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We report a Keldysh-like model for the electron transition rate in dielectrics under an intense
circularly polarized laser. We assume a parabolic two-band system and the Houston function as
the time-dependent wave function of the valence and conduction bands. Our formula reproduces
the experimental result for the ratio of the excitation rate between linear and circular polarizations
for α-quartz. This formula can be easily introduced into simulations of nanofabrication using an
intense circularly polarized laser.

I. INTRODUCTION

Technical developments in femtosecond laser process-
ing have made it possible to produces nanoscale laser-
induced periodic surface structure (LIPSS), and realize,
non-thermal ablation for sub-wavelength resolution [1–4].
Electron excitation in dielectrics by an intense laser

field is the main process in laser-matter interactions. In
particular, for femtosecond lasers, electron excitation by
multiphoton ionization and tunnel ionization are the cru-
cial, because such nonlinear processes gnerate a control-
lable free-carrier density and confine material change to
the focal volume. Therefore, predicting the electron ex-
citation rate using theoretical models and/or numerical
simulation is important.
We have been developed a first-principles numerical

method to explore electron excitation under an intense
laser field using time-dependent density functional theory
(TDDFT) [5–9]. This approach is currently the most re-
liable and accurate method with feasible computational
cost to simulate electron excitation under intense laser
fields. However, an analytical model may also be a help-
ful tool to understand some fundamental physical pro-
cesses in laser processing.
Keldysh proposed a theory for the electron excitation

rate under an intense linearly polarized laser field[10].
His approach is very general and can be used to de-
scribe the photoionization of different objects from sin-
gle atoms to crystals [11]. Because of its that generality,
the Keldysh model has attracted much attention and be-
come one of the standard tools in the theory of laser pho-
toionization. In particular, for atoms and molecules, the
Keldysh-Faisal-Reiss (KFR) theory [10, 12, 13] , which is
an the implementation of the original Keldysh work, is
one of the most important theories in understanding the

electron-laser interaction.

Recently, Temnov et al reported that the electron ex-
citation rate induced by a circularly polarized laser is
twice that induced by a linearly polarized laser at the
same laser irradiance [15]. Circularly polarized lasers are
also important as an ultrafast laser waveguides [16], and
in controlling laser-induced nanostructures [17]. The pur-
pose of this work is to construct an analytical formula for
the transition probability in dielectrics including multi-
photon and tunneling processes under a circularly po-
larized laser. We derive the transition probability in a
crystalline solid under a circularly polarized laser assum-
ing a parabolic two-band system and using the Houston
function[18] as the time-dependent wave function.

Jones and Reiss [19] pioneered work on the electron
excitation rate under a circular polarized laser employ-
ing the S-matrix theory. Although the Keldysh for-
mula treats the time-dependent wave function of the
valence and conduction bands as the Houston function
and includes only the reduced mass, the Jones formula
treats only the conduction band as the Houston function
(Volkov state) and includes the effective mass of valence
and conduction bands independently. Therefore, a di-
rect comparison between the Keldysh and Jones formu-
las is not possible. In the case of atoms, Perelomov et.

al. [14] reported the analytical formula for the ioniza-
tion rate under a circularly polarized laser. Because our
new formula for circular polarization depends only on
the reduced mass, it can be compared directly with the
Keldysh formula. We also construct a new formula for
a linear polarization using a parabolic two-band system.
The relative ratio of the electron excitation rate between
our two formulas shows reasonable agreement with the
experimental results obtained by Temnov et al [15].

The present article is organized as follows. In section
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II, we present our formalism to calculate the transition
probability per unit time in a crystalline solid. In section
III, we describe our results for α-quartz with linearly and
circularly polarized laser fields. A summary is presented
in section IV.

II. FORMALISM

A. Houston function

The static Schrödinger equation for a spatially periodic
system in atomic units is

ǫG
n,~k

uG
n,~k

(~r) =

[

1

2m
(~p+ ~k)2 + V (~r)

]

uG
n,~k

(~r), (1)

where ~p is the momentum operator, ~k is the Bloch wave
vector, V ′(~r) is the spatially periodic potential, and
εG
n,~k

and uG
n,~k

(~r) are the energy and wave function, re-

spectively, of the n-th band for the Bloch wave vec-

tor ~k. uG
n,~k

(~r) satisfies the periodic boundary condition,

uG
n,~k

(~r + ~R) = uG
n,~k

(~r). The time-dependent Schrödinger

equation under a time-dependent vector potential is de-
scribed as

i
∂un,~k(~r, t)

∂t
=

[

1

2m
(~p+ ~k +

e

c
~A(t))2 + V (~r)

]

un,~k(~r, t). (2)

Here ~A(t) is the vector potential of the applied laser field.
Now, we assume the Houston function,

wn,~k(~r, t) = uG
n,~k+ e

c
~A(t)

(~r) exp

[

−i

∫ t

εG
n,~k+ e

c
~A(t′)

dt′
]

.

(3)
The time evolution of the Houston function is described
as,

∂wn,~k(~r, t)

∂t
=

e

c

d ~A(t)

dt

∂uG
n,~k

∂~k
|~k+ e

c
~A(t)e

−i
∫

t εG
n,~k+ e

c
~A(t′)

dt′

+ εG
n,~k+ e

c
~A(t)

uG
n,~k+ e

c
~A(t)

(~r). (4)

We assume that the time-dependent wave fuction
un,~k(~r, t) can be expanded by the Houston function,

un,~k(~r, t) =
∑

n′

C
~k
nn′(t)wn,~k(~r, t). (5)

The time evolution of the coefficient C
~k
nn′(t) can be ex-

pressed by the simple form,

∂C
~k
nn′(t)

∂t
=

e

mc

d ~A(t)

dt

〈

uG
n′,~k+ e

c
~A(t)

∣

∣

∣
~p
∣

∣

∣
uG
n,~k+ e

c
~A(t)

〉

εG
n′,~k+ e

c
~A(t′)

− εG
n,~k+ e

c
~A(t′)

× exp

[

−i

∫ t

dt′
(

εG
n′,~k+ e

c
~A(t′)

− εG
n,~k+ e

c
~A(t′)

)

]

(6)

The transition from wn,~k(~r, t) to wn′,~k(~r, t) in an arbi-

trary time interval [-T,T] has the following form

C̃
~k
nn′ = − ie

mc

∫ T

−T

dt ~P
~k
n′n · ~A(t)

× exp

[

−i

∫ t

dt′
(

εG
n′,~k+ e

c
~A(t′)

− εG
n,~k+ e

c
~A(t′)

)

]

(7)

where ~P
~k
n′n is the transition momentum matrix,

~P
~k
n′n = 〈uG

n′,~k
(~r)|~p|uG

n,~k
(~r)〉. (8)

B. Parabolic two-band system

The Keldysh formula assumes the band structure is,

εc~k − εv~k = Bg

√

1 +
~k2

µBg
. (9)

In contrast, we used a parabolic two-band system: i.e.

εG
c,~k

− εG
v,~k

= Bg +
~k2

2µ
, (10)

where index c (v) represents the conduction (valence)
band, Bg is the band gap, and µ is the reduced mass.

1. Circular polarization

We assumed a circularly polarized laser field,

~A(t) = A0(x̂ cosωt+ ŷ sinωt), (11)

where x̂ and ŷ are the unit vectors along the x- and y-
directions, respectively. We assumed that the propaga-
tion direction of the light was along the z-axis. The co-

efficient C
~k
nn′ in Eq. (7) for the two-band system (C

~k
cv )

can be written as

C
~k
cv = − ieA0

2mc

∫ T

−T

dt
(

M−

vc~k
eiωt +M+

vc~k
e−iωt

)

× exp

[

−i

∫ t

dt′
(

εG
c,~k+ e

c
~A(t′)

− εG
v,~k+ e

c
~A(t′)

)

]

, (12)

where

M±

vc~k
= P

~k
vc,x ± iP

~k
vc,y. (13)

The exponential part of Eq. (12) can be expanded by
Bessel functions

exp

[

−i

∫ t

dt′
(

εG
c,~k+ e

c
~A(t′)

− εG
v,~k+ e

c
~A(t′)

)

]

= exp

[

−i

(

Bg + Uc +
k2

2µ

)

t

]

∑

l

Jl(η)e
il(ωt−φ),(14)



3

where φ is the angle between (kx, ky, 0) and the x-axis,
η = ekA0 sin θ/µωc, and Uc is the averaged kinetic energy
of the charged particle in the circular polarized laser,
Uc = e2A2

0/2µc
2. The band gap is blue shifted by Uc

[20], and θ is the angle between the z-axis and ~k.
The time-averaged transition probability per unit time

and space, τk, is found from

τk = lim
T→∞

|C̃~k
cv|2
2T

=
e2πA2

0|Pvc|2
2m2c2

×
∑

l

(

J2
l−1(η) + J2

l+1(η)
)

δ(ξk), (15)

where ξk = (Bg + Uc + k2/2µ + lω). In this step, we

assume that ~P
~k
vc do not depend on ~k.

Gertsvelf et al have reported that orientation depen-
dence on the electron excitation rate is few ten’s % even
for α-quartz [21]. This fluctuation is minor effect for our
purpose in this work, estimation in order and/or factor
accuracy. In the case of the interaction between a cir-
cularly polarized laser and solid, one may consider that
the angular momentum conservation defines the selection
rule for a transition. While the angular momentum trans-
fer also depends on lattice structure and dynamics [22],
we only focus on the electronic response in this theory.
The total transition probability induced by the laser

field, W , is found to be:

W =
e2A2

0|Pvc|2µ3/2

√
2πm2c2

∞
∑

l=l0

∫

dθ sin θ

×
(

J2
l−1(η

′) + J2
l+1(η

′)
)

√

ζl, (16)

where,

η′ =
eA0

√
2ζl sin θ√
µωc

, (17)

and

ζl = lω − (Bg + Uc). (18)

In Eq. (16), we changed the definition of l to −l. The
lowest order of l = l0 is the positive minimum value for
ζl0 > 0. Here, θ is the angle between the propagation di-

rection of the laser (z-axis) and ~k. The integration about

the |~k| is replaced by the summation about l because of
the δ-function in Eq. (16).
In the low intensity limit, the dominant term in W

is Jl0−1 which has a A
2(l0−1)
0 dependence. Because this

coefficient includes A2
0, the intensity dependence has the

usual multiphoton absorption behavior of W ∝ I l0 .

2. Linear polarization

To compare linear and the circular polarizations, here
we revisit the excitation rate under a linearly polarized
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FIG. 1. Transition probability as a function of laser intensity
for linearly polarized 800-nm light in α-SiO2. The red solid
line represents the excitation rate determined by our formal-
ism, the blue dashed line represents the excitation rate based
on the full expression of the Keldysh theory, the green dotted
line represents the tunneling limit of the Keldysh theory, and
the black dot-dashed line represents the simple six-photon
process.

laser. We assumed a linearly polarized continuous wave
field,

~A(t) = A0û cosωt, (19)

û = (0, 0, 1). (20)

Following a similar procedure to that used for circular po-
larization, the total transition probability, WL, is found
from

WL =
e2A2

0|P
~k
vc|2µ3/2

2
√
2πm2c2

∫

dθ′ sin θ′

×
∞
∑

l=l0

(Jl−1(α
′, β) + Jl+1(α

′, β)
)2√

κl, (21)

where κl = lω − (Bg + Up), θ
′ is the angle between the

polarization direction and ~k, and l0 is the maximum in-
teger l so that κl > 0. Jl(α, β) is the generalized Bessel
function [26] and Up = e2A2

0/4µc is the ponderomotive
energy. Here, α′ and β are defined as

α′ =
eA0

√
2κl cos θ

′

√
µωc

, (22)

and

β =
e2A2

0

8µωc2
. (23)

III. APPLICATION TO α-QUARTZ

A. Linear polarization

α-Quartz is a typical dielectric used in non-linear laser-
matter interaction studies, and we selected it here as an
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FIG. 2. Total transition probability for linear polarization as
a function of laser intensity. The solid red curve is the same
as that in Fig.1. The curves labeled l = 6, 7, · · · , 12 give the
separate contributions of each order.
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FIG. 3. Transition probability as a function of electric field
intensity for linearly polarized (red solid line) and circularly
polarized (blue dashed line) light.

example with which to illustrate the application of our
developed formalism. The transition probability (WL)
of α-SiO2 by linearly polarized 800nm light is shown in
Fig. 1 by a red solid line. We assumed a band gap (Bg) of
9 eV and reduced mass of 0.30m [23]. For the momentum

matrix element P
~k
cv we applied the Kane two-band model

[24] giving,

|P~k
cv|2 ∼ m2

4

Bg

µ
. (24)

In the case of α-quartz, we assumed |Pcv|2 ∼ 0.28 a. u.
for Bg = 9 eV and µ = 0.30m. T calculated by the full
expression of the conventional Keldysh formula (dashed
line) and tunneling limit (dot-dashed line) are also shown
in Fig. 1 for comparison. Our formalism shows excellent
agreement with the Keldysh theory. This result indicates
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FIG. 4. Total transition probability for circular polarization
as a function of electric field intensity. The solid red curve is
the same as the blue dashed curve in Fig.3. The curve labels
l = 6, 7, · · · , 12 give the separate contribution of each order.
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FIG. 5. Wavelength dependence of the total transition prob-
ability for circular and linear polarizations as a function of
laser intensity. Solid curves represent linear polarization, and
dashed lines represent circular polarization.

that our formula includes the multiphoton and tunneling
processes as the Keldysh formula does.

At lower intensity, the transition probability is ex-
pected to depend on the laser intensity I as WL ∝ CI l,
with l = 6 in the multiphoton absorption picture. We
show a curve of this dependence in Fig. 1 with the green
dotted line. Our result maintains this picture up to
5× 1011 W/cm2.

Because the ponderomotive energy Up widens the band
gap as the laser intensity increases, the contribution of
each l-photon process also changes. Figure 2 presents the
contribution of each l-photon process to T as a function
of the maximum electric field intensity. At around 1 ×
1011 W/cm2, the probability of the six-photon absorption
falls to zero, because the effective band gap ( Bg + Up)
is larger than 6~ω at this point, and the seven-photon
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process becomes dominant. Simultaneously, the change
of the order of the multiphoton process induces a small
jump in T which is also seen in the Keldysh formula
and its extended model developed by Gruzdev[25]. This
abrupt change of the l-photon process indicates that the
averaged kinetic energy Up defines the effective band gap
which is similar to the blue shift of the band gap in the
dynamical Franz-Keldysh effect [20, 27]. However, the
critical intensity for higher multi-photonic processes is
slightly different from that determined by the Keldysh
formula which may originated from the definition of the
band structure.
In a higher intensity region, over 1× 1013 W/cm2, the

contributions from some l-photon processes are compa-
rable. In this intensity region, the tunneling model is
valid because the Keldysh parameter, γ = c

√

µBg/eA0,
is less than one. Therefore, this result shows that the
tunneling process can be interpreted as the summation
of many multi-photon processes.

B. Circular polarization

The transition rate induced by circularly polarized 800-
nm light as a function of laser intensity is illustrated in
Fig.3 as a blue dashed line. The transition rate induced
by linearly polarized 800-nm light is also shown as a solid
red line. The power law of the transition rate induced
by the circularly polarized light is slightly different from
that for linearly polarized light and higher than that for
linearly polarized light of higher intensity. Temnov et

al [15] reported the ratio of the ionization rate around
an intensity of 1 × 1013 W/cm2. From the relation be-
tween the intensity in vacuum (Iv) and in media (Im),
Im = ε1/2Iv where ε is the dielectric constant, 1 × 1013

W/cm2 corresponds to 4 × 1012 W/cm2 in Fig. 3. The
experimental value for the excitation rate ratio W/W l is
0.3. Our result gives a ratio of 0.1 ∼ 0.2 at 2 × 1012 ∼
1 × 1013 W/cm2 which is in reasonable agreement with
the experimental value.
Figure 4 shows the contribution of each l-photon pro-

cess to W as a function of the maximum electric field
intensity. The change of the multiphoton process is not
abrupt like in the case with linear polarization (Fig. 2)
and the contribution of each photon processes is more
important at lower intensity. In the circular polariza-
tion, the drop off of each l-photon process is more mod-
erate compared with that induced by linearly polarized
laser. This qualitative difference origineates from the pa-

rameter dependence of the generalized and normal Bessel
functions.
The contribution of each photon process is also dif-

ferent, because the kinetic energy of a charged particle
under circularly polarized laser changes from Up to Uc,
which effectivly shifts the optical band gap. Because Uc

is larger than Up by a factor of 2, which corresponds to a

factor of
√
2 in the field intensity, Bg+Uc exceeds 6~ω at

lower field intensity when polarization is circular rather
than linear.
Laser wavelengths other than of 800 nm are also used

for laser processing. For example, 400 nm (3.1 eV), which
is the second harmonic of 800-nm, is useful to lower the
order of multiphoton processes, and 1550 nm (0.8 eV) is
the typical wavelength of fiber lasers. Figure 5 depicts
the wavelength dependence of the total transition rates
under linear (solid) and circular (dashed) polarizations.
For all wavelengths, above 5 × 1013 W/cm2, the tran-

sition rate induced by circular polarization is compara-
ble to that induced by linear polarization. In contrast,
at lower intensity, the ratio between circular and linear
polarizations becomes large as the wavelength increases:
i.e., as photon energy decreases.

IV. SUMMARY

We extended the Keldysh-type formula for the solid
state under an intense circularly polarized laser assum-
ing the Houston function for the valence and conduc-
tion bands. Because our formula depends only on the re-
duced mass, it can be directly compared with the Keldysh
formula. Our simple formula describes electron excita-
tion rate, reproduces the Keldysh formula with excellent
agreement for α-quartz, and makes it possible to separate
the contribution of each l-photon process with linear or
circular polarization. The transition rate ratio between
linear and circular polarizations determined using our
formula shows reasonable agreement with experimental
results.
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