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Abstract

The process of nonlinear electron-positron pair production by an electron colliding with an

arbitrary plane wave electromagnetic field (nonlinear trident pair production) is studied analytically

and numerically. Special emphasis is put on the properties of the transition amplitude. In fact,

its original expression as resulting from applying the Wick’s theorem turns out to be divergent

and not to manifestly fulfill gauge invariance. By restoring the latter, the amplitude is regularized

and investigated in different regimes. In particular, the amplitude is divided into a two-step

and a one-step contributions, depending on the scaling dependence on the laser pulse duration.

The corresponding contributions to the positron angular distribution spectra and the resulting

interference terms are studied numerically emphasizing the possibility of measuring experimentally

the contribution of the one-step contribution.
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I. INTRODUCTION

The prediction of QED that massive particle-antiparticle pairs can be created solely from

electromagnetic fields is certainly among its most thrilling. The recent progress in laser

technology (see, e.g., [1–4]) opens the possibility of observing the production of electron-

positron pairs in the collision of high-energy photons and intense laser beams (nonlinear

Breit-Wheeler pair production (NBWPP)). This process has been thoroughly investigated

theoretically in recent years, also accounting for effects of the laser pulse form [5–11] (see [12]

for publications until 2012). Since usually high-energy photons are produced via electron

back-scattering, alternatively, an electron-positron pair can be produced inside a strong laser

field by a high-energy photon emitted by an ultrarelativistic electron colliding with the same

laser field (nonlinear trident pair production (NTPP)). Conventionally, the process can be

described as commencing via two channels where loosely speaking the photon emission and

pair production either occur at the same laser phase (direct channel) or at two separate ones

(cascade channel). A unified theoretical description based on strong-field QED has been

recently proposed to analyze NTPP in a plane wave [13, 14] and in a constant-crossed field

[15].

For an electron (mass m and charge e < 0) of initial four-momentum pµi = (εi,pi),

with εi =
√

m2 + p2i (units with ~ = c = 4πǫ0 = 1 are used throughout), colliding with

a plane wave of central angular frequency ω0, electric field amplitude E and central wave

four-vector kµ0 = (ω0,k0), the total NTPP probability is controlled by the two Lorentz- and

gauge-invariant parameters ξ = |e|E/mω0 and χ = ((k0pi)/m
2)E/Ecr, where Ecr = m2/ |e|

is the critical field of QED [16] and we introduced the short notation (ab) = aµb
µ (the metric

tensor is ηµν = diag(+1,−1,−1,−1)). An exact inclusion of the laser field in the calculations

is necessary for ξ & 1 [17, 18], which is nowadays routinely achieved at optical laser facilities

[2]. At ξ ≫ 1 NTPP occurs with the absorption of a large number of laser photons and

is essentially controlled only by the parameter χ: it is exponentially suppressed for χ ≪ 1

and becomes sizable at χ & 1. Present day technology allows for optical lasers with ξ ∼ 102

[1] and for electron beams with εi ≈ 4 GeV produced via laser wake-field acceleration [19],

allowing for a thorough experimental investigation of NTPP also within all-optical setups.

So far only one experiment on NTPP has been successfully carried out [20, 21], where,

however, the direct channel was strongly suppressed. For some time quantitative theoretical
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studies of NTPP were available only in the idealized cases of monochromatic lasers [13] and

constant-crossed fields [15]. The latter study particularly assessed the validity of approx-

imating trident pair production as a sequence of photon emission and Breit-Wheeler pair

production, i.e., neglecting the direct channel, in a constant-crossed field background, as is

commonly done in numerical simulations of laser-plasma interactions [22–24], and neglected

the interference between exchange diagrams. The possibility of suppressing the cascade

channel has also been discussed in [13] in the perturbative regime ξ ≪ 1 at ω0 ∼ 10 eV.

Relying on the laser field being (almost) monochromatic, in that regime the direct channel

is found to be either dominating or comparable with respect to the cascade channel for

different laser frequencies. Most recently, however, studies of NTPP in a constant crossed

field were amended to also include the exchange diagram interference [25], finding it to

further suppress the contribution of the direct channel for small quantum parameters χ.

Additionally, an investigation of the full probability of NTPP in an arbitrary plane wave

field revealed that for large ξ, the direct contribution as well as the interference between the

direct and cascade amplitudes are negligible [26], further supporting the basic assumption

underlying numerical particle-in-cell schemes to approximate NTPP as the product of the

probabilities for photon emission and pair production. Previous studies had mostly focused

on the cascade contribution, which was obtained by employing the optical theorem and the

two-loop mass operator [27–30].

The present work focuses on different formal aspects of the full NTPP amplitude in arbi-

trary plane wave fields. We put forward a scheme to analytically disentangle the direct and

the cascade channels of NTPP in an arbitrary plane wave field putting particular empha-

sis on the amplitude’s gauge invariance. We demonstrate how this disentanglement can be

employed to identify an explicit cascade contribution, facilitating to identify the remaining

parts as true second-order non-cascade contribution. We also show how on amplitude level

this split-up naturally yields a phase-ordered cascade and a direct contribution depending

only on one laser phase variable. Concerning the experimental observability, we indicate by

means of numerical simulations how in ultra-short laser pulses with ξ ≫ 1 the two channels

scale in the energy distribution of the produced positron and one of the electrons.
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FIG. 1. Lowest-order Feynman diagrams of NTPP.

II. THE TRANSITION AMPLITUDE

The background plane-wave field is described by the four-vector potential Aµ(φ), which

only depends on the light-cone time φ = t − n · x. Here, the unit vector n indicates

the propagation direction of the plane wave. By introducing the four-dimensional quantity

nµ = (1,n) and by recalling that the metric tensor reads ηµν = diag(+1,−1,−1,−1), it

is φ = (nx). Having in mind obvious differential properties of the four-vector potential

Aµ(φ) and its derivatives, it is clear that Aµ(φ) is a solution of the free Maxwell’s equation

�Aµ = 0, with � = ∂ν∂
ν . We also assume to work in the Lorenz-gauge ∂µA

µ = 0, with

the additional constraint A0(φ) = 0. Thus, if we represent Aµ(φ) in the form Aµ(φ) =

(0,A(φ)), then the Lorenz-gauge condition implies n ·A′(φ) = 0, with the prime indicating

the derivative with respect to φ. If we make the additional physically reasonable assumption

that limφ→±∞A(φ) = 0, it results that n ·A(φ) = 0. By also introducing two four-vectors

aµj = (0,aj), with j = 1, 2, such that (naj) = −n · aj = 0 and (aiaj) = −ai · aj = −δij ,
the most general form of the vector potential A(φ) reads A(φ) = ψ1(φ)a1+ψ2(φ)a2, where

the two functions ψj(φ) are arbitrary provided that limφ→±∞ ψj(φ) = 0 and that they are

analytically sufficiently well-behaved. By introducing ñµ = (1,−n)/2, it is clear that the

four-dimensional quantities nµ, ñµ, and aµj fulfill the completeness relation: ηµν = nµñν +

ñµnν − aµ1a
ν
1 − aµ2a

ν
2 (note that (nñ) = 1 and (ñaj) = 0). Below, we will refer to the

longitudinal (n) direction as the direction along the unit vector n and to the transverse

(⊥) plane as the plane spanned by the two perpendicular unit vectors aj. In this respect,

together with the light-cone time φ = t−xn, with xn = n·x, we also introduce the remaining

three light-cone coordinates T = (ñx) = (t + xn)/2, and x⊥ = (xa1 , xa2) = (x · a1,x · a2).

Analogously, the light-cone coordinates of an arbitrary four-vector vµ = (v0, v) will be

indicated as v− = (nv) = v0 − vn, with vn = n · v, v+ = (ñv) = (v0 + vn)/2, and v⊥ =

(va1 , va2) = (v · a1, v · a2).
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Now, the amplitude Sfi of nonlinear trident pair production in the Furry picture at the

leading order is given by (see Fig. 1 for the corresponding Feynman diagrams):

Sfi = ie2
∫

d4xd4y Ūpe,se(y)γ
µVpp,sp(y)Dµν(y − x)Ūpf ,sf (x)γ

νUpi,si(x)− {f ↔ e}, (1)

where γµ are the Dirac gamma-matrices and

Up,s(x) =

[

1 +
en̂Â(φ)

2p−

]

e
i

{

−(px)−
∫ φ

0
dϕ

[

e(pA(ϕ))
p−

−
e2A2(ϕ)

2p−

]}

up,s√
2ε
, (2)

Vp,s(x) =

[

1− en̂Â(φ)

2p−

]

e
i

{

(px)−
∫ φ

0
dϕ

[

e(pA(ϕ))
p−

+ e2A2(ϕ)
2p−

]}

vp,s√
2ε
. (3)

are the positive- and negative-energy Volkov states with on-shell four-momentum pµ = (ε,p)

and spin quantum number s [18], where

Dµν(y − x) =

∫

d4q

(2π)2
4π

q2 + i0
ηµνe−i(q(y−x)) (4)

is the photon propagator, and where the symbol {f ↔ e} indicates that the expression on its

left has to be subtracted with the quantum numbers pf , sf and pe, se exchanged according

to the Fermi-Dirac statistics. In the above expression of the Volkov states, we have assumed

a unit quantization volume, we have introduced the notation v̂ = γµvµ for an arbitrary

four-dimensional quantity vµ and the free bi-spinors up,s and vps, which are solutions of the

equations (p̂−m)up,s = 0 and (p̂+m)vp,s = 0, respectively [18].

By indicating with an index x and y the light-cone coordinates corresponding to each

vertex, due to the symmetry of the plane wave, it is possible to carry out the six integrations

on the transverse coordinates and on Tx and Ty, such that the amplitude Sfi has the form

Sfi =
ie2

k−

2π
√

16εiεfεeεp
(2π)3δ(pe,− + pf,− + pp,− − pi,−)δ

(2)(pe,⊥ + pf,⊥ + pp,⊥ − pi,⊥)

×
∫

dφxdφy

∫

dq+
2π

e−i[Spe(φy)−S−pp(φy)+Spf
(φx)−Spi

(φx)] e
−iq+(φy−φx)

q+ − k2
⊥

2k−
+ i0

× ūe

[

1− en̂Â(φy)

2pe,−

]

γµ
[

1− en̂Â(φy)

2pp,−

]

vpūf

[

1− en̂Â(φx)

2pf,−

]

γµ

[

1 +
en̂Â(φx)

2pi,−

]

ui

− {f ↔ e},

(5)

where

Sp(φ) = −p+φ−
∫ φ

0

dϕ

[

e(pA(ϕ))

p−
− e2A2(ϕ)

2p−

]

(6)
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where the single index in the bi-spinors indicates both the corresponding four-momentum

and the spin quantum numbers, and where k− = pi,− − pf,− = pe,− + pp,− and k⊥ =

pi,⊥−pf,⊥ = pe,⊥+pp,⊥. The integral in q+ can also be easily taken by means of the residue

method and the amplitude becomes

Sfi =
e2

√

16εiεfεeεp

2π

k−
(2π)3δ(pe,− + pf,− + pp,− − pi,−)δ

(2)(pe,⊥ + pf,⊥ + pp,⊥ − pi,⊥)

×
∫

dφxdφy θ(φy − φx)ūe

[

1− en̂Â(φy)

2pe,−

]

γµ
[

1− en̂Â(φy)

2pp,−

]

vp

× ūf

[

1− en̂Â(φx)

2pf,−

]

γµ

[

1 +
en̂Â(φx)

2pi,−

]

uie
−i[SBW (φy)+SC(φx)] − {f ↔ e},

(7)

where θ(·) is the step function and

SC(φ) =− k+φ+ Spf (φ)− Spi(φ)

=

∫ φ

0

dϕ

[

pi,+ − pf,+ − k+ +
e(piA)

pi,−
− e(pfA)

pf,−
− e2A2

2pi,−
+
e2A2

2pf,−

] (8)

SBW (φ) =k+φ+ Spe(φ)− S−pp(φ)

=

∫ φ

0

dϕ

[

k+ − pe,+ − pp,+ +
e(ppA)

pp,−
− e(peA)

pe,−
+
e2A2

2pp,−
+
e2A2

2pe,−

] (9)

are the phases of non-linear Compton scattering and of non-linear Breit-Wheeler pair pro-

duction, respectively. It is worth noticing that, after performing the integral in q+ the

four-momentum of the intermediate photon appears as being on-shell, i.e., k+ = k2
⊥/2k−.

Below, we will only consider the experimentally most relevant case of a linearly polar-

ized plane wave. Thus, we write the four-vector potential as Aµ(φ) = Aµ
0ψ(φ), such that

SC(φ) =
∫ φ

0
dϕ[αCψ(ϕ)+βCψ

2(ϕ)+γC ] and SBW (φ) =
∫ φ

0
dϕ[αBWψ(ϕ)+βBWψ

2(ϕ)+γBW ],

with

αC =
e(piA0)

pi,−
− e(pfA0)

pf,−
, αBW =

e(ppA0)

pp,−
− e(peA0)

pe,−
, (10)

βC =
e2A2

0

2

k−
pi,−pf,−

, βBW =
e2A2

0

2

k−
pe,−pp,−

, (11)

γC = pi,+ − pf,+ − k+, γBW = k+ − pe,+ − pp,+. (12)

From the expression of the amplitude Sfi in Eq. (7) once could think that the whole ampli-

tude only contains a contribution to the two-step channel or cascade process, as it contains a

phase-ordered double integral of the “product” of the nonlinear Compton scattering ampli-

tude and of the nonlinear Breit-Wheeler pair production amplitudes, both with the photon
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being on-shell. This is, however, not the case mainly because the amplitude Sfi contains

contributions from all polarizations of the intermediate photon, whereas the cascade pro-

cess only stems from photons having transverse polarization. Another reason is that the

amplitude in Eq. (7) is, on the one hand, still divergent because some terms do not contain

the external field in the pre-exponential function and, on the other hand, not manifestly

gauge-invariant. The first reason, though, is less fundamental in the sense that, in the case

of a constant-crossed field, it does not play a role because also the phase integrals which do

not contain the external field in the pre-exponential function do converge. In the present

case, precisely the phase integrals corresponding to these terms diverge.

First, we impose that the amplitude Sfi is manifestly gauge invariant by going back to the

expression in Eq. (5) and by requiring that the amplitude does not change if the tensor ηµν

in the photon propagator is replaced by ηµν + qµλν(q)+ qνλµ(q), where λµ(q) is an arbitrary

function of qµ and it is clear from the appearance of the energy-momentum conserving delta-

functions, that we can already assume here that q− = k− and q⊥ = k⊥ from the beginning.

Moreover, in order to obtain all the required regularization conditions for the integrals, it is

sufficient to assume that λµ(q) is a constant four-vector. Then, since QED is gauge invariant,

once the integrals are convergent, we can be confident that the resulting amplitude is gauge-

invariant. Now, one can easily show that by exploiting the energy-momentum conservation

laws: pµi + (k+ + pf,+ − pi,+)n
µ = pµf + kµ and kµ + (pe,+ + pp,+ − k+)n

µ = pµe + pµp , the

invariance of the amplitude under the mentioned gauge transformation is guaranteed if the

“regularizing” conditions

∫

dφψa(φ)e−i[SC(φ)+SBW (φ)]

= −i
∫

dφxdφy θ(φy − φx)[αCψ(φx) + βCψ
2(φx) + γC]ψ

a(φy)e
−i[SC(φx)+SBW (φy)],

(13)

∫

dφψb(φ)e−i[SC(φ)+SBW (φ)]

= i

∫

dφxdφy θ(φy − φx)[αBWψ(φy) + βBWψ
2(φy) + γBW ]ψb(φx)e

−i[SC(φx)+SBW (φy)],

(14)

with a, b = 0, 1, 2 are fulfilled. By introducing the quantities

fa =

∫

dφψa(φ)e−i[SC(φ)+SBW (φ)], (15)

fab =

∫

dφxdφy θ(φy − φx)ψ
a(φx)ψ

b(φy)e
−i[SC(φx)+SBW (φy)], (16)
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it is clear that, among all of them, only f0, f00, f01, f10, f02, and f20 need to be regularized.

The conditions in Eqs. (13,14) already guarantee that

f0j =
1

γC
(ifj − αCf1j − βCf2j), (17)

fj0 = − 1

γBW

(ifj + αBW fj1 + βBW fj2), (18)

with j = 1, 2. By subtracting now Eq. (13) and Eq. (14), we obtain that f00 = −(αCf10 +

βCf20 + αBW f01 + βBW f02)/(γC + γBW ) and, by exploiting the above regularizing relations

for f0j and fj0, that

f00 =
1

γCγBW

[

i
αCγC − αBWγBW

γC + γBW

f1 + i
βCγC − βBWγBW

γC + γBW

f2

+ αCαBW f11 + βCβBW f22 + αCβBW f12 + αBWβCf21

]

.

(19)

Finally, the regularization condition for f0 is obtained by summing Eq. (13) and Eq. (14)

as we obtain f0 = −(i/2)[(γC − γBW )f00 + αCf10 − αBW f01 + βCf20 − βBW f02] and then,

after some algebra,

f0 = − 1

γC + γBW

[(αC + αBW )f1 + (βC + βBW )f2]. (20)

Now that all integrals are regularized, we can appropriately replace the divergent integrals

in Eq. (7) and the regularized, explicitly gauge-invariant amplitude reads

Sfi =
e2

√

16εiεfεeεp

2π

k−
(2π)3δ(pe,− + pf,− + pp,− − pi,−)δ

(2)(pe,⊥ + pf,⊥ + pp,⊥ − pi,⊥)

×
〈

i

∫

dφ e−i[SBW (φ)+SC(φ)]

{

ūeγ
µvpūfγµui

γCγBW (γC + γBW )
[(αCγC − αBWγBW )ψ(φ)

+ (βCγC − βBWγBW )ψ2(φ)]

− ūfγµui
2γC

ūe

[

en̂Â(φ)

pe,−
γµ + γµ

en̂Â(φ)

pp,−
− e2A2(φ)n̂

pe,−pp,−
nµ

]

vp

+
ūeγµvp
2γBW

ūf

[

en̂Â(φ)

pf,−
γµ − γµ

en̂Â(φ)

pi,−
+
e2A2(φ)n̂

pf,−pi,−
nµ

]

ui

}

+

∫

dφxdφy θ(φy − φx)M
µ
BW (φy)MC,µ(φx)

〉

− {f ↔ e},

(21)
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where we have introduced the regularized integrands

Mµ
C(φ) = ūf

{

− γµ

γC
[αCψ(φ) + βCψ

2(φ)]− en̂Â(φ)

2pf,−
γµ + γµ

en̂Â(φ)

2pi,−

− e2A2(φ)n̂

2pf,−pi,−
nµ

}

uie
−iSC(φ),

(22)

Mµ
BW (φ) = ūe

{

− γµ

γBW

[αBWψ(φ) + βBWψ
2(φ)]− en̂Â(φ)

2pe,−
γµ − γµ

en̂Â(φ)

2pp,−

+
e2A2(φ)n̂

2pe,−pp,−
nµ

}

vpe
−iSBW (φ)

(23)

of the amplitudes of nonlinear Compton scattering and nonlinear Breit-Wheeler pair pro-

duction, respectively [it is clear that the substitution e ↔ f has to be carried out also

inside these amplitudes in Eq. (21)]. The gauge-invariant expression (21) of the ampli-

tude Sfi is already close to the separation between one-step (direct) channel and two-step

(cascade) channel that we want to obtain. As we have already mentioned, we still need

to isolate in the cascade amplitude only the contribution due to the two transverse polar-

izations of the intermediate photon. It is convenient to construct a light-cone basis with

the light-like quantities kµ and nµ, and with the two transverse polarization four-vectors

Λµ
j = (nµaνj − nνaµj )kν/k−. In fact, all these quantities fulfill the completeness relation

ηµν = (nµkν + nνkµ)/k− −Λµ
1Λ

ν
1 −Λµ

2Λ
ν
2 and we can replace this expression of ηµν in all the

Lorentz contractions in Eq. (21). The result is

Sfi =
e2

√

16εiεfεeεp

2π

k−
(2π)3δ(pe,− + pf,− + pp,− − pi,−)δ

(2)(pe,⊥ + pf,⊥ + pp,⊥ − pi,⊥)

×
〈

i

∫

dφ e−i[SBW (φ)+SC(φ)]

{

2

k−

ūen̂vpūf n̂ui
γC + γBW

[(αC + αBW )ψ(φ) + (βC + βBW )ψ2(φ)]

−
∑

j

ūeΛ̂jvpūf Λ̂jui
γCγBW (γC + γBW )

[(αCγC − αBWγBW )ψ(φ) + (βCγC − βBWγBW )ψ2(φ)]

+
∑

j

ūf Λ̂jui
2γC

ūe

[

en̂Â(φ)Λ̂j

pe,−
+
eΛ̂jn̂Â(φ)

pp,−

]

vp −
ūeΛ̂jvp
2γBW

ūf

[

en̂Â(φ)Λ̂j

pf,−
− eΛ̂jn̂Â(φ)

pi,−

]

ui

}

−
∑

j

∫

dφxdφy θ(φy − φx)[MBW,µ(φy)Λ
µ
j ][MC,ν(φx)Λ

ν
j ]

〉

− {f ↔ e},

(24)

It should be noticed that the gauge invariance of the amplitude Sfi does not imply that the

contribution of the terms proportional to nµkν and to nνkµ vanishes. In fact, the requirement

of gauge invariance has been already exploited and is related to the intermediate photon with
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four-momentum qµ. Indeed, one can show that if one first constructs a basis with the four

quantities qµ, nµ and Λ′µ
j = (nµaνj − nνaµj )qν/q−, separates out the transverse polarization

contribution (notice that after the integrals over the transverse and the T coordinates are

taken, one obtains Λ′µ
j = Λµ

j ), and then imposes gauge-invariance, one again obtains Eq.

(24).

The result in Eq. (24) is our main analytical result. By introducing the reduced ampli-

tudes for the direct and the cascade channels as

Md =i

∫

dφ e−i[SBW (φ)+SC (φ)]

{

2

k−

ūen̂vpūf n̂ui
γC + γBW

[(αC + αBW )ψ(φ) + (βC + βBW )ψ2(φ)]

−
∑

j

ūeΛ̂jvpūfΛ̂jui
γCγBW (γC + γBW )

[(αCγC − αBWγBW )ψ(φ) + (βCγC − βBWγBW )ψ2(φ)]

+
∑

j

ūf Λ̂jui
2γC

ūe

[

en̂Â(φ)Λ̂j

pe,−
+
eΛ̂jn̂Â(φ)

pp,−

]

vp −
ūeΛ̂jvp
2γBW

ūf

[

en̂Â(φ)Λ̂j

pf,−
− eΛ̂jn̂Â(φ)

pi,−

]

ui

}

− {f ↔ e},

(25)

Mc = −
∑

j

∫

dφxdφy θ(φy − φx)[MBW,µ(φy)Λ
µ
j ][MC,ν(φx)Λ

ν
j ]− {f ↔ e}, (26)

we can write the differential trident probability dP summed/averaged over all final/initial

spin quantum number and integrated over the final electrons’ momenta as

dP =
α2π2

4

1

pi,−

d3pp

(2π)3
1

2εp

∑

si,sf ,se,sp

∫

d3pe

(2π)3
1

2εe

1

k2−pf,−

[

|Md|2 + |Mc|2 + 2Re(M∗
dMc)

]

(27)

where we have exploited the three-dimensional delta-function in the amplitude to take the

integral in d3pf and where α = e2 is the fine-structure constant. It is worth pointing

out that the probability corresponding to the term |Mc|2 in the integrand should not be

identified yet with the cascade probability. The reason is that the quantity |Mc|2 contains

interference terms between different (transverse) polarizations of the intermediate photon

and interference terms between the two amplitudes differing by the exchange of the quantum

numbers of the two final electrons. In order to clearly isolate what we will call the cascade

probability, which reduces to the one computed in [27–30] in the case of a constant crossed

10



field, we decompose the direct and the cascade amplitudes as

Md =M
(ef)
d,n +M

(ef)
d,1 +M

(ef)
d,2 −M

(fe)
d,n −M

(fe)
d,1 −M

(fe)
d,2 , (28)

Mc =M
(ef)
c,1 +M

(ef)
c,2 −M

(fe)
c,1 −M

(fe)
c,2 , (29)

with the definition of each single term being clear from the expression in Eqs. (25) and

(26) [for the sake of clarity we specify that the term M
(ef)
d,n corresponds to the second line in

Eq. (24) and that the indexes 1, and 2 refer to the different transverse polarizations of the

intermediate photon]. According to this splitting of the amplitude, we write the differential

probability as dP = dPc + dPd + dPi, where

dPc =
α2π2

4

1

pi,−

d3pp

(2π)3
1

2εp

∑

si,sf ,se,sp

∫

d3pe

(2π)3
1

2εe

1

k2−pf,−

×
[

|M (ef)
c,1 |2 + |M (ef)

c,2 |2 + |M (fe)
c,1 |2 + |M (fe)

c,2 |2
]

=
α2π2

2

1

pi,−

d3pp

(2π)3
1

2εp

∑

si,sf ,se,sp

∫

d3pe

(2π)3
1

2εe

1

k2−pf,−

[

|M (ef)
c,1 |2 + |M (ef)

c,2 |2
]

(30)

is the cascade-channel probability,

dPd =
α2π2

4

1

pi,−

d3pp

(2π)3
1

2εp

∑

si,sf ,se,sp

∫

d3pe

(2π)3
1

2εe

1

k2−pf,−

×
[

|M (ef)
d,n |2 + |M (ef)

d,1 |2 + |M (ef)
d,2 |2 + |M (fe)

d,n |2 + |M (fe)
d,1 |2 + |M (fe)

d,2 |2
]

=
α2π2

2

1

pi,−

d3pp

(2π)3
1

2εp

∑

si,sf ,se,sp

∫

d3pe

(2π)3
1

2εe

1

k2−pf,−

[

|M (ef)
d,n |2 + |M (ef)

d,1 |2 + |M (ef)
d,2 |2

]

(31)

is the direct-channel probability, and dPi = dP − dPc − dPd is the sum of the several

interference terms, which do not need to be reported here (since dPi can be negative we

have used a different symbol to indicate it). Before passing to the numerical results, we

would like to show explicitly how the quantity Pc =
∫

dPc, with the integral being meant

to be over the positron momentum [see Eq. (30)], reduces to the cascade probability in the

local constant field approximation (see [27–30]). Since in Eq. (30) we decided to write the

probability in terms of M
(ef)
c,j , we consider the following one-vertex processes:

1. nonlinear Compton scattering by an electron with four-momentum pµi and spin quan-

tum number si which emits a (real) photon with four-momentum kµ and (transverse)

polarization j and remains with four-momentum pµf and spin quantum number sf ;

11



2. nonlinear Breit-Wheeler pair production by a (real) photon with four-momentum

kµ and (transverse) polarization j, which transforms into an electron with four-

momentum pµe and spin quantum number se and a positron with four-momentum pµp

and spin quantum number sp;

The regularized probability amplitudes of these two processes can be written as

SC,j =− ie

√

4π

8εiεfω
(2π)3δ(pf,− + k− − pi,−)δ

(2)(pf,⊥ + k⊥ − pi,⊥)

∫

dφxMC,ν(φx)Λ
ν
j ,

(32)

SBW,j =− ie

√

4π

8εeεpω
(2π)3δ(pe,− + pp,− − k−)δ

(2)(pe,⊥ + pp,⊥ − k⊥)

∫

dφyMBW,ν(φy)Λ
ν
j ,

(33)

and we compare these amplitudes with the cascade amplitude

S
(ef)
c,j =− e2

√

(4π)2

64εiεfω2εeεp

ω

k−
(2π)3δ(pe,− + pf,− + pp,− − pi,−)δ

(2)(pe,⊥ + pf,⊥ + pp,⊥ − pi,⊥)

×
∫

dφxdφy θ(φy − φx)[MBW,µ(φy)Λ
µ
j ][MC,ν(φx)Λ

ν
j ]

(34)

corresponding to the partial amplitude M
(ef)
c,j . In order to calculate the transition probabil-

ities, we have to square the delta-functions and it is convenient first to use the transforma-

tions (we have implicitly employed the last of these transformations already above when we

computed the differential probability dP )

δ(pf,− + k− − pi,−) =
εi
pi,−

δ(pi,n − p̄i,n), (35)

δ(pe,− + pp,− − k−) =
ω

k−
δ(kn − k̄n), (36)

δ(pe,− + pf,− + pp,− − pi,−) =
εi
pi,−

δ(pi,n − p̄′i,n) (37)

to the corresponding longitudinal components of the momenta, where the exact expressions

of the quantities p̄i,n, k̄n, and p̄
′
i,n are not necessary here. By computing the modulus square

12



of the above amplitudes, we obtain the following probabilities

dPC,j

dk3
=
e2

2

1

(2π)3

∑

si,sf

∫

d3pf

(2π)3
ω

k−

εi
pi,−

(2π)3δ(3)(k − k0)

∣

∣

∣

∣

∫

dφxMC,ν(φx)Λ
ν
j

∣

∣

∣

∣

2

, (38)

PBW,j = e2
∑

se,sp

∫

d3pp

(2π)3
ω

k−

εe
pe,−

∣

∣

∣

∣

∫

dφyMBW,µ(φy)Λ
µ
j

∣

∣

∣

∣

2

, (39)

P
(ef)
c,j =

e4

2

∑

si,sf ,se,sp

∫

d3pp

(2π)3

∫

d3pf

(2π)3
ω2

k2−

εi
pi,−

εe
pe,−

×
∣

∣

∣

∣

∫

dφxdφy θ(φy − φx)[MBW,µ(φy)Λ
µ
j ][MC,ν(φx)Λ

ν
j ]

∣

∣

∣

∣

2

.

(40)

Note that, in order to calculate the cascade probability out of the two probabilities of non-

linear Compton scattering and nonlinear Breit-Wheeler pair production, one needs initially

only the differential probability of nonlinear Compton scattering in the photon momentum.

In this respect, it was convenient to write the three-dimensional delta-function in terms of

the emitted photon momentum and, as above, the expression of the momentum k0 is not

needed. Also, we observe that it makes physical sense to talk about a cascade process only

when the probabilities can be expressed as integrals over laser phases (or times for external

fields of different structures) of corresponding probabilities per unit phase (time), which

depend only on the local value of the plane wave (external field) at that phase (time). We

now first focus on the one-vertex processes and thus imagine to work in the local constant

crossed field limit where the classical nonlinearity parameter ξ is very large. When we square

the amplitude, for example, of nonlinear Compton scattering, we obtain a double integral in

φx and, say, φ′
x [see Eq. (32)]. Since in the local constant crossed field limit the dominant

contribution to the probabilities comes from the region where the quantity |φ′
x−φx| is much

smaller (by a factor of the order of 1/ξ) than the laser central period [16, 31], it is convenient

to pass to the variables φx,+ = (φ′
x+φx)/2 and φx,− = φ′

x−φx and expand the integrand with

respect to φx,−. The procedure is well known [see, e.g., [32]] and it is not necessary to re-

port the details here. It is important to point out that the probability of nonlinear Compton

scattering in this limit can be written in the form dPC,j/dk
3 =

∫

dφx,+dPC,j(φx,+)/dφx,+dk
3,

where

dPC,j(φx,+)

dφx,+dk3
=
e2

2

1

(2π)3

∑

si,sf

∫

d3pf

(2π)3
ω

k−

εi
pi,−

(2π)3δ(3)(k − k0)

×
∫

dφx,−[MC,ν(φx,+ − φx,−/2)Λ
ν
j ][M

∗
C,ν′(φx,+ + φx,−/2)Λ

ν′

j ],

(41)
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with dPC,j(φx,+)/dφx,+dk
3 being a non-negative quantity (in this limit) depending only on

the plane-wave electromagnetic field calculated at φx,+. Analogously, one can write in the

same limit that PBW,j =
∫

dφy,+PBW,j(φy,+)/dφy,+, where

dPBW,j(φy,+)

dφy,+

=e2
∑

se,sp

∫

d3pp

(2π)3
ω

k−

εe
pe,−

×
∫

dφy,−[MBW,µ(φy,+ − φy,−/2)Λ
µ
j ][M

∗
BW,µ′(φy,+ + φy,−/2)Λ

µ′

j ],

(42)

with φy,+ = (φ′
y+φy)/2 and φy,− = φ′

y−φy. Now, it is clear that the total cascade probability

P̃c calculated out of the two elementary processes of nonlinear Compton scattering and

nonlinear Breit-Wheeler pair production is given by

P̃c =
∑

j

∫

d3k

∫

dφx,+dφy,+θ(φy,+ − φx,+)
dPBW,j(φy,+)

dφy,+

dPC,j(φx,+)

dφx,+dk3

=
e4

2

∑

j

∑

si,se,sf ,sp

∫

dφx,+dφy,+θ(φy,+ − φx,+)

∫

d3pp

(2π)3

∫

d3pf

(2π)3
ω2

k2−

εi
pi,−

εe
pe,−

×
∫

dφy,−dφx,−[MBW,µ(φy,+ − φy,−/2)Λ
µ
j ][M

∗
BW,µ′(φy,+ + φy,−/2)Λ

µ′

j ]

× [MC,ν(φx,+ − φx,−/2)Λ
ν
j ][M

∗
C,ν′(φx,+ + φx,−/2)Λ

ν′

j ].

(43)

Now, looking back at Eq. (40) and imagining to perform the sum over j and then work in

the local constant field limit, we easily realize that that equation coincides with Eq. (43) if

the approximation θ(φy − φx)θ(φ
′
y − φ′

x) ≈ θ(φy,+ − φx,+) holds in the same limit. In fact,

the amplitudes of the elementary processes (nonlinear Compton scattering and nonlinear

Breit-Wheeler pair production) are exactly the same [and given by Eqs. (22,23)] and the

limiting procedure is the same for both equations. The above approximate identity between

theta-functions can be proved starting from the identity θ(a)θ(b) = θ(ab)θ(a + b) valid for

any pair of real numbers a and b, which in our case provides the identity

θ(φy − φx)θ(φ
′
y − φ′

x) = θ(φy,+ − φx,+)θ((φy − φx)(φ
′
y − φ′

x)). (44)

Now, we use the identity θ(ab) = 1− [θ(a)− θ(b)]2 = 1− θ(|a− b|/2− (a+ b)/2) to finally

obtain

θ(φy − φx)θ(φ
′
y − φ′

x) = θ(φy,+ − φx,+)

[

1− θ

( |φy,− − φx,−|
2

− (φy,+ − φx,+)

)]

, (45)

which approximately turns into the needed equality once we observe that in the local constant

field limit we can neglect the small quantity |φy,− −φx,−|/2. One can alternatively define as

cascade term only the one coming from the first term in Eq. (45), which is still exact.
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FIG. 2. Spherical coordinate frame in which we study the NTPP process with the polar and

azimuthal emission angles (θs, φs), respectively, indicated.

III. NUMERICAL INVESTIGATIONS

In the following we wish to exemplify our analytical findings in a series of numerical test

cases. We consider a linearly polarized laser pulse propagating along the z-axis, which we

additionally assume to collide head-on with an ultrarelativistic electron (see Fig. 2). We then

fix the observation directions of the positron and one of the final state electrons and present

numerical integrations of the fully differential energy distribution of the NTPP probability

for observations in these fixed directions. As we are considering a linearly polarized laser

pulse, we expect most of the classical particle dynamics and positron production to occur on

the plane identified by the laser propagation direction and the laser polarization direction.

In a spherical coordinate frame (see Fig. 2) this plane is denoted by the x-z plane, whence we

focus most of our discussion on observing particles in either φs = 0 or φs = π. Furthermore,

we note that in the regime εi, ω ≫ mξ, as we study here, final state particles in nonlinear

Compton scattering and NBWPP are angularly confined around the initial state electron’s

and photon’s propagation direction, respectively, to a narrow cone of opening angle θs ∼
mξ/εi and θs ∼ mξ/ω, respectively. We thus observe the final state particles of NTPP in

a direction close to the initial state electron’s propagation direction, in a head-on collision

along the z-axis given by θs = π.

We begin by studying a case typical of nowadays feasible all-optical experiments in which

an electron of initial energy εi = 1 GeV collides with a laser pulse of intensity I = 2 ×
1021 W/cm2 (ξ ≈ 22), yielding a comparatively small quantum nonlinearity parameter

χ ≈ 0.25. We find the total emission rate to be completely dominated by the cascade

process (see Fig. 3 b) and c)), with the direct contribution suppressed by about 5 orders of

magnitude (see Fig. 3 a)). The dominance of the cascade contribution is even more obvious
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FIG. 3. Differential NTPP probability of direct (a), cascade (b) and full (c) channels for the collision

of an electron with initial energy εi = 1 GeV with a laser pulse of intensity I = 2×1021 W/cm2 (ξ ≈

22, χ ≈ 0.25), the positron observed at (θs, φs) = (π − mξ/εi, π/2) and one of the electrons at

(θs, φs) = (π −mξ/εi, 0). The relative error of the cascade approximation R is shown in (d).

from studying the relative error made by approximating the total NTPP probability with

the cascade contribution, distinguished by the parameter

R =
dP − dPc

dP
. (46)

In the current case we find this parameter to be of percent-level in the particle energy regime

where the direct channel is strongest. However, we note that the deviation is not a pure

contribution of the direct channel, but an interference effect. Furthermore, we find the

probability of NTPP to be centered around the symmetry axis of the energy distribution,

indicating that all three final state particles share a comparable amount of energy.

We continue by studying a case deeper in the nonlinear quantum regime in which an elec-

tron of initial energy εi = 5 GeV collides with a laser pulse of intensity I = 1022 W/cm2 (ξ ≈
50), yielding a larger quantum nonlinearity parameter χ ≈ 3, likely to be close to the opti-

mum operation parameters for upcoming laser facilities. Due to the increased laser intensity,

we find the total emission rate to be even more strongly dominated by the cascade process

(see Fig. 4 b) and c)), with the direct contribution’s suppression increased to 7 orders of

magnitude (see Fig. 4 a)) and contributing only at the smallest final state particle energies.

The relative error of the cascade approximation is consequently found to be most significant

at small final state particle energies, where the direct channel is strongest, but to be overall
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FIG. 4. Differential NTPP probability of direct (a), cascade (b) and full (c) channels for the collision

of an electron with initial energy εi = 5 GeV with a laser pulse of intensity I = 1022 W/cm2 (ξ ≈

50, χ ≈ 3), the positron observed at (θs, φs) = (π − mξ/εi, π/2) and one of the electrons at

(θs, φs) = (π −mξ/εi, 0). The relative error of the cascade approximation R is shown in (d).

small on the level of a per mill (s. fig. 4 d)).

These findings further corroborate the common approximation of higher order nonlinear

QED effects, notably NTPP, by their incoherent contributions [22, 23]. In order to explore

the limitations of this approximation, we turn to a parameter regime where its applicability is

expected to be less justified. We study a regime with a high quantum nonlinearity parameter

but relatively small laser intensity [15, 25]. Consequently, we consider the initial electron

to have a very high energy of εi = 100 GeV. In combination with a laser intensity of

I = 2 × 1021 W/cm2 (ξ ≈ 22) this results in a quantum nonlinearity parameter of χ ≈ 26.

Analyzing now the direct contribution on the same scale as the cascade and full contributions,

we find its impact to be no longer negligible at low particle energies (see Fig. 5). Furthermore,

we find larger positron than electron energies to be favored in this regime, as apparent from

the asymmetric distributions of the energy spectra (see Fig. 5 a), b), c)). Interestingly, in

the cascade contribution we also find considerable interference fringes, depending almost

exclusively on the electron’s energy (see Fig. 5 b)). This is most probably due to the fact

that the final state contains two indistinguishable electrons whose distributions can interfere.

The relative error of the cascade approximation, on the other hand, is found to reach the

level of 100% for small final state particle energies (see Fig. 5 d)), indicating that at these
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FIG. 5. Differential NTPP probability of direct (a), cascade (b) and full (c) channels for the

collision of an electron with initial energy εi = 100 GeV with a laser pulse of intensity I =

2× 1021 W/cm2 (ξ ≈ 22, χ ≈ 26), the positron observed at (θs, φs) = (π−mξ/εi, π) and one of the

electrons at (θs, φs) = (π −mξ/εi, 0). The relative error of the cascade approximation R is shown

in (d).

extreme parameters the cascade approximation starts to lose applicability.

We can even further enhance the visibility of the direct channel by considering a lower

laser intensity. Furthermore, as a semi-classical picture of NTPP predicts the particle pro-

duction to be mostly confined to the laser’s plane of polarization, we can expect to observe

stronger deviations from the cascade model, by observing one of the electrons inside the

polarization plane (θs, φs) = (π −mξ/εi, 0) but the positron in a direction perpendicularly

to this plane (θs, φs) = (π−mξ/εi, π/2). We note, however, that for smaller initial electron

energies observing the positron perpendicularly to the laser’s plane of polarization does not

result in a significant contribution from the direct channel (see Fig. 3). For a large initial

electron energy of εi = 100 GeV, on the other hand, we indeed find that in the collision

with a laser pulse of intensity I = 5× 1020 W/cm2 (ξ ≈ 11, χ ≈ 13), the direct contribution

is more pronounced in comparison to the cascade channel (see Fig. 6 a)). Again, we find

the cascade channel’s interference fringes to depend dominantly on the electron’s energy

(see Fig. 6 b)). In the full NTPP probability, however, at small final state particle energies

we find the interference fringes to exhibit a dependence on the positron’s energy as well.

This is a clear indication that the direct channel and interference terms between exchange
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FIG. 6. Differential NTPP probability of direct (a), cascade (b) and full (c) channels for the

collision of an electron with initial energy εi = 100 GeV with a laser pulse of intensity I =

5 × 1020 W/cm2 (ξ ≈ 11, χ ≈ 13), the positron observed at (θs, φs) = (π − mξ/εi, π/2) and one

of the electrons at (θs, φs) = (π −mξ/εi, 0). The relative error of the cascade approximation R is

shown in (d).

diagrams start to affect the overall NTPP rate (see Fig. 6 c)). Furthermore, we find the

total NTPP signal to be significantly enhanced at low particle energies, as is also apparent

from the relative error R, which is significant for low particle energies (see Fig. 6 d)).

IV. CONCLUSIONS

We have derived a novel splitting of the full scattering matrix amplitude of NTPP in a

plane wave of arbitrary shape into a cascade and direct contribution. We found the cascade

probability to reduce to the common product of nonlinear Compton scattering and Breit-

Wheeler pair production probabilities in the case of a constant crossed field and isolated

the contributions of non-cascade parts to NTPP. By squaring the amplitudes we found the

observable probabilities for NTPP via the cascade and direct channels and analyzed the

latter in exemplary cases. Our numerical analyses further confirmed the applicability of the

cascade approximation of NTPP at low initial electron energies and high laser intensities,

but also indicated that at high initial electron energies, non-cascade contributions may affect

the overall NTPP rate.

19



ACKNOWLEDGMENTS

The authors acknowledge fruitful discussions with C. H. Keitel, B. King and C. Müller.

[1] V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Mat-

suoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick,

Opt. Express 16, 2109 (2008).

[2] C. Danson, P. Brummitt, R. Clarke, J. Collier, B. Fell, A. Frackiewicz, S. Hancock, S. Hawkes,

C. Hernandez-Gomez, P. Holligan, M. Hutchinson, A. Kidd, W. Lester, I. Musgrave, D. Neely,

D. Neville, P. Norreys, D. Pepler, C. Reason, W. Shaikh, T. Winstone, R. Wyatt, and

B. Wyborn, Nucl. Fusion 44, S239 (2004).

[3] G.A. Mourou, G. Korn, W. Sandner and J.L. Collier (editors),

Extreme Light Infrastructure - Whitebook (Andreas Thoss, 2011).

[4] XCELS http://www.xcels.iapras.ru/.
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