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We develop an analytical model for ultraintense attosecond pulse emission in the highly relativis-
tic laser-plasma interaction. In this model, the attosecond pulse is emitted by a strongly compressed
electron layer around the instant when the layer transverse current changes the sign and its longitu-
dinal velocity approaches the maximum. The emitted attosecond pulse has a broadband exponential
spectrum and a stabilized constant spectral phase ψ(ω) = ±π/2 − ψAm . The waveform of the at-
tosecond pulse is also given explicitly, to our knowledge, for the first time. We validate the analytical
model via particle-in-cell (PIC) simulations for both normal and oblique incidence. Based on this
model, we highlight the potential to generate an isolated ultraintense phase-stabilized attosecond
pulse.

I. INTRODUCTION

An ultrashort pulse with atomic unit of timescale
(24as) can be used as a camera to capture ultrafast elec-
tron dynamics in atoms, molecules and condensed mat-
ters, enabling highly time-resolved studies of many fun-
damental physical processes [1, 2]. Since the demonstra-
tion of attosecond pulse emission from high-order har-
monic generation (HHG) in gas jets [3], remarkable de-
velopments in attosecond metrology have been utilized
in extensive research areas from atomic physics to bi-
ology science [4]. However, due to small photon flux
and low photon energy of attosecond pulses generated in
gaseous HHG [5], the application of attosecond metrology
is so far limited to low-energy physical processes in ex-
treme ultraviolet regime. Besides, the poor phase match-
ing in gaseous HHG results in attosecond pulses with
broad duration [6] and uncontrollable waveforms, both
of which restrict the temporal resolution of attosecond
metrology [7]. In order to extend attosecond metrology
to high-energy physical processes in x-ray regime with
unprecedented temporal resolution, the attosecond pulse
with ultrahigh intensity, ultrabroad bandwidth and sta-
bilized spectral phase is required, which can be achieved
from HHG via ultra-relativistic laser-plasma interaction.
Plasma HHG originates from the nonlinear interac-

tion of the electron current with a linearly polarized
laser pulse at the laser-plasma interface [8]. Contrary
to gaseous HHG in which incident laser intensities are
limited to be much lower than relativistic intensity, i.e.
Il ≪ 1018 W/cm2 corresponding to a0 = eEl/mecωl ≪ 1,
due to the strong ionization of gaseous media [5], much
brighter harmonic photon flux can be emitted in plasma
HHG by employing highly relativistic laser pulses a0 ≫ 1,
where Il, El and ωl are the laser intensity, electric field
and frequency, e and me denote the electron charge and
mass, c is the light speed in vacuum. As the strong laser
ponderomotive force compresses the surface electrons
into a layer with nanometer thickness ∆x ∼ 1nm [9],
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the collective electron current in the layer guarantees the
coherence of harmonics up to ω ∼ 1/∆x ∼ 1keV. In
the highly relativistic regime, plasma HHG is temporally
locked around the so-called “γ-spike” node where the
plasma surface longitudinal velocity approaches the max-
imum [10], which insures the synchronization of the emis-
sion of different harmonics and results in much smaller
phase chirp than that in gaseous HHG [6, 11]. By filtering
out low-order harmonics in the phase-locking spectrum, a
temporally coherent attosecond pulse train or an isolated
attosecond pulse can be obtained [12–14].

The physics behind plasma HHG has been exten-
sively investigated with different models [15–19]: coher-
ent wake emission (CWE), relativistically oscillating mir-
ror (ROM), coherent synchrotron emission (CSE) and
relativistic electron spring (RES). These models are asso-
ciated and characterized by distinctive harmonic proper-
ties: spectrum, divergence and phase [10, 11, 17, 20, 21].
The relative dominance of each model in the interaction
depends on laser intensity, plasma density and interac-
tion geometry. Generally, the CWE model dominates in
the nonrelativistic or mildly relativistic regime (a0 . 1)
with oblique incidence on a proper plasma gradient, and
in the relativistic regime (a0 > 1), plasma HHG can be
explained by the ROM model, while in the highly rela-
tivistic regime (a0 ≫ 1) the CSE and RES models are
prominent with a strongly compressed electron layer at
the plasma surface. Although the emission of attosec-
ond pulse based on these models has been predicted,
the explicit waveform of the attosecond pulse, which re-
lates straightforwardly to the applications of attosecond
metrology and the plasma dynamical processes of the
emission, has not been discussed in the literature so far.

In this paper, we develop a theoretical model for ultra-
intense attosecond pulse emission in the ultra-relativistic
laser-plasma interaction. In Sec.II, we first introduce the
theoretical model and then derive the intensity spectrum,
spectral phase and analytical waveform of the emitted
attosecond pulse. In Sec. III, simulation results are pro-
vided to validate the theoretical model. At the end, a
brief summary is given. Hereafter, unless specifically
stated, dimensionless quantities are used: ne = ne/nc,
t = ωlt, x = klx, β = v/c, ωn = ωn/ωl, I = I/Ir,
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J = J/(ecnc), E = eE/(mecωl), B = eB/(meωl),
where the plasma critical density nc = ω2

l ǫ0me/e
2 =

1.742× 1021cm−3 and the relativistic laser intensity Ir =
cǫ0(mecωl/e)

2 = 4.276× 1018W/cm2 for the laser wave-
length λl = 0.8µm.

II. THEORETICAL MODEL

A. Model description

In Fig. 1, we illustrate the evolution of the electron
number density (a) and current density (b) at the plasma
front surface irradiating by a highly relativistic laser
pulse (a0 = 40). As shown, the plasma electrons are ex-
tremely compressed by the laser ponderomotive force into
an ultradense layer with nanometer thickness [9]. This
electron layer is crucial for the physics of laser-plasma in-
teraction [19] and dominates the plasma radiation. The
strong charge separation field formed due to the elec-
tron compression would effectively accelerate the elec-
tron layer toward the incident field to emit an intense
attosecond pulse [14, 18]. By tracing the pulse emission
along the retardation relation t′+x′ = t+x, where (x, t)
and (x′, t′) denote the spatio-temporal points of the field
detector and the plasma emitter, two characters of the
pulse emission can be illuminated:

(i) In Fig. 1 (b), the pulse emission happens around
the instant when the transverse current changes its
sign, i.e. Jy ≈ 0 corresponding to βely ≈ 0. At

this instant, the layer longitudinal velocity βelx ap-
proaches its maximum in Fig. 1 (d). We wish to
stress that the condition: βelx ≈ −1 is very impor-
tant for the simplification of the derivations below,
but will not affect the waveform of the attosecond
pulse. The transverse current changing its sign dur-
ing the emission results in the emitted pulse with
an odd-functioned waveform.

(ii) In Fig. 1 (c), we find that the pulse is mainly emit-
ted by the compressed electron layer. The layer
spatial distribution f [x′−x′el(t

′)] can be represented
by δ[x′ − x′el(t

′)] for coherent emissions with the
wavelength λω much larger than the layer thickness
∆x, i.e. λω ≫ ∆x. We approximate the surface
current for coherent emissions as

Jy(x
′, t′) ≈ −nel(t

′)βely (t
′)δ[x′ − x′el(t

′)] , (1)

where x′el(t
′), βely (t

′) and nel(t
′) are the location,

transverse velocity and areal density of the electron
layer, respectively.

The radiation field from a current distribution in 1D
geometry can be expressed as

Ery(x, t) = −
1

2

∫ +∞

−∞

dx′Jy (x
′, t′) , (2)

FIG. 1. 1D PIC simulation of the pulse emission process.
Contour of the evolution of the electron number density ne
(a) and current density Jy (b) at the plasma front surface
overlaid with the retardation paths of the pulse centers (t′ =
x + t − x′, red and black lines for the 1st and 2nd pulses
in Fig. 2 respectively.). Along the paths, we can trace the
formation of the pulses Ey(x, t) ∝

∫
Jy(x

′, x+ t− x′)dx′. (c)
Electron density ne along the retardation paths. (d) Velocities
[βx = −Jx/(enec), βy = −Jy/(enec)] of the electron current
along the retardation paths. At the emission node (green
stars) where βy ≈ 0, the longitudinal velocity βx approaches
the maximum (βmx = −0.8518 for the 1st pulse and βmx =
−0.8287 for the 2nd pulse). The emission nodes in (a), (b)
and (c) are also labeled by green stars. In (a) and (b), the
solid-line parts of the retardation paths represent the pulse
propagation after emissions, and the dashed-line parts denote
the formation of the pulses in the plasma. Normal incident
geometry (θ = 0) is employed. The laser has a step-like profile
with the amplitude a0 = 40 ,and the plasma has no pre-
gradient with the constant density n0 = 200nc. Ions are free.
The laser arrives the plasma surface at (t = 0, x = 0).

where the subscript y denotes the direction of the laser
electric field. Inserting Eq. (1) into Eq. (2), we obtain

Ery(x, t) =
1

2

∫ +∞

−∞

dx′nel(t
′)βely (t

′)δ[x′ − x′el(t
′)]

=
1

2

∫ +∞

−∞

dX
nel(t

′)βely (t
′)

1 + βelx (t
′)
δ(X )

=
nel(t

′)[1− βelx (t
′)]

2

βely (t
′)

1− [βelx (t
′)]2

∣∣∣∣∣
X=0

, (3)

here we replace the argument of the δ-function with X =
x′ − x′el(t

′). Because of the retardation relation t′ + x′ =
t+ x⇒ dt′ = −dx′, we can have dX = dx′ − βelx (t

′)dt′ =
[1+βelx (t

′)]dx′, signifying that X is a monotonic function
of x′. Therefore, we can substitute the integral variable
with dx′ = dX/[1 + βelx (t

′)]. The condition X = 0 gives
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a new retardation relation:

t+ x = t′ + x′el(t
′) . (4)

Making use of the general relation γ ≡ (1 − β2
x −

β2
y)

−1/2 ⇒ (1 − β2
x)

−1 ≡ γ2[1 + (γβy)
2]−1, we can reach

Ery(x, t) =
nel(1− βelx )γel

4

2pely
1 + (pely )

2

∣∣∣∣∣
t+x=t′+x′

el
(t′)

, (5)

where γel(t
′) and pely (t

′) = γel(t
′)βely (t

′) are the Lorentz
factor and transverse momentum of the electron layer,
respectively.
Since the layer transverse current passes through the

zero node during the pulse emission and the emission is
on the attosecond time scale, the transverse momentum
pely of the electron layer in the pulse emission process can
be approximated in the first order:

pely = ∆t′
dpely
dt′

∣∣∣∣∣
t′=t′

0

=
∆t

1 + βelx (t
′

0)

dpely
dt′

∣∣∣∣∣
t′=t′

0

, (6)

here ∆t′ is the short time duration around the node where
pely (t

′

0) = 0, and Eq. (4) is utilized for the relation:

∆t = ∆t′[1 + βelx (t
′

0)] , (7)

∆t denotes the time duration around t0 which fulfills the
retardation relation x + t0 = t′0 + x′el(t

′

0). Hereafter, we
label t0 = 0 for convenience and replace ∆t with t.
Inserting Eq. (6) back into Eq. (5), we gain the pulse

expression:

Ery(x, t) = ÊryAm
2ωdt

1 + (ωdt)2
, (8)

where two crucial parameters are introduced:

Am(t′) =
nelγel(1 − βelx )

4

∣∣∣∣
t+x=t′+x′

el
(t′)

≈
nelγel
2

∣∣∣
t+x=t′+x′

el
(t′)

(9)

representing the pulse amplitude,

ωd =
1

1 + βelx (t
′

0)

∣∣∣∣∣∣
dpely
dt′

∣∣∣∣∣
t′=t′

0

∣∣∣∣∣∣
≈ 2γ2el

∣∣∣∣∣∣
dpely
dt′

∣∣∣∣∣
t′=t′

0

∣∣∣∣∣∣
(10)

scaling the pulse duration, i.e. Td ∼ 1/ωd. We also in-

troduce Êry = sign(dpely /dt
′) denoting the sign of the re-

flected electric field, and βelx ≈ −1 is used for simplifying
Eqs. (9) and (10).
In Eq. (9), the pulse amplitude Am(t′) depends on

the retarded time. With the first order approximation:
Am(t′) = Am(t′0) + ∆t′dAm/dt

′|t′=t′
0
, we can transform

it to depend on the real time t as:

Am(t) = Am(t′0) +
t

1 + βelx (t
′
0)

dAm
dt′

∣∣∣∣
t′=t′

0

= A0
m +A1

mt , (11)

where A0
m = Am(t′0) is the constant pulse amplitude,

and A1
m = dAm/dt

′/[1 + βelx (t
′)]|t′=t′

0
denotes the first

order temporal derivative of the pulse amplitude. The
straightforward consequence of this amplitude variation
is pulse asymmetry and a constant shift of the pulse spec-
tral phase as we will see later.
As we see, the pulse amplitude Am depends on the

product of the areal density nel and the relativistic
Lorentz factor γel of the electron layer, and ωd is de-
termined by the layer transverse acceleration |dpely /dt

′|
and also the Lorentz factor γel. These may point out the
direction to generate a more intense pulse with shorter
duration by tailoring the laser-plasma parameters to in-
crease the value of nel,γel and |dpely /dt

′|.
The above derivations are based on the dynamic prop-

erties of the electron layer and do not take advantage
of any specific effects, e.g. hole-boring effect, collision
damping, temperature effect, or radiation reaction force
etc. All of these effects can be taken into account for
the pulse emission by considering their influence on the
kinetic parameters (nel,γel, |dpely /dt

′|) of the electron
layer. For example, based on the plasma equations of
motion [22]:

d

dt
pelx = −(Ex + βely Bz)−

1

ne

∂

∂x
˜̃Pxx − νcp

el
x , (12a)

d

dt
pely = −(Ey − βelx Bz)−

1

ne

∂

∂x
˜̃Pxy − νcp

el
y , (12b)

where

˜̃Pxx =

∫
(βx − βelx )(px − pelx )fedp ,

˜̃Pxy =

∫
(βx − βelx )(py − pely )fedp ,

are the elements of the plasma thermal pressure tensor
˜̃P =

∫
(β − βel)(p − pel)fedp, νc is the collision fre-

quency, fe(p, x, t) is the electron distribution function

in the phase space (x, px, py) and β = p/
√
p2 + 1, we

can clearly see that collision effect damps the motion of
the electron layer, and that the temperature pressure im-
pedes the longitudinal compression and transverse accel-
eration of the electron layer. Both of the effects lead to
smaller pulse amplitude Am and longer duration 1/ωd.

In the cold fluid approximation, we have ˜̃P = 0, and
ignore the collision damping. The temporal derivative of
the transverse momentum can be approximated as

dpely
dt′

∣∣∣∣∣
t′=t′

0

= −(Ey − βelx Bz)
∣∣
t′=t′

0

= −
[
(Eiy − βelx B

i
z) + (Ery − βelx B

r
z)
]∣∣
t′=t′

0

≈ −Êiy2|E
i
y(t

′

0)| , (14)

where Êiy is the sign of the incident electric field at the
emission instant t′0, and Ery = −Brz is used because of
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the reflected pulse propagating in −x direction. Inserting
Eq. (14) into Eq. (10), we can have

ωd ≈ 4γ2el(t
′

0)
∣∣Eiy(t′0)

∣∣ , (15)

and relate the sign of the reflected field to the sign of the

incident field, i.e. Êry = −Êiy.

B. Spectral and phase properties

The spectral and phase properties relate closely to the
applications of the emitted pulse in experiments. A pulse
with an ultrabroad spectrum is always needed for inner
shell electron excitation in high-Z atoms [2] and a well-
locked spectral phase is crucial for the coherent control
of the excitation processes [23].
From Eq. (8), the pulse spectrum can be calculated via

a simple Fourier transformation:

Ẽry(ω) =
−Êiy
2π

∫
∞

−∞

Am(t)
2ωdt

1 + (ωdt)2
eiωtdt

=
−Êiy
2πωd

∫
∞

−∞

(
A0
m +

A1
m

ωd
X

)
2X

1 + X 2
e
i ω
ωd

X
dX ,

where the integral variable is replaced by X = ωdt ⇒
dt = dX/ωd. If ω > 0,

Ẽry(ω) =
−Êiy
2πωd

∫
∞

−∞

(
A0
m +

A1
m

ωd
X

)
1

X − i
e
i ω
ωd

X
dX

=
−Êiy
2πωd

2πi

(
A0
m +

A1
m

ωd
i

)
e
−

ω
ωd

=
Ām
ωd

e
−

ω
ωd e−i(Ê

i
y

π
2
−ψAm ) , (16)

if ω < 0,

Ẽry(ω) =
−Êiy
2πωd

∫ ∞

−∞

(
A0
m +

A1
m

ωd
X

)
1

X + i
e
i ω
ωd

X
dX

=
−Êiy
2πωd

(−2πi)

(
A0
m −

A1
m

ωd
i

)
e

ω
ωd

=
Ām
ωd

e
ω
ωd e−i(−Ê

i
y

π
2
+ψAm ) , (17)

and if ω = 0,

Ẽry(0) = −Êiy
A1
m

ω2
d

[2ωd δ(ω)|ω=0 − 1] , (18)

where

Ām =

√
(A0

m)2 + (A1
m/ωd)

2
, (19a)

cos(ψAm
) =

A0
mωd√

(A0
mωd)

2 + (A1
m)2

, (19b)

sin(ψAm
) =

A1
m√

(A0
mωd)

2 + (A1
m)2

. (19c)

From this derivation, we can obtain the pulse spec-
trum:

I(ω) = |Ẽry(ω)|
2 =

Ā2
m

ω2
d

e
−2 |ω|

ωd . (20)

The emitted pulse possesses an exponential spectrum
with the spectral decay 2/ωd. As the Lorentz factor
γel and the transverse acceleration |dpely /dt

′| of the elec-
tron layer are boosted in the ultra-relativistic regime,
the spectral decay 2/ωd ∝ γ−2

el |dpely /dt
′|−1 would become

very slow, implying an ultrabroadband pulse with ultra-
short duration Td ∼ 1/ωd.
Furthermore, we can also obtain the pulse spectral

phase ψ(ω):

ψ(ω) = Êiy
π

2
− ψAm

, for ω > 0 , (21a)

ψ(ω) = −Êiy
π

2
+ ψAm

, for ω < 0 . (21b)

with the definition [24]: Ẽry(ω) =
∣∣∣Ẽry(ω)

∣∣∣ exp(−iψ(ω))
As we see, the pulse spectral phase is a constant and
composed of two terms:

1. π/2: This particular phase is the consequence of the
transverse current changing its sign at the emission
instant when βely = 0. This term regulates the pulse
waveform and leads to a minimum at the pulse cen-
ter, contrary to the synchrotron-like pulse [25]. We
wish to stress that this particular phase does not
depend on the carrier-envelope-phase (CEP) of the
incident laser, but on the dynamics of the com-
pressed electron layer during the emission. This
property stabilizes the spectral phase of the gener-
ated attosecond pulses from the laser pulses with
shot-to-shot unstabilized CEP.

2. ψAm
: This term arises from the temporal variation

of the pulse amplitude Am and would induce the
pulse waveform asymmetry. In principle, this phase
depends on the CEP of the incident laser because
the pulse amplitude Am(t) relates to the processes
of electron layer compression (nel) and acceleration
(γel), both can change in the interaction driven by
the laser with different CEP. However, in the ultra-
relativistic regime, the dependence is negligible as
the phase ψAm

itself would become very small. In
this regime, the duration (∝ 1/ωd) of pulse emis-
sion is extremely short, the value of the temporal
variation A1

m/ωd would be much smaller than the
constant value A0

m, i.e. A1
m/ωd ≪ A0

m, and thus
ψAm

can be approximated as

ψAm
∼ A1

m/(A
0
mωd) . (22)

We point out that the pulse spectral phase denotes the
time-independent phase of the different frequency compo-
nents in a single pulse, it relates directly to the dynamics
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of the surface layer during the pulse emission. By study-
ing the spectral phase of each pulse, we can diagnose the
plasma dynamics on attosecond time scale which may be
hidden in the harmonic phase. The latter is the conse-
quence of the interference among all the pulses in the
whole reflection [6, 11, 21].

C. Finite distribution of the electron layer

If the emission wavelength λω is close to or smaller
than the layer thickness λω . ∆x, the δ-function approx-
imation of the layer distribution [see Eq. (1)] can not be
applied. The pulse spectrum and the spectral phase in
this high-frequency region must be modulated.
We now calculate the spectrum from Eq. (2) with the

finite extension of the current density

Jy(t
′, x′) = −nel(t

′)βy(t
′)f [x′ − x′el(t

′)] ,

where we neglect the temporal dependence of the finite
distribution: f(x′, t′) ≈ f(x′). Because of the extremely
short emission duration, the electron layer expansion is
negligible. Thus we can have

Ẽry(x, ω) =
−1

4π

∫ ∞

−∞

dteiωt
∫ ∞

−∞

dx′Jy(x
′, t′)

∣∣∣∣
x+t=x′+t′

= e−iωxF̃ (−ω) · Const , (23)

where the Fourier expansion of the finite spatial distri-

bution is used: f(x′) =
∫
∞

−∞
F̃ (k)eikx

′

dk, and Const is
an integral constant:

Const =

∫ ∞

−∞

nel(t
′)βy(t

′)

2
eiω[t

′+x′
el(t

′)]dt′ .

The integral constant can be evaluated by the substi-
tution: X = t′ + x′el(t

′) ⇒ dt′ = dX/[1 + βx(t
′)]:

Const =

∫
∞

−∞

Am(t′)
2py(t

′)

1 + p2y(t
′)
eiωXdX

∣∣∣∣
X=t′+x′

el
(t′)

≈ −Êiy

∫ ∞

−∞

Am(X − X0)
2ωd(X − X0)

1 + ω2
d(X − X0)2

eiωX dX

= −eiωX0Êiy

∫ ∞

−∞

Am(t)
2ωdt

1 + ω2
dt

2
eiωtdt , (24)

where X0 = t′0 + x′el(t
′
0). We consider the main con-

tribution around the emission instant when βy(t
′

0) = 0,
βx(t

′
0) ≈ −1. This is in line with the stationary phase ap-

proximation in Ref. [17]. During the emission, the phase
term exp(iωX ) is approximated to be constant because
of dX = dt′(1+βx) ≈ 0, which mainly contributes to the
integral. At the non-stationary phase point, the phase
term results in rapid oscillations in the integral, espe-
cially for high frequencies, thus their contributions cancel
each other and can be neglected [26].

After the same calculations in Eqs. (16) and (17), we
obtain

Ẽry(x, ω) =2π
∣∣∣F̃ (ω)

∣∣∣
Ām
ωd

e
−

|ω|
ωd

e−iψf (ω)

{
e−i( Êi

y
π
2
−ψAm ), ω > 0,

e−i(−Ê
i
y

π
2
+ψAm ), ω < 0,

(25)

and

I(ω) = |Ẽry(x, ω)|
2 = 4π2 |Ām|2

ω2
d

|F̃ (ω)|2e
−2 ω

ωd , (26)

where F̃ (−ω) = F̃ ∗(ω) = |F̃ (ω)|e−iψf (ω) is used, and
t0 = t′0 + x′el(t

′

0)− x is taken to be zero. From Eqs. (25)
and (26), we see that the layer finite distribution can

affect not only the pulse spectrum with |F̃ (ω)|2 but also
the spectral phase with ψf (ω).
To clearly see the influence of the layer finite distribu-

tion, we qualitatively express F̃ (ω) as

F̃ (ω) =
1

2π

∫ ∞

−∞

f(x)e−i
ω
c
xdx

≈
1

2π

∫ xel+
∆x
2

xel−
∆x
2

f(x)e−i
2πx
λω dx .

If the wavelength λω ≫ ∆x, 2πx/λω approaches to zero,
we have

F̃ (ω) ≈
1

2π

∫ xel+∆x/2

xel−∆x/2

f(x)dx =
1

2π

which means that for low-frequency emissions (λω ≫
∆x), the layer finite distribution does not affect the pulse
spectrum or the spectral phase.
If λω . ∆x, the phase 2πx/λω would be significant

and result in rapid oscillation in the integral, thus

F̃ (ω) ≈
1

2π

∫ xel+∆x/2

xel−∆x/2

f(x)e−i2π
x

λω dx≪ 1

which indicates that the layer finite distribution could
speed up the decay of the high-frequency spectrum (λω .
∆x), and simultaneously, the distribution-induced phase
ψf (ω) would also be very important for the spectral
phase of the high-frequencies.
On the other hand, we assume that different parts of

the electron layer contribute to the pulse emission co-
herently. Since the radiations from different parts may
arrive at detector at different times, the time difference
∆t ∝ ∆x/c leads to a phase difference ∆ψ(ω) ≈ ω∆x/c,
thus affecting the intensity of the pulse which actually is
the superposition of the radiations from all parts of the
electron layer. Obviously, this incoherence is negligible
for radiations with λω = 2πc/ω ≫ ∆x, but could induce
significant phase fluctuation for emissions with λω . ∆x.
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Hence, based on the layer thickness, we can qualitatively
define a threshold for incoherent emission:

ωthin ≈
2πc

∆x
, (27)

which actually truncates the region of coherent emission.
Moreover, the phase space f(βx, βy) of the electron layer
is expanded, implying that only electrons in a narrow
phase space element emit coherently.

D. Attosecond pulse generation

With the above discussions, we know that the coher-
ent high-frequency emissions are bunched on attosecond
time scale around the node where βy = 0, βx ≈ −1.
By filtering out the low-frequencies in the reflection, an
attosecond pulse can be manifested.
To obtain the analytical waveform of the attosecond

pulse, we filter out the low-frequency components (ω <
ωf ) in Eqs. (16) and (17), and then inversely transform
the coherent high-frequency components back in the time
domain:

Ery(ωf , t) =

∫ ωth
in

ωf

Ẽry(ω)e
−iωtdω +

∫ −ωf

−ωth
in

Ẽry(ω)e
−iωtdω

=− Êiy
2Ām
ωd

cos(ψAm
)

∫ ωth
in

ωf

e
−

ω
ωd sin(ωt)dω

+ Êiy
2Ām
ωd

sin(ψAm
)

∫ ωth
in

ωf

e
−

ω
ωd cos(ωt)dω .

Here, we introduce two integral constants:

Cs(ωa, ωd) =

∫ +∞

ωa

e
−

ω
ωd sin (ωt) dω ,

Cc(ωa, ωd) =

∫ +∞

ωa

e
−

ω
ωd cos (ωt)dω ,

after simple calculations, we can gain:

Cs(ωa, ωd) =
ωd

1 + ω2
dt

2
e
−

ωa
ωd [sin(ωat) + ωdt cos(ωat)] ,

Cc(ωa, ωd) =
ωd

1 + ω2
dt

2
e
−

ωa
ωd [cos(ωat)− ωdt sin(ωat)] .

Making use of these two integral constants, we can
obtain an explicit expression for the attosecond pulse:

Ery(ωf , t) =− Êiy
2Ām
ωd{

cos(ψAm
)[Cs(ωf , ωd)− Cs(ω

th
in , ωd)]

− sin(ψAm
)[Cc(ωf , ωd)− Cc(ω

th
in , ωd)]

}

=
−2ÊiyĀm√
1 + (ωdt)2

{
e
−

ωf
ωd cos [ωf t+ ϕ(t) − ψAm

]

− e
−

ωth
in

ωd cos
[
ωthint+ ϕ(t)− ψAm

]}
(28)

with the definition of the temporal phase chirp ϕ(t):

cos[ϕ(t)] =
ωdt√

1 + (ωdt)2
, sin[ϕ(t)] =

−1√
1 + (ωdt)2

.

In order to obtain a strong attosecond pulse, the filter-
ing frequency must be much smaller than the threshold
of incoherent emission, i.e. ωf ≪ ωthin [exp(−ωf/ωd) ≫
exp(−ωthin/ωd)], thus we can write the attosecond pulse
expression in a simplified form:

Ery(ωf , t) =
−2ÊiyĀme

−
ωf
ωd

√
1 + (ωdt)2

cos [ωf t+ ϕ(t)− ψAm
] .

(29)

As we can see, the amplitude of the attosecond pulse:

Aatto = 2Āme
−

ωf
ωd (30)

depends linearly on the original pulse amplitude Ām but
exponentially on the ratio of the filtering frequency ωf
to the parameter ωd. The pulse temporal envelope:

fatto(t) =
1√

1 + (ωdt)2
(31)

is determined only by ωd. The attosecond pulse dura-
tion can be calculated as the full width at half maximum
(FWHM) of the intensity profile [f2

atto(t)] and is given as

Td =
2

ωd
. (32)

From Eq. (29), we can also know that the oscillation of
the electric field is controlled by ωf t and the temporal
chirp ϕ(t). If we set the filtering frequency ωf . ωd, the
electric field oscillation mainly depends on ϕ(t), leading
to the generation of an ultrashort single-cycle attosecond
pulse. The constant phase ψAm

can be regarded as the
CEP of the attosecond pulse.
In the ultra-relativistic regime, ωd becomes very large,

leading to ψAm
≈ 0 [see Eq. (22)], then the attosecond

pulse expression can be further simplified as [14]

Ery(ωf , t) =
−2ÊiyAm√
1 + (ωdt)2

e
−

ωf
ωd cos[ωf t+ ϕ(t)] , (33)

which demonstrates the probability to generate an ul-
traintense, ultrabroadband and phase-stabilized attosec-
ond pulse.

E. Comparison with the RES and CSE models

The exponential spectrum is same as in the RES
model [18], but expressed in a different parametric form.
This is apparent since the RES model considers the ra-
diation from an ideal moving electron layer. However, as
it ignores the temporal variation of the pulse amplitude
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during the emission, i.e. A1
m = 0, the RES model cannot

explain the phase property [see Eq. (21)] of the emitted
pulse. Moreover, the condition β2

x + β2
y = 1 utilized in

the RES model, in order to self-consistently evolve the
motion equations, results in a singularity in Eq. (8) at
the pulse emission node where βy = 0. Thus it cannot
describe the realistic waveform of the attosecond pulse.

In our model, the low-frequency emission during the
layer backward acceleration is neglected, as we intend to
study the properties of attosecond pulse which is syn-
thesized by the emitted high-frequencies when βx ap-
proaches its maximum. Though the consideration of
the layer acceleration, βx(t

′) = −β0 + αt′2 in the CSE
model [17], gives a power-law spectrum [I(ω) ∝ ω−4/3] in
low-frequency region, the emitted attosecond pulse can-
not be changed as the low-frequencies have to be filtered
off. Moreover, the analytical calculation of the pulse
waveform becomes very challenging with the considera-
tion of the layer acceleration because of the Airy function
involved as discussed in the CSE model [17].

III. SIMULATION RESULTS

To confirm our analytical model, we consider a fully
ionized carbon plasma (Z/A = 6/12) irradiated respec-
tively by a highly relativistic laser pulse (a0 = 40) with
normal (θ = 0) incidence and by an ultra-relativistic
laser pulse (a0 = 100) with oblique (θ = 45◦) incidence,
where Z and A denote the charge and mass number of
the carbon ion, θ is the laser incident angle. Both of the
cases are simulated in 1D geometry with the EPOCH-
PIC code [27] including the effect of plasma collisions.

A. Normal incidence

In Fig. 2, we show the obtained attosecond pulses by
filtering out low-order harmonics (ω < ωf ) in the re-
flection from the laser-plasma parameters described in
Fig. 1. The retardation paths of the 1st and 2nd pulses
are shown in Fig. 1 (a) and (b). As clearly shown, in each
half laser cycle, one attosecond pulse is emitted by the
backward accelerated electron layer around the instant
when the transverse current changing sign.

In Fig. 3, we present the intensity spectra and the spec-
tral phase of the 1st and 2nd pulses from Fig. 2. As we
can see in Fig. 3 (a), the emitted pulses have broad expo-
nential spectra in the regions: 80 < ω < 450 for the 1st
pulse, and 50 < ω < 280 for the 2nd pulse. The expo-
nential regions are numerically confirmed by the linear-
logarithm fitting [blue and green dashed lines in Fig. 3
(a)]: log10[I(ω)] = log10(I0) − Skω. Comparing with
Eq. (20) and utilizing the spectral fitting slope Sk, we
can obtain the spectral decay parameter ωd of each pulse:
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0

2

4

6

8
(b)

-60 -30 0 30 60
-2

-1

0

1

2

1st

(c)

-60 -30 0 30 60
-2

-1

0

1

2

2nd

(d)

FIG. 2. Attosecond pulses obtained by applying different filter
frequency ωf : (a) ωf = 80ωl, (b) ωf = 120ωl. (c), (d) Electric
field of the 1st pulse with ωf = 120ωl and the 2nd pulse with
ωf = 80ωl compared with the analytical results, respectively.
The temporal envelope [see Eq. (31), magenta dashed-dotted
line] of each pulse is also shown. We label the pulse center at
time t = 0 and zoom in the time axis in unit of attosecond
(as). The upper frequency of the filter is 500ωl. The field
detector is located at 3λl from the plasma surface.

100 200 300 400 500
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-1
1

(a)

100 200 300 400 500
-

- /2
0
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FIG. 3. (a) Intensity spectra and (b) spectral phase of the
1st and 2nd pulses from Fig. 2. The dashed lines in (a) are
the spectral fitting for the 1st [log10(I) = −1.47 − 0.014ω,
blue] and 2nd [log10(I) = −1.15− 0.022ω, green] pulses. The
magenta solid line is the power-law fitting spectra [I(ω) ∝

ω−8/3] for the lower frequency region.

2 log10(e)

ωd
= 0.014 ⇒ ωd = 62.04, for 1st pulse , (34a)

2 log10(e)

ωd
= 0.022 ⇒ ωd = 39.48, for 2nd pulse . (34b)

Inserting ωd into Eq. (31), we can exactly produce the
envelopes of attosecond pulses in Fig. 2 (c) and (d), which
give the pulse duration: Td = 2/ωd = 13.6 as for the 1st
pulse and Td = 21.2 as for the 2nd pulse. Corresponding
to the exponential spectrum region, the pulse spectral
phase is manifested to be constant as shown in Fig. 3
(b). At the emission instant, the sign of the incident

electric field is Êiy = −1 for the 1st pulse and Êiy = 1 for
the 2nd pulse, and thus combining with Eq. (21), we can
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FIG. 4. (a), (b) Phase space distributions f(βx, βy) of the
electron layer at the emission instants; (c), (d) Density distri-
butions ne(x) of the plasma electrons at the emission instants
(green line). The density of electrons in the phase space el-
ement: βx < −0.8 and |βy | < 0.1 are also shown (red and
black lines); (e), (f) Evaluation of the parameter ωd along the
retardation paths as discussed in Fig. 1. Green stars denote
the emission instants; (a), (c) and (e) are for the 1st pulse;
(b), (d) and (f) are for the 2nd pulse.

obtain:

ψAm
≈ 0.35π , for 1st pulse , (35a)

ψAm
≈ 0.30π , for 2nd pulse . (35b)

Making use of Eq. (29) with the results in Eqs. (34) and
(35), and choosing the pulse amplitude Ām as

Ām = 5.4 , for 1st pulse , (36a)

Ām = 4.8 , for 2nd pulse , (36b)

we completely reproduce the waveforms of 1st and 2nd
attosecond pulses in Fig. 2 (c) and (d) respectively. Thus,
we can verify the validity of our analytical model for the
normal incidence case.
We try to estimate the pulse amplitude Ām from the

simulation. In Fig. 4 (a)-(d), we present the phase space
distribution f(βx, βy) and the density ne of the electron
layer at the emission instants. As shown, the phase space
of the electron layer is expanded. We assume that the
emitted pulse is synthesized by the radiations from the
electrons in a narrow space: βx < −0.8 and |βy| < 0.1.
By integrating the electron density distribution [red and

black lines in Fig. 4 (c) and (d)]: nel =
∫
ne(x)dx, we

obtain: nel = 6.58 for the 1st pulse and nel = 7.75
for the 2nd pulse, and we calculate the Lorentz factor:
γel ≈ (1 − β2

x)
−1/2 = 1.90, 1.79 for the 1st and 2nd

pulses from the backward velocity βmx in Fig. 1 (d) at
the emission instants (green stars). Thus we can ob-
tain the pulse amplitude from Eq. (9): Am = 6.25 for
the 1st pulse and Am = 6.93 for the 2nd pulse, which
qualitatively matches the values used in Eqs. (36). The
difference may come from the overestimation of the elec-
tron phase space. Here, we ignore the temporal variation
of the pulse amplitude. As we can also see in Fig. 4 (e,
red line) and (f, black line), the thickness of the elec-
tron layer is about ∆x ≈ 0.0025λl for the 1st pulse and
∆x ≈ 0.0040λl for the 2nd pulse, which correspond to
the fluctuation thresholds: ωthf ≈ 450ωl and ω

th
f ≈ 260ωl

for the 1st and 2nd pulses in Fig. 3, satisfying Eq. (27)
qualitatively.

B. Oblique incidence

Now, we consider a more general situation where an
ultraintense laser pulse with a long ramping front is
obliquely (θ = 45◦) incident onto the pre-plasma, ne =
nc exp (x/L)/2, present in front of a plasma bulk, where
L is the scale length of the pre-plasma. For convenience,
we treat this interaction geometry in a Lorentz boosted
frame [28] in which the plasma target moves with the
initial velocity βby = − sin(θ) along the plasma surface
and is irradiated normally by the laser pulse with p-
polarization.
In Fig. 5, we show the obtained attosecond pulses by

filtering out low-order harmonics (ω < ωf ) in the re-
flected wave. For the oblique incidence (θ = 45◦), only
one attosecond pulse is emitted in each laser cycle be-
cause the laser electric field in one half of the cycle hin-
ders the compression of the electrons. Here the 1st pulse
arises due to the reflection of the laser ramp which is
too weak to compress a well-defined electron layer, thus
leading to weak spectral intensity in Fig. 6 (a) and large
phase fluctuations in Fig. 6 (b). The 2nd pulse is emitted
in the first cycle of the main laser pulse interacting with
the bulk of the plasma target, and the 3rd pulse gener-
ated in the next laser cycle is emitted with much weaker
intensity than the 2nd pulse. As seen in Fig.6 (a), the
2nd pulse has a slower intensity decay than the 1st and
3rd pulses, implying higher efficiency for high-frequency
emission. In Fig.6 (b), the high-frequency components
in the 1st and 3rd pulses display larger phase fluctuation
than that in the 2nd pulse, which could further reduce the
pulse intensity and extend the duration. In the following
laser cycles, the generated pulses would have much faster
spectral decay and strong phase fluctuation [14].
In Fig. 7, we scan the emission processes for the 2nd

and 3rd pulses in the boosted frame. As shown, the
pulses are clearly emitted by the surface strongly com-
pressed electron layer when the layer transverse velocity
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FIG. 5. Attosecond pulses with different filter frequency: (a)
ωf = 40ωl, (b) ωf = 60ωl. (c), (d) Electric field Ey of the 2nd
and 3rd pulses compared with the analytical expressions. We
label the pulse center at time t = 0 and zoom in the time axis
in unit of as. The temporal envelope [see Eq. (31), magenta
dashed-dotted line] of each pulse is also shown. The laser,
a(t) = a0 sin(t+ φ){tanh[(t− Ts)/W ]− tanh[(t− Te)/W ]}/2,
radiates the plasma (ne = 500nc, L = λl/8) with incident
angle θ = 45◦, where a0 = 100, W = Tl = λl/c, Ts = 6Tl,
Te = 14Tl, λl = 0.8µm, and the CEP φ = 0π. The laser
profile (black dashed line) is shown in (a) and (b) with a.u..
The field detector is located at 3λl from the plasma surface.

βy changes sign and its backward velocity βx approaches
the speed of light [see the green stars in Fig. 7 (b), (c)
for the 2nd pulse, (e), (f) for the 3rd pulse], which in-
deed satisfies the characters [(i), (ii)] for our pulse emis-
sion model in Sec. II A. Since the contribution of net ion
current to high frequencies is negligible due to its slow
response to the electric field, all the derivations in Sec. II
are repeatable in this boosted frame with the new nor-
malization quantities: kbl = kl cos(θ), ω

b
l = ωl cos(θ),

nbc = nc cos
2(θ). Because of the Lorentz invariance of the

normalized electric field (eE/meω) and time (ωt − kx),
Eq. (29) can be applied directly for oblique incidence in
lab reference:

Er(ωf , t) =
−2ÊiyĀ

b
me

−
ωf

ωb
d

√
1 + (ωbdt)

2
cos [ωf t+ ϕ(t)− ψAm

] (37)

but with Ābm and ωbd calculated in the boost frame by
Eqs. (9) and (10).

In Fig. 6 (a), the pulse exponential spectra are con-
firmed by the linear-logarithm fittings in the regions:
50 < ω < 400 for the 2nd pulse (blue dashed line) and
40 < ω < 110 for the 3rd pulse (red dashed line), and in
Fig. 6 (b) the pulse spectral phase in the corresponding
regions are proved to be constant. The fitting slopes of

FIG. 6. Intensity spectra (a) and spectral phase (b) for
the pulses in Fig. 5. The spectral fittings of the 2nd pulse
[log10(I) = 0.1 − 0.0145ω, blue dashed line] and 3nd pulse
[log10(I) = 1.9− 0.052ω, red dashed line] are shown with the

power-law spectral scaling [I(ω) ∝ ω−8/3, magenta solid line]
fitting the lower-frequency region in the spectra. (c) Spectral
phase of the 2nd pulses in the cases driven by the lasers with
different CEP φ. The simulation in Fig. 5 is repeated with
the same parameters, but different CEP (φ = π/2, π).

the pulse spectra give the spectral decay:

ωbd ≈ 58.82 , for 2nd pulse , (38a)

ωbd ≈ 16.66 , for 3rd pulse , (38b)

which fix the pulse temporal envelopes in Fig. 5 (c) and
(d), and reveal the duration Td = 2/ωbd = 14.2 as for the
2nd pulse and Td = 50.8 as for the 3rd pulse. At the
emission instants, the sign of the incident electric field is
Êiy = −1 for each pulse. With Eq. (21) and Fig. 6 (b),
we quantitatively obtain that:

ψAm
≈ 0.12π for 2nd pulse , (39a)

ψAm
≈ 0.06π for 3rd pulse . (39b)

Inserting Eqs. (38) and (39) into Eq. (37), and choosing

Ābm = 52 for 2nd pulse , (40a)

Ābm = 112 for 3rd pulse , (40b)

we validate our pulse emission model for oblique inci-
dence case by precisely reproducing the 2nd and 3rd at-
tosecond pulses in Fig. 5 (c), (d).
To access the pulse amplitude Abm from the simulation,

we gather the electrons in the phase space: βx < −0.99,
|βy| < 0.02 for the 2nd pulse and βx < −0.97, |βy| < 0.06
for the 3rd pulse, and plot the density distributions ne
respectively in Fig. 7 (g, blue line) and (h, red line). By
integrating the density distributions, we gain: nel = 13.5,
36.7 for the 2nd and 3rd pulses, and with the backward
velocity βmx in Fig. 7 (c) and (f) at the emission instants
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FIG. 7. 1D PIC simulation for the 2nd and 3rd pulse emis-
sion processes in Fig. 5. (a) Temporal shape of the 2nd pulse
in Fig. 5 (a) shifted along the retardation path [red line in
(b)]. (b) Evolution of the electron density ne at the plasma
surface around the emission instant (green star) of the 2nd
pulse overlaid with the retardation paths of the pulse center
(red line) and the subpulse [Esy in (a), magenta line]. The

evolution of the electron surface (ne = a0n
b
c ) is also shown

(black dashed line). (c) Velocity (βx, βy) of the electron cur-
rent along the retardation paths. (g) Density distribution of
the plasma electrons at the emission instant (green line). In
(d), (e), (f) and (h), we repeat all the plots in (a), (b), (c)
and (g), but for the 3rd pulse. In (c) and (f), we obtain
βmx = −0.9962 and βmx = −0.9904 at the emission instants
(βy = 0, green stars) of the 2nd and 3rd pulses. In (g) and
(h), we also show the density of the electrons in the phase
space: βx < −0.99, |βy | < 0.02 for the 2nd pulse (blue line)
and βx < −0.97, |βy | < 0.06 for the 3rd pulse (red line).

(green stars), we calculate the Lorentz factor: γel ≈ 11.4,
7.2 for the 2nd and 3rd pulses. Based on Eq. (9), we can
obtain: Abm ≈ 77 for the 2nd pulse and Abm ≈ 132.1
for the 3rd pulse, which are close to the values used in
Eqs. (40). We can also see that the thickness of the
electron layer is about ∆x ≈ 0.002λbl for the 2nd pulse
and ∆x ≈ 0.007λbl for the 3rd pulse, which correspond to
the phase fluctuation thresholds ωthf ≈ 400ωl and ω

th
f ≈

150ωl for the 2nd and 3rd pulses as shown in Fig. 6 (b).

C. Discussion

In Fig. 4 (e) and (f), we compute the value of ωd
based on the cold fluid approximation in Eq. (15) along

the pulse retardation paths in Fig. 1. At the emission
instants (green stars), the obtained values qualitatively
match the values in Eqs. (34), but are larger. This may
be because the plasma thermal pressure and collision fric-
tion decreases the transverse acceleration of the electron
layer [see Eq. (12)]. In the ultra-relativistic case in Fig. 7,
these two terms become more important as the calcula-
tions of the parameter ωd in Eq. (15) (not shown) are
much larger than the values obtained from the pulse spec-
tra in Eq. (38). Here, we have to state that the accurate
specification of the emission instant is difficult, which
may also induce numerical error in the calculation of ωd.

As we see in Fig. 3 (a) and Fig. 6 (a), the pulse inten-
sity spectra are larger than the extension of the fitting
spectra (dashed lines) outside the exponential region. In
the lower-frequency region, this is because more low fre-
quencies are radiated by the electron layer during its
backward acceleration, leading to the power-law spectral
scaling I(ω) ∝ ω−8/3 (magenta solid lines) [10]. In Fig. 3
(b) and Fig. 6 (b), phase-chirp [6] is manifested in the
corresponding frequency region resulting from the differ-
ent Doppler frequency upshift at different times during
the acceleration. In higher-frequency region, the more
intense spectra come from the superposition of the radi-
ations from all the electrons in the surface layer [green
lines in Fig 4 (a) (b) and Fig. 7 (g) (h)].

As discussed in Sec. II B and validated with the sim-
ulation results in Fig. 3 (b) and Fig. 6 (b), the emit-
ted pulse has a constant spectral phase in a rather
broad frequency region. The value of the constant phase
ψ(ω) = ±π/2−ψAm

is determined by the dynamics of the
well-defined electron layer and slightly perturbed by the
temporal variation of pulse amplitude Am(t). In Fig. 6
(c), we show the spectral phase of the emitted pulses in
the cases driven by the lasers with different CEP. As we
can see, with the laser CEP changing from φ = 0.0π
to φ = 1.0π, the value of the spectral phase in the re-
gion 50 . ω . 400 displays a small change less than
∆ψ ≈ 0.1π. This indicates that with an appropriate fre-
quency filter ωf > 50, the obtained attosecond pulse has
a quasi-stable constant spectral phase independent on the
laser CEP, which highlights the applications of the emit-
ted attosecond pulse in experiments avoiding shot-to-shot
changes due to the unstable laser CEP [29]. Moreover,
we can also see that the coherent spectral interval can be
extended to a higher-frequency region (ωthin ≈ 450) with
a well controlled laser CEP (φ = π/2).

In Fig. 7 (a) and (d), we clearly see the double-pulse
structure of the emitted pulse: a subpulse Esy is emit-
ted after the main pulse by the secondary electron bunch
formed behind the electron layer [30] as shown by the in-
tersection between the retardation path of the subpulse
(magenta line) and the electron surface (back dashed
line) in Fig. 7 (b) and (e). The interference between
the double pulses in same emission process would lead to
the oscillations in the pulse spectra and spectral phase.
Due to the less efficiency of the secondary bunch radia-
tion [14], these oscillations can only be present in the low-
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frequency region as shown in Fig. 6. To get an attosecond
pulse with a constant phase, a suitable frequency filter
is needed to overcome the phase oscillation. We wish to
stress that these oscillations are the consequence of the
interference between the double pulses, which is essen-
tially different from the plasma-wave modulation in the
harmonic spectrum of the total reflection [31].

IV. SUMMARY

We develop an analytical model which describes the
attosecond pulse emission from a strongly compressed
electron layer in the highly relativistic laser-plasma inter-
action. The physical properties of the emitted attosec-
ond pulse are completely described: exponential spec-
trum, constant spectral phase and explicit waveform [see

Eqs. (20), (21) and (29) respectively]. All of these prop-
erties are validated by PIC simulations for both normal
and oblique incidence cases.

From the simulation results, we clearly see that the
emitted attosecond pulse possesses a phase-stabilized
spectrum ranging from ω ≈ 40 ∼ 60eV to ω ≈ 400 ∼
600eV and highly relativistic intensity I ≫ Ir, which
could promote the attosecond metrology to the ultrafast
physical processes in x-ray regime. We also see that, with
an appropriate frequency filter ωf [see Fig 5 (b)], the at-
tosecond pulse emitted in the first cycle of the main laser
pulse is order of magnitude stronger than those emitted
in the following cycles, which highlights the potential to
generate an isolated ultraintense attosecond pulse. The
choice of the frequency filter for the pulse isolation is
conducted by the parameter maps in Ref [13].
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[23] A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, and
T. Baumert, Phys. Rev. A 70, 063407 (2004); R. Ha-
jima and R. Nagai, Phys. Rev. Lett. 119, 204802 (2017).

[24] The sign of ψ(ω) is chosen to be same with the linear

term ωt in E(t) =
∫

∞

−∞
|E(ω)|e−i[ωt+ψ(ω)]dt.

[25] J. M. Mikhailova, M. V. Fedorov, N. Karpowicz, P. Gib-
bon, V. T. Platonenko, A. M. Zheltikov, and F. Krausz,
Phys. Rev. Lett. 109, 245005 (2012).

[26] R. Wong, Asymptotic approximations of integrals, Vol. 34
(SIAM, 2001).

[27] T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-
Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies,
R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers,

http://dx.doi.org/10.1364/JOSAB.33.001081
http://dx.doi.org/10.1038/nphoton.2013.362
http://dx.doi.org/10.1103/PhysRevLett.83.4289
http://dx.doi.org/10.1126/science.1059413
http://dx.doi.org/10.1038/35107000
http://dx.doi.org/10.1038/nature06229
http://dx.doi.org/10.1038/nphoton.2014.28
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/ 10.1080/09500340412331301542
http://dx.doi.org/10.1103/PhysRevLett.96.063002
http://dx.doi.org/ 10.1103/PhysRevLett.111.123901
http://dx.doi.org/10.1103/RevModPhys.81.445
http://dx.doi.org/10.1063/1.4964368
http://dx.doi.org/10.1103/PhysRevE.74.046404
http://dx.doi.org/10.1038/nphys1155
http://stacks.iop.org/1367-2630/8/i=1/a=019
http://dx.doi.org/10.1103/PhysRevE.95.051201
http://arxiv.org/abs/1803.02121
http://dx.doi.org/10.1103/PhysRevLett.96.125004
http://dx.doi.org/10.1063/1.3353050
http://dx.doi.org/10.1103/PhysRevE.84.046403
http://dx.doi.org/10.1063/1.5000785
http://dx.doi.org/10.1103/PhysRevLett.110.175001
http://dx.doi.org/ 10.1103/PhysRevLett.100.095004
http://dx.doi.org/10.1103/PhysRevA.70.063407
http://dx.doi.org/10.1103/PhysRevLett.119.204802
http://dx.doi.org/ 10.1103/PhysRevLett.109.245005


12

Plasma Physics and Controlled Fusion 57, 113001 (2015).
[28] A. Bourdier, The Physics of Fluids 26, 1804 (1983).
[29] P. Heissler, R. Hörlein, M. Stafe, J. M. Mikhailova,

Y. Nomura, D. Herrmann, R. Tautz, S. G. Rykovanov,
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