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Abstract The design and synthesis of a strong, dendralenic C-H acid is
described. Crystal structure analyses confirm the proposed structure.
Despite the moderate stability of our motif, an application to Brensted
acid catalysis has been explored.
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In contrast to N-H- and O-H-based Brgnsted acids, C-H
acids enable the incorporation of a greater number of elec-
tron-withdrawing groups (EWGs) by virtue of carbon’s
higher valency. Experimental and estimated pK, values of
the simple trifluoromethanesulfonyl (triflyl, Tf) containing
O-H, N-H, and C-H acids suggest that their acidity directly
correlates with the number of electron-withdrawing
groups (Scheme 1). Accordingly, tris(triflyl)methane (1)
should be the strongest acid in the series, and indeed it
shows a high reactivity in Brensted and Lewis acid cataly-
sis.! Still more electron-withdrawing groups can be intro-
duced by choosing allylic C-H acid frameworks. This notion
led to the design of 1,1,3,3-tetratriflylpropene (TTP), which
showed a remarkable acidity and catalytic activity.'d In the
search for still stronger acids, we sought to further increase
the number of EWGs, which led to our interest in triene-
derived C-H acids.? Purely hydrocarbon-based C-H acid
scaffolds on the basis of fluorene and dibenzofluorene have
already been realized by Kuhn and the latter showed a
remarkable pK, value of 5.9 (in water).? Depending on the
location of the acidic proton, either trivinylmethane or
dendralene-derived C-H acids are possible.
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Scheme 1 Lead structures for the design of trivinylmethane-derived
and highly conjugated dendralene-derived C-H acids

These considerations led to the design of tris(bis(tri-
flyl)vinyl)methane (HTBT).# Irrespective of the location of
the acidic proton on HTBT, only one anion should be ob-
tained (TBT, after deprotonation) with a highly delocalized
negative charge and a possible C;-symmetry (Scheme 2).
Furthermore, the peripheral location of the triflyl groups
may enable a planar structure of the anion. As a result of
this enhanced planarization and the greater number of
electron-withdrawing groups, the acidity of HTBT was
expected to be significantly higher in comparison to the re-
lated allylic C-H acid TTP. Synthetic access to HTBT was
envisaged from triformylmethane and bis(triflyl)methane,
as Yanai and coworkers® have already demonstrated that
bis(triflyl)methane reacts with a variety of aldehydes in a
self-promoted Knoevenagel-type condensation reaction.
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Scheme 2 Design and retrosynthesis of the tris(bistriflylvinyl)methane
(HTBT) and its anion TBT. The synthesis of triformylmethane has been
previously described®

While our first attempts at the synthesis of HTBT led to
the formation of a purely organic tricarbanion salt,> we
found that by condensing triformylmethane’ with bis(tri-
flyl)methane followed by treatment with 2,2,6,6-tetra-
methylpiperidine (TMP), the desired HTMP salt of TBT
(HTMP-TBT) was obtained in poor yield (Scheme 3).8 Inter-
estingly, crystal structure analysis of this ion pair revealed
that the HTMP cation formed a slightly shorter N-H-~O
hydrogen bond to solvent water (N--0, 2.780(4) A), which
was introduced during the crystallization, than to the nega-
tively charged TBT anion (N--0, 2.971(3) A). Despite the in-
creased distance between the triflyl groups, the TBT anion
adopts a slightly non-planar chiral conformation. We
assume that this may be due to the short contacts between
the vinylic hydrogen atoms and the sulfonyl oxygen atoms.
While we observe a local C;-symmetry around the central
carbon atom with similar bond lengths and torsion angles
(see the Supporting Information), no global C;-symmetry
was observed in the TBT anion.

A work-up with concentrated H,SO, finally delivered
HTBT as the free acid (Scheme 4).° NMR spectroscopic in-
vestigations and single-crystal structure analysis of HTBT
confirmed the location of the acidic proton not on the cen-
tral carbon atom, as in the crystal of bullvalene, but be-
tween two triflyl groups. As a result, HTBT can be consid-
ered a cross-conjugated, dendralenic C-H acid. Due to the
low stability of HTBT at room temperature and at -25 °C no
satisfactory yield could be determined. We would expect
the stability of such acids to be increased in a non-coordi-
nating and non-polar solvent, as a degradation pathway via
a nucleophilic attack can be prevented. However, we are yet
to identify such a solvent system that is also capable of sol-
ubilizing HTBT.
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Scheme 3 Synthesis of HTMP-TBT. HTMP = 2,2,6,6-tetramethylpiperi-
dinium
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Scheme 4 Synthesis of HTBT. Due to the low stability of HTBT no
yields could be determined

Despite the inherent low stability of HTBT, we attempt-
ed to directly employ freshly prepared HTBT for a bench-
mark Bregnsted acid catalyzed Friedel-Crafts acylation reac-
tion of weakly reactive chlorobenzene with p-fluorobenzo-
yl chloride (Scheme 5).141° While TTP provided higher
yields, HTBT was also able to catalyze this transformation.
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Scheme 5 Application of HTBT to the Friedel-Crafts acylation reaction
of chlorobenzene with p-fluorobenzoyl chloride and a comparison with
TTP

The acidity of HTBT is sufficient to protonate ethers
thus allowing its transformation into an etherate salt when
an excess of Et,0 was added (Scheme 6).!! Single-crystal
structure analysis revealed that the TBT anion neither
adopts an idealized Cs-symmetry nor a planar conforma-
tion, which is in accordance with our previous findings.
Interestingly, the oxonium proton prefers to coordinate to
the oxygen atom of a second ether molecule rather than to
one of the negatively charged triflyl oxygen atoms on the
TBT carbanion. We were intrigued to find that the distances
between the oxygen atoms of both Et,0 molecules are
almost identical to those found in BArF etherates with the
molecular formula [B(CgFs)4] TH(OEt,),]*.1? Consequently, a
similar anion coordination can be assumed, thus classifying
the TBT anion as a weakly coordinating anion.
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Scheme 6 Conversion of HTBT into the diethyl ether-diethyloxonium
salt TBT-H(OEt,), and structural comparison with related BArF ether-
ates'?

In summary, we have designed and developed a synthe-
sis of the cross-conjugated dendralenic C-H acid HTBT. Sev-
eral crystal structures confirmed our design and revealed
that the TBT anion adopts a non-planar and chiral confor-
mation. Despite its low stability, HTBT was found to cata-
lyze a Friedel-Crafts acylation reaction of chlorobenzene. A

structural comparison with related BArF etherates indicates
that the TBT anion may be classified as a C-H-acid-based
weakly coordinating anion.
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was added and a slurry was obtained. Trimethyl orthoacetate
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couplings can be observed in the 'H NMR spectrum. However,
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determination of J;14x.) *C NMR (126 MHz, CDCl;): 8 = 165.51,
119.82 (q, YJer =328 Hz), 114.79, 108.53, 59.94, 35.23, 27.87,
15.95; 9F NMR (471 MHz, CDCl,): 8 = -73.96; HRMS (ESIneg):
m/z [M - HY] caled for C;3H;0;,F;sS¢: 884.7667; found:
884.7667. Single crystals suitable for structural analysis were
obtained after dissolving the initially obtained orange solid
[containing bis(triflyl)methane impurities] in CHCl; or 1,2-
dichloroethane and slowly evaporating the solvent.
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which were suitable for structure analysis.

(10) Hofler, D. Ph.D. thesis. Universitat zu Kéln: Germany 2018.
(11) Conversion of HTBT into the Etherate Salt

HTMP-TBT (43 mg, 0.042 mmol) was dissolved in CH,Cl, (10
mL) and conc. H,SO, (10 mL) was added. The mixture was
stirred at RT for 30 min and the sulfuric acid phase was
removed. All volatiles were removed under reduced pressure
and a colorless solid was obtained. Et,0 was added, which
afforded a clear, yellow solution. All volatiles were removed
under reduced pressure and a yellow solid was obtained. CH,Cl,
(10 mL) was added and the formation of a biphasic mixture was
noticed. Slow evaporation over 14 d led to the formation of
single crystals of the etherate salt, which were suitable for
structure analysis.

(12) Jutzi, P.; Miiller, C.; Stammler, A.; Stammler, H.-G. Organometal-

lics 2000, 19, 1442.

Georg Thieme Verlag Stuttgart - New York — Synlett 2019, 30, 433-436



