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Abstract
The identification of descriptors ofmaterials properties and functions that capture the underlying
physicalmechanisms is a critical goal in data-drivenmaterials science. Only such descriptors will
enable a trustful and efficient scanning ofmaterials spaces and possibly the discovery of newmaterials.
Recently, the sure-independence screening and sparsifying operator (SISSO)has been introduced and
was successfully applied to a number ofmaterials-science problems. SISSO is a compressed sensing
basedmethodology yielding predictivemodels that are expressed in formof analytical formulas, built
from simple physical properties. These formulas are systematically selected from an immense number
(billions ormore) of candidates. In this work, we describe a powerful extension of themethodology to
a ‘multi-task learning’ approach, which identifies a single descriptor capturingmultiple target
materials properties at the same time. This approach is specifically suited for a heterogeneousmaterials
databasewith scarce or partial data, e.g. inwhich not all properties are reported for allmaterials in the
training set. As showcase examples, we address the construction ofmaterials propertiesmaps for the
relative stability of octet-binary compounds, considering several crystal phases simultaneously, and
themetal/insulator classification of binarymaterials distributed overmany crystal prototypes.

1. Introduction

Thematerials-genome initiative [1] inspired the establishment of several high-throughput computational
materials-science projects, leading to the creation of worldwide accessiblematerials databases [2–5]. In this
context, theNovelMaterials Discovery (NOMAD)Repository andArchive is the biggest data base for input and
outputfiles of density-functional theory (DFT) calculations formaterials considering all important computer
codes of the community [6–8]. It plays synergistically togetherwith other important data bases, in particular
AFLOW [2],Materials Project [3], andOQMD [4].

This wealth of available data opens the era of the data-drivenmaterials science [7, 9], which is fueled by the
computer-aided analysis of the data, in order tofind patterns and trends otherwise invisible to the human eye.
This, in turn,may lead to accelerate discoveries of newmaterials or phenomena.

A key goal ofmaterials science is tofindmaterials with a high performance in several functions, e.g. stability
and catalytic activity and selectivity for a very specific chemical reaction. It is important to realize that the
number ofmaterials that qualify is typically very small. However, the complexity and intricacy of the actuating
processes is significant. Falling under the umbrella names of artificial-intelligence or (big-)data analytics (terms
that include datamining,machine/statistical learning, deep learning, compressed sensing (CS), etc), several
methods have been developed and applied to existingmaterials-science data [10–19] in order to predict
properties of interest.

TheT=0Kproperties ofmaterials are fully described by themany-bodyHamiltonian, which is uniquely
identified by its descriptors: the position and charges of the atomic nuclei R Z,I I{ }and the number of electrons
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Ne. Although, in principle, these could be also descriptors for an artificial-intelligence algorithm, their
connectionwith thematerials properties and functions is too complicated, indirect, intricate. As a consequence,
the description of processes rulingmaterials properties and functions requires to add asmuch domain
knowledge to the artificial-intelligence step as available. Obviously, if not donewith utmost care, thismaywell
yield a biased and unreliable description. From thementioned ‘fundamental primary’ descriptors, R Z,I I{ }and
Ne, it is also clear that there are two types of needed information: (1) the topology of the atomic structure and
(2) the electronic/chemical property of the atoms.When geometry changes are not relevant (or trivial) thefirst
aspect can be simplified or even neglected, andwhen changes in chemical bonding are nor relevant (or trivial),
the second aspect can be simplified or even neglected.Wewill get back to these issues in the specific application
examples discussed below.

Following the strategy introduced in [20], the descriptor can be learned from the data,more precisely the
best descriptor can be identified among a possibly immense set of candidates by exploiting a signal-analysis
technique known as CS [20–24]. Sure-independence screening and sparsifying operator (SISSO) [25] is a
recently developedCS-basedmethod, designed for identifying low-dimensional descriptors (a descriptor is
defined as a vector of features, so that the number of features is the dimension of the descriptor) formaterial
properties. It is an iterative scheme that combines the sure-independence screening (SIS) [26] scheme for
dimensionality reduction of huge features space and the sparsifying operators forfinding sparse solutions.
SISSO improves the results over conventional CSmethods such as the Linear Absolute Shrinkage and Selection
Operator (LASSO [27]), or LASSO-based [20, 24] and greedy algorithms [28, 29]when features are correlated,
and can efficientlymanage immense features spaces. SISSOhas been already successfully applied to identifying
descriptors for relevantmaterials-science properties [25, 30, 31].

In this work, we introduce a learning scheme, termedmulti-task (MT) SISSO, within the framework of the
wider class of learning schemes known asmulti-task learning (MTL) [32–39]. A task for a learning algorithm is
the learning of a target property starting from a single input source (set of features). The learning ofmultiple tasks
(orMTL) is an umbrella term that refers to [38] (i) the learning ofmultiple target properties using a single input
source, or (ii) the joint learning of a single target property usingmultiple input sources, or (iii) amixture of both.
The key aspect is the parallel learning ofmultiple tasks, with the (sometimes implicit) assumption that the shared
information among different tasks can lead to better learning performance if all the tasks are learned jointly, as
compared to learning them independently. In otherwords,MTL assumes that the learning of one task can
improve the learning of the other tasks [38]. ThoughMTLhas not yet been applied tomaterials-science
problems so far, it has already beenwidely applied in otherfields, such as in the handwriting recognition
problem, self-driving automation system, computer vision, bioinformatics and health informatics, speech and
language recognition, andmore [32, 33, 38, 39].

In order to clarify how theMTL concept can be applied inmaterials science, let us introduce the showcase
examples that will be addressed in the following sections. Arguably one of the fundamental challenge in
materials science is predicting the ground-state crystal structure of amaterial, given its chemical composition. In
[20, 24, 25], models for predicting the relative stability or rock-salt (RS) versus zinc-blende (ZB) structures for
AB octet binaries were learned via a LASSO-based and SISSO algorithm. Learningmodels for the prediction of
the relative stability ofmore than two crystal structures, given the same set of chemical formulas, can be cast into
MTL. Each difference in energy between crystal structures is a task and the common input is the chemical
formula and/or a list of properties of the atomic species listed in the chemical formula. The joint learning, in the
SISSO framework, sets inwhen the same descriptor is imposed to be selected for all tasks.More specifically,
SISSO identifiesmodels in formof linearmappings between the descriptor d—a vector of nonlinear functions
of physical properties termed primary features—and the property of interest dcP = , where c is the vector of
coefficients thatmaps d into P. If we now consider a set P P P, , , N1 2 T¼{ }( ) ( ) of NT properties (e.g. the set of
energy differences between crystal structures for the same chemical formula), the idea ofMTL applied to SISSO
is tofindmodels d cPk k= · where the set offitting coefficients c c c, , , N1 2 T¼{ }( ) ( ) maps the same descriptor d
into the different properties P P P, , , N1 2 T¼{ }( ) ( ) . In section 3.1, wewill show the results of such learning.
Besides the physicalmeaningfulness andOccam-razor-reminiscent elegance that a fewmechanisms are ruling
all energy differences (thoughwith different relative importance), a great advantage of theMTL framework is to
allow for a robust learning alsowhen the training database (in this case, reference energy differences) is
incomplete, i.e. for several chemical formulas only some of the energy differences are known. Aswewill show,
MT-SISSO learns accurate predictivemodels alsowith high levels of incompleteness (e.g. when 50%ormore of
the information is randomlymissing). Infigure 1, we show graphically the setup forMT-SISSO, in particular in
terms of the possibility to deal with incomplete data.

A second setupwhereMT-SISSO is helpful is the learning of one commonproperty ofmanymaterials
belonging to physically different groups, e.g. they have different bonding characteristics and their ground-state
crystal structure belong to different space groups.Obviously, in such situation one single predictivemodel is
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difficult to be found. This is the setup of our second showcase application (see section 3.2)where the challenge is
tofind amodel for predictingwhether amaterial is ametal or nonmetal, withmaterials belonging tomany
different crystal prototype classes.More specifically, we address the construction of two-dimensionalmaps
wherematerials beingmetals or nonmetals are located in two non-overlapping convex regions. InMTL
language, eachmap—one for each crystal prototype—is a task and the joint learning imposes that allmaps share
the same descriptor (in practice the same quantities on the axes). Themetal/nonmetal classification challenge
was already tackledwith (single-task (ST)) SISSO in [25], but here, with an enlarged, heterogeneousmaterials
space (more crystal prototypes), onlyMT-SISSO is able to achieve an accurate description. Similarly to the
previous example, one key feature of the use ofMT-SISSO is the possibility to learn predictivemodels by
omitting a significant amount of data from the training database.

Another possible setup ofMT-SISSOwould be to learnmaterials properties calculated at different levels of
accuracy (e.g. exchange-correlation approximations, but also numerical settings such as basis set type and size,
k-grid, etc) by imposing the selection of the same descriptor. Also in this case, the advantagewould be the
possibility to learn from incomplete data, i.e. the training properties are not know at all accuracy levels for all
materials. This applicationwould be in the direction of themulti-fidelity learning approach introduced in [40]
andwill be explored in the future.

Before describing our showcase examples, in the following sectionwe introduce themethodology and
notation ofMT-SISSO.

2.Methodology

2.1. ST-SISSO for continuous property
In order to underline the analogies and crucial differences between ST andMT-SISSO,we start with a brief
recapitulation of the ST-SISSO algorithm. Adetailed explanation of the SISSO algorithm is given in [25] and a
recommended hands-on tutorial is given in the online Python notebook [41] at theNOMADAnalytics Toolkit
[42]website. The setup of ST-SISSO starts from a given set ofmaterials with scalar-valued, continuous
properties listed in a vector P (an element Pi of P is the property of the ithmaterial) and a—typically huge—list
of ND possible candidate features forming the features space. The projection of each i-material into the j-feature
yields the i, j component of the ‘sensingmatrix’ D, having NM rows and ND columns, with N ND M . The
solution of

P Dc carg min , 1
c

2
2

0l- +   ( ) ( )

Figure1.Schematic representationof single-task SISSOversusmulti-task SISSO, see sectionMethodology for reference. Thewhite
regions in the (sparse)fitting vectors c and Ck represent zero-valued elements, while the colored-hatched squares represent the nonzero-
valued elements, which ‘select’ the hatched columns in the sensingmatrices D and Dk . The gray areas in the property vectors P and
Pk—and correspondingly in the sensingmatrices—representmissing/unknowndata in the trainingdatabase, i.e. for somematerials
(eachmaterials occupies always the sameposition in theProperty vector and is related to the same row in the sensingmatrix) some
properties are not known.Crucially, the nonzero values of thefitting vectors Ck are always in the sameposition (theyhave the same
index) for the sameMT-SISSO learning, and correspondingly the selected columns are the same in all sensingmatrices Dk.
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where c 0  is theℓ0 normof c, i.e. the number of nonzero components of c, gives the optimumΩ-dimensional
descriptor, i.e. the set of features singled out by theΩ nonzero components of the solution vector c. The
parameterλweights the relative importance of training accuracy versus dimensionalityΩ (known as ‘sparsity’ in
theCS language).

The feature space qF is constructed by starting from a set of primary features 0F and a set of unary and

binary operators (such as+,−, exp, ,K). The features are then iteratively combinedwith the operators,
where at each iteration each feature (pair of features) is exhaustively combined with each unary (binary)
operator, with the constraint that sums and differences are taken only among homogeneous quantities. The
index q in qF counts howmany such iterations were performed. The primary features are typically physical
properties of gas-phase atoms (e.g. ionization potential (IP), radius of s ot p valence orbital, etc) and collective
properties of group of atoms (e.g. formation energy of dimers, volume of the unit cell in a given crystal
structure, average coordination, etc) [25]. The features in qF are represented in terms ofmathematical

expressions. The evaluation of the jth feature for all the NM materials provides the jth column in the sensing
matrix D. The properties of gas-phase atoms—in short, atomic properties—are ‘repurposable’, in the sense
that they can be used formany descriptor andmodel learning procedures. For easier reference and reusability,
the atomic features used in this work and other relatedworks [20, 24, 25, 30] can be accessed on line at the
NOMADAnalytics Toolkit. A tutorial [43] shows how to access these quantities and use them in a python
notebook.

The algorithm for addressing equation (1)with ST-SISSO is:

(i) SIS preliminary step. A subspace S1 is selected containing the N S
1 features having the largest linear

correlation (largest absolute value of scalar product)with P . The feature vector d1—the columnof D with
the largest correlationwith P—is the one-dimensional (Ω=1) SISSO solution and also the exact 1D
solution of equation (1).

(ii) Evaluation of the residual P d c1 1 1D º - , where the scalar d d d Pc T T
1 1 1

1
1= -( ) is the least-square solution

offitting d1 to P .

(iii) SIS step of iteration Ω>1, which consists in selecting the subspace of the N S
W features with largest

correlationwith 1D W-( ) and take the union of this subsets with S 1W-( ) to form SW.

(iv) SO step of iteration Ω>1. Several SO strategies are possible; in this paper (as in [25]), we adopt the
so-calledℓ0 regularization, whichfinds the exact optimum solutionwithin the subset SW selected by SIS.
For all possibleΩ-tuples in SW, itfinds the one that gives the smallestℓ2 (Euclidean)normof the residual

P d cD º -W W W, where dW is thematrix whose columns are themembers of the consideredΩ-tuple and
the vector c d d d PT T1=W W W

-
W( ) is the least-square solution offitting dW to P . Points (iii) and (iv) are

iterated until the stopping criterion ismet. For instance, one stopping criterion (used in the application
described in section section 3.1) is that theℓ2 normofDW is smaller than a prefixed threshold. The
Ω-dimensional descriptor identified by ST-SISSO is dW and the related predictivemodel is d cP = W W.

The number of iterations q in the construction of the feature space qF and the dimensionalityΩ of the
descriptor are (hyper-)parameters of the SISSOmethod, to be optimizedwith respect to the validation error of
the SISSOmodel, typically via a class of algorithms known collectively as cross validation (CV). See [25]for the
CV strategy for ST-SISSO,while in section 3.1, we discuss CV forMT-SISSO. The size of the subspace selected by
SIS, N S

W is also a parameter, but not a hyperparameter to be optimized. In facts, ideally it has to be large enough to
include in the set SW the optimalΩ-dimensional solution contained in qF . In practice, we invoke the relationship
that the CS theory establish between size of the feature space, dimensionality of the solution, and number of data
points: N NexpS M k= WW ( ( · )), whereκ is a dimensionless constant that theCS theory locates between 1 and
10.Wemake the further assumption that the number of features added to SW are the same at each iteration, i.e.
N S WW .

2.2.Multi-task SISSO for learning continuous properties
Wedenote P P P, , , N1 2 T¼( )( ) ( ) as the set of NT target property vectors,where each Pk mayhave adifferentnumber
of samples, labeled Nk

M. Dk is the sensingmatrix,with Nk
M rows and ND columns, corresponding to thepropertyk.

Crucially, all the Dk have the same ND, but possibly different Nk
M for different properties P k N, 1, 2, ,k T= ¼ .

The evaluationof the feature importance formultiple properties needs to consider the overall correlationbetween a
feature and all the properties.
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In analogywith ST-SISSO, theMT-SISSOdescriptor andmodel is found by the regularizedminimization:

P D C C
N

arg min
1

, 2
C k

N

k

k k k

1
M 2

2
0

T

å l- +
=

    ( )

where C is the coefficientmatrix, with ND rows and NT columns, i.e. its kth column Ck is the vector of
coefficients fitting Dk to Pk. Theℓ0 normof thematrix C counts the number of rows that have at least one
nonzero element. In practice, for each property a separate least-square regression is performed andwhat is
minimized is the average squared error over all the regressions. The regularization imposes that when a feature
Dj* (the set of columns j of all the Dk) is selected (i.e. it has nonzero coefficient Cj

k) for one property k, then it is
selected for all properties.Mathematically, this regularization across properties (tasks) stabilizes the descriptor
selection alsowith data unevenly distributed over the different properties. Themodel for any property k is
P D Ck k k= , where each Ck has the nonzero elements at the same indexes j j j, , , N1 2 D¼{ }, i.e. the same features
are selected for all properties. From a physical point of view, it is desirable that the different properties are
homogeneous so that itmakes sense that the same descriptormaps into all properties, albeit with the crucial
flexibility of differentfitting coefficients.

Similarly to ST-SISSO, theMT-SISSO solution of equation (2) starts with a SIS step. To extend the SIS
scheme for feature rankingwithmultiple properties, wefirst standardize all the features, i.e. the average Dj

k over

all samples Nk
M is subtracted from each feature column vector Dj

k and the result is divided by its standard

deviation:D D DD Dj
k

j
k

j
k

j
k

j
k

2 - - ( ) . In this way, the absolute values of the linear correlations (scalar
product) of every feature with a given property Pk are comparable.We note that the standardization is the final
operation after thematrices Dk are constructed following the iterative procedure described above for ST-SISSO.
When the features are combinedwith the operators, their values are not yet standardized.

In thefirst iteration of theMT-SISSO algorithm, we have only a SIS step: the overall correlation of a feature j
(the jth columnof the sensingmatrixDk for the kth property)with all the properties is defined as quadraticmean
of their scalar products:

D P N, . 3j
k

N

j
k k

1

2 T

T

åq = < >
=

( )

SIS ranks the features according to θj and collects in S1 the top N S
1 features to form a subspace. Also forMT-

SISSO, the feature with highest θj is already the optimum1Ddescriptor.

Next, the set of residuals , , , N
1
1

1
2

1

T

D D D¼( )( ) ( ) is evaluated, using P d ck k k k
1 1 1D º - , analogous to the ST-

SISSO approach discussed above.
At the second and each subsequent iteration ofMT-SISSOwe have a SIS and a SO step. In the SIS step at

iterationΩ>1, θj is evaluated as in equation (3), with k
1D W-( ) instead ofP

k, and the newly selected subset of
features is added to S 1W-( ) to form SW.

In the SO step at iterationΩ>1, all possibleΩ-tuples in SW are formed. If d*W is thematrix whose columns
are themembers of one consideredΩ-tuple, d k

W its sub-matrix with entries related to the samples with properties

Pk, and c d d d Pk kT k kT k1=W W W
-

W( ) is the least-square fit of d k
W to Pk, then theΩ-tuple thatminimizes

P d c Nk
N

N
k k k

1
1

2
2 T

k

T

Må -= W W ( ) is the identifiedΩ-dimensional descriptor.

2.3.MT-SISSO for categorical properties
Besides continuous properties,materials can be classified bymeans of categorical properties (e.g. beingmetal,
nonmetal, topological insulator, etc) into classes. In this work, we presentMT-SISSO for classification in the
followingway: we consider as one task the construction of onematerials-propertymap (with two ormore
classes, i.e. values of the considered categorical property). Amap is a low-dimensional representation of the
materials spacewhere eachmaterial is located bymeans of an appropriate descriptor vector (the components of
the descriptor are the coordinates in the low-dimensional representation) such that allmaterials sharing a
certain categorical property are located in the same convex region. In a good/usefulmap, regions containing
materials with exclusive properties (e.g.metals versus nonmetal) do not overlap. In a generalmaterials-property
map, the regions assigned to a certain class do not need to be in a convex region, actually not even in a connected
region.However, in order to design a computationally efficient algorithm, we impose that the regions are
convex, with some loss of generality.

TheMT-SISSO formulation of the classification problem is tofindmultiplemaps for subsets ofmaterials
that share a commondescriptor, but possibly differently positioned boundaries between classes. Thematerials
are grouped into subsets by categorical physical properties, such as bonding type, space group, etc. As
introduced in [25], themathematical formulation of ST-SISSO for classification adopts ameasure of the overlap
between convex regions as quantity to beminimized by the optimization algorithm. For a property with N C
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classes [25]:

D cO carg min , , 4
c I

N

J I

N

IJ
1

1

1
0

C C

å å l+
=

-

= +

 ( ) ( )

where D cO ,IJ ( ) is the number of data in the overlap region between the I-domain and these J-domain, c is a
vector with elements 0 or 1, so that a feature k (the kth column of D is selected (deselected)when ck=1(0)), and
λ is a parameter controlling the number of nonzero elements in c.OIJ depends on D c,( ) in the sense that the
nonzero values of c select features from D that determine the position (coordinates) of the data and the shape of
the convex region in themap. TheMT-SISSO classification formulation for ‘multi-map’ learning is simply:

D C COarg min , , 5
C k

N

I

N

J I

N

IJ
k k

1 1

1

1
0

T C C

å å å l+
= =

-

= +

 ( ) ( )

where a feature (a columnof Dk) is selected for allmaps, or none, and the index k runs over the tasks, i.e.
themaps.

TheMT-SISSO solution of equation (5) involves a SIS and a SO step. In the SIS step, the following expression
is evaluated:

dO 1 , 6j
k

N

I

N

J I

N

IJ j
k

1 1

1

1

1D

1T C C

å å åq = +
= =

-

= +

-⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

where dOIJ j
k1D( ) is the number of points in the overlap interval between the I-domain and these J-domainwhen

all data points (related to property k) are represented via the (one-dimensional, 1D) descriptor dj
k (i.e. the jth

columnof Dk). In otherwords, allmaterials are projected onto a 1D coordinate, defined by each of the columns
of the sensingmatrix. Thinking for simplicity at only two classesA andB, OAB

1D counts howmany points (if any)
are in the overlap interval between the intervals occupied by points in classA andB. The index θj has range (0, 1],
with large value corresponding to fewer data in the overlap region between domains; θj=1 indicates no overlap
between any two domains. Similarly to the continuous-valued property case, the N S

1 features d d d, , ,j
k

j
k

N
k

S
1 2 1

¼ ,

with smallest overlap (largest θj) are selected into the subset S1. Here, the ‘residual’ is the set of data points in the
overlap regions. Thismeans that, at any subsequent iteration, SIS looks for the 1D feature that better classifies
the data points that are not classified at the previous iterations. The newly selected features are added as usual to
S 1W-( ) in order to build SW.

In the SO step at iterationΩ>1, all theΩ-tuples in SW are listed and theΩ-tuple thatminimizes

dO l
k

N
I
N

J I
N

IJ
k

1 1
1

1

T C C

å å å= =
-

= + W( ) is the selectedΩ-dimensional descriptor.
Besides the domain overlapO, othermetrics exist for classification, e.g. the number ofmisclassified data as

defined by a support-vectormachine (SVM) built with all theΩ-tuples in SΩ, as adopted in [30].

2.4. Computational complexity of SISSO
The time complexity for the SIS step of the SISSO algorithm is linear with the number of training data NM and
the size of feature space ND, i.e. O N NM D( · ), [26]. For the SO step (in theℓ0-regularization implementation as
discussed in this paper), the time complexity depends onwhether the target property is continuous (regression
problem) or categorical (classification problem). Though theℓ0 regularization is formallyNPhard, it can be
made feasible by restricting to low dimension of the descriptor andmoderate size of features subspace selected
by SIS.With the total SIS-selected subspace size N S

W and the descriptor dimensionΩ, the time complexity of SO

withℓ0 for continuous property is O N N
N S

M D 2

W
W

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟· ( ) · , where N NM D 2· ( ) is the time needed for

evaluating one candidatemodel using least-square regression and the binominal coefficient
N S

W
W

⎛
⎝⎜

⎞
⎠⎟ is the total

number of candidatemodels to be evaluated. For classification problems targeting two-dimensionalmaps, the

time scaling of SOwithℓ0 is O N
N S

M 2

W
W

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟( ) · , where NM 2( ) is the time needed for evaluating one candidate

model.

3. Results and discussion

3.1.MT-SISSO for the relative stability of different structure pairs ofABbinarymaterials
In [20, 24, 25] the learning of the relative stability between the RS andZB structures ofAB octet-binary
compoundswas used as showcase study. Here, we address, again for the octet binaries, the relative stability offive
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crystal structures, including RS andZB andwe add add threemore crystal structures: theCsCl, NiAs, andCrB
prototypes. The prediction of relative stability among several structures is naturally suited forMTL and in
particularMT-SISSO.

As a dataset, we used the same 82 octet binaries as in [20, 24, 25], although now each of the binarymaterial
was optimized infive different crystal structure prototypes, by fully relaxing all degrees of freedom compatible
with the crystal symmetry (1 degree of freedom for RS, ZB, andCsCl, 2 degrees of freedom forNiAs, and 5 for
CrB). Forces and energies were evaluated viaDFTusing the local-spin-density approximation (LSDA). The
calculations were performedwith FHI-aims [44] using the high precision third-tier basis set with ‘tight settings’
for the numerical integration grids. The total energies of the data are estimated to be converged below 10meV/
atomand the energy differences between structures below 5meV/atom.More information on these high-
throughputDFT calculations can be found in [45] and all inputs and outputs are in theNOMAD repository.

For the descriptor identification, we use atomic properties as input features: the IP, electron affinity (EA),
number of valence electrons nval, the group numberG in the periodic table, and the radii rs,p,dwhere the radial
probability density of the valence s, p, and d orbitals aremaximal. Furthermore, equilibriumdistances dij of
homonuclearAA andBB, andAB dimers are included. All the features were calculatedwith the LSDA. In the
NOMADAnalytics Toolkit, also other sets of atomic features, calculatedwith other exchange-correlation
functionals, are provided. Our experience is that the set of features used to build 0F should be consistent, i.e.
calculatedwith the samemodelHamiltonian ormeasuredwith the samemethodology. It is not necessarily true,
however, that target properties and features in 0F should be consistent. For instance, onemay predict
experimentallymeasured quantities starting fromDFT features.

We set the parameterκ that determines the sizes of the SIS subspaces to 3.3.With N 82M = , the subspace
sizes N S

W are approximately 2×105, 4×103, 5×102, and 102 forΩ=2–5. These values are kept fixed
through all our numerical test, e.g. alsowhen NM is decreased in theCV tests. For the routine application of ST
andMT-SISSO,we note that the sizes N S

W are rather large for the features space used in this work.We checked
that even forκ=4, the same descriptors are always found atΩ=2, while forΩ=3 evenκ=5 is small
enough to yield the same descriptor as forκ=3.3.

Starting from theDFT reference cohesive energy (total DFT energyminus the total DFT energy of the gas-
phase ground-state atoms) of the five crystal structures for all the octet-binarymaterials, we constructed 10 sets
of all the possible energy differences between two crystal structures. Each energy difference is then a task in a
MT-SISSO learning. Infigure 2, we show the distribution of these energy differences.

Themain purpose of this showcase application is to learn a phase diagram (amap)where different non-
overlapping regions of the diagram contain thematerials with the same ground-state structure. This is similar
conceptually to the classification-driven construction ofmaterials-propertymaps discussed in the next section,
but the crucial difference is that we target a continuous property (energy) and only a posterioriwe determine the
most stable phase (i.e. the ground-state crystal structure) for eachmaterial, simply by identifyingwhich phase is
predicted to have the lowest-energy for eachmaterial.We emphasize that higher-energy (meta-stable) structures
are learned aswell. The fact that predicting energies leads to phase diagram is embedded in the fact that theMT-
SISSOmodels are linear with the descriptor (which determines the coordinate of eachmaterial in themap),
found by theMT-SISSO algorithm.With the purpose of the phase diagram creation inmind, it should become
evident why, physically,MTL is the obvious framework to use.Having one descriptor for all target properties
allows to represent all the (linear)models with the same axes, resembling a traditional phase diagramwith the
component of the descriptor found by SISSO acting as the familiar order/control parameters.

Figure 2.Distribution of reference (DFT-LSDA) energy differences (10 pairs of structures) for all 82 octet binaries. The squaremarks
the average value of the distribution.
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The choice of having all the energy differences as tasks is important in order to build a phase diagram for the
phase (crystal structure) stability, when using a linearMTL likeMT-SISSO.While only four energy differences
(for five crystal structures) are independent, the simultaneous learning of all energy differences limits the
prediction error of the relative stability between all phases. In contrast, using only one structure as reference and
learning the energy difference from that structuremay lead to large errors for the relative stability of any two
other phases. Furthermore, a subtle implication of theMT-SISSO learning of all possible energy differences is
that themodelsmaintain an internal consistencywith respect to a common energy zero. In practice, for any three
structuresα,β, γ, the difference in energyE(α)−E(γ) is by construction equal to (E(α)−E(β))−(E(γ)−
E(β)). This is not (necessarily) true if the three energy differences are learnedwith separate, independentmodels.
Wewill come back to this aspect when discussing the phase diagramderived from the learnedMT-SISSO
models.

Infigure 3, we show the training errors of theMT-SISSOmodel for the energy differences, trained by using
the feature space 3F and dimensionalityΩ=3 (see further for the justification of this choice). The overall root
mean square errors (RMSE) errors, 0.07 eV/atom, should be compared to the standard deviation of the
reference data distribution, which is 0.49 eV/atom. The latter value represents the so-called baseline, i.e. the
RMSE for themodel that predicts for all points the average values of the target property over the training data.

In order to give a feeling on the computational effort necessary tofind theMT-SISSOdescriptor andmodel,
we report that the learning for the settings described abovewas run on an Intel XeonE5-2698 v3 nodewith
2CPUs per node (16 cores/CPU@2.3GHz) and it took 5 h.On a 4-cores laptop, it would take a couple of days
of runtime.We remind that the size of the features space is huge: 2×1010 features.

Here, we note that theMT-SISSO approach can be also seen as away to include collective or structural
features of thematerials, such as the local environment of each atom, in the learning scheme. Rather than trying
to explicitly include a functional dependence of the local environments, the different environments (here, the
different crystal structure prototypes) are assigned to different tasks and to each local environment is assigned a
different set of coefficients for themapping of the common (environment-independent) descriptor found by
MT-SISSO.

Infigure 4 (the corresponding numerical values are tabulated in table 1), we show theCV test for the energy
difference learning, performed in order to assess the two hyperparameters ofMT-SISSO: the (size of the) feature
space qF and the dimensionalityΩ of the descriptor. To the purpose, we performed a leave-10%-out CV, i.e.
10%of thematerials are left out of the training set, theMT-SISSOmodel is trained on the remaining 90%of the
materials, and the errors aremeasured for the left-outmaterials. This random selection of training and
validation sets was repeated 30 times, whichwe found sufficient to converge the validation RMSE to 0.01 eV.We
note (a) that all the 10 target properties of amaterial are excluded from the training set when it is left out and (b)
the standardization of the features is performed at each random selection of the training set, only on the features
relative to the actual training data points. This latter highly recommended practice is crucial to avoid
information ‘contamination’ between the training and validation set.

Analysis offigure 4 reveals thatmodels trained by using the larger feature space 3F (containing∼2×1010

features) are consistently better performing (in terms of prediction errors) thanmodels trained starting form 2F

Figure 3.Central panel: training errors versus reference energies of theMT-SISSO fits to the energy differences. Left panel:
distribution training errors for the same fit, obtained by integrating the central-panel plot over the reference energies. Right panel:
distribution of absolute training errors and corresponding ‘box plot’. The box plotmarks the 25th and 75th percentiles (extrema of the
rectangle), the 5th and 95th percentiles (extrema of the ‘whiskers’), and themedian (horizontal line inside the rectangle). Also shown
are themean absolute error (MAE, cross), the rootmean square error (RMSE, solid square), and themaximumabsolute error
(MaxAE, circle). The feature spaceΦ3 and dimensionΩ=3were used.
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(containing∼2.4×105 features), for all dimensions. RMSE andmean absolute errors are onlymarginally better
when going from 2F to 3F , but we notice that the largest percentiles (75th and 95th) improve significantly,
especially for 3 5 W . Looking at larger percentiles of the error distributions, besides looking atmean errors,
is important because, for a predictivemodel, we are typically interested that theworst cases still yield relatively
small errors. The overall bestmodel is , 53F W =( ), but we also notice that, for 3F , the improvement of all error
indicators when going fromΩ=3 toΩ=5 is onlymarginal. Therefore, in view of the significantly smaller
computational time needed to trainΩ=3 versusΩ=5, in the following tests, we focus on , 33F W =( ),
starting from figure 5, wherewe report the detailed analysis of the signed and absolute errors for these latter
settings.

We now turn our attention to two tests that reveal the peculiarity ofMTL versus traditional ST learningwhen
only incomplete data are available. In the first test, we selected left-out sets in this way: onematerial and one
crystal structure are randomly selected and all the energy differences involving the selected structure are
eliminated from the training set for the selectedmaterial. The procedure is repeated until a prefixed x%of pairs
(material, structure) are eliminated (we recall the total number of such pairs is 82×5=410). This test
simulates the training over amaterials databasewhere for some (ormany)materials the information for only
some crystal structures is available. It would be of great value if from such dishomogenous database, one could
predict themissing information. For ameaningful test, we added the following two constraints in the simulated
elimination of databasefields: for eachmaterial, the energy of at least two crystal structures is known and for
each of the ten tasks (energy differences) there are at least fourmaterials carrying the information, in order to
have enough data to train the fourfitting coefficients of theΩ=3model. For each x%selected value, we train
oneMT-SISSOmodel and ten independent ST-SISSOmodels (one for each task ofMT-SISSO).We then look at

Figure 4.Cross validation prediction errors ofMT-SISSOmodels for the energy difference learning, as function of the dimension of
the descriptorΩ, for the feature spaceΦ2 andΦ3. All errors are averaged over 30 repetitions of leave-10%-out CV (MT-SISSO is
trained over 90%of randomly selected data and tested on the remaining 10%). The box plots and symbols are consistentwith figure 3,
right panel.

Table 1.Tabulated values fromfigure 4. p75 and p95 are the 75th and 95th
percentiles, respectively, RMSE is the rootmean square error, andMaxAE is
themaximumabsolute error. All quantities are given in (eV/atom).

Ω RMSE Median p75 p95 MaxAE

2F 1 0.186 0.082 0.170 0.393 1.098

2 0.146 0.069 0.131 0.272 1.055

3 0.115 0.058 0.112 0.240 0.649

4 0.121 0.053 0.103 0.252 0.968

5 0.132 0.050 0.099 0.252 1.385

3F 1 0.163 0.076 0.158 0.332 1.056

2 0.137 0.062 0.121 0.268 0.973

3 0.098 0.051 0.090 0.205 0.548

4 0.093 0.043 0.079 0.187 0.742

5 0.094 0.043 0.080 0.189 0.709
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the prediction errors on themissing data. Figure 6(a) shows the outcome of the test.With abuse of notation, the
values at 0% refer to training error. As one should expect, ST-SISSO yields lower training error due to higher
flexibility (for each task, a different descriptor can be chosen). However, as soon as data aremissing,MT-SISSO
rules with lower RMSE and, crucially, with lower largest errors. Interestingly, the quality ofMT-SISSO stays
pretty unchanged, for all error indicators, over awide range of amount ofmissing data.

In the second test, we selected one crystal structure and thenwe removed the energy values for a given y%of
materials. Removing the energy value of one structure implies the removal of four energy differences from the
(material, energy differences) database. OneMT-SISSOmodel and four ST-SISSOmodels are trained and the
errors for the selected structures are evaluated on themissingmaterials. This test simulates the case of a new
crystal structure being identified for only fewmaterials in the database and onewants to learnwith the fewest
possible data the predicted energy in such new crystal structure for allmaterials. Figure 6(b) shows the
performance of theMT-SISSOmodel versus the average of the four ST-SISSOmodel. Again the training error
(at 0%) favors ST-SISSO and againMT-SISSOʼs predictive performance remain impressively constant over a
wide range of amount ofmissing data.

These two tests shownumerically what should be expected froma physical point of view: it is reasonable to
assume that the energy of different crystal structures depend on the samemechanism encoded in the properties
of the gas-phase atoms used as primary features. ThereforeMT-SISSOuses at best the (possibly scarce)
information scattered over all crystal structures to identify suchmechanism. In this way the prediction on the

Figure 5. Same set of quantities as infigure 3, for the signed and absolute prediction errors for (Φ3,Ω=3).

Figure 6.Prediction errors ofMT-SISSO versus (average) ST-SISSO for (left panel) ‘leave x%of (materials, structure) data out’ and
(right panel) ‘leave y%of data for one crystal structure out’. The symbol convention is the same as infigure 3. In both panels, the errors
at 0%data out in both panels are training errors. The symbols at the same%are slightly staggered in order to improve visibility. For
reference, the actual values are 0%, 5%, 10%, 20%, 35%, 50%, 66%, 75%. The horizontal line at 0.49 eV is the baseline (see text).
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scarcely knownmaterials and/or crystal structures ismore reliable than amodel that uses information from
only one crystal structure (or, one pair of crystal structures, as in the presented case) to identify the descriptor.

We close the section onMT-SISSO by showing how the (Ω=2)MT-SISSOmodel trained over all data
points can be used to draw a phase diagram (crystal structuremap). Themodel identified byMT-SISSO for each
task can be represented as a plane in a 3D space, where the coordinates (x, y) are the components of the
descriptor and coordinate z is the predicted energy. Thementioned property of internal consistency amongMT-
SISSOmodels for (energy) differences allows for the unambiguous determination of the predicted lowest-energy
structure for each coordinate (x, y). A color is associatedwith any specific crystal structure and assigned to a
square (pixel) (δ x, δ y) centered on (x, y)when the corresponding structure is the lowest in energy at (x, y).
Figure 7(a) represents the structuremap for the octet binaries. The colored area refer to the predictions and the
colored squares are the reference data. Thewhite colormarks areas where the energy difference between the
lowest-energy and the second lowest-energy structures differs by less than 0.03 eV/atom. In order to give an
insight into the 3D visualization of the structuremap, we show infigure 7(b), a cut along the gray-white dotted
linemarked infigure 7(a). This shows that some crystal structures are predicted to be very close in energy for
certain values of the descriptors. In a realistic application, onemay conclude that the actual ground-state in the
neighborhood of those values of the descriptormay be any of the low-energy structures (in particular, atfinite
temperature), while those that are predicted to be very high in energy can be safely discarded as candidate
ground-state. To gauge the trustfulness of the presented phase diagram,wemention that the largest prediction
error for a structure that appears ‘misclassified’ (the color of its symbol does notmatch the background—
predicted—color) is 0.09 eV/atom.

3.2.MT-SISSO for themetal/insulator classification of A Bx y binarymaterials
In [25], a SISSO-trainedmodel for themetal/insulator classification of 299 binarymaterials distributed over 15
prototypes was presented, with (experimental) reference data collected from the SpringerMaterials database
[46]. Thatmodel achieved 99% classification accuracy with a 2Ddescriptor, but had several constraints, i.e.
ignoringmaterials of certain bonding types. In the present work, we extend themetal/insulator dataset to totally
334AxBy binarymaterials (197metals and 137 nonmetals) belonging to 17 crystal structure prototypes. The new
dataset includes the 15 three-dimensional prototypes previously considered [25] and, in addition, two layered
prototypes: CdI2 andMoS2. The pie-chart of the distribution of data points over prototypes is shown infigure 8.
The descriptor described in [25]was a function of properties of gas-phase atoms plus one collective feature,
namely the unit cell volume. Atfirst, by using the same set of primary features, we checkwhether SISSO can find
a singlemap that correctly classifies intometal versus nonmetals thematerials in all 17 prototypes. Specifically,
we considered as primary features: {ionization energy IE, Pauling electronegativityχ, covalent radius rcov, unit
cell volume normalized by total atom volumeV Vcell atomå , bonding distance in thematerial betweenA andB
dAB, coordination number ofA species NA

N and ofB species NB
N, and atomic fraction forAxA andB xB}. As in

[25], the values for the atomic features are taken fromWebElements [47] and the information for building the
structural features (atomic coordinates, species, and lattice vectors) comes from the SpringerMaterials [46]
database. Furthermore, we considered as operator set: {+,−,×, /, exp , log, ,-∣ ∣ ,−1, 2, 3}. From these
ingredients, we build the feature sapce 3F . The size of the SIS-selected subspace for each descriptor dimension

Figure 7. Left:MT-SISSO-learned phase diagram (structuremap) of the ground-state crystal structure for the octet binaries. The
colored areas represent the predicted stability region for the structurewith the same color in the legend. The squares are colored
according to the reference lowest-energy structure. Thewhite colormarks areas where the difference between the energy of the lowest-
energy and the second lowest-energy structures differ by atmost 0.03 eV/atom. Right: cut of the phase diagram along the dashed line
shown in the left panel. The lines are the traces of the planes representing the predicted energy difference from the baseline
(ZB structure).
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was set to 104which is a big yetmanageable size for descriptors up to 2D.Unless otherwise stated, these settings
are used for all the classification problems discussed below. Figure 9 shows the classificationmap by the best
SISSO-trained 2Ddescriptor. There is an overlap between themetal and nonmetal regions, and in total there are
36 data points in the overlap region. Among thematerials in the overlap, 13 (8metals and 5 nonmetals) are in the
CdI2 prototype, and 6 (1metal and 5 nonmetals) are in theMoS2 prototype. For the latter prototype, we have
information only on 6materials. The other 17materials in the overlap belong to the other 15 prototypes. In the
map offigure 9, the optimal separation linewas found by using a linear SVMwith the SISSO-determined 2D
descriptor. According to the SVMmetric, 17 out of 334materials aremisclassified. To avoid confusion, in the
following the number ofmisclassified data points will always refer to the SVMmetric, while as SISSO figure of
merit we report the ‘number of data point in the overlap region’. It is not strictly necessary to apply SVMafter
SISSO, as SISSO for classification already targets amap that separates asmuch as possible (ideally, fully, without
overlap) the different classes ofmaterials. However, the SISSOmodel is determined by all the boundary
materials defining the convex regions. An SVM line (at fixed descriptor determined by SISSO) is a well defined
and amuch simplermodel, which does not conflict with the SISSOmodel.

Though a global descriptor (up to 2D) for the accuratemetal/insulator classification of all prototypes is not
foundwith the current primary features, the independent classification for each prototypewith 100% training
accuracy is very easy to achieve. Table 2 shows the simple 1Ddescriptors for 100% classification ofmetal/
insulator of the binarymaterials for each prototype independently. Actually, ST-SISSO findsmany descriptors
for the 100% classificationwithin each prototype, and table 2 shows only themost simple ones (with least

Figure 8.Pie-chart showing the distribution of the 334 reference binarymaterials, taken fromSpringerMaterials, over the 17
considered crystal structure prototypes.

Figure 9.Themetal/nonmetal classificationmap for binaries on all 17 prototypes. The (red-) blue-bordered convex regions denote
the (metal)nonmetal domain. The linear-SVM-trained separation linewas foundwith the 2Ddescriptor fixed to the one found by
SISSO.
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number ofmathematical operators in the features). However, we note thatmany prototypes have very few data
points and therefore the classificationmodel risks to be overfit.

MT-SISSOmediates between the two extrema of the global, inaccuratemap and the one-per-prototypemap,
that is probably overfit for prototypes for which few data points are available. Interpreting themap for one
prototype as one task,MT-SISSO can be set up to look for a set ofmaps, all defined by the same descriptor, but
with differently located convex regions for the classification.We ranMT-SISSO for classificationwith the same
parameter settings as for the global descriptor, except that the prototype ReO3 is excluded (this prototype is
represented by only 1metal and 1 nonmetal in our reference dataset) and the crystal features xA, xB, NA

N, and NB
N

are removed because they are constantwithin a given prototype. Figure 10 shows theMT-SISSOmaps. Overall
and individually, they achieve perfect classification. The common 2Ddescriptor is:
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Wenote that this descriptor has similar ‘ingredients’ (primary features) as the global ST-SISSOdescriptor
presented in [25], in particular the descriptor depends linearly on the inverse of the packing fraction

V Vatom cellå , which is the only selected collective feature, i.e. related to the actual atomic structure of the
material.

Table 2.Descriptors yieldingmetal/nonmetal 100%classification accuracywithin each prototype. The primary features of IE,χ,
V Vcell atomå , and dABwere used for these calculations; coordination number NN and atomic fraction xwere excluded because they are
constant within one prototype. Since all descriptors are one-dimensional, we also provide the threshold values for themetal/nonmetal
transition (metals are for values of the descriptor smaller than the threshold).

Prototypea Number of data Descriptor Boundary

MoS2 6 (1metal, 5 nonmetals) χA 1.68

CdI2 29 (8metals, 21 nonmetals) dAB B
3c 41.08

CaF2 35 (21metals, 14 nonetals) χB 2.68

CsCl 19 (16metals, 3 nonmetals) IEB 9.55

NaCl 132 (87metals, 45 nonmetals) V

V

rIE IEA B A

A

cell

atom

cov

cå
135.79

Th3P4 27 (23metals, 4 nonmetals) dIE IEV

V A AB B
2cell

atomå
( ) 676.24

TiO2 11 (2metals, 9 nonmetals) −χA −2.105

{FeAs, NiAs, ThH2, Cr3Si, ZnO, ZnS, Al2O3, La2O3, SiC}
b 73 (38metals, 35 nonmetals) IEV

V B B
cell

atom
c

å
42.90

a ReO3 prototypewas not considered because of only onemetal and one nonmetal available.
b The prototypes that has either onlymetals or only nonmetals were grouped as amixed ‘prototype’.

Figure 10.MT-SISSO results for the classification ofmetal/nonmetal for 17 crystal prototypes. The component of the SISSO-
determined descriptor on the x- and y-axes (the same in all plots) are given in equation (7). There is zero overlap between themetal
and nonmetal domains on all themaps. The separation lines were found via linear SVM.
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On the samemachine as for the octet-binary application, the learning fro producing figure 10 required about
1 h runtime.

To demonstrate the generalizability ofMT-SISSOdescriptors on unseen prototypematerials, we performed
a ‘leave-one-prototype-out’ validation. In practice, we focused on the RS prototype (that includes about 40%
of the training dataset) andwe trained themetal/nonmetal classificationwithMT-SISSO andwith global
ST-SISSO. The latter is ST-SISSOby using all training data to train a singlemetal/nonmetalmap. This is the
same approach as in [25], where however fewer prototypes were considered. For ST-SISSO, the features
coordination number NN and atomic fraction x are included as primary features in 0F . Subsequently the RS
data are projected into the 2Ddescriptor determined by the training on the other prototypes and a SVMmodel is
trained atfixed descriptor.We name these two approachesMT-SISSO+SVMand ST-SISSO+SVM. In this test,
we have omitted the ST-SISSO learning on one prototype because all the data points of the left-out prototype are
left out of training at the SISSO stage. The results are shown figure 11. The descriptor identified by global ST-
SISSO scattersmetals and nonmetalsNaCl binaries all around themap,making a classification impossible. In
contrast, theMT-SISSOdescriptor yields amap that separates fairlymetals versus nonmetals, without having
access to any direct information onRSmaterials in the training. Quantitatively, the number ofmisclassified
NaClmaterials byMT-SISSO+SVM is 6 out of 132 and one can appreciate by naked eye infigure 11(a) that the
misclassification is not ‘severe’, i.e. themisclassifiedmaterials are close to the SVM line. For ST-SISSO+SVM the
number ofmisclassifiedmaterials is 36 out of 132 and visual inspection (figure 11(b)) reveals that, without the
labels ‘metal’ (‘nonmetal’) in the half planes, it would be even difficult to decide which side of the line is predicted
to containmetals (nonmetals).

We repeated the test for other prototypes, but,mainly due to the fact that they individually contain far less
data thanRS, the comparison betweenMT- and ST-SISSO is less insightful.We nonetheless report the result in
the supplementarymaterial, which is available online at stacks.iop.org/JPMATER/2/024002/mmedia.

4. Conclusions

In conclusion, we have introduced a nontrivial extension of the SISSO algorithm. Such an extension is called
MT-SISSO, it belongs to thewider class of learning algorithms known asMTLearning, and is specifically
designed for learning fromdatabases with randomly or selectively distributedmissing information.MT-SISSO
finds a commondescriptor, in terms of analytical functions of simple input physical quantities called primary
features, when learning different properties (tasks) simultaneously. This joint learning yields robustmodels also
with large amount ofmissing data, as demonstratedwith two showcasematerials-science examples: the
prediction of the ground-state crystal structure for octet binaries compounds (out of 5 candidate structures) and
the prediction ofmetal versus nonmetal classification of binarymaterials distributed over 17 crystal structure
prototypes. Sincematerials databases typically contain data fromdifferent sources and therefore unsystematic

Figure 11. ‘Leave-rock-salt-prototype-out’ generalization test forMT-SISSO (left panel) and global ST-SISSO (right panel). Both
MT-SISSO and ST-SISSOdescriptors are trained on all prototypes except rock-salt and the support-vector-machine (SVM) line is
trained on the rock-salt data, atfixed descriptor. Thefilled symbols are the support vectors (SV) of the SVMmodel.
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(different properties are collected for differentmaterials),MT-SISSO is amethod that can be suitably applied to
these databases to yield predictivemodels for properties of interest.

The ST- andMT-SISSOpackage, as used for obtaining the results presented in this paper, ismaintained by R
Ouyang and available open access at github.com/rouyang2017/SISSO.

Acknowledgments

This project has received funding from the EuropeanUnion’sHorizon 2020 research and innovation program
(#676580: TheNOMADLaboratory—an EuropeanCenter of Excellence and#740233: TEC1p), the Berlin
Big-DataCenter (BBDC,#01IS14013E), and BiGmax, theMax Planck Societyʼs ResearchNetwork onBig-
Data-DrivenMaterials-Science.

ORCID iDs

LucaMGhiringhelli https://orcid.org/0000-0001-5099-3029

References

[1] Office of Science andTechnology Policy,WhiteHouse 2011Materials Genome Initiative forGlobal Competitiveness https://
obamawhitehouse.archives.gov/mgi

[2] Curtarolo S,Hart G LW, SetyawanW,MehlM J, JahnátekM,Chepulskii RV, LevyO andMorganD2010AFLOW: software for high-
throughput calculation ofmaterial properties http://materials.duke.edu/aflow.html

[3] JainA,Hautier G,MooreC J, Ong S P, FischerCC,Mueller T, PerssonKA andCederG 2011Comput.Mater. Sci. 50 2295
[4] Saal J E, Kirklin S, AykolM,Meredig B andWolvertonC 2013 JOM 65 1501
[5] LandisDD,Hummelshøj J, Nestorov S, Greeley J, DułakM, Bligaard T,Nørskov J K and JacobsenKW2012Comput. Sci. Eng. 14 51
[6] Ghiringhelli LM,CarbognoC, Levchenko S,Mohamed F,HuhsG, LüdersM,OliveiraM and SchefflerM2017NPJComput.Mater.

3 46
[7] Draxl C and SchefflerM2018MRSBull. 43 676
[8] Draxl C and SchefflerM2018 Big-data-drivenmaterials science and its fair data infrastructureHandbook ofMaterialsModeling ed

SYip andWAndreoni (Berlin: Springer)
[9] HeyT, Tansley S andTolle K 2009The Fourth Paradigm:Data-Intensive Scientific Discovery (Redmond,WA:Microsoft Research)
[10] BartókA, Albert P, PayneMC,Kondor R andCsányi G 2010Phys. Rev. Lett. 104 136403
[11] Carrete J,MingoN,Wang S andCurtarolo S 2014Adv. Funct.Mater. 24 7427
[12] RajanK 2015Annu. Rev.Mater. Res. 45 153
[13] Mueller T, KusneAG andRamprasad R 2016Machine learning inmaterials scienceReviews inComputational Chemistry (NewYork:

Wiley) pp 186–273
[14] KimC, Pilania G andRamprasad R 2016Chem.Mater. 28 1304
[15] Faber FA, LindmaaA, von LilienfeldOA andArmiento R 2016Phys. Rev. Lett. 117 135502
[16] Takahashi K andTanaka Y 2016Dalton Trans. 45 10497
[17] BartókA,De S, PoelkingC, BernsteinN,Kermode J, Csányi G andCeriottiM 2017 Sci. Adv. 3 1701816
[18] Goldsmith BR, BoleyM,Vreeken J, SchefflerM andGhiringhelli LM2017New J. Phys. 19 013031
[19] PhamTL,NguyenND,NguyenVD,KinoH,Miyake T andDamHC2018 J. Chem. Phys. 148 204106
[20] Ghiringhelli LM,Vybiral J, Levchenko SV,Draxl C and SchefflerM2015Phys. Rev. Lett. 114 105503
[21] Candès E J, Romberg J andTaoT 2006 IEEE Trans. Inf. Theory 52 489
[22] DonohoDL 2006 IEEETrans. Inf. Theory 52 1289
[23] Nelson L J, Hart G L, Zhou F andOzoliņšV2013Phys. Rev.B 87 035125
[24] Ghiringhelli LM,Vybiral J, Ahmetcik E,Ouyang R, Levchenko SV,Draxl C and SchefflerM2017New J. Phys. 19 023017
[25] Ouyang R,Curtarolo S, Ahmetcik E, SchefflerM andGhiringhelli LM2018Phys. Rev.Mater. 2 083802
[26] Fan J and Lv J 2008 J. R. Stat. Soc.B 70 849
[27] Tibshirani R 1996 J. R. Stat. Soc.B 58 267
[28] Tropp J A andGilbert AC 2007 IEEE Trans. Inf. Theory 53 4655
[29] Pati YC, Rezaiifar R andKrishnaprasad P S 1993The 27thAsilomar Conf.: Signals, Systems andComputers vol 1 (PacificGrove, CA:

IEEE) pp 40–4
[30] Bartel C J, SuttonC,Goldsmith BR,Ouyang R,MusgraveCB,Ghiringhelli LM and SchefflerM2019 Sci. Adv. 5 eaav0693
[31] Bartel C J,Millican S L,DemlAM,Rumptz J R, TumasW,Weimer AW, Lany S, StevanovićV,MusgraveCB andHolder AM2018

Nat. Commun. 9 4168
[32] Caruana R 1997Mach. Learn. 28 41
[33] Obozinski G, Taskar B and JordanM2006Multi-task feature selectionTech. Rep.Department of Statistics, University of California,

Berkeley
[34] ArgyriouA, Evgeniou T and PontilM 2008Mach. Learn. 73 243
[35] YinX and LiuX 2018 IEEETrans. Image Process. 27 964
[36] Gong P, Ye J andZhangC 2013 JMach. Learn. Res. 14 2979
[37] HuangB, KeD, ZhengH,XuB, XuY and SuK 2015Proc. INTERSPEECH (Dresden, Germany) pp 2464–8
[38] ThungK-H andWeeC-Y 2018Multimed. Tools Appl. 77 29705
[39] Zhang Y andYangQ2018Natl. Sci. Rev. 5 30
[40] PilaniaG, Gubernatis J E and LookmanT 2017Comput.Mater. Sci. 129 156
[41] Ahmetcik E andZiletti A 2017 https://analytics-toolkit.nomad-coe.eu/hands-on-cs
[42] Mohamed F, Kariryaa A, Ziletti A, Ahmetcik E, Ghiringhelli LM and SchefflerM2017 https://analytics-toolkit.nomad-coe.eu

15

J. Phys.:Mater. 2 (2019) 024002 ROuyang et al

http://github.com/rouyang2017/SISSO
https://orcid.org/0000-0001-5099-3029
https://orcid.org/0000-0001-5099-3029
https://orcid.org/0000-0001-5099-3029
https://orcid.org/0000-0001-5099-3029
https://obamawhitehouse.archives.gov/mgi
https://obamawhitehouse.archives.gov/mgi
http://materials.duke.edu/aflow.html
https://doi.org/10.1016/j.commatsci.2011.02.023
https://doi.org/10.1007/s11837-013-0755-4
https://doi.org/10.1109/MCSE.2012.16
https://doi.org/10.1038/s41524-017-0048-5
https://doi.org/10.1557/mrs.2018.208
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1002/adfm.201401201
https://doi.org/10.1146/annurev-matsci-070214-021132
https://doi.org/10.1002/9781119148739.ch4
https://doi.org/10.1002/9781119148739.ch4
https://doi.org/10.1002/9781119148739.ch4
https://doi.org/10.1021/acs.chemmater.5b04109
https://doi.org/10.1103/PhysRevLett.117.135502
https://doi.org/10.1039/C6DT01501H
https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1088/1367-2630/aa57c2
https://doi.org/10.1063/1.5021089
https://doi.org/10.1103/PhysRevLett.114.105503
https://doi.org/10.1109/TIT.2005.862083
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1103/PhysRevB.87.035125
https://doi.org/10.1088/1367-2630/aa57bf
https://doi.org/10.1103/PhysRevMaterials.2.083802
https://doi.org/10.1111/j.1467-9868.2008.00674.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1109/TIT.2007.909108
https://doi.org/10.1109/ACSSC.1993.342465
https://doi.org/10.1109/ACSSC.1993.342465
https://doi.org/10.1109/ACSSC.1993.342465
https://doi.org/10.1126/sciadv.aav0693
https://doi.org/10.1038/s41467-018-06682-4
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1007/s10994-007-5040-8
https://doi.org/10.1109/TIP.2017.2765830
https://doi.org/10.1007/s11042-018-6463-x
https://doi.org/10.1093/nsr/nwx105
https://doi.org/10.1016/j.commatsci.2016.12.004
https://analytics-toolkit.nomad-coe.eu/hands-on-cs
https://analytics-toolkit.nomad-coe.eu


[43] Regler B 2017 https://analytics-toolkit.nomad-coe.eu/tutorial-periodic-table
[44] BlumV,Gehrke R,Hanke F,Havu P,HavuV, RenX, Reuter K and SchefflerM2009Comput. Phys. Commun. 180 2175
[45] Ahmetcik E 2016Machine learning of the stability of octet binariesMaster’s Thesis Fritz-Haber-Institut derMax-Planck-Gesellschaft,

Berlin (https://th.fhi-berlin.mpg.de/site/uploads/Publications/Masterthesis_AhmetcikEmre.pdf)
[46] SpringerMaterials database https://materials.springer.com/
[47] WebElements https://webelements.com

16

J. Phys.:Mater. 2 (2019) 024002 ROuyang et al

https://analytics-toolkit.nomad-coe.eu/tutorial-periodic-table
https://doi.org/10.1016/j.cpc.2009.06.022
https://th.fhi-berlin.mpg.de/site/uploads/Publications/Masterthesis_AhmetcikEmre.pdf
https://materials.springer.com/
https://webelements.com

	1. Introduction
	2. Methodology
	2.1. ST-SISSO for continuous property
	2.2. Multi-task SISSO for learning continuous properties
	2.3. MT-SISSO for categorical properties
	2.4. Computational complexity of SISSO

	3. Results and discussion
	3.1. MT-SISSO for the relative stability of different structure pairs of AB binary materials
	3.2. MT-SISSO for the metal/insulator classification of AxBy binary materials

	4. Conclusions
	Acknowledgments
	References



