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We investigate classically non-singular bounces caused by dark energy. In the pres-

ence of positive spatial curvature, vacuum energy, either in the form of a cosmological

constant or a scalar field potential, allows for an open set of initial conditions lead-

ing to non-singular bounces, without any violation of the null energy condition. We

study anisotropic Bianchi IX cosmologies, and demonstrate that they can even have

multiple bounces, accompanied by intricate evolutions of the anisotropies that pro-

vide a non-singular analogue of mixmaster crunches. The relation of these solutions

to more complete cosmological models, as well as to the recently proposed swampland

criteria, are briefly discussed.
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I. INTRODUCTION

Within the standard hot big bang model of cosmology, the idea of the big bang is firmly

ingrained. This is mostly due to the singularity theorems of Penrose and Hawking [1], which

show that under a wide range of conditions, and particularly in the presence of matter

that satisfies the null energy condition (as all currently known matter types do), general

relativity implies that the current expansion phase must have been preceded by a curvature

singularity. The approach to the singularity itself was studied in detail at the classical level

by Misner [2] and also by Belinsky, Khalatnikov and Lifschitz (BKL) [3]. They found the

so-called mixmaster behaviour during which the universe shrinks anisotropically - with two

spatial directions shrinking while another one expands - in such a way that the total volume

becomes smaller and smaller in the approach to the singularity. Which spatial directions

shrink and which expand changes ever faster while the universe contracts, leading to chaotic

behaviour (see [4] for a review). More realistically however, one would expect quantum

gravity, and/or perhaps new types of matter, to become important before the singularity is
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reached. This new physics may then either explain the creation of spacetime and matter, or

their transition from a prior phase of evolution.

But there remains a rather simple caveat to the singularity theorems: the combination

of positive spatial curvature (more specifically, of a compact spatial hypersurface without

boundary) and vacuum energy (violating the strong energy condition) allows for classically

non-singular bounces to occur, linking a contracting phase of the universe to a subsequent

expanding one [5]. The simplest and best known example is de Sitter space, in global

coordinates. Here we will study similar solutions in more generality, including the effects

of anisotropies. As we will discuss, the boundary conditions required for the occurrence

of such solutions are rather non-generic, but they do constitute an open set. It currently

remains unclear what the eventual importance of these bounces will be for the description

of our universe. But importantly, they occur in the presence of known physics, without any

exotic matter, without modifications to general relativity and without the need for quantum

theory1. From this point of view they seem well worth studying. What is more, these

non-singular bounces, which also exist in the presence of (sufficiently small) anisotropies,

display interesting properties. For instance, they exhibit features reminiscent of the chaotic

mixmaster behaviour: multi-bounce solutions exist, with numerous accompanying switches

in the expansion rates of different spatial directions. In fact, there does not seem to be any

limit to the number of possible bounces, separated by momentary maxima of the size of the

universe. We thus find a gradual interpolation between the isotropic de Sitter solution and

fully chaotic BKL/mixmaster crunches. Moreover, bounces occur not only in the presence

of a cosmological constant, but also for dark energy modelled by a scalar field potential –

in the latter case the potential can be in agreement with the recently proposed swampland

criteria, implying that the bounces also present trustworthy solutions from the string theory

point of view.

The plan of our paper is as follows: in section II we will first review the Bianchi IX space-

time, which is the most general homogeneous and anisotropic cosmology. This allows us to

exhibit non-singular bounces in the presence of a cosmological constant, which constitutes

the simplest example of dark energy. In this setting we can also immediately see the link

with chaotic mixmaster behaviour, which grows stronger at the edges of the allowed param-

1 See e.g. [6–10] for a small sample of alternative approaches. Skyrmions have also been used to construct

non-singular bounce solutions, see e.g. [11, 12].
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eter space for bounces. Some features of the bounces can be understood analytically in a

restricted spacetime known as axial Bianchi IX [13, 14], with the help of an exact solution

that was recently discovered, and which we will discuss in section II D. Even more generally,

this class of bounces persists when including a scalar field with a potential, which will be

the topic of section III. We conclude with an extended discussion in section IV and exhibit

another class of analytic, anisotropic bounces in the appendix. We should also comment

on the relation of our paper to previous works: various aspects of the bounces of the type

considered here, including existence of solutions, “likelihood” of bounces, cosmological per-

turbations across such bounces (especially about the isotropic de Sitter background), were

studied over many years – for a sample of papers see [15–21]. What is new in our paper

is that we provide a systematic overview of explicit numerical solutions, thereby clearly

illustrating the link with BKL/mixmaster crunches, and explaining some aspects of these

solutions by making use of an analytic solution for axial Bianchi IX, while also discussing

the link with the recent swampland conjectures.

II. BOUNCES IN THE PRESENCE OF A COSMOLOGICAL CONSTANT

A. Bianchi IX

In order to allow for both positive spatial curvature and anisotropies, we will consider

the Bianchi IX metric. One can think of the spatial part of this metric as an evolving

three-sphere with two different squashing parameters, so that it represents an anisotropic

generalisation of a closed Robertson-Walker spacetime. An alternative point of view is that

Bianchi IX represents a fully non-linear completion of a gravitational wave, again in a closed

cosmology. The Bianchi IX metric can be written as [2]

ds2
IX = −dt2 +

∑
m

(
lm(t)

2

)2

σ2
m , (1)

where σ1 = sinψdθ − cosψ sin θdϕ, σ2 = cosψdθ + sinψ sin θdϕ, and σ3 = dψ + cos θdϕ are

differential forms on the three sphere with coordinate ranges 0 ≤ ψ ≤ 4π, 0 ≤ θ ≤ π, and

0 ≤ φ ≤ 2π. We can re-scale

l1(t) = a(t) exp

(
1

2

(
β+(t) +

√
3β−(t)

))
(2)
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l2(t) = a(t) exp

(
1

2

(
β+(t)−

√
3β−(t)

))
(3)

l3(t) = a(t) exp (−β+(t)) (4)

such that a represents the average spatial volume while the βs quantify the deformations of

the sphere. When β− = β+ = 0 one recovers the isotropic case.

Figure 1. The anisotropy potential U(β+, β−). The minimum is at U(0, 0) = −3. Around the min-

imum the potential has an approximate circular symmetry, while at larger values of the anisotropy

parameters it has the symmetries of an equilateral triangle. The potential asymptotes to zero from

below in the “corner” directions. In this plot, only the region where U < 0 is displayed, for reasons

explained in the main text.

We will consider general relativity, initially purely in the presence of a constant positive

vacuum energy density Λ > 0, so that in natural units (8πG = 1) the action is

S =

∫
d4x
√
−g
(
R

2
− Λ

)
. (5)

In the Bianchi IX case, the action reduces to

S = 2π2

∫
dta

[
−3ȧ2 +

3

4
a2(β̇2

+ + β̇2
−)−

(
a2Λ + U(β+, β−)

)]
, (6)
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where we can see that the anisotropy parameters β± have effective kinetic terms analogous

to those of scalar fields, while they evolve in the effective potential U/a2 where

U(β+, β−) = −2
(
e2β+ + e−β+−

√
3β− + e−β++

√
3β−
)

+
(
e−4β+ + e2β+−2

√
3β− + e2β++2

√
3β−
)
(7)

= −3 + 6
(
β̇2

+ + β̇2
−

)
+O(β3

±) . (8)

This potential is shown in Fig. 1. It has a circular symmetry near its minimum at U(0, 0) =

−3, while at larger values of the anisotropy parameters this symmetry goes over into the

symmetry structure of an equilateral triangle. For large anisotropies, the potential “walls”

rise exponentially fast, and the BKL/mixmaster behaviour alluded to in the introduction

effectively corresponds to the anisotropy parameters reflecting off these potential walls, which

they do increasingly fast in a contracting universe.

The constraint (Friedman) equation following from the action is given by

3H2 =
3

4

(
β̇2

+ + β̇2
−

)
+

1

a2
U(β+, β−) + Λ , (9)

where the expansion/contraction rate is defined as usual as H ≡ ȧ/a, while the equations

of motion are (using the Friedman equation to simplify the acceleration equation)

ä

a
+

1

2

(
β̇2

+ + β̇2
−

)
− Λ

3
= 0 , (10)

β̈+ + 3Hβ̇+ +
2

3a2
U,β+ = 0 , (11)

β̈− + 3Hβ̇− +
2

3a2
U,β− = 0 . (12)

B. Time symmetric bounces

The requirements for a non-singular bounce are straightforward to derive: the equations

of motion must allow for the scale factor of the universe to turn around (i.e. they must allow

for ȧ = 0) and they must allow for this moment to represent a minimum size, ä > 0. At the

bounce (a ≡ ab, H = 0), the Friedman equation (9) reads

− 1

a2
b

U(β+, β−) =
3

4

(
β̇2

+ + β̇2
−

)
+ Λ |bounce . (13)

Since the right hand side is positive definite, we see that the anisotropy potential must be

negative at the bounce, U < 0, which implies that at the bounce, the anisotropy parameters
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β± must reside in the approximately triangular region shown in Fig. 1.The bounce radius

ab is then given by

ab =

√
−U

Λ + 3
4
(β̇2

+ + β̇2
−)
. (14)

Negative U is a necessary condition for a bounce, but it is not sufficient: the acceleration

equation (10) shows that in order to obtain ä > 0, we must have

3

2
(β̇2

+ + β̇2
−) < Λ |bounce . (15)

Thus we must have suitably small velocities for the anisotropies at the time of the bounce.

In other words, for β̇± |bounce= 0 we obtain the largest possible set of anisotropy values

leading to a bounce. Roughly speaking, the conditions for a successful bounce are that at

the bounce the kinetic energy associated with the anisotropies is smaller than the vacuum

energy, which in turn must be smaller in magnitude than the (negative) potential energy due

to spatial curvature. Note that it is indeed the combination of spatial curvature (leading to

U < 0) and vacuum energy, as exemplified in Eq. (15), that allows for non-singular bounces

to occur.

With the exception of a special sub-class of solutions presented in subsection II D and

for which an analytic expression exists, we must find the bouncing solutions numerically.

We will start with the best possible case, where we demand that the time derivatives of the

anisotropy parameters are set to zero at the moment of the bounce, β̇+(tb) = β̇−(tb) = 0 at

ȧ(tb) = 0. Without loss of generality we will choose the origin of the time coordinate to be

at the bounce, tb = 0. Since the derivatives are all zero at the bounce, these solutions will

be symmetric in time, i.e. the contraction phase leading up to the bounce will be the time

reverse of the ensuing expanding phase. Our numerical results for this case are presented in

Figs. 2 – 5. In all these plots we have chosen Λ = 3 × 10−4, so that the Hubble radius is

given by 1/H =
√

3/Λ = 100 in Planck units, i.e. we made the assumption that the vacuum

energy was large in the early universe. The solutions presented here however exist for any

chosen value of Λ and can be obtained using suitable re-scalings of the coordinates.
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Figure 2. This plot shows the evolution of the anisotropies β± as a function of time. Time is height

in the graph, the plotted ranges are −7/10 < β+ < 11/10,−9/10 < β− < 9/10 and −300 < t < 300,

for Λ = 3 · 10−4 so that the Hubble radius is 1/H = 100 Planck lengths. The bounce occurs in

the middle, with zero derivatives ȧ = β̇+ = β̇− = 0 at t = 0. There is a general focussing towards

smaller values of the anisotropies away from the bounce. The coloured curves show the evolution of

the anisotropies near the bounce for solutions that evolve to a large universe asymptotically. The

colour changes as a function of the distance from the isotropic (pure de Sitter) solution located at

the centre of the plot, see also the next figures and the text for more details.
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Figure 3. Time slices through the previous figure: clockwise from top left at t = 0, 50, 100, 500.

The anisotropy parameters are re-scaled by a factor of 100. Gray dots in the t = 0 slice indicate

values where the potential U is positive (cf. Fig. 1), and where no bounce can occur. Black dots

mark the anisotropy values for which the bounce is followed by a rapid re-collapse. As one can

see, the rapid re-collapse region surrounds the conditions for a bounce in all anisotropy directions.

Overall, the triangular shape of the anisotropy potential is easily recognisable, and the later time

slices show how various solutions reflect off the potential walls, while overall there is a general

focussing effect towards smaller anisotropy values away from the bounce.

Fig. 2 shows the evolution of the anisotropy parameters as a function of time. Each
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Figure 4. These graphs indicate the number of extrema of the scale factor a(t), as a function of

the anisotropy values at t = 0. A value of 1 corresponds to a single bounce, while 5 for instance

implies three bounces separated by two local maxima of a. An R marks a bouncing solution that

rapidly re-collapses to a singularity, while 0 means that no bounce is possible at all. The plot on

the right is a zoom-in near the edge of the region of re-collapse.

trajectory represents a bouncing solution, with the colour determined by the distance β2
++β2

−

in anisotropy space (at t = 0) from the isotropic de Sitter solution for which β± = 0. Time

slices through these solutions are presented in Fig. 3 at times t = 0, 50, 100, 500, where

we should keep in mind that the characteristic time scale implied by the vacuum energy

is 100 Planck times for our choice of Λ. Each coloured trajectory describes a successful

bouncing solution, in the sense that at large early/late times these solutions contract/expand

exponentially.

They may, however, contain short time intervals of re-collapse, followed by another

bounce. This is illustrated in Fig. 4 where the number of extrema of the scale factor is

shown. A value of 1 implies a standard non-singular bounce solution for which the scale

factor has a typical “U” shape as a function of time. By contrast, a value of 3, for instance,

implies that there are two bounces separated by a local maximum of the scale factor, i.e.

the scale factor has a profile that resembles the letter “W”. We deem a solution to be an
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unsuccessful bounce if shortly before/after the bounce the scale factor re-collapses to zero

size, leading to a curvature singularity. Such re-collapsing solutions are marked with the

letter R in Fig. 4. As we derived above, the anisotropy potential must be negative in order

for a bounce to occur. When this is not the case, i.e. when no bounce can occur at all, not

even a temporary one followed by re-collapse, we assigned the entry 0 in Fig. 4. From this

graph we can see that the region where bounces occur is separated from the region where

they cannot occur by re-collapsing solutions that simply shift the singularity in time, with-

out eliminating it. The edge of the re-collapsing region is formed by what might very well

be the most interesting bouncing solutions from a mathematical viewpoint: here there exist

solutions with increasing numbers of intermediate bounces, and intricate evolutions of the

anisotropy parameters. An example with 13 extrema of the scale factor, i.e. 7 bounces and

6 local maxima of a, is shown in Fig. 5. The plot of the evolution of the anisotropies shows

that this solution repeatedly reflects off the walls of the anisotropy potential U(β+, β−), rem-

iniscent of the BKL/mixmaster behaviour of singular crunches. The evolution here reveals

a substantial sensitivity to initial conditions, although it is not chaotic in the BKL sense, in

that there are only a finite number of such reflections before a non-singular bounce occurs.

Nevertheless, as one approaches the edge of the re-collapse region in ever smaller intervals,

there seems to be no limit to the number of bounces, as illustrated by the right panel in

Fig. 4. The latter graph for instance includes a solution with 15 bounces separated by 14

local maxima of the scale factor. It would be interesting, though computationally intense, to

find the shape of the curves delineating the borders between solution regions with different

numbers of bounces. This question must, however, be left for future work 2.

Overall, there is a significant focussing of the anisotropies towards smaller values as one

goes away from the bounce. Also, in all successful bounce solutions, the anisotropies rapidly

reach approximately constant values at early and late times, with all of the interesting

evolution confined to the time period of the bounce. For the case of zero (or very small)

velocities at the bounce, we can also understand the focussing effect analytically. This is

because the equations of motion (11), (12) for the anisotropies simplify near the bounce to

give

β̈± ≈ −
2

3a2
b

U,β± . (16)

2 Analyses of the chaotic nature of isotropic solutions (in the presence of a massive scalar field) have already

been performed in [22–24].
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Figure 5. These two graphs show the evolution of the scale factor and the anisotropy parameters

for the time symmetric solution with β+ = −11/30, β− = 1/6 at the bounce. For this solution

there are a total of 7 bounces occurring in succession, while the anisotropy parameters undergo

elaborate reflections off the walls of the anisotropy potential. Multi-bounce solutions such as this

one occur near the edges of the allowed parameter space, as evidenced in Fig. 4.

Since the effective potential U rises from the origin in all directions of increasing anisotropy,

the above equation implies that the anisotropy will be reduced as we go away from the

bounce.

C. Time asymmetric bounces

We can now extend these results by allowing for non-zero time derivatives of the

anisotropy parameters at the bounce. The allowed range is indicated by the bound in

Eq. (15), which can be read to say that the “kinetic energy” in the anisotropy must be

smaller than half of the energy density of vacuum energy. Numerically, we find that, in-

creasing this kinetic energy, the results of the previous section are modified very little until

one gets close to the upper bound. The left panel in Fig. 6 for instance shows the results

for the case where we take β̇+(0) = β̇−(0) = 1/200, implying that 3
2
(β̇2

+ + β̇2
−) = 1

4
Λ at t = 0.

Even for these values which are just a factor of 1/4 away from the upper bound, the main

effects are a slight time asymmetry in the solutions and a modest reduction of the available

anisotropy space leading to bounces. The left panel in Fig. 7 illustrates this.

Interestingly, one may increase the velocities of the β parameters at t = 0 even slightly

beyond the bound of Eq. (15), and still obtain non-trivial results – see the right panels
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Figure 6. This plot shows the evolution of the anisotropies β± as a function of time. Time is

height in the graph, the plotted ranges are −7/10 < β+ < 11/10,−9/10 < β− < 9/10 at the

bounce, and −300 < t < 300, for Λ = 3 · 10−4 so that the Hubble radius is 1/H = 100 Planck

lengths. Initial conditions are imposed at t = 0, where ȧ = 0 and β̇+ = β̇− = 1/200 (left graph)

and β̇+ = β̇− = 1/80 (right graph).

in Figs. 6 and 7, where we took β̇+(0) = β̇−(0) = 1/80, implying that 3
2
(β̇2

+ + β̇2
−) = 25

16
Λ

at t = 0. Simple bounces have now disappeared (in agreement with the derived bound),

but multi-bounce solutions may still exist, since the anisotropy parameters may evolve to

smaller velocities away from t = 0 and lead to bounces there. An example of such a solution



13

100β+

100β-

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R

R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
5

R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
1
1
1

R
R
7
5
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
3
1
1
1
1
R

R
R
R
5
1
1
1
3
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
1
1
1
1
1
1
R
R
R

0
R
R
R
5
1
1
1
1
1
1
3
3
R
R
R
R
R
R
R
R
R
R
3
1
1
1
1
1
1
1
1
1
R
R
R
0

0
0
R
R
R
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
R
R
R
0
0

0
0
0
R
R
R
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
R
R
R
0
0
0

0
0
0
0
R
R
R
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
R
R
R
0
0
0
0

0
0
0
0
0
R
R
R
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
R
R
R
0
0
0
0
0

0
0
0
0
0
0
R
R
R
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
R
R
R
0
0
0
0
0
0

0
0
0
0
0
0
0
R
R
R
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
R
R
R
0
0
0
0
0
0
0

0
0
0
0
0
0
0
R
R
R
R
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
R
R
R
R
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
R
R
R
3
1
1
1
1
1
1
1
1
1
1
1
1
1
3
R
R
R
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
R
R
R
1
1
1
1
1
1
1
1
1
1
1
1
3
R
R
R
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
R
R
5
1
1
1
1
1
1
1
1
1
1
1
5
R
R
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
R
R
R
1
1
1
1
1
1
1
1
1
1
3
R
R
R
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
R
R
R
1
1
1
1
1
1
1
1
1
R
R
R
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
R
R
R
1
1
1
1
1
1
1
1
3
R
R
R
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
R
R
5
1
1
1
1
1
1
1
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
1
1
1
1
1
1
1
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
3
1
1
1
1
1
7
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
1
1
1
1
1
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
1
1
1
1
1
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
3
1
1
1
11
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
1
1
1
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
1
1
1
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
1
1
1
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
3
1
5
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
1
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
1
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
1
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
5
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-100 -50 0 50 100
-100

-50

0

50

100

100β+

100β-

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R

R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R

R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0

0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0

0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0

0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0

0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0

0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
9
5
5
5
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0

0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
3
3
3
3
3
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0

0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
3
3
3
3
3
5
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
3
3
3
3
3
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
3
3
3
3
3
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
9
3
3
3
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-100 -50 0 50 100
-100

-50

0

50

100

Figure 7. The number of extrema of the scale factor a(t) for the solutions plotted in Fig. 6.

with 3 extrema of the scale factor, translating into two bounces separated by one local

maximum of a(t), is plotted in Fig. 8. Overall, the parameter space leading to bounce

solutions is drastically reduced when the kinetic energy in the anisotropy is this large. From

these considerations it seems clear that non-singular bounces of the type discussed here can

only have played a role in the early universe if the vacuum energy was very large., and if

the growth of anisotropies during a prior contracting phase was suitably mitigated. We will

discuss this aspect in more detail in section IV.

D. Axial Bianchi IX: an exact solution

Our discussions so far were based on numerical solutions to the equations of motion, for

various boundary conditions. In fact it seems difficult to imagine that a general analytic

solution can be found for full Bianchi IX non-singular bounces. However, there exists a

special subset of solutions for which an exact result may be found. We will present it here,

as it confirms our numerical results in the relevant parameter region, and provides useful

insights into the general structure of this subset of solutions.

One may consistently truncate the equations of motion (9) - (12) to a simpler system

with just one deformation parameter, along any of the three axes of symmetry of the full

Bianchi IX metric. The simplest choice is the axis defined by β− = 0, and along this axis
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Figure 8. These graphs show the evolutions of the scale factor and of the anisotropy parameters

as a function of time, for the solution with β+(0) = β−(0) = 0, but with large velocities β̇+(0) =

β̇−(0) = 1/80. Although the kinetic energy at t = 0 is larger than the value that could lead to

a bounce, away from t = 0 two bounces nevertheless occur since the energy in the anisotropies is

slightly reduced there.

β− will then not be sourced by non-zero β+. Thus, the anisotropy space is reduced from 2

to just 1 dimension, and sometimes this is called the axial Bianchi IX case. With the choice

β− = 0, the effective anisotropy potential simplifies to the form

U(β+, β− = 0) = −4e−β+ + e−4β+ . (17)

This potential is shown in the left panel of Fig. 9. It contains a local minimum at negative

values of the potential, and asymptotes zero from below as β+ →∞. The bounce criterium

that U must be negative to allow for a non-singular bounce thus suggests that it might be

possible to find bounce solutions for arbitrarily large values of β+ as long as β− = 0, and we

will see that this expectation is borne out.

Anabalón and Oliva (AO) recently found an exact bouncing cosmology for the axial

Bianchi IX system [25]. Their solution is most easily expressed in a coordinate system

different to the one we have been using so far – more specifically we will take the line

element to be

ds2 = − 4l4

σ2f(τ)
dτ 2 + g(τ)(σ2

1 + σ2
2) + f(τ)σ2

3 , (18)

where f(τ), g(τ) are two scale factors (which are straightforwardly related to a(t), β+(t), see

below), l is a convenient parameter that will be related to the vacuum energy, and the time
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β+

U(β+)

Figure 9. The left plot depicts the anisotropy potential U(β+, β− = 0) along one of the axes of

symmetry, here chosen to be the axis β− = 0. The range over which non-singular bounces can occur

is marked in red. Bounces occur for arbitrarily large positive anisotropies in this direction, and

the solutions are strongly focussed towards zero away from the bounce. There is a minimum value

β+ = 1
3 ln(1

3) ≈ −0.366 below which the solutions rapidly re-collapse. Below β+ = 1
3 ln(1

4) ≈ −0.462

the anisotropy potential is positive an no bounce can occur at all.

coordinate is re-scaled. In these coordinates, the action is given by

S = V ol3

∫
dτ

[
1

8l2σ

[
16l4 − 2σ2f,τg,τ −

f

g

(
4l4 + σ2g2

,τ

)]
− 2l2

σ
gΛ

]
. (19)

Varying with the respect to the fields gives the following equations of motion

gg,ττ −
1

2
g2
,τ − 2

l4

σ2
= 0 , (20)
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f,ττ +
g,τ
g
f,τ +

4l4

σ2

f

g2
− 8l4

σ2
Λ = 0 . (21)

Now we can state the AO solution, which is given by [25]

g(τ) =
l2

σ

(
τ 2 + 1

)
, (22)

f(τ) =
4l2

σ2

τ 4 + (6− σ)τ 2 + µτ + σ − 3

τ 2 + 1
, (23)

supplemented with the identification of l as being the Hubble length, Λ = 3
l2

. The solution

contains two free parameters, namely σ and µ. We see that g(τ) is manifestly positive but

having f(τ) non-zero everywhere imposes the following conditions on the free parameters σ

and µ,

3 < σ < 12 , |µ| < 2

9

√
3
√
σ − 3(12− σ) . (24)

To better illustrate the physical meaning of the variables, we translate them into the scale

factor a and anisotropy β+. By comparing the metrics we find that

a =
(
fg2
)1/6

, β+ =
1

3
ln
g

f
. (25)

The isotropic (de Sitter) limit is restored in the case µ = 0 and σ = 4. The parameters are

related to the anisotropy and its derivative at τ = 0; in fact we have

β+(0) =
1

3
ln

σ

4(σ − 3)
, (26)

dβ+

dτ
(0) = − 1

3(σ − 3)
µ , (27)

while asymptotically we have

β+(±∞) =
1

3
ln
σ

4
+O(τ−2) , (28)

dβ+

dτ
(±∞) = 0 +O(τ−3) . (29)

Eq. (27) shows that µ determines the velocity of the anisotropy at the bounce, and as a

consequence also the amount of time asymmetry of the solution. Meanwhile Eq. (26) implies

that non-singular bounces can occur for all values of β+ > 1
3

ln
(

1
3

)
≈ −0.366 at the bounce.

In particular, the anisotropy can be arbitrarily large in the positive β+ direction, as expected

from the shape of the potential. However, there is a lower limit at 1
3

ln
(

1
3

)
, which is not at
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the point where the potential turns positive, but rather a little into the negative potential

region. This is illustrated in the left panel of Fig. 9. This limiting value also agrees with

our numerical results, cf. the location of the re-collapse region on the β− = 0 axis in Fig. 4.

Asymptotically, Eqs. (28) and (29) imply that the anisotropy parameter tends to a constant

value, and this value is forced to be in the rather small range 1
3

ln
(

3
4

)
< β+(∞) < 1

3
ln 3.

This range reflects the focussing effect towards small values of the anisotropy that we already

discussed in subsection II B.

The exact solution permits us to understand a few additional features analytically. From

Eq. (25) we can see that a6 is a 6th order polynomial in time, implying that it can have 5

extrema at most. Explicitly, we have

a6 =
4l6

σ4

[
τ 6 + (7− σ)τ 4 + µτ 3 + 3τ 2 + µτ + σ − 3

]
. (30)

For time symmetric solutions, with µ = 0, the extrema are then given by the real solutions

to the equation

τ

(
τ 4 +

(
14

3
− 2σ

3

)
τ 2 + 1

)
= 0 . (31)

This straightforwardly implies that time symmetric axial Bianchi IX bounces have a single

minimum of the scale factor for 3 < σ < 10, a minimum and two inflection points for σ = 10

and 3 bounces separated by 2 local maxima for 10 < σ < 12. We cannot have more than 3

bounces for these solutions, a feature that can be understood intuitively in the sense that the

vanishing of β− implies that the potential only contains a wall in the negative β+ direction,

and multiple BKL-type reflections off the potential walls cannot occur. A similar calculation

shows that the extrema of β+ occur (again in the time symmetric µ = 0 case) when

τ = 0, and when τ 2 =
3σ − 12

σ − 4
. (32)

Thus, except for the de Sitter solution at σ = 4, the anisotropy always has 3 extrema, a fact

that is also nicely seen in the right panel of Fig. 9.

In the appendix we show that the closely related Kantowski-Sachs metric, in which the

spatial sections contain a two-sphere rather than a three-sphere, also admit non-singular

bounce solutions that are easily describable by an analytic solution, and that have related

properties.
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III. BOUNCES IN THE PRESENCE OF A SCALAR FIELD

Up to now we modelled dark energy via a cosmological constant. However, we may

also consider the possibility that dark energy evolves over time, a situation which can be

described by using a scalar field φ in a potential V (φ). Then the equations of motion are

augmented to include contributions from the (minimally coupled) scalar, to become

ä

a
+

1

2

(
β̇2

+ + β̇2
−

)
− 1

3

(
φ̇2 − V (φ)

)
= 0 , (33)

β̈+ + 3Hβ̇+ +
2

3a2
U,β+ = 0 , (34)

β̈− + 3Hβ̇− +
2

3a2
U,β− = 0 . (35)

φ̈+ 3Hφ̇+ V ′(φ) = 0 . (36)

while the Friedman equation becomes

3H2 = V (φ) +
1

2
φ̇2 +

3

4
(β̇2

+ + β̇2
−) +

1

a2
U(β+, β−) . (37)

This setting is familiar from inflation and quintessence models of dark energy. There are

some similarities here, as one of the conditions for obtaining a bounce is that the strong

energy condition must be violated, and this is the same condition as that for accelerated

expansion. The scalar field equation of state is given by the ratio of pressure to energy

density, which in the cosmological context can be expressed as

w =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (38)

A violation of the strong energy condition corresponds to w < −1
3
. In inflation and

quintessence models, this condition is realised by the field slowly rolling down the po-

tential, so that the kinetic energy is sufficiently small compared to the potential energy,

more precisely such that 1
2
φ̇2 < 1

2
V (φ) (in the absence of anisotropies, Eq. (33) then immedi-

ately implies ä > 0). This regime where the scalar slowly rolls down the potential is required

for such a phase to last for an extended period of time, and for this reason the potential

must not only be sufficiently flat in one location, rather it must be so over an extended field

range. For non-singular bounces, one could consider a similar scenario where the scalar field

rolls down while the universe bounces. This works less well than for inflation/quintessence

however, as the scalar field kinetic energy is blue-shifted during contraction, and thus the
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standard Hubble friction term in the equation of motion (36) becomes an anti-friction term.

There is however an alternative manner in which a scalar potential can usefully lead to a

bounce, and this is to consider the situation in which the scalar field runs up the potential

during the contracting phase. It can do so again because of the blue-shifting. Moreover, one

can then imagine the situation where the scalar slows down as it rolls up, comes to rest at

(or around) the time of the bounce, and subsequently rolls down again during the expansion

phase. A great advantage of this scenario is that once the scalar comes to rest, the equation

of state is precisely that of a cosmological constant, w = −1. And for a bounce, which occurs

over a relatively short time scale, this is enough. One does not need an extended period

of strong energy violation. This implies that bounces can occur even in potentials that are

rather steep (in fact, one can momentarily achieve w = −1 in any potential), and that one

would not consider for inflationary model building. That said, we should now look at the

combination of all the conditions required for a bounce, and then compare to numerical

examples.

Figure 10. These two plots show the evolution of the scalar field as a function of time, for solutions

that bounce at t = 0 at a specified value of a = 10, φ = 1/2, for a range of values of φ̇ at the

bounce. The left panel is for a potential V = eφ/10, showing solutions with φ̇(t = 0) up to values

of 0.90 while the right panel is for V = eφ/2, showing solutions with φ̇(t = 0) up to values of 0.48.

Lighter curves correspond to larger velocities at the bounce.

The minimal value of the scale factor at the bounce can again be found from the Friedman

equation (37), and is given by

ab =

√
−U

V (φ) + 1
2
φ̇2 + 3

4
(β̇2

+ + β̇2
−)
. (39)
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The conditions to obtain a bounce are now given by

U(β+, β−) < 0 |bounce , (40)

3

2
(β̇2

+ + β̇2
−) + φ̇2 < V (φ) |bounce . (41)

We may again study a few numerical examples, this time for potentials of exponential form

V (φ) = v0e
cφ.We will also limit ourselves to cases with small anisotropies (in all the examples

below we set β± = 1/100, β̇± = 0 as an initial condition), since the inclusion of anisotropies

is very similar to the discussions of the preceding sections.

Fig. 10 shows the time evolution of the scalar field for a rather flat (left panel) and for

a steeper potential (right panel). The initial conditions have been set at the bounce, which

occurs at t = 0, for a range of values of the scalar field derivative. Thus the solutions that

are plotted are automatically selected on the basis that a non-singular bounce occurs. As

the scalar field derivative increases, the field runs further up the potential after the bounce,

before eventually turning around and rolling back down. In potentials such as these, an

inflationary phase would then follow.

Figure 11. The evolution of the scale factor and the scalar field for a range of initial velocities

leading to non-singular bounce solutions. The potential is taken to be φ = ephi/10 here. The

initial values for the scale factor and scalar field are ai = 9, φi = 23/50, and the range of initial

velocities leading to non-singular bounces is found to be 0.058 / φ̇ / 0.064, represented by the

curves ranging from black to yellow respectively.

We may also set the initial conditions at an earlier time, in the contracting phase preceding

a bounce (or a crunch). This is shown for two different potentials in Figs. 11 (with V = eφ/10)

and 12 (with V = eφ/100). The solutions that are plotted are those that lead to non-singular
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Figure 12. Same as Fig. 11, but for the potential V = eφ/100. The initial values for the scale factor

and scalar field are ai = 9, φi = 23/50, and the range of initial velocities leading to non-singular

bounces is found to be 0.0024 / φ̇ / 0.095, represented by the curves ranging from black to yellow

respectively.

bounces. For the steeper potential in Fig. 11, we find that only solutions that first run

up the potential lead to a bounce. In all these solutions the scalar field turns around at or

shortly after the bounce, and rolls back down the potential. For the largest initial scalar

field velocity, the field runs up the furthest, leading to the largest amount of expansion after

the bounce. For a flatter potential, as shown in Fig. 12, non-singular bounces may occur

both when the scalar field runs up the potential, or down. Of course, eventually the field

always rolls down the potential, and all these non-singular bounces are followed by phases

of inflationary expansion. The largest amount of expansion right after the bounce occurs for

the case where the scalar field velocity is practically zero at the bounce. For larger velocities,

the bounce occurs somewhat later, so that there is less time for expansion. And for smaller

initial velocities, the scalar rolls down the potential earlier, so that the bounce occurs while

the field is already rolling down, implying a smaller expansion rate right after the bounce.

In all cases, the range of initial velocities that lead to a non-singular bounce is small. This

is mainly due to the blue-shifting of the scalar kinetic energy during the contraction phase,

where one must ensure that the bound in Eq. (41) does not get violated. We will discuss

the initial conditions in more detail in the next section.
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IV. DISCUSSION

In this paper, we have analysed non-singular bouncing universe solutions in the simplest

possible setting: general relativity in the presence of a cosmological constant, or in the

presence of a scalar field with a potential. Here bounces occur due to established physics only

(dark energy is observationally established, as is the existence of a scalar particle, the Higgs),

and without violations of the null energy condition. From this point of view, these bounces

are considerably less speculative than bounces based on theories with specifically tuned

higher-derivative kinetic terms, such as Galileon bounces [6–8]3. We have demonstrated that

the bounces are robust under the inclusion of small anisotropies at the bounce, by studying

bounce solutions within the Bianchi IX metric. Near the edge of the parameter space

allowing for bounces, we have found solutions with multiple bounces, and accompanying

turn-arounds of the anisotropy functions resulting from their non-linear dynamics. These

multi-bounce solutions provide the link between non-singular single bounce solutions and

chaotic BKL/mixmaster crunches that occur for “most” initial conditions.

This brings us to the issue of initial conditions: even though the theory in which the

bounces occur is very simple, the solutions themselves are very special [15]4. A bounce

occurs only if the energy density in homogeneous curvature, and that in dark energy, are

larger at the time of the bounce than the kinetic energy coming from the time evolution of

the anisotropies and of the scalar field. However, the kinetic energy in the scalar grows much

faster during a contracting phase (neglecting the potential, it is proportional to 1/a6) than

the homogeneous curvature (∝ 1/a2) or the approximately constant dark energy density.

Thus it remains an open problem as to what kind of dynamics during the contracting phase

could lead to such non-singular bounces. An ekpyrotic phase cannot achieve this, as it

suppresses curvature and leads to a fast-rolling scalar [30, 31]. We must leave this as an

open question for the future. Let us just mention one mitigating thought: if the dark energy

resides at a very high scale in the early universe, say very close to the Planck scale, then the

range of allowed kinetic energies compatible with a bounce are rather large. In such a case,

one would in fact only trust the theory (considered as an effective theory) for kinetic energies

3 Galileon models can be extended to supergravity theories [26, 27], but it remains unclear whether they

can arise in a truly fundamental framework, such as string theory [28, 29]. Moreover, it is not clear if

these theories are consistent at the quantum level, as they typically contain classes of unhealthy solutions

in addition to the desired solutions.
4 Exactly how special depends on having a probability measure, an issue that is far from resolved in

cosmology.
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below the Planck scale, and thus the self-consistency of the assumptions would render the

bounces more prevalent in the space of available solutions.

If, in light of the preceding discussion, we simply assume that the conditions required for

a non-singular bounce have been established, then the bounce would quite naturally lead

into an inflationary phase afterwards. The bounce would imply that it is rather natural

to find the scalar field high up on the potential (since it would have rolled up during the

contracting phase), and the universe would have small anisotropies and be dominated by

vacuum energy. Furthermore, the inflationary phase would subsequently dilute the spatial

curvature required for the bounce. In this sense, a non-singular bounce can provide a viable

prelude to inflation (see also [32, 33] for works in that direction). Of course, the question

of initial conditions for inflation is then not solved, but shifted to the question of initial

conditions for the bounce. One could then hope that this new viewpoint might lead to new

ideas on how to address this open issue. For instance, could the bounce act as a kind of

filter, thereby automatically selecting for universes with suitable “initial” conditions, similar

in spirit to the scenario proposed for the “phoenix” universe [34–36]?

There has been a renewed interest recently in cosmological models arising from string the-

ory, due to proposed consistency requirements for string theoretic solutions [37–39]. These

“swampland” criteria have put a lot of pressure on existing cosmological models, both of

inflationary [40, 41] and ekpyrotic [42] type, as they suggest in particular that the scalar

field range ∆φ must remain smaller than order one in Planck units in a consistent effective

description, while any positive potential must remain sufficiently steep throughout (|V ′|/V

larger than some order one number in Planck units). In the present context it is interesting

to point out that non-singular bounces can easily fulfill these criteria: given that the scalar

field can run up the potential and come back down afterwards, the range of field values that

is traversed can naturally remain small. Moreover, it is not necessary that the scalar field

potential be flat: as the scalar comes to rest on the potential, it momentarily acts like a

cosmological constant, regardless of the steepness of the potential, and, as we have seen, this

can be sufficient to induce a cosmological bounce.

Apart from the open questions listed so far, there are two further avenues for future

research that seem particularly promising: the first is related to the question as to what

happens when the anisotropy becomes larger than the allowed bound at the bounce, i.e.

what happens when the anisotropy potential U(β+, β−) becomes positive? Here, no classical
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non-singular bounce solutions remain, but perhaps there exist quantum transitions between

a contracting and an expanding phase of the universe. In the absence of anisotropies, we

have started an exploration of such solutions in [43], but it would be important to extend

this analysis to the more rigorous approach using Picard-Lefschetz theory to define and

evaluate the gravitational path integral [44, 45], while also including anisotropies.

Finally, as emphasised by Anabalón and Oliva [25], bouncing universe solutions with

positive vacuum energy are closely related to wormholes in the presence of negative vacuum

energy. Hence our results suggest the existence of many new anisotropic wormhole solutions,

including multi-wormhole solutions with arbitrarily large numbers of throats. It will be

interesting to construct and study these solutions, which we hope to do in the near future.
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Appendix A: Kantowski-Sachs bounces

An easier toy model for non-singular cosmological bounces than the axial Bianchi IX

model of section II D can be found in the Kantowski-Sachs (KS) class of metrics [46]. These

metrics contain a two-sphere in their spatial directions, and the line element is given by

ds2
KS = −dt2 +

a2(t)

4
e−2β(t)dr2 +

a2(t)

4
eβ(t)dΩ2

2 , (A1)

where the factor of 1/4 was included in analogy with the Bianchi IX case. Again, a represents

the spatial volume while β quantifies an anisotropic deformation. In this case there is only

one a deformation parameter. In the presence of a cosmological constant Λ, the equations

of motion and constraint are given by

3
ä

a
+

3

2
β̇2 = N2Λ (A2)
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β̈ + 3Hβ̇ +
2N2

3a2
U,β = 0 (A3)

3H2 =
3

4
β̇2 +N2(Λ +

1

a2
U) (A4)

where the constraint has been used to simplify the acceleration equation. The effective

potential is

U(β) = −4e−β . (A5)

It is very similar to the axial Bianchi IX potential in Eq. 17, except that the e−4β term is

absent. At large positive β the two models are essentially equivalent, but at negative β the

KS potential remains negative, causing a runaway of the solutions asymptotically.
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Figure 13. Evolution of the anisotropy parameter β as a function of time for Kantowski-Sachs

bounces. For all βs there exists a bounce (here with β̇ = 0 at the bounce).

Now we may look for actual bounce solutions. A perturbative expansion around a would-

be bounce leads to the expansions

a = ab(1 +
Λ

6
t2 + · · · ) (A6)

β = β(0)− 1

3
Λt2 + · · · (A7)

where the scale factor at the bounce is given by ab = a(t = 0) = 1√
Λeβ(0)/2

and we have fixed

the time of the bounce to be at t = 0. The above expansions suggest that one might try an
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ansatz a ∝ e−β/2 and this indeed solves the equations of motion exactly,

a =
1√
Λ
e−β/2 = c1

(
cosh(

√
Λt+ c2)

)1/3

(A8)

where c1, c2 are integration constants. Thus analytic bounce solutions exist for every possible

value of β at the bounce, while asymptotically the anisotropy parameter β always runs off

to minus infinity. For these solutions, in fact only the r direction bounces while the 2-sphere

remains constant throughout. These solutions are plotted in Fig. 13, and may be recognised

as dS2 × S2 (and we note that closely related wormhole solutions also exist [47]).
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