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The successful application of techniques inspired in Smoothed Particle Hydrodynamics (SPH) to magnetohy-
drodynamical (MHD) nonlinear simulations of magnetically confined plasmas requires the previous solution
to a number of challenging issues that are still not fully resolved. Namely, the construction of precise, ar-
bitrary initial conditions in complicated geometries, the formulation of adequate boundary conditions for
the magnetic field and the correct treatment of three-dimensional toroidal boundaries of arbitrary shape. In
this paper we present an SPH implementation of the nonlinear MHD equations that includes our proposed
solution to these issues and test its performance on a broad selection of nonlinear MHD problems: 1) The
propagation of circularly-polarized Alfvén waves; 2) The occurrence of magnetic reconnection for a Harris
current-sheet and 3) The nonlinear MHD stability properties of various cylindrical pinches.
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I. INTRODUCTION

Smoothed Particle Hydrodynamics (SPH) was first in-
troduced in the late 70’s by Gingold and Monaghan' to-
gether with Lucy? as a Lagrangian numerical method to
solve the equations of hydrodynamics®. Since then, the
method has gained both popularity and robustness* and
has been successfully extended to simulate a wide variety
of MHD scenarios®, mostly in the realm of astrophysical
plasmas®. In SPH, the particles serve as interpolation
nodes where any field of interest (density, velocity, mag-
netic field, etc) can be easily found from the set of values
associated to each neighbouring particle. This interpola-
tion permits the discretisation of the spatial derivatives
of the equations of MHD on a co-moving frame to ob-
tain evolution equations for each physical field. The fact
that in SPH all the fields are ”carried by the particles”
means that no structured mesh is needed, which in prin-
ciple endows the method with the theoretical capabil-
ity of easily handling complex boundary shapes, treating
free-boundary stability problems, and giving it a great
potential for an efficient parallelisation.

Although magnetically confined plasmas (MCP) and
astrophysical plasmas are described by very similar equa-
tions, SPH techniques have only been applied to the lat-
ter to the best of our knowledge. The main reason is
probably that astrophysical plasmas can be often con-
sidered boundless (using, for instance, periodic bound-
ary conditions) so that no treatment of the boundary is
needed. This is certainly not the case for MCPs, that are
usually confined within a vacuum vessel and limited by
either a limiter or a divertor.

The main issues that need to be addressed, in our opin-
ion, to make possible the SPH simulation of MCPs in
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the context of nonlinear MHD are: 1) The capability of
constructing arbitrarily complex initial conditions with
density profiles that may not have any exploitable sym-
metries and that have very low particle noise; 2) The con-
sistent treatment of ghost-particles to enforce boundary
conditions in the presence of curved boundaries, some of
which can become incredibly convoluted in toroidal con-
figurations as seen in modern stellarators and 3) The for-
mulation of boundary conditions for the magnetic field
in the presence of conducting walls. We have recently
proposed solutions to the first two of these issues™8. In
the present paper we proceed to address the third one
and include all of them in a novel SPH implementation
of the full nonlinear MHD equations that should have
all the needed elements to enable the future realization
of MCP nonlinear MHD simulations. Our SPH imple-
mentation is then illustrated and tested on a battery of
nonlinear MHD simulations that encompass dynamics as
varied as Alfén wave propagation, magnetic reconnection
and cylindrical pinch stability.

The article is organised as follows: Chap. II introduces
the SPH method and the set of equations used in the non-
linear simulation of MHD systems. Chap. III describes
in detail the solutions to the three aforementioned chal-
lenging issues. Chap. IV tests our SPH implementation
against a battery of problems that evaluate its ability
to simulate nonlinear, ideal and resistive, MHD dynam-
ics. Finally, conclusions and future avenues of work are
discussed in Chap. V.

Il. SMOOTHED PARTICLE HYDRODYNAMICS
A. Continuum Equations

As a numerical method, SPH was originally designed
to solve the equations of hydrodynamics but the method
was soon extended to include the equations of magneto-
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hydrodynamics in its ideal®, resistive®, visco-resistive,
ambipolar and Hall versions®. Here we will limit our-
selves to the resistive-MHD model whose equations, in

continuum form, are:
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where d/dt = 9/0t + v - V and the variables p,v,B,J
and wu respectively represent the mass density, velocity,
magnetic field, current density and thermal energy. The
tensors S and F are given by:
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where ® is the tensor products between two vectors, and
F =n(VB" - VB) (6)

where the superscript 7 stands for transpose operator
and 7 is the resistivity of the system that may vary in
space. The thermodynamic pressure p is related to the
other variables via the equation of state for ideal gases:

p=(y—Dup (7)

with « being the specific heat ratio. The current density
is related to the magnetic field via Ampere’s Law:

,LL()J:VXB (8)

For finite resistivity, dissipation of the magnetic field
takes place via the tensor F, which is a generalisation
of the well-known expression nV2B for variable resistiv-
ity, whilst Ohmic-heating happens in the thermal energy
equation via the term o nJ2.

B. The mass density in SPH

The mass density p plays a central role in SPH and
its computation is carried out in a separate cycle during
the time-stepping of the algorithm. In SPH, each of the
continuous MHD fields is known only at the positions of
the particles r = r, with -a- the particle’s numbering
index. In the case of the mass density the smoothing
approximation means that the masses of the particles are
not Dirac d-functions centered at r,, but rather spread
out around it. The spreading is not homogeneous, but

concentrated at r,. This radial dependence is given by
the weight function W known as the interpolating kernel:

R =)

where C is a constant that guarantees that W is nor-
malised to unity, d is the dimensionality of the problem,
H is its support radius (i.e., W is identically equal to
zero for all radial positions r > H), and K is usually cho-
sen from a family of functions known as the Wendland
Kernels!?. We will use the 4'" order Wendland Kernel:
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where (1) = max{0,-}. The values of C are
{3/2, 9/m, 495/327} for the d = {1,2,3} cases respec-
tively. The local mass density can then be calculated
as:

> mW([r =], H) (11)

beN (r)

p(r) =

Here the summation runs along all the particles b in
the neighbourhood of r denoted by N (r). An important
characteristic of Eq. 11 is that, although the mass den-
sity could also be from Eq. 1, Eq. 11 allows us to avoid
the trouble of temporal integration. Other advantages of
using the direct sum instead of the temporal integration
have been outlined by Price'!.

C. Ideal MHD in SPH

The discretisation of Eqs. 1, 2, 3 and 4 is done in
two stages. First we focus on the reduced set of equa-
tions of ideal MHD, and later we discretise the resis-
tive/dissipative terms individually.

The ideal MHD model can be discretised via a Hamil-
tonian formalism that results in discrete evolution equa-
tions that conserves mass, momentum (linear and angu-
lar) and energy down to the precision of the time inte-
grator. The formal derivation can be found in many SPH
reviews>®. The resulting equations are:

pa=mng with ng= Y Wu(Ha)  (12)
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where m is the mass of each particle (which will be the
same for every particle) and r, ng, Pa, Pa, Va, Bg and
u, corresponds to the values of the position, particle-
density, mass-density, pressure, velocity, magnetic field
and internal energy of the a-th particle. Also, the follow-
ing notation is usually adopted in the SPH literature:

Na =N (ra) (16)
Tgh =Tq — Ty (17)
Vab = Vg — Vp (18)
Wap(Ha) = W([ra — 1], Ha) (19)
Fop(Ha) = F(|ra — 13|, Ha) (20)
with F' and W related via:
VWap(Ha) = —TapFap(Hy) (21)

where the minus sign ensures that F' is positive. The
support radius H of both W and F' has a spatial depen-
dence that changes in time to ensure that the following
relation always holds:

Vi - Pa * Hj =m: Nneighbours (22)

for every particle a. Here, d is the dimensionality of the
problem, V; is the volume of a d-dimensional unit sphere,
and Nyeighbours 1S & user-provided parameter that deter-
mines the number of neighbours that each particle inter-
acts with. Finally,  is a correction factor that arises®
from the fact that the support radius H is adaptable and
changes in time and space. It appears in Egs. 13, 14 and
15, and it is defined as:

Q=1+

H Z aVVab(I{a) (23)

dng v oH

D. Resistive MHD in SPH

Non-ideal effects such as resistivity cannot be in-
cluded in the Lagrangian formalism and their discreti-
sation must thus be constructed a posteriori. We follow
Tsukamoto? in this regard, allowing for a spatial depen-
dence of the resistivity field n(r):

dBa (J:a Fab(Ha) ]:b ab(Hb)>
= Ng — + *Tab
dt n bezj\/a TLZ Qa n% Qb
(24)
where the components of the tensor F are given by:
y 0BJ 0B

v = 4 —a 2

P = |t - 5 (25)

The Ohmic heating term in the evolution equation of
the thermal energy can then be replaced by:

dug B, dB,
dt Pa dt

(26)

n

E. Divergence of the Magnetic Field

Keeping the magnetic field solenoidal is essential in
SPH since evolving the magnetic field B does not guar-
antee that it will remain solenoidal in time. Two dif-
ferent measures are implemented. First, a dedicated
divergence-cleaning algorithm'? is adopted to keep the
magnetic divergence sufficiently small with minimum ef-
fects on B. Secondly, a correction term%!? is included
to avoid the spurious force!* parallel to B and propor-
tional to V - B that arises from using the discrete form of
V.S instead of —Vp+J x B in the momentum equation.
These correction terms are:

e {B Foy(H.) BbFab(Hb)}rb
dt | givp bEN, Qq AR
(27)
¢a be
= Ng 7Fab(Ha) + Fab(Hb) Tap
¢ beZNa {Qang Qpn?
(28)
d¢a Ch Fab(Ha)
E = d)a —Cp Z ab ' rab)Tpa (29)

beN,

where a new field ¢ needs to be included as a variable and
time evolved. According to Tricco'?, the optimal values
for ¢;, and ¢, are \/v2 +v% and H/o, where vy is the
sound speed of the system, v4 is the Alfven speed, and
o is {0.1, 0.3, 0.5} for the 1, 2 and 3-dimensional cases
respectively.

In summary, Eqs. 12, 13, 14, 15, 24, 26, 27, 28 and 29
provide the full set of equations that will be used through-
out this article to carry out SPH simulations within the
resistive MHD model.

Il.  USING SPH WITH MAGNETICALLY CONFINED
PLASMAS

As mentioned in Sec. I, there are three main challenges
that must be addressed in order to use SPH to simulate
MCPs in the context of the laboratory plasmas that we
want to simulate. The solutions that we propose to each
of them are summarised next.

A. Setting up arbitrary initial Conditions

The capability of starting SPH simulations with good
initial conditions with low particle noise are crucial in the
study of the MHD equilibrium and stability properties of
MCP confined in the laboratory. The complex and con-
voluted geometries of plasmas confined in a tokamak and
stellarator, and the fact that the density can vary by sev-
eral orders of magnitudes between center and edge, make
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the problem particularly delicate. In SPH the density
at a given point in space is a direct consequence of the
masses and the distances to the neighbouring particles
(see Eq. 11). Therefore, constructing an initial condition
to mimic a desired target density profile ptarget(r) be-
comes an inverse problem where the proper masses and
positions of the neighbours have to be found. The solu-
tion of this inverse problem is far from trivial and many
approaches have been proposed that, in one way or an-
other, attempt to solve it. Some of these solutions take
advantage of any existing symmetries in parget(r) to an-
alytically place the particles, others use a low Reynolds
number approximation of the momentum equation that
eliminates the inertial effects from the particle motions,
or assign different masses to every particle so for a given
set of particle positions the masses will directly define
the density, or even use external potentials to relax the
particles onto the desired profile.

In our case, we have proposed a new algorithm known
as ALARIC, an acronym for ALgorithm to construct AR-
bitrary Initial Conditions. Details of the algorithm can
be found elsewhere”. It suffices to say here that ALARIC
provides very low-noise, high quality solutions to the in-
verse problem in a relatively short amount of time for
geometries as complicated as the ones of interest in the
context of magnetically confined fusion plasmas. It uses
a particular combination of relaxation techniques, high
viscosity and friction, recurrent nullification of the ve-
locities in the system and particle-splitting events that,
altogether combine the flexibility of the relaxation meth-
ods with the superior convergence speed of the inertia-
free methods and delivers results with very low levels of
particle noise.

B. Treatment of smoothly Curved Boundaries

In SPH boundary conditions are usually enforced
by means of ghost particles. This approach is rather
straightforward and very efficient at avoiding particle
penetration in or out-of the domain. However, when-
ever curved or jagged boundaries are present, the usual
approach of placing the ghost particle at the reflected
positions with respect to the local tangent plane, the so-
called mirror-positioning, fails. It will produce spurious
accumulation/depletion of ghost particle mass in the case
of curved walls, or will require to place ghost particles
back into the computational domain in some pathologi-
cal cases with zig-zag boundaries. This is certainly the
case of a fusion plasma confined in a tokamak or stel-
larator, where boundary conditions must be enforced on
toroidal surfaces that can become extremely complicated.
Our solution to this challenging problem has been to de-
velop a generalised version of the ”mirror with respect

J
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to the local tangent plane”-principle for smoothly curved
boundaries®. A generalised positioning map, ¥, is in-
troduced that will determine the exact position of the
ghost particle taking into account the local curvature(s)
of the boundary. The map ¥ can be obtained once a
specific set of local coordinates {s,u,v} (with Jacobian

J) is available that fulfils the following requirements:

1.) The boundary of interest corresponds to the s =0
surface (s < 0 for the inside of the domain and
s > 0 for the outside.)

2.) The shortest path joining the internal particle (for
which a ghost particle is needed) with the boundary
is given by the intersection of the surfaces u = ug
and v = vy, being ug and vy two constants.

In this system of coordinates, the positioning map ¥
will determine the position of the ghost particle, given
the position of the internal particle, as:

Sa’ ¢(Sa)
Ugr | =g = U(r,) = Uq (30)
Vo’ Va

It should be noted that, in the local coordinates, both
the inner particle and the reflected ghost particle share
the same u and v coordinates, while the s-coordinate is
specified via the function ¢ that can be found by solving
the following differential equation:

J(s,u,v)

(s, u,v)
95 () w0) D)

with the boundary condition ¢(0) = 0. The function
1 (and therefore the map ¥) can be found analytically,
for simple 3D geometries, or numerically for arbitrary
2D and 3D shapes. Among the interesting shapes for
which ¥ can be found analytically®, straight cylinders
are of particular interest to us since several nonlinear
MHD simulations of plasma cylindrical pinches will be
used in later sections to illustrate the performance of our
implementation.

C. Boundary Conditions for the Magnetic Field

One of the novelties of this paper resides in that, once
the solution for the allocation of ghost particles that we
described in the previous section is available, the answer
to the unavoidable question of how to enforce bound-
ary conditions for MCPs for various fields becomes much
more transparent. According to the ideal MHD set of
equations, the total energy of the system will be con-
served unless some of it flows through the boundary:

)(v'ﬁ)—(B'V)(B'ﬁ) as (32)
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that evidently is equal to zero when the velocity and the
magnetic field satisfy the following boundary conditions:

B-h=0 (33)

v-n=0 and

The boundary condition on the velocity vector can
then be easily implemented at each ghost-particles by as-
suming that they reflect the normal component with re-
spect to the local tangent plane, and leave the tangential
component unchanged (Free-Slip condition) or reverse it
(No-Slip condition). This is usually achieved by assign-
ing to the velocity field of the ghost particle the following
values:

vy = (—hhA+tt £88) - v, (34)

where the orthonormal triad (f,t,$) constitutes an ap-
propriate coordinate system (The vector n is normal to
the surface 9Q, while the pair (t,8) span a plane tan-
gential to J€), the symbol nn corresponds to the dyad
n®n and the + signs reflects the free-slip/no-slip choice
respectively.

If one assumes that the boundary corresponds to either
a magnetic surface or a perfect conductor, the natural
condition for the magnetic field would be B - 1 = 0, sug-
gesting that B should be treated in an analogous manner
to the velocity. That is, the values of B on the ghost par-
ticles should be given by:

B, = (—hA+tt +88) - B, (35)
which means that the net transport of energy in/out of

the system due to magnetic effects vanishes, and the total
energy of the system conserved.

IV. BENCHMARKS AND RESULTS

We will now demonstrate the performance of our SPH
implementation (namely, the full set of equations de-
scribed in Sec. II plus the initialization and boundary
treatments described in Sec. III) while simulating three
different nonlinear, resistive MHD scenarios. The parti-
cle equations are advanced in time by using a standard
symplectic 2nd-order predictor-corrector integrator, with
a time step selected to ensure that all relevant physical
timescales are well resolved.

A. Propagation of circularly-polarized Alfvén waves

This test is rather standard in the SPH literature®16,
being particularly useful to test the non-linear capabil-
ities and convergence features of our SPH implemen-
tation of the MHD equations since circularly-polarized
Alfven waves are analytical solutions of the MHD equa-
tion for arbitrary amplitudes. The initial condition for
the plasma velocity and the magnetic field is given by:

vy B, 0.1 sin(27m:‘|)
Uy B, 0.1cos (27rx||)
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FIG. 1. Convergence of the wave front for increasing total
number of particles N. The upper plot depicts the wave front
after 5-crossings. The lower plot shows the absolute value of
the errors in logarithmic scale.

where the parallel and perpendicular directions are:

(2)=(zo i) (z) o

The values of the remaining fields'® are chosen so that
the resulting Alfven speed brings the wave back to its
starting position after one second. The smoothness of
the problem allows to use it to establish the convergence
of our method. To do so, we initialise the system with
10 different number of particles (starting at N = 200
and increasing geometrically up to N = 200k) arranged
in an hexagonal lattice in a 2D periodic domain, and let
the system evolve in time until the wave has crossed 5
times the computational domain. Fig. 1 shows the per-
pendicular component of the magnetic field along the z-
direction at t = 5.0s. The upper plot clearly shows how
the wave converges to the original wave-form, in both
amplitude and phase, while the lower plot, correspond-
ing to the absolute value of B (t) — B (0), shows how
the errors steadily become smaller as IV is increased.

The L'-norm of these errors, shown in Fig. 2, demon-
strates that our SPH implementation offers a convergence
of order ~ 1.77 in the high-resolution regime which is
close to the second order convergence usually reported in
other SPH codes such as ATHENA'S or PHANTOMS.
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FIG. 2. Scaling of the L'-norm of the error as a function of
the approximate number of particles in the x-direction. The
scaling is of order ~ 1.28 for the low-resolution scenarios, but
improves to ~ 1.77 for the well-resolved regime.

B. Magnetic reconnection in the Harris current sheet

This test is used to demonstrate that our SPH imple-
mentation is also able to capture reconnection phenom-
ena with a resistivity profile that could change in both
time and space. It is worth to note that we have not
been able to find similar simulations using SPH in the
literature, although the SPH discretisation of the resis-
tive term has been previously discussed in the literature®.
The problem we consider is the evolution of a variant of
the Harris current sheet test. The initial magnetic con-
figuration is given by:

B, 0
By | = tanh[(@— o)/ (39)
B, cosh™ [(z — z0)/A]

where A = 0.2 and ¢y = 0.5. Additionally, a spatially
varying resistivity profile is included:

n(z,y) = no sech A\/<x;>2+<y4y°>2 (39)

The parameters {ng, A, yo} correspond to the value of
7 at the centre of the resistive "hot-spot”, the broadness
of the source and its vertical position, respectively. The
simulations used 10k particles in a hexagonal array inside
the rectangular domain (z,y) € [0, 1] x [0,4] and they run
for 100 Alfven times each. The domain is periodic in the
x-axis and has v-n = B -n = 0 boundary conditions on
the y-direction. Fig. 3 shows the state of four different
simulations at the end of the run. Each simulation differs
only in their value of np = {1074,1073,1072,10~}, but
they all have the same values for A = 32 and yo = 2.

Fig. 4 shows the time trace of the kinetic energy of the
system. In red, the time history for the case in which the

4.0 - | = 1.0

0.0E+00 1.0E-04 M 0.0E+00 1.0E-03 | 0.0E+00 1.0£-02 | 0.0k+00 OE-01

3.0

2.0 .

1.0
0.0 0.0
. 1. .0 0.5

0.5 . . 0.5 f L0 0.5

0.5

. .
| —-—
-

FIG. 3. Magnetic field lines (Black/Orange/Yellow) and resis-
tivity (White/Blue/Black) at the end of 100 Alfven times for
the Harris Current Sheet test. The four pictures correspond
to four different values of the parameter 7o in Eq. 39. From
left to right the values correspond to {107, 1073,107%,107'}.

SPH particles are initially distributed using an hexagonal
crystalline lattice is shown. Three distinct regions can be
identified: 1) an initial phase characterised by a peak in
the kinetic energy of the system, 2) a secondary phase
where the kinetic energy grows exponentially, and 3) a
last phase when it saturates and the non-linear effects
take over. The first growth phase can be attributed to
the underlying crystalline lattice chosen to initialize the
particles. Due to the presence of the lattice, any force
acting on the crystal will create ”dislocations” that in-
crease the system kinetic energy and appear as a peak
in its time history. The peak subsides once the the lat-

10° , . .
IDislocation Phase: Linear Phase : Non-Linear Phase
1 1
1 1
1 1
1 1
5 1
= 1
2 1
o 1
1
P |
L
=
¥ ]
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L 1
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1 1
: — - Exponential Growth Fit ( ~Exp[2yt] with y=0.031)
: ——Hexagonal Crystalline Lattice
10 i, |—Relaxed Lattice (ALARIC)
1

0 20 30 40

Time

FIG. 4. Time history of the kinetic energy for the two runs
of the Harris current sheet test discussed.
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FIG. 5. Scaling obtained by comparing the growth rates of the
reconnection simulation for different values of the parameter
7o. The measured values in blue scale in accordance with the
7°/% behaviour predicted by the linear theory in red.

tice morphs into a glass-like structure, point at which the
exponential growth predicted by the linear theory is ob-
served for a short period until non-linear effects become
dominant and the time trace seems to saturate. The
”dislocation” explanation is confirmed by rerunning the
same simulation but initialising the particles instead with
a relaxed structure obtained with ALARIC”. Fig. 4 also
includes (in blue) the time history of the kinetic energy
of the relaxed structure, that lacks the initial peak in the
kinetic energy, transiting directly to the linear growth
phase of the reconnection and leading to a stronger non-
linear phase as well. We have quantified the growth rate
~ of the linear phase and compared with the scaling pre-
dicted by linear theory'™'8, ~ o 853/5, being Sy, is the
Lundquist number that is in turn inversely proportional
to the resistivity of the system. The scaling obtained in
our runs is shown in Fig. 5 where a reference 7%/° slope
has been added to the graph. The good agreement with
the linear theory is apparent.

C. MHD stability of cylindrical pinches

Next, we examine with our SPH implementation the
MHD stability of three types of cylindrical pinches (the
Theta-pinch, the Zeta-pinch and the Screw-pinch) and
compare the results with those of linear theory. All
pinches consider a cylindrical domain of radius R = 1
that extends longitudinally from Z;, = —3 to Zpnax =
+3. The z-direction has periodic boundary conditions
while the walls of the cylinder are treated with the free-
slip condition on v and B-nn = 0. The divergence cleaning
techniques previously described are used in all simula-
tions.

1. Theta-pinch

The Theta-pinch considered has the following pressure
and axial magnetic field radial profiles:

p(r) _ _ i 77,222

L=l [1-6(-r)7] (40)
B.(r) o2
5o —L1-A0-r) (41)

The parameter [ is given by:

B
L+vV1-5y

where pg and By are the values of the pressure, and the
azimuthal magnetic field at the magnetic axis. For our
simulation we have considered the values py = 1 and
By = 2 which leads to 3y = 0.5. Linear theory predicts'®
that, once in equilibrium, the Theta-pinch will be stable
against any kind of perturbation. Our runs are consistent
with this result as we discuss next.

We have run ALARIC to obtain an scenario for the
Theta-pinch with 50K particles with a flat density inside
a cylinder of radius R = 1 and length L, = 6. The ve-
locities of the system were randomly initialized and then
rescaled to ensure that the total kinetic energy of the
system at t = 0 is exactly Ex(0) = 107, Fig. 6 shows
the values of the pressure field in the y-axis represented
against the radial position of each particle. Since the pro-
files of the Theta-pinch are independent of the angle 6 or
the coordinate z, all values fall into a well-defined curve.
We can see how the sum of the two (in green), that is, the

_ 20

B and B = By

(42)

20 =0t, t=16t,
- ,,P,hydm
1.5
o
=}
a
9 1.0~
[a
0.5
0.a h ) .,
0.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0
Radius Radius

FIG. 6. Initial and final values for the pressure field plotted
against the radial coordinate of each particle. Each panel
depicts the radial dependence of the hydrodynamic (Blue),
the magnetic (Yellow) and the total pressure (Green).
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FIG. 7. Time histories of the kinetic, magnetic, thermal and
total energy in the system.

total pressure of the system, is flat which automatically
fulfils the equilibrium condition for the Theta-pinche'®.

The right panel of Fig. 6 shows the radial profiles after
the simulation have been run for 16 Alfvén times using
50K particles. Clearly, the profiles do not exhibit any no-
ticeable change as should be expected in a stable system.
Additionally, Fig. 7 shows the time trace of the different
contributions of the energy in the system. No noticeable
linear growth rate is present in the system except for a
slight increment observed in the kinetic energy, that can
be attributed to numerical particle noise and that holds
no statistical significance. Indeed, the associated growth
rate, that is roughly v ~ 0.029 s~! for 50K particles,
reduces to v ~ —0.004 s~! for 500K particles.

2. Zeta-pinch

For the Zeta-pinch we proceed in a similar manner. We
have initialised the plasma profiles according to:

p(r) 1

b ey )
Bi(r) 1 1 1+ vr?
%g T 1-vr? {1_ (1—|—7’2)”} (44)

where we have chosen pg = 1.0, By = V2 and v =
2.5. These profiles fulfil the Zeta-pinch condition for
equilibrium®®. The linear-stability theory for the Zeta-
pinch predicts that any equilibrium whose Kadomtsev
functions becomes negative in any radial interval can be-
come unstable. The Kadomtsev function is given by:

2vBj P _
Bs_ﬂp—l—rp form=0
Kp(r) = (45)
2 2
rp + 2P form > 1

where m is the poloidal wavenumber. The Kadomtsev
functions that correspond to the selected profiles (that
is, Eqgs. 43 and 44) are shown in Fig. 8 for different values
of m. Clearly, modes with m > 2 are stable but modes
m =0 and m = 1 can be excited since they are negative
in the whole radial domain.

The evolution of the pressure field obtained by our
SPH implementation is displayed in the four panels of
Fig. 9. It is apparent that the radial profiles broaden to
a point of complete distortion due to the fact that they
become strongly dependent on the 6 and z coordinates
and therefore, when projected onto the radial coordinate,
no longer lie on top of a well-defined curve.

Fig. 10 shows iso-surfaces of the hydrodynamical pres-
sure at the same temporal instants where the radial pro-
files were shown in Fig. 9. From it, it is clear that a kink-
type instability sets on around ¢t = 12¢., where t. is the
crossing time of the system defined as t. = Lchar/cs with
Lehar a characteristic length of the system, in this case
the radius of the cylindrical domain, and cs the speed of
sound. The dominant instability is identified to be an
m = 1 (kink) with azimuthal wave number 4 < k < 5.
The Fourier analysis of the pressure perturbation field
dP(r,t) = P(r,t) — P(r,0) at exactly ¢t = 12t, corrobo-
rates this. We have selected the values of the perturbed

2.0 T T T T
—_—m=0
15 m=2
=
2
2 1.0
=1
[
2
£ 05 -
<] /
=
L]
13
0.0 |
\_
-0.5 L . L L
0.0 0.2 0.4 0.6 0.8 1.0
Radius
FIG. 8. Kadomtsev function for different values of the

poloidal wavenumber m. For the profiles used, the profiles
are unstable against the m = 0 and m = 1 modes and stable
for all modes m > 2.
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0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
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FIG. 9. Initial and final values of the pressure field projected
onto the radial component. Each panel depicts the radial de-
pendence of the hydrodynamic (Blue), the magnetic (Yellow)
and the total pressure (Green).

pressure on the cylindrical shell at » = 0.5. The re-
sulting 6P at t = 12t. is depicted on the left panel of
Fig. 11, while its Fourier transform is shown on the right
panel. It is apparent that the mode (m, k) = (1,5) indeed
dominates, with smaller non-zero contributions from the
modes (m, k) = (1,4) and (m, k) = (—1,5).

It is also possible to obtain a semi-analytical estima-
tion of the growth rate of any specific mode via a normal-
mode analysis!?. The result of inserting the radial pro-
files from Egs. 43 and 44 and considering a mode with
m = 1 and k£ = 5 in this estimate yields a theoretical
prediction for the growth rate equal to YNormal-Mode =
1.1802 s~!. On the other hand, one can also measure
the growth rate directly from the time trace of the ki-
netic energy of the Zeta-pinch, shown in Fig. 12. Keep-
ing in mind that the growth of the kinetic energy is twice
that of the real growth of the perturbation we obtain
Yperturbation = Yenergy/2 = 0.961 s~1. Therefore, there is
a difference of about 18% for the 50K particle case. This
is not too bad considering that our SPH implementation
is not doing a linear analysis of an isolated mode but
carries out instead a full nonlinear evolution of the MHD
equations where many unstable modes coexist, nonlin-
early transferring energy among them.

=0t t=81.

FIG. 10. Isosurfaces of the hydrodynamic pressure field at
the same temporal instants as Fig. 9.
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FIG. 11. Perturbation pressure field 6P = P — P(0) at
t = 12t. over the cylindrical shell » = 0.5 (Left). Fourier
transform of the image show in the left panel (Right).
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FIG. 12. Time history (in blue) of the kinetic energy of the
Zeta-pinch in semi-log scale. The best exponential fit to the
linear growth phase is shown in dashed red.

3. Screw-pinch

Our last cylindrical MHD simulation corresponds to
the Screw-pinch. The specific profiles used in this test
are:

G P B <;—*)2(5—2r2)]

Po 3
(46)
B.(r) _
By r2(2 —r?) (47)
Bo(r) _ (Y (9_,
B, =" (q*) (2 —1r%) (48)

Here, the symbol ¢ is a measure of the aspect ratio of
the column, defined as the ratio between its ”minor” and
"major” radius, the first one corresponding to the cylin-
ders radius, and the second to an effective value Ry such
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FIG. 13. Suydam function for the Screw-pinch calculated
using the selected profiles (Eqs. 46, 47 and 48).

that 2rRy = Lz = 6). In our case this yields e = 7/3.
The parameter ¢* is defined as the rotational transform
at the outermost radial position, that is:

r BZ(T) T2 C]* 2 x

*

which implies ¢(r = 1) = ¢*. Finally, we have used
the values By = 1 and pg = 0.5. Also, as in the cases
of the Zeta and Theta pinches, we have initialized the
system with an homogeneous mass density profile p(r) =
po using 50K particles and simply assigned to the thermal
energy u(r) the necessary radial dependence to give rise
to the required pressure profile.

Linear-stability analysis'® predicts that if Suydam’s
function S(r) were to have any negative values, then
a perturbation could be constructed such that it could
destabilise the system. Suydam’s function is given by:

S(r) = rB? (%)2 + 8p’ (50)

1.0| t=0t t=7.51c

t=12.5tc

Pressure
o
(Y

( X
\ 2
\\ — Hydro
0.0 \

1.0 0.0 0.5 1.0 0.0 0.5
Radius

Radius

— Total

1.0 0.0 0.5 1.0
Radius

0.0 0.5
Radius

FIG. 14. Radial pressure profiles at simulation times t =
{0,7.5,10,12.5}t.. Each panel depicts the radial dependence
of the hydrodynamic (Blue), the magnetic (Yellow) and the
total pressure (Green).

t=0tc t=7.5tc

FIG. 15. Isosurfaces of the hydrodynamic pressure field at
the same temporal instants shown in Fig 14.
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FIG. 16. Value of the perturbation pressure field §P = P —
P(0) at ¢ = 10t over the cylindrical shell r = 0.5 (Left).
Fourier transform of the image show in the left panel (Right).

For our particular choice of radial profiles, the value
of Suydam’s function is depicted in Fig. 13. We can see
that S(r) is negative along most of the radial domain
(negative for 0 < r < 0.95) and positive only at the
edge 0.95 < r < 1. Therefore, a perturbation which
happens to be localised along the unstable interval could
potentially destabilise the system.

The Screw-pinch has been evolved for 16 crossing
times. Fig. 14 shows the initial radial profiles and their
snapshots at the selected times ¢ = {0,7.5,10, 12.5}¢,.
We can also see in Fig. 15 that, as in the case of the Zeta-
pinch, a kink-like perturbation appears to be excited. In
particular, the last panel (¢ = 12.5t.) shows that the
dominant mode has a k-number in the range 2 < k£ < 3.
To isolate the dominant perturbation, we proceed as with
the Zeta-pinch. The left panel in Fig. 16 shows the values
of the perturbation pressure field d P over the cylindrical
shell » = 0.5 at time ¢ = 10¢., while the right panel
shows its Fourier transform. Clearly, the main contribu-
tion comes from the mode (m, k) = (—1,3) with smaller
contributions from the (m, k) = (—1,2) mode.

Normal-mode analysis'? predicts now a value for the
growth rate of the dominant (m,k) = (—1,3) mode
equal t0 YNormal-Mode = 0.586 s~!, whilst the direct
measurement from the kinetic energy time trace yields
Yperturbation = Yenergy/2 = 0.461 s71. That is, a dif-
ference of about 21% for the 50K particle case. In this
case, we have tested the convergence of the result by re-
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running a case with 500K particles. The dominant mode
of the higher-resolution run comes to be still the one with
(m, k) = (—1,3), as shown in Fig.18, and the growth rate
obtained is Yperturbation = 0.51 s~ which differs from the
linear estimate in just a 13%. This difference is not so
meaningful due to the same arguments made in the case
of the Zeta-pinch, but the fact the the dominant mode
remains unchanged when the resolution is increased by a
ten-fold hints at a well-converged result.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have demonstrated that SPH is a
powerful formalism that can be extended and adapted to
simulate MHD scenarios not just for astrophysical plas-
mas, but also of interest for magnetically confined fusion
plasmas. Among other things, the application to fusion
problems has required the introduction of a novel proper
treatment of boundaries and boundary conditions and
a more powerful, low-particle-noise initialization of pro-
files. Both proposals have been tested successfully in this
paper on a variety of test problems that include Alfven
wave propagation, magnetic reconnection and the MHD
stability properties of cylindrical pinches.

There is still a significant amount of work that must
be completed before our SPH implementation can be ap-
plied to actual toroidal plasmas such as those confined
in tokamaks or stellarators. We are however happy to
report that dealing with the realistic toroidal geometries
typical of these devices will not represent a qualitative
obstacle since SPH works in Cartesian coordinates and
the numerical remapping methods described in this pa-
per will easily be able to position ghost particles across
toroidal boundaries. Probably, the area where we can
expect the largest amount of work in the near future is
the efficient parallelization of the code. Since all informa-
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FIG. 17. Measured Kinetic Energy for the Screw-pinch for
the 50K particle simulation.
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FIG. 18. Fourier transform of the perturbation pressure field
0P = P — P(0) over the cylindrical shell » = 0.5 during the
exponential growth phase for the 500K particle run.

tion is carried by particles in SPH, there is no need for
domain-decomposition techniques. But a very efficient
parallelization of the neighbour-search algorithms is crit-
ical. In this regard, we expect to benefit from the large
body of knowledge that exists in other areas such as the
molecular dynamics or numerical optimization communi-
ties.
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