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Recently, in a strong Coulomb field regime of tunneling ionization an unexpected large enhancement of
photoelectron spectra due to the Coulomb field of the atomic core has been identified by numerical solution of
time-dependent Schrödinger equation [Phys. Rev. Lett. 117, 243003 (2016)] in the upper energy range of the
tunnel-ionized direct electrons. We investigate the origin of the enhancement employing a classical theory with
Monte Carlo simulations of trajectories, and a quantum theory of Coulomb-corrected strong field approximation
based on the generalized eikonal approximation for the continuum electron. Although the quantum effects at
recollisions with a small impact parameter yield an overall enhancement of the spectrum relative to the classical
prediction, the high energy enhancement itself is shown to have a classical nature and is due to momentum space
bunching of photoelectrons released not far from the peak of the laser field. The bunching is caused by a large
and nonuniform, with respect to the ionization time, Coulomb momentum transfer at the ionization tunnel exit.

Introduction. The Coulomb field of the atomic core plays
a significant role for strong field ionization. Since long time
it has been known that it lowers the tunneling barrier and in-
creases the tunneling probability [1–4]. Significant Coulomb
effects arise at recollisions [5]. While hard recollisions in-
duce well-known processes of above-threshold ionization [6],
high-order harmonic generation [7], and nonsequential dou-
ble ionization [8], the soft recollisions bring about Coulomb
focusing [9–11] and defocusing [12] effects. The Coulomb
focusing is responsible for the, so-called, low-energy structures
(LES) [13–29], especially conspicuous and lately discovered
in mid-IR laser fields.

Recently, another surprising Coulomb field effect has been
identified by ab initio numerical solution of time-dependent
Schrödinger equation (TDSE) [30]. When comparing the nu-
merical solution for the photoelectron spectra with calculations
of the first-order Coulomb-free strong field approximation
(SFA) [31–33], several orders enhancement of photoelectron
spectra at 2Up, i.e., twice of the electron ponderomotive energy,
has been observed. In [30] the effect was analyzed invoking
the Coulomb-corrected action along quantum orbits in the
complex-time plane. Due to the Coulomb field, the quantum
orbit maintains a large imaginary part up to the recollision,
which hinted a conclusion that the enhancement is a specific
quantum effect, and that separation into sub-barrier motion
up to the tunnel exit and subsequent classical motion is an
invalid concept. Although, the high energy enhancement in
[30] is traced back to the Coulomb field effect, an intuitive
understanding remained missing.

The aim of this Letter is to clarify the origin of the high
energy Coulomb enhancement (HECE) in the photoelectron
spectrum. We carry out a classical as well as a quantum me-
chanical analysis. The classical analysis employs the classical
trajectory Monte Carlo (CTMC) simulations with nonadiabatic
initial conditions for the electrons. For the quantum mechanical
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analysis we put forward a new version of Coulomb-corrected
strong field approximation (CCSFA). In the existing theories
of CCSFA, such as the Trajectory-based CCSFA [34, 35], or
Analytical R-matrix theory [36–38], the Coulomb field of the
atomic core is accounted for using the eikonal wave function
for the continuum electron. In the latter Wentzel-Kramers-
Brillouin (WKB) approximation is applied, with a perturbative
treatment of the Coulomb potential in the phase of the wave
function. Unfortunately, the eikonal CCSFA has a singularity
for the forward re-scattering amplitude, cf. [30], which renders
the HECE treatment ambiguious. We go beyond the WKB
description of the continuum electron, incorporating into the
SFA formalism the electron wave function in the, so-called,
generalized eikonal approximation (GEA) [39–42]. In GEA
the second order derivatives of the Schrödinger equation are
not neglected, in contrast to WKB approximation. The latter al-
lows to take into account quantum recoil effects at recollisions
with a small impact parameter and to remove the Coulomb
singularity of the eikonal CCSFA at recollisions. The accu-
racy of our analytical results are examined in comparison with
numerical solutions of TDSE.

Firstly, we show that already CTMC simulations with nona-
diabatic initial conditions reproduce qualitatively the HECE.
We analyze the trajectories yielding high energies and trace the
origin of the enhancement. It is due to electrons released not far
from the peak of the laser field, though with bunching at high
energies because of a large, nonuniform Coulomb momentum
transfer, which depends on the ionization phase, i.e., the laser
phase at the ionization. In contrast to LES, here we deal mostly
with Coulomb defocusing, and the enhancement is not due to
Coulomb focusing. Although HECE is mainly determined by
the parameter ζ ≡ Zω/E0 > 1, pointed out already in [30],
with the frequency ω and the amplitude E0 of the laser field,
we find an additional dependence on the ionization potential
Ip. The enhancement is larger with smaller Ip, which however
is reverted at very small Ip. The latter is found to be related
to restructuring of the topological structure of the initial phase
space of the ionized electrons when approaching the regime
of over-the-barrier ionization (OTBI). Secondly, the applied
quantum approach with GEA allows us to remove the Coulomb
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FIG. 1. (a) Photoelectron momentum distribution at a fixed emission
angle θ = π/100: (red) via |MC

p |
2 corresponding to the long trajectory;

(blue) via eikonal CCSFA as in [30]; (orange) the Coulomb free 1st-
order SFA. The shifts of the momentum distribution due to the initial
Coulomb momentum transfer (ICMT) are shown by green arrows,
and HECE is indicated by a black arrow. (b) Coulomb momentum
transfer along the laser field pCx(t)/(E0/ω) vs the interaction time,
at p = 0.69 and θ = π/100: (blue) numerical evaluation, (orange)
estimation, see the text; (green) the electron trajectory x(t)/(E0/ω

2).
The parameters are E0 = 0.0045 a.u., ω = 0.0065 a.u., Ip = 0.14 a.u.,
and Z = 1.

singularity of the eikonal CCSFA at recollisions, and to obtain
a reliable quantum description for the photoelectron spectra
near the upper energy limit of the direct electrons and, conse-
quently, for HECE. The quantum description induces merely a
uniform enhancement of the photoelectron spectra compared
to the classical result, i.e., the nature of HECE is classical.

Qualitative discussion. Before going to rigorous calcu-
lations, we illustrate the origin of HECE with the follow-
ing qualitative discussion. We begin with the 1st-order SFA
amplitude describing the tunnel ionized direct electrons, ne-
glecting the Coulomb effect of the atomic core: Mp ∼∑

s exp
(
−i

∫
ts

dt(p + A(t))2/2 + iIpts

)
, where p is the final mo-

mentum, A(t) = ex(E0/ω) sin(ωt) is the vector potential of the
linearly polarized laser field, and ts is the time-saddle point of
the relevant trajectory. Then, we derive the Coulomb corrected
photoelectron momentum distribution by means of nonuni-
form (depending on the ionization phase) momentum shift-
ing of the 1st-order momentum distribution: MC

p = Mp−pC ,
where pC = −Z

∫ ∞
te

dt rL(t)/r3
L(t) is the Coulomb momen-

tum transfer to the electron along the laser driven trajectory
rL(t), rL(t) = |rL(t)|, te = Re{ts} is the ionization time and
xe = Re

{∫ te
ts

dt(px + A(t))
}

is the tunnel exit coordinate. For
the short trajectory pxC is opposite to the the final longitudinal
momentum px, while for the long trajectory they have the same
sign. Accordingly, the Coulomb momentum shift increases the
probability |MC

p |
2 for the long trajectory, because the electron

with a certain final momentum is ionized closer to the laser
peak than in the Coulomb free case, and vice verse for the short
trajectories. The photoelectron energy distribution via |MC

p |
2

for recolliding long trajectories is shown in Fig. 1(a). The
photoelectron spectrum demonstrates a plateau-like behavior
up to 2Up-energy, similar to the result of [30], and indicates
that HECE arises due to the nonuniform Coulomb momentum
transfer to the continuum electron along real trajectories. In
this case the electrons with final energy around 2Up are tun-
neled from the atom not near the zero crossing of the laser field,
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FIG. 2. Photoelectron spectra: (black-solid) numerical solution of
TDSE, (red-dashed) CTMC, (blue-dot-dashed) Coulomb free CTMC.
The laser and atom parameters are as in Fig. 1.

as in the Coulomb free case, but at the laser phases close to the
peak of the field with enhanced probabilities.

We can estimate the scaling for HECE analyzing the rel-
evant trajectories. The long laser driven trajectory at the
2Up-cutoff is launched near zero crossing of the field and
the electron is initially almost standing still, further moving
along the approximate trajectory x(t) ≈ xe − E0ω(t − te)3/6
[43] [see the trajectory (green line) in Fig. 1(b)], which ad-
mits a simple estimate for the Coulomb momentum transfer:
pC ∼ Zδt/x2

e ∼ 4Z(E0/Ea)(3/γ)1/3 ∝ I−5/3
p [43], see Fig. 1(b).

In the latter, the effective time interval δt is estimated by
the time the electron covers the distance |xe| ∼ Ip/E0, and
Ea ≡ (2Ip)3/2 is the atomic field. HECE can be estimated as
E ≡ |MC

p |
2/|Mp|

2
∣∣∣
p=p0

, p0 = E0/ω, using the 1st-order SFA
longitudinal momentum distribution |Mp|

2 ∼ exp(−p2
‖
/∆2
‖
),

with ∆‖ =
√

3E0/EaE0/ω [4]. Thus, we find E ∼ exp(4ζ) [43],
with the enhancement factor

ζ ≈
Zω
E0

1
γ1/3 , (1)

where γ = ω
√

2Ip/E0 is the Keldysh parameter [31]. The
ratio R of ionization probabilities at 2Up to Up can be re-
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FIG. 3. The ratio R of ionization probabilities at 2Up to Up: (a) vs
Ip at E0 = 0.0045, ω = 0.0065 a.u. and Z = 1, (black-solid) CTMC
nonadiabatic, (red-dashed) CTMC adiabatic, (cycles) TDSE, (dot-
dashed) scaled estimation for R, see the text; (b) vs Ip/Ia for different
wavelengths at Zω/E0 = 1.44, Ia =

√
4ZE0. The dots on panel (b)

correspond to three cases with different Ips applied in Fig. 4.
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FIG. 4. The electron initial phase space (p⊥i, φi) with color coded probabilities, which finally contributes to the photoelectron energy interval
(1.9Up, 2.1Up) (first row). The red elliptic regions correspond to the Coulomb free case. Asymptotic momentum distribution (second row). The
phase space of the trajectories A, B, and C type are indicated in the panel (b). (a), (d) Ip = 0.42Ia (before the HECE peak); (b), (e) Ip = 1.01Ia

(near the HECE peak); (c), (f) Ip = 1.69Ia (after the HECE peak); these cases are indicated by dots in Fig. 3(b). The parameters are E0 = 0.0315
a.u., ω = 0.0456 a.u. and Z = 1.

garded as a signature of HECE to be proved in an experi-
ment (Up is used as a reference point to avoid the spikes
in the spectrum due to LES). It can be estimated as R =

|MC
p0
|2/|Mp1 |

2 ≈ e[(p1−pC1)2−(p0−pC )2]/∆2
‖ , with p1 = E0/(

√
2ω),

and pC1 = πZE0/Ea [44], which is illustrated in Fig. 3(a).
Classical description. To corroborate the classical nature

of HECE, we have carried out CTMC simulations with nona-
diabatic initial conditions [45]. One can deduce from Fig. 2
that the classical simulation shows already the enhancement
stemming from the Coulomb field effect and fits qualitatively
to the numerical solution of TDSE. Nonadiabatic initial condi-
tions are favorable for the enhanced Coulomb effect, because
the tunnel exit in this case is closer to the core and an initial
longitudinal momentum appears which increases the time the
electron spent near the tunnel exit.

Further, we analyze the dependence of the enhancement on
the laser and atom parameters, see Fig. 3. As a characteristic
of the enhancement we use the ratio R of the probability at
energy 2Up to that at the energy Up. While the parameter
ζ qualitatively describes the decreasing behavior of HECE
with moving Ip far from the peak. However, we find that the
enhancement additionally depends on the laser wavelength,
and crucially on the ionization potential. The HECE is peaked
at around Ip ≈ Ia =

√
4ZE0 a.u., when the transition to OTBI

takes place [46] and the enhancement character qualitatively
changes.

For intuitive understanding of the enhancement mechanism
we investigate the initial momentum space (p⊥i, φi) of the tra-
jectories that contribute to HECE within the final energy in-

terval of (1.9Up, 2.1Up), see Fig. 4. In the Coulomb free case
the contribution to the 2Up energy is not large because either
the initial transverse momentum p⊥i is large, or the ionization
phase is far from the peak value φi = 0, see the red ellipse in the
first row of Fig. 4. In contrast to that, when the Coulomb field
is accounted for, the electrons contributing to the final 2Up
energy range are ionized with smaller p⊥i and φi (i.e. closer to
the peak of the field) with enhanced ionization probabilities.

The typical parameter regime of HECE corresponds to
Fig. 4(b),(e). The most of HECE contribution comes from
trajectories B (a typical trajectory is shown in Fig. 1(b)). Mov-
ing along the initial phase structure of B from small values of
φi and p⊥i to the larger ones, corresponds to transition from
the wings of the final 2Up energy ring to the central spot at
p⊥ = 0 in Fig. 4(e) [43]. For the former, the final large en-
ergy is achieved due to a large transverse Coulomb momentum
transfer at a recollision, while for the latter due to an initial
Coulomb momentum transfer at the tunnel exit. In this pa-
rameter regime the densities of the initial phase space for the
trajectories of the type A and C are small.

When increasing Ip the Coulomb momentum transfer dimin-
ishes, pC ∝ I−5/3

p , and the initial phase-space of trajectories
B moves far from φi = 0, cf. Fig. 4 (b) and (c). In this case
the contribution of trajectories A is increased with respect to
B. The contribution of trajectories C becomes negligible. The
trajectories A are chaotic and the total initial phase space of
contribution electrons is decreased, with a result of decreasing
HECE, see Fig. 3.

The maximum of the enhancement is achieved when the
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FIG. 5. Photoelectron spectra angle-integrated within ±60 along
the laser polarization direction: (black-solid) via numerical TDSE;
(red-solid) via GEA; (blue-thick-dashed) via eikonal CCSFA as in
[30]; (black-thin-dashed) via Coulomb free SFA. The laser and atom
parameters are the same as in Fig. 2.

phase-space of trajectories B and C merge at decreasing Ip [43].
At the further decrease of Ip, see Fig. 4(a), the phase-space
of all trajectories A, B, and C are merged and the topological
structure of the initial phase-space is altered [43]. This results
in the increase of p⊥i, which again suppresses HECE. The al-
teration of the structure of the initial phase-space at decreasing
the ionization potential is related to the transition of ionization
from the tunneling to the over-the-barrier ionization.

While in LES the enhancement is due to Coulomb focusing,
in HECE this plays minor role. We classify the trajectories
as Coulomb focused if |p⊥i| > |p⊥ f |, otherwise Coulomb defo-
cused. In the first case the asymptotic transverse momentum
space of the ionized electron is shrunk with respect to that at
the tunnel exit, which leads to an additional enhancement [9].
The weight of defocused trajectories contributing to HECE is
larger than 70% [43].

Quantum description. Generalized eikonal approach. For
the description of HECE a nonperturbative treatment of the
Coulomb effect is necessary because the perturbative second
order SFA yields uniformly enhanced photoelectron spectra,
while at HECE the enhancement is large at high energies
around 2Up [43]. In [30] CCSFA is applied which employs
eikonal approximation for the electron continuum wave func-
tion. The deficiency of this approach is that the ionization
amplitude diverges at photoelectron rescattering to small an-
gles, which induces an artificial large contribution to the pho-
toelectron spectra enhancement at high energies , see Fig. 5.
We remedy the divergence problem at recollisions using the
generalized eikonal wave function in the CCSFA approach,
which includes quantum corrections.

The photoelectron momentum distribution in CCSFA is cal-
culated via the following matrix element:

Mp = −i
∫

dtd3rψGEA ∗(r, t) r · E(t) φ(r, t), (2)

where the electron wave function in the continuum ψGEA(r, t)

accounts for the effect of the laser and Coulomb field of the
atomic core in the generalized eikonal approximation [42]:

ψGEA(r, t) =
1√

det ∂p f /∂pi
exp

[
iS 0(r, t) + iS GEA(r, t)

]
,(3)

with the Volkov action S 0 =
∫

t dt′(p + A(t′))2/2 + [p + A(t)] · r,
and the generalized eikonal S GEA(r, t) ≈ S GEA

1 (r, t)+S GEA
2 (r, t).

Here the prefactor originates from the wave function normal-
ization and describes the Jacobian of the momentum space
transformation. We calculate the generalized eikonal up to the
second order in the scattering potential V(r) [43]:

S GEA
1 (r, t) =

∫
t
dsV(rL(s))erf


√

irL(s)2

2(s − t)

 . (4)

and

S GEA
2 (r, t) =

1
2

∫
t
ds

∫s
ds′∇V(rL(s′))erf


√

irL(s′)2

2(s′ − t)




2

,(5)

with the laser driven trajectory rL(s). We solve the integrals
in the amplitude of Eq. (2) with the saddle point method and
expand the saddle points up to first order in the atomic poten-
tial. The photoelectron spectrum along the laser polarization in
GEA is presented in Fig. 5. It shows enhancement with respect
to the Coulomb-free case, and the same slope for the spectrum
asfor the TDSE result. The Coulomb-focusing accounted for
via the prefactor determinant in Eq. (3) has little contribution
in this enhancement [43]. The difference between the quasi-
classical eikonal approximation and the GEA occurs at 2Up
energies where the perturbative quasiclassical approximation
is not valid. The GEA overestimates the LES, see qualitative
estimation in [43].

Conclusion. we have demonstrated that the enhancement of
the tunnel ionized photoelectron spectra at the upper energy
limit of the direct electrons in the strong Coulomb field regime
is of a classical origin. We found that the nonuniform Coulomb
momentum transfer with respect to the ionization phase allows
for the electrons tunneled not far from the peak of the laser
field to accumulate at high energies. The enhancement not
only depends on the main parameter of the strong Coulomb
field regime Zω/E0, but also crucially on the ionization po-
tential. We locate a peak of the enhancement with respect to
the ionization potential and relate this to the structure of the
initial phase-space of the contributing electrons. In contrast to
LES, the Coulomb focusing plays no role for HECE. For the
accurate quantum description of the Coulomb effects at fast
recollisions, we put forward a new Coulomb corrected version
of SFA based on the generalized eikonal approximation which
is free from Coulomb divergence at recollisions.

P.-L.H. acknowledges the support from the China Scholar-
ship Council (CSC).
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