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Nonlinear model of liquid chromatography considering finite rates of
adsorption-desorption kinetics and core-shell adsorbents

Noreen Akrama, Shamsul Qamara,b , and Andreas Seidel-Morgensternb

aDepartment of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan; bMax Planck Institute for Dynamics of Complex Technical
Systems, Magdeburg, Germany

ABSTRACT
A nonlinear general rate model is numerically approximated to simulate fixed-bed chromato-
graphic columns packed with core-shell particles. The model incorporates explicitly the effect of
finite rates of adsorption and desorption at the adsorption sites, typically assumed to be very fast
compared to the rates of the various transport processes. Using core-shell particles as a stationary
phase can have advantages over applying a fully-porous stationary phase, such as higher efficien-
cies and better resolution of the sample components. A high resolution finite volume scheme is
extended and applied to approximate the model equations. Ranges of the kinetic parameters in
which limited rates of the intrinsic adsorption and desorption steps needs to be taken into
account are estimated. A few case studies of predicting the elution of single-component and two-
component mixtures are considered to evaluate the effects of adsorption and desorption rate con-
stants, core-radius fraction, axial-dispersion coefficient, film mass transfer, and intraparticle diffu-
sion on the elution profiles. Furthermore, it is demonstrated that optimum values of the inert core
radius can be obtained by evaluating a typical criterion for process performance.

GRAPHICAL ABSTRACT
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Introduction

A key information required to quantify nonlinear prepara-
tive chromatography concerns adsorption equilibria, which
determine the mean elution times.[1] A second key informa-
tion is related to process kinetics. This field is more complex
because numerous different mechanisms can contribute and
decide about the widths and shapes of the elution profiles.

Various mathematical models have been considered in
the literature for simulating liquid chromatographic proc-
esses including kinetic effects. The models applied differ in
the levels of complexities considered. The models which are
most frequently used by liquid chromatographic community
include the equilibrium dispersive model (EDM), the
lumped kinetic model (LKM), and the general rate model
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(GRM).[1–3] The GRM is considered as the most complete
model. It takes into account the axial dispersion and all
mass-transfer kinetics like external mass transfer of adsorb-
ate from the bulk phase to the external surface of the
adsorbent, diffusion transport through the pores of the
adsorbent, and finite rates of the adsorption-desorption kin-
etics at the active sites.[1, 2]

The LKM can be extracted from the GRM by assuming
that particles are homogeneous and the partial differential
equation describing intra particular mass transport across
the particle radii is modified accordingly. The intraparticle
mobile and stationary phase concentrations are replaced by
average concentrations, and the intra particle diffusion
term is replaced with a kinetic expression. The kinetic
expression describes mass transfer in the bulk liquid
phase and intraparticle mobile phase via an overall mass
transfer coefficient which is related to the external and
internal mass transfer coefficients. The EDM is the sim-
plest model that takes axial dispersion and mass transfer
kinetics into account. In the EDM, the mobile and sta-
tionary phases are assumed constantly in equilibrium, i.e.
mass transfer kinetic and the kinetics of adsorption and
desorption are very fast. The contribution of these kinet-
ics are lumped together in an apparent dispersion coeffi-
cient which is related to the axial dispersion and mass
transfer kinetics.

The fact that finite rates of adsorption and desorption
steps at the active sites of the stationary phases can be rate
limiting is only captured in the GRM model. The general
possibility of this kinetic mechanism was first discussed by
Giddings[4] on the basis of stochastic theory. It was dis-
cussed that Gaussian-type elution peaks form when the
exchange of solute molecules between the mobile and sta-
tionary phases is very fast. In contrast, if adsorption and
desorption rates of solute molecules are slow, a significant
portion of the injected solute molecules eluted without being
captured by these sites and causing the formation of tails.
Later on only a few other researchers have investigated this
effect,[1, 5, 6] which is typically ignored.

In recent years chromatographic column are frequently
packed with core beads (also known as core-shell particles)
instead of using fully porous particles.[7–9] Due to the appli-
cation of thin porous layers coated on solid impenetrable
cores, there are shorter intraparticle diffusion pathways
causing the elution of narrower peaks.[8–12] Numerous the-
oretical studies are available describing analytical chroma-
tography using core-shell particles.

Kaczmarski and Guiochon have used a lumped particle
model to simulate chromatographic columns packed with core-
shell particles of thin porous layers and have assumed a single
averaged value of the concentration inside the porous layer.[13]

A general rate model (GRM) of fully porous particles was used
to analyze the performance of thin-layered core-shell particles.
A study on inert core size optimization for linear chromatog-
raphy has been done by Li et al.[14] A nonlinear quasi-station-
ary GRM for core-shell particles has been numerically
investigated by Gu et al.[15] Core-shell particles have also been

used for chiral.[16] Lambert et al. have analyzed the mass trans-
fer properties of insulin by considering both core-shell and
fully-porous particles as packing materials.[17] Monolithic and
fused core HPLC columns were compared for fast chromato-
graphic analysis of fat-soluble vitamins.[18] Ibrahim et al. have
compared core-shell and totally porous particle stationary
phases for fast and green LC determination of five hepatitis-C
antiviral drugs.[19] Theoretical aspects and technical properties
of the columns packed with core-shell particles are described
deeply in serval reviews.[20–23]

In our recent article, we have numerically investigated elu-
tion profiles using core-shell particles under overloaded nonlin-
ear conditions using a reduced GRM considering infinitely fast
rates of adsorption and desorption, i.e. permanently established
adsorption equilibria.[24] The current article extends now these
theoretical investigations to a GRM explicitly considering slow
adsorption-desorption rates. The model equations incorporate
core-shell adsorbents of variable layer thicknesses as packing
materials. For such a nonlinear model, no analytical solutions
can be derived and numerical solution techniques are required
for predicting dynamics inside the chromatographic column.
In this article, a semi-discrete flux-limiting high resolution
finite volume scheme (HR-FVS) is extended and applied to
solve the current model equations.[24, 25] A second order nonli-
nearly stable explicit Runge-Kutta method is applied to solve
the resulting system of ordinary differential equations (ODEs).
To demonstrate the effect of selected parameters, results of a
number of case studies are presented. In particular, conse-
quence of limited rates of adsorption-desorption processes are
illustrated.

The structure of this article is as follows. The considered
nonlinear GRM for core-breads including finite adsorption
and desorption rates is described in Section 2. The suggested
numerical scheme is ntroduced in Section 3. Quantitative
criteria suitable to evaluate the performance of nonlinear
preparative chromatography are presented in Section 4.
Results of numerical case studies are given in Section 5.
Lastly, conclusions are drawn in Section 6.

Mathematical model

The GRM of liquid chromatography is regarded as the most
comprehensive and accurate model. The mass balance of
GRM consist of two sets of coupled equations for the mobile
phase, one is for the bulk-fluid that travels within the col-
umn bed carrying the components (where the concentra-
tions of sample components are assumed as function of
time and axial-coordinate of the column) and the other one
is for the liquid stored inside the porous particles (where
the solute concentrations are functions of time, axial-coord-
inate and particle radii). An adiabatic and isothermal
adsorption column packed with inert core particles is con-
sidered. Each core-shell particle has three storage regions,
i.e. the inert core (impermeable), the pores, and the inner
surface. At time zero, a step change in the concentration of
an adsorbate is introduced into a flowing stream. The
adsorption column is subjected to axial dispersion, pore dif-
fusion, external mass transfer resistance, surface diffusion
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and finite rates of adsorption-desorption kinetics. It is
assumed that solid concentration changes due to mass trans-
port in the pores only. It is further assumed that cored
beads have uniform particle size Rp and core size Rcore. The
inert core cannot be penetrated and there is only diffusion
(no convection) in the porous shell.

The mass balances for the bulk-phase are expressed as
[1, 2]

@cb;i
@t

þu
@cb;i
@z

¼Db;i
@2cb;i
@z2

� 3
RP

Fbkext;i cb;i�cp;ijr¼Rp

� �
; i¼1;2;:::;Nc:

(1)

Here, t z, r denote the time, axial and particle radii coor-
dinates, respectively. For each ith-component of the sample,
cb;i ¼ cb;iðt; zÞ represents the solute concentration in the
bulk phase, u is interstitial velocity, Db;i denotes the axial
dispersion, Fb ¼ ð1��bÞ=�b is the phase ratio with bulk por-
osity �b, kext;i is the effective external mass transfer coeffi-
cient, cp;i ¼ cp;iðt; z; rÞ is the solute concentration in the
particle pores, and Nc is the number of components in
the mixture.

The model equation representing the change of solute
concentration in the particle pores is given as[1, 2]

�p
@cp;i
@t

þ 1��pð Þ@qp;i
@t

¼�pDp;i
1
r2

@

@r
r2

@cp;i
@r

� �� �� �
; i¼1;2;:::;Nc;

(2)

where qp;i¼qp;iðt;z;rÞ is the solid-phase concentration, Dp;i

is the pore diffusivity, and �p is the internal porosity. In the
current study, in contrast to previous study,[24] the rates of
nonlinear adsorption-desorption kinetics are assumed finite.
The ordinary differential equation below describes the
amount of ith component which is adsorbed on the station-
ary phase:[1, 2]

@qp;i
@t

¼ka;i qm�
XNc
j¼1

qp;j

0
@

1
Acp;i�kd;iqp;i: (3)

Here, qm denotes the adsorption saturation capacity
which is assumed same for for all components and ka;i and
kd;i represent the adsorption and desorption rates constants
for ith component of the mixture. Adsorption and desorp-
tion are important interface mass-transfer processes. The
description of such processes need information on the equi-
librium achieved between phases and the rate on which
equilibrium is approached. In any case these processes may
be affected by physicochemical properties of the solid and
liquid phases. Study of such kinetics of the adsorbent is use-
ful as they provide information about its efficiency and
mechanisms of adsorption. Equation (3) is a simplified
adsorption-desorption kinetic expression. In most of the
studies, it is assumed that a permanent adsorption equilib-
rium is established, i.e. adsorption-desorption rates are suffi-
ciently high.[1, 24] Then, the left-hand side of Equation (3)
can be set equal to zero which reduces Equation (3) to the
common multi-component Langmuir isotherm if the satur-
ation capacities are the same for all the components, i.e.[1, 2]

qp;i ¼ qm
bicp;i

1þPNc
j¼1

bjcp;j

with bi ¼ ka;i
kd;i

: (4)

Here, bi quantifies the extent of nonlinearity coefficient.
In this limiting case, the current GRM reduces to the one
presented in previous article [24].

For simplification of expressions, the following non-
dimensional quantities are considered for a column of
length L containing particles of radii Rp:

s ¼ ut
L
; x ¼ z

L
; q ¼ r

RP
; Ka;i ¼ Lqmka;i

u
; (5a)

Peb;i¼ Lu
Db;i

; Bip;i¼
kext;iRp

�p;iDp;i
; gp;i¼

�pDp;iL

uR2
p

; np;i¼3Bip;igp;iFb;

(5b)

where s, x2½0;1� and q2 ½0;1� are the dimensionless time,
space and particle radii coordinates, respectively. Further,
Ka;i is the dimensionless adsorption rate constant which of
key interest in this paper, Peb;i is the Pectlet number based
on column length, Bip;i represents modified Biot number,
and gp;i describes the ratio of space time and intraparticle
diffusion time.

By introducing the dimensionless variables of Equations
(5a) and (5b) in the model Equations (1)–(3), we obtain

@cb;i
@s

þ @cb;i
@x

¼ 1
Peb;i

@2cb;i
@x2

�np;i cb;i � cp;ijq¼1

� 	
; i ¼ 1;2; :::;Nc;

(6)

�p
@cp;i
@s

þ 1��pð Þ@qp;i
@s

¼ gp;i
1
q2

@

@q
q2

@cp;i
@q

� �� �
; (7)

@qp;i
@s

¼ Ka;i cp;i � cp;i
XNc
j¼1

qp;j
qm

� qp;i
qmbi

0
@

1
A: (8)

Considering a regenerated column, the Equations (6)–(8)
are subjected to the following initial and boundary conditions
(BCs)

cb;i 0; xð Þ ¼ 0; cp;i 0; x; qð Þ ¼ 0; qp;i 0; x; qð Þ
¼ 0; 8 x; q 2 0; 1½ �; (9a)

cbi s; 0ð Þ� 1
Peb;i

@cbi s; xð Þ
@x





x¼0

¼ ci;inj; 0 � s � sinj;
0; s > sinj;

;
@cb;i s; xð Þ

@x





x¼1

¼ 0;

�
(9b)

@cp;i
@q

jq¼0 ¼ 0;
@cp;i
@q

jq¼1 ¼ Bip;i cb;i�cp;ijq¼1

� 	
: (9c)

Here, ci;inj represents the injected concentration of the
ith-component of the sample.
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For fully-porous particles, the range of q is from 0 to 1, while
for cored particles its range is from qcore ¼ Rcore=Rp to 1. Thus,
for fully-porous beads qcore ¼ 0, while qcore 6¼ 0 for cored beads.

Numerical scheme

Numerous schemes are available in the literature for the approxi-
mation of chromatographic models.[1, 2, 25] In this article, a semi-
discrete high resolution finite volume scheme (HR-FVS) is applied
to approximate the current GRM incorporating core-shell par-
ticles and finite rates of adsorption-desorption kinetics.[24, 25] A
second-order TVD-RK method is used for solving the resulting
ODEs system.[25] A complete derivation of the proposed numer-
ical scheme is presented in Appendix A of this article.

Critical performance criteria

Optimization of preparative chromatography requires suit-
able performance criteria. Here, we propose a performance
criteria by which the quality of a product can be
enhanced.[24, 26, 27] Consider a mixture of two components
(Nc ¼ 2) in which component 1 is less retained as compared
to the component 2, i.e. a1<a2.

Assume that s1 is the dimensionless time during which
the fraction of first component exceeds certain threshold, i.e.
cb1 � �̂c1;inj, where we take �̂ ¼ 10�5. Further, let s2 be the
time duration during which fraction of component 2 drops
below certain specified threshold, i.e. cb2 � �̂c2;inj.

The common performance attributes used in this work
are cycle time, purity, productivity and yield. Here, cycle
time, productivity and yield are used as performance func-
tions, while purity is used as a constraint.

Cycle time

The cycle time scyc is defined as the time lapse between two
successive injections:

scyc ¼ s2�s1: (10)

Purity

The time during which fractionation of component 1 stops
is referred to as cut time. The following express is used in
our calculations to find the cut time scut of component 1:

Pur ¼

Ðscut
s1

cb1 s; x ¼ 1ð Þds
Ðscut
s1

cb1 s; x ¼ 1ð Þ þ cb2 s; x ¼ 1ð Þ½ �ds
: (11)

The required purity, which is based on the peak area, was
set equal to 99%.

Productivity

A reduced-productivity Pr is the desired amount of a com-
pound produced per time-cycle. In the case of component 1,

it can be expressed as

Pr ¼

Ðscut
s1

cb1 s; x ¼ 1ð Þds

scyc
: (12)

One can multiply volumetric flow rate with this YPr to
transform it to a dimensional form.

Yield

Yield of a desired component describes the ratio of amount
in purified form and amount injected at the column inlet.
In the case of component 1, it can be expressed as

Y ¼

Ðscut
s1

cb1 s; x ¼ 1ð Þds
Ðs2
s1

cb1 s; x ¼ 1ð Þds
: (13)

Numerical case studies

A few numerical case studies of single-component (Nc ¼ 1)
and two-component (Nc ¼ 2) mixtures are carried to ana-
lyze the effects of adsorption rate Ka;i, core-radius fraction
qcore, axial dispersion Peb;i, external diffusion (Bip) and
internal diffusion (gp) on the elution profiles. All parameters
of numerical test problem are listed in Table 1. Their values
are chosen from the ranges of parameters typically used in
high pressure liquid chromatography applications.

Single-component elution profiles

Figure 1 shows the effect of the dimensionless adsorption
rate constant Ka on the outlet concentration profiles for a
fixed core radius fraction of 0.8. For illustration, at first the
elution of just one component is considered. The three kin-
etic effects related to axial dispersion (Peb), external diffu-
sion (Bip) and internal diffusion (gp) are fixed according to
typical values given in Table 1. It can be observed that a
relative slow rate of adsorption corresponding to Ka ¼ 10
causes an additional band broadening. As the value of ka
increases, the concentration profile becomes sharper and less
broadened. For Ka � 103 the effect becomes negligible and
the GRM predictions converge into the results of a simpli-
fied GRM considering just the aforementioned three limiting
effects. This limiting dimensionless rate constant corre-
sponds to the rate constant for the desorption step of
kd ¼ 100 s�1. This magnitude confirms the general belief
that the intrinsic step of settling down and escaping of mol-
ecules on active surfaces is taking place very rapidly.
Unfortunately, there are no reliable estimates for these rate

Table 1. Standard model parameters used in the numerical solutions.

Figure Nr. Component Nr. Peb Bip;i gp;i �b �p qm ½g=l� bi ci;inj ½g=l�
1, 2 & 3 1 1500 50 2.0 0.4 0.5 10 1.0 1.0
4 & 5 1 1500 50 2.0 0.4 0.5 20 0.5 1.0

2 1500 50 2.0 20 1.25 1.0
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constants in the literature. The border values for the related
rate constants identified here by numerical simulation indi-
cate that a detailed modelling of the adsorption and desorp-
tion steps is frequently indeed not required. However, the
mathematical model applied here provides a quantitative
tool to identify this border, which will shift for other con-
stellations of Peb, Bip and gp. In Figure 1 we have also dem-
onstrated the effect of Ka on the conventionally used HETP-
curve indicating the remaining band broadening effect due
to the other three effects when Kais sufficiently large.[1]

Figure 2 displays again for a single solute the effect of
core-radius fraction qcore on the elution curves. On increasing
the value of qcore from 0.0 to 0.5, the retention times decrease,
whereas the peaks become sharper. These two trends continue
for larger values of qcore. The results are given for Ka ¼ 100,
thus containing still an impact of the limited rates of adsorp-
tion and desorption. For all core radius fractions, a further
increase in the value of Ka will lead to converging results and
to the possibility to simplify the GRM. Now, the border values
for Ka will also depend on qcore.

Figure 3 shows another time for single component elu-
tion and qcore ¼ 0:8 the effects of the three other dimension-
less kinetic parameters on the outlet concentration profiles
for a fixed value of Ka ¼ 100. As the value of Peb increases
(here from 50 to 1500), and keeping Bip and gp at their ref-
erence values, the known effect is illustrated that peak
broadening decreases (Figure 3(a)). Similarly, Figure 3(b)
depicts, as also can be expected, that as Bip increases from 5
to 50 the band broadening of elution profile reduces.
Finally, a similar well-known trend is exemplified in Figure
3(c), where the internal diffusion parameters captured by gp
is increased from 0.5 to 2. Smaller or larger values of Ka

would alter the magnitude of these trends.

Two-component elution profile

Figure 4 shows the predicted elution profiles of two-compo-
nents present in a binary mixture for four different values of
qcore. The already discussed effects of qcore on the retention
times and band widths of the elution profiles are obvious,
now for both components. The results are still influenced by

the finite rates of the adsorption and desorption steps
because of the chosen values for Ka;i for the two compo-
nents (i.e. 100 and 250). For the case considered, the fully
porous particles are not able to separate the two-compo-
nents (Figure 4(a)). Figure 4(b) (qcore ¼ 0:3) depicts an
already better resolution, which further impoves for qcore ¼
0:5 in Figure 4(c). At qcore ¼ 0:8 (Figure 4(d)) the two com-
ponents are almost base-line separated. The results shown in
Figure 4 are further evaluated in terms of the performance
criteria introduced.

Figure 5 presents the predicted productivities Pr
(Equation (12), Figure 5(a)) and yields Y (Equation (13),
Figure 5(b)) as functions of qcore. To determine these criteria
the cycle and cut times had to be calculated specifiying the
purity requirements. The figure shows the results over qcore
for two sets of Ka, differing by a factor of 10. The larger val-
ues correspond to negligible limitations by finite adsorption
and desorption rates. This case is obviously the best and
leads to the highest performance. An interesting results is
the fact that for smaller rate constants of these steps a shift
to larger values of qcore is advisable. It should be mentioned
that the results descriebd are valid for given nonlinearity
parameters bi and injection concentration ci;inj. Changing
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in Table 1.
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these parameters will of course change the shape of the elu-
tion profiles and the proportions of the contributions of dif-
ferent kinetic effects, which is seen as outside the scope of
this paper.

Conclusion

A nonlinear General rate Model (GRM) for fixed-beds
packed with core-bead particles was investigated numeric-
ally. The model considered explicitly finite rates of the
adsorption and desorption steps at the active sites of the sta-
tionary phase. A high resolution finite volume scheme was
extended to solve the nonlinear model equations incorporat-
ing core-shell particles. This tool allows quantifying the
effect of limited rates of adsorption and desorption on the
shape of elution profiles for both fully porous and core-shell
particles and allows identifying minimal rates required to
neglect this effect and to further simplify the model. The
model developed and the solution strategy derived are seen
useful for predicting optimal layer thicknesses for the core-
shell particles.
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Appendix A: Numerical schemes

Here, a complete derivations of the proposed numerical scheme is pre-
sented. In the case of fully-porous particles, q ranges from 0 to 1, while
for cored particles it ranges from qcore ¼ Rcore=Rp to 1. Thus, q-axis
can be replaced by a new variable 0 � c � 1 such that

c ¼ q�qcore
1� qcore

: (A-1)

Using this transformation, Equations (6)–(9c) can be re-written in
term of new variable c as

@cb;i
@s

þ @cb;i
@x

¼ 1
Peb;i

@2cb;i
@x2

�np;i cb;i � cp;ijc¼1

� 	
; i ¼ 1; 2; :::;Nc: (A-2)

�p
@cp;i
@s

þ 1��pð Þ @qp;i
@s

¼ gp;i
1�qcoreð Þ2

@2cp;i
@c2

þ 2
cþ qcore= 1� qcoreð Þ

@cp;i
@c

" #
;

(A-3)

@qp;i
@s

¼ Ka;i cp;i � cp;i
XNc
j¼1

qp;j
qm

� qp;i
qmbi

0
@

1
A: (A-4)

Similarly, the transformation in Equation (A-1) can be used to
change variable q to c in the initial and boundary conditions given by
Equations (9a)–(9c).

In compact form, the above system of dimensionless equations can
be expressed as (A-2)-(A-4):

@cb
@s

þ @cb
@x

¼ Pe�1 @
2cb
@x2

�n cb�cpjr¼1

� 	
; (A-5)

�p
@cp
@s

þ 1��pð Þ
@qp
@s

¼ g

1�qcoreð Þ2
@2cp
@c2

þ 2
cþ qcore= 1� qcoreð Þ

@cp
@c

" #
;

(A-6)

@qp
@s

¼ K cp � cp
XNc
j¼1

qp;j
qm

� q�1
m B�1qp

0
@

1
A; (A-7)

where cb ¼ ðcb;1; cb;2; :::; cb;Nc ÞT; cp ¼ ðcp;1; cp;2; :::; cp;Nc ÞT; qp 2 ðqp;1;
qp;2; :::; qp;Nc ÞT , and for a 2 fPe�1; n; g;K;B�1g and
ai ¼2 fPe�1

b;i ; np;i; gp;i;Kd;i; b�1
i g, we have

a ¼

a1 0 0 0 � � � 0
0 a2 0 0 � � � 0
0 0 a3 0 � � � 0
..
. ..

. ..
. . .

. ..
.

0 0 0 0 � � � aNc

0
BBBBB@

1
CCCCCA: (A-8)

In order to apply the scheme, the first step is to discretize the com-
putational domain. Let Nx and Nc are the number of discretization
points along the x and c-coordinates. The computational domain is
taken as ½0; 1� � ½0; 1� which is covered by cells Xlm � xl�1

2
; xlþ1

2½ � �
cm�1

2
; cmþ1

2½ � for 1 � l � Nx and 1 � m � Nc. The characteristic coordi-
nates in the cell Xlm are denoted by ðxl; cmÞ. Here

x1=2; x1=2ð Þ ¼ 0; 0ð Þ; xl ¼
xl�1=2 þ xlþ1=2

2
; cm ¼ cm�1=2 þ cmþ1=2

2
;

(A-9)

and for the uniform mesh

Dx ¼ xlþ1=2�xl�1=2 ; Dc ¼ cmþ1=2�cm�1=2 : (A-10)

Then, for Il :¼ xl�1
2
; xlþ1

2½ � and Xlm :¼ xl�1
2
; xlþ1

2½ � � cm�1
2
; cmþ1

2½ �, the
cell averaged values cb;lðtÞ and cp;l;mðtÞ at any time t are given as

cb;l :¼ 1
Dxl

ð
Il

cb t;xð Þ dx; cp;l;m :¼ cp;l;m tð Þ ¼ 1
DxlDcm

ð
Xlm

cp t;x;cð Þ dcdx;

(A-11)

qp;l;m :¼ qp;l;m tð Þ ¼ 1
DxlDcm

ð
Xlm

qp t;x;cð Þ dcdx: (A-12)

By integrating Equation (A-5) on interval Il and using Equation (A-
11), we obtain

dcb;l
ds

¼

� cb;lþ1=2�cb;l�1=2ð Þ
Dx

þ 1
PebDx

@cb
@x

� �
lþ1=2

� @cb
@x

� �
l�1=2

" #
�n cb;l�cp;l;Ncð Þ;

(A-13)

where l¼1;2;:::;Nx and the differential terms can be approximated as

@cb
@x

� �
l61=2

¼6
cb;l61�cb;lð Þ

Dx
: (A-14)

Integration of Equation (A-6) over the interval Xlm gives

dcp;l;m
ds

¼ g

�p 1�qcoreð Þ2Dc
@cb
@c

� �
l;mþ1=2

� @cb
@c

� �
l;m�1=2

þ 2 cp;l;mþ1=2�cp;l;m�1=2ð Þ
cmþ1=2 þ qcore= 1� qcoreð Þ

" # (A-15)
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� 1��pð Þ
�p

dqp;l;m
ds

; (A-16)

where

@cp
@x

� �
l;m61=2

¼ 6
cp;l;m61�cp;l;mð Þ

Dc
: (A-17)

Finally, integrating Equation (A-7) over interval Xlm gives

dqp;l;m
ds

¼ K cp;l;m � cp
XNc
j¼1

qp;jð Þl;m
qm

� q�1
m B�1qp;l;m

0
@

1
A: (A-18)

Furthermore, concentrations approximation in Equations (A-13)
and (A-15) is needed at the cells interfaces xl61=2 and cm61=2.
Numerous ways are present for their approximation. We are presenting
here the first and second order approximations. Due to the positivity
of velocity u and 2g

�pDc½cmþ1=2ð1�qcoreÞ2þqcoreð1�qcoreÞ�
, the contractions vectors

at the interfaces of cell, cb and cp, are approximated as follows.

First order approximation of cell interface concentrations
Here, the backward difference formula is applied for the approximation
of concentrations at the cell interfaces:

cb;lþ1
2
¼ cb;l; cb;l�1

2
¼ cb;l�1; cp;l;mþ1

2
¼ cp;l;m; cp;l;m�1

2
¼ cp;l;m�1 : (A-19)

With the use of aforementioned approximations, a first order accur-
ate numerical scheme is obtained in the axial coordinates.

Second order approximation of cell interface
concentrations
Here, the cell interface concentrations are calculated as:

cb;lþ1
2
¼ cb;l þ 1

2
u llþ1

2ð Þ cb;l�cb;l�1ð Þ; llþ1
2
¼ cb;lþ1�cb;l þ f

cb;l � cb;l�1 þ f
; (A-20)

cp;l;mþ1
2
¼ cp;l;m þ 1

2
w �l;mþ1

2ð Þ cp;l;m�cp;l;m�1ð Þ; �lþ1
2
¼ cp;l;mþ1�cp;l;m þ f

cp;l;m � cp;l;m�1 þ f
;

(A-21)

where f ¼ 10�10 is used to avoid division by zero. The flux limiting

functions w and u are given as [25]

u ll þ 1
2ð Þ ¼ max 0;min 2llþ1

2
;min

1
3
þ 2
3
ll þ 1

2
; 2

� �� �� �
; (A-22)

w �l;m þ 1
2ð Þ ¼ max 0;min 2�l;m þ 1

2
;min

1
3
þ 2
3
�l;m þ 1

2
; 2

� �� �� �
: (A-23)

The scheme given by Equations (A-20)-(A-23) can not be used at the
boundary intervals. Therefore, backward approximations are applied on the
boundary intervals. For computing fluxes at interior intervals, Equations (A-
20)-(A-23) are used. It is to be noted that this first order approximation at
the boundary cells does not reduces the overall accuracy of this scheme.

To guarantee the same accuracy in time coordinate, a second order
accurate TVD-RK method is applied for solving Equations (A-20)-(A-
23). Let us denote the right-hand side of Equations (A-20) and (A-21)
by ðcb; cpjc¼1Þ;MðcpÞ and NðqpÞ. A second order TVD-RK scheme
updates cb and cp through the following two stages [28]

c 1ð Þ
b ¼ cnb þDt‘ cnb ;c

n
p jc¼1

� �
; c 1ð Þ

p ¼ cnp þDtM cnp
� 	

; q 1ð Þ
p ¼qnp þDtN qnp

� 	
;

(A-24a)

cnþ1
b ¼ 1

2
cnb þc 1ð Þ

b þDt ‘ c 1ð Þ
b ;c 1ð Þ

p jc¼1

� �h i
;

cpnþ1¼ 1
2

cnp þc 1ð Þ
p þDt M c 1ð Þ

p

� �h i
;

(A-24b)

qnþ1
p ¼ 1

2
qnp þq 1ð Þ

p þDt N q 1ð Þ
p

� �h i
: (A-24c)

where cnb ;c
n
p and qnp represent solutions at previous time step, tn, and

cnþ1
b , cnþ1

p and qnþ1
p are updated one calculated at the next time step

tnþ1. Also, Dt is time step which is evaluated using the following CFL
condition

Dt�0:5min

Dx;max Peb;kð ÞDx2;Dc
2�p 1�qcoreð Þ2

gp;k
;
Dc�pcmþ1=2 1�qcoreð Þ2þqcore 1�qcoreð Þ

2 gp;kð Þ

 !
:

(A-25)

The above-mentioned numerical algorithm was implemented in C
programming language.
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