defined as δ̃ = n − l − s̃.

The first main result in [15] is Theorem 1, which characterizes the set of complex
balanced equilibria of a PL-RDK system and hence could be denoted as the Complex
Balancing Theorem (CBT) for PL-RDK systems. We reformulate part (1) in a slightly
more general framework:

Definition 41 LetK be a set of PL-RDK kinetics on a cycle-terminal CRNN . We
sayN has kinetic deficiency= i forK if and only if for all kinetics inK , the kinetic
deficiency of (N , K ) is equal to i . If K = PL − RDK (N ), we will simply say “
N has kinetic deficiency = i”.

Remark 8 Associating a property to a CRN if all kinetic systems of a certain type on
it possess that property has a long tradition in CRNT. For example, a network is called
injective if all MAK systems on it are injective.
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We can thus reformulate statement (1) of Theorem 1 in [15] as follows:

Theorem 8 (Kinetic Deficiency Zero Theorem) LetN be aweakly reversible network
andK aPL-RDKkinetics with T-matrix T onN . Then δ̃ = 0 implies that all PL-RDK
systems with T-matrix T are complex balanced.

Corollary 9 A weakly reversible CRN that has zero kinetic deficiency implies that all
PL-RDK systems on it are complex balanced

Proof Ifwe denote all PL-RDKsystemswith a (fixed) T-matrix T as PL-RDK(N , T ),
then we have PL − RDK (N ) = ⋃

T PL − RDK (N , T ), the union being taken
over all m × nr real-valued matrices. Any PL-RDK system with kinetic deficiency 0
will belong to at least one set in the union, implying complex balancing for all with
that T-matrix. On the other hand, any complex balanced system must belong to such
a set, hence completing the forward direction. We use similar arguments to prove the
converse. ��
Remark 9 If one replaces “all PL-RDK systems with the same T-matrix T” with the
stronger condition “all GMAK systems with same map ỹ” in Theorem 8, then one
obtains an equivalence, since the latter is also sufficient. Consequently, the statement
in Corollary 9 would also become an “if and only if” statement.

We can further derive the following relationship from the KDZT:

Proposition 14 For a weakly reversible network, zero kinetic deficiency implies zero
deficiency.

Proof If the kinetic deficiency is zero then all PL-RDK systems are complex balanced,
which implies that all MAK systems are complex balanced. Hence, the deficiency is
zero. ��

The converse will not always hold as the following simple non-PL-LLK counterex-
ample shows:

Example 10 Define the cyclic network with 2 species X1, X2 as follows:

R1 : 2X1 + X2 → X1 + 2X2
R2 : X1 + 2X2 → X1 + X2
R3 : X1 + X2 → 2X1 + X2.

Its reaction vectors are (−1, 1), (0,−1) and (1, 0), so s =2 and therefore δ = 0.
Define the T-matrix T as

ρ(R1) ρ(R2) ρ(R3)( )
2 4 2 X1
1 2 1 X2

(43)

The network is nonbranching and weakly reversible. The reaction vectors of the
kinetic complexes are (2, 1), (−2,−1), (0, 0), so that the kinetic deficiency = 1.
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The second main result of GMAK theory is the parametrization of Z+(N , K ) for
PL-RDK systems. In Proposition 2.21 of [14], they prove the following:

Proposition 15 LetN be a a weakly reversible network and K a factor span surjec-
tive kinetics with a nonempty set Z+(N , K ) of complex balancing equilibria. Then

Z+(N , K ) =
{
c ∈ R

S
>

∣∣∣ln(c) − ln(c∗) ∈ S̃⊥} =
{
c∗ ◦ eṽ

∣∣∣ṽ ∈ S̃⊥} (44)

for any c∗ ∈ Z+(N , K ).

In [15], the proposition is extended to all PL-RDK kinetics on a weakly reversible
network.

The third useful result, Proposition3.1 from [14], provides a conditionon signvector
sets for the intersection of two interesting sets derived from two arbitrary subspaces
of a finite dimensional real linear space.

Proposition 16 Let S, S̃ be subspaces ofRn. Then the following statements are equiv-
alent:

1. For all c∗ > 0 and c′ > 0, the intersection (c′ + S)≥ ∩
{
c∗ ◦ eṽ

∣∣∣ṽ ∈ S̃⊥
}
contains

at most one element.
2. σ(S) ∩ σ(S̃⊥) = {0}
Finally, we formulate the application of theGeneralizedBirch’s Theorem (Theorem

2 of [15]) to the zero kinetic deficiency case as follows:

Proposition 17 (Müller-Regensburger) Let N be weakly reversible, conservative,
and have δ̃ = 0. Then any PL-RDK kinetics with σ(S) = σ(S̃) has a unique equilib-
rium in any stoichiometric class.

6.2 Relationships between PL-TIK and GMAKc systems on deficiency zero
networks

Since for any kinetics on a deficiency zero network, all equilibria are complex bal-
anced (Feinberg 1972), then in this section, we use the notation Z+(N , K ) instead
of E+(N , K ).

6.2.1 Parametrization of the set of complex balanced equilibria Z+

The parametrization in Theorem 5 (2) is a special case of the above-mentioned char-
acterization of Z+(N , K ) for all PL-RDK systems.

6.2.2 Existence of a positive equilibrium (Z+ �= ∅)

In Corollary 6, we showed that for a PL-TIK system on a weakly reversible, deficiency
zero network, Z+ is non-empty. If the network satisfies the stronger condition that
δ̃ = 0, then this result follows from the Corollary of the KDZT. Otherwise, it is a new
result.
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6.2.3 Uniqueness and monostationarity

The uniqueness of the complex balanced equilibrium in a kinetic class for any PL-TIK
kinetics is a new result. One can use the sign vector condition above to formulate the
following monostationarity result with respect to a stoichiometric class (since SR = S
and S̃R = S̃MR):

Proposition 18 Let N be a weakly reversible network with δ = 0 and K a PL-TIK
kinetics with σ(S) = σ(S̃). Then K is monostationary in each stoichiometric class.

Comparing this with the Proposition 18 above, we see that for PL-TIK kinetics, we
obtain a result for non-conservative networks as well as the more general δ = 0, but
cannot guarantee the existence of the equilibrium.

6.3 Relationships between PL-TIK and GMAKc systems on deficiency one
networks

The comparison in the Deficiency One case is more challenging since the relationship
between δ = 1 and the various kinetic deficiency values is not clear.

6.3.1 Parametrization of E+(N , K )

This result extends the characterization of positive equilibria beyond complex bal-
anced ones since such may exist in deficiency one networks. Moreover, it is also valid
for t-minimal, non-weakly reversible networks and PL-ILK systems satisfying the
appropriate conditions.

6.3.2 Existence of a positive equilibrium (E+(N , K ) �= ∅)

The result is, to our knowledge, the first for a class of power-law kinetics on deficiency
one networks.

6.3.3 Uniqueness and monostationarity

The uniqueness for a PL-TIK kinetics on cycle-terminal networks with respect to a
kinetic class and monostationarity of a PL-TIK kinetics with σ(SR) = σ(S̃R) with
respect to a reactant stoichiometric class are, to our knowledge, new.

7 Conclusion

In conclusion, we summarize our main results and outline some perspectives for future
research.

1. We identified the set of PL-ILK kinetic systems, which exhibits interesting struc-
tural and dynamical properties and significantly occur in models of biochemical
systems.
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2. We proved a remarkable property of the subset PL-TIK of these kinetic systems,
that even without linear independence of their linkage classes, the existence of
positive equilibria for each linkage class implies the existence of positive equilibria
for the whole network.

3. We showed that the Deficiency Zero Theorem holds for this class of power-law
kinetics and compared our results with the Kinetic Deficiency Zero Theorem of
Müller and Regensburger.

4. We derived the existence of positive equilibria for PL-TIK systemswhose underly-
ing networks satisfy the Deficiency One Theorem conditions as well as the Boros
condition in the non-weakly reversible case. Moreover, the parametrization and
uniqueness properties also hold.

5. The need for parametrization and uniqueness considerations to introduce a sub-
space of R̃, which on a non-cycle terminal RSS network is a subspace of the kinetic
flux space but not necessarily equal) is a new phenomenon which merits further
study. The frequent occurrence among the biological examples in the Supplemen-
tary Materials of networks with high deficiency and hence outside of scope of the
results presented here also highlights an area for further research.
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