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Abstract

Constraint-based modeling (CBM) is increasingly used to analyze the metabolism of com-

plex microbial communities involved in ecology, biomedicine, and various biotechnological

processes. While CBM is an established framework for studying the metabolism of single

species with linear stoichiometric models, CBM of communities with balanced growth is

more complicated, not only due to the larger size of the multi-species metabolic network but

also because of the bilinear nature of the resulting community models. Moreover, the solu-

tion space of these community models often contains biologically unrealistic solutions,

which, even with model linearization and under application of certain objective functions,

cannot easily be excluded. Here we present RedCom, a new approach to build reduced

community models in which the metabolisms of the participating organisms are represented

by net conversions computed from the respective single-species networks. By discarding

(single-species) net conversions that violate a minimality criterion in the exchange fluxes, it

is ensured that unrealistic solutions in the community model are excluded where a species

altruistically synthesizes large amounts of byproducts (instead of biomass) to fulfill the

requirements of other species. We employed the RedCom approach for modeling communi-

ties of up to nine organisms involved in typical degradation steps of anaerobic digestion in

biogas plants. Compared to full (bilinear and linearized) community models, we found that

the reduced community models obtained with RedCom are not only much smaller but allow,

also in the largest model with nine species, extensive calculations required to fully character-

ize the solution space and to reveal key properties of communities with maximum methane

yield and production rates. Furthermore, the predictive power of the reduced community

models is significantly larger because they predict much smaller ranges of feasible commu-

nity compositions and exchange fluxes still being consistent with measurements obtained

from enrichment cultures. For an enrichment culture for growth on ethanol, we also used

metaproteomic data to further constrain the solution space of the community models. Both

model and proteomic data indicated a dominance of acetoclastic methanogens
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(Methanosarcinales) and Desulfovibrionales being the least abundant group in this microbial

community.

Author summary

Microbial communities are involved in many fundamental processes in nature, health and

biotechnology. The elucidation of interdependencies between the involved players of

microbial communities and how the interactions shape the composition, behavior and

characteristic features of the consortium has become an important branch of microbiol-

ogy research. Many communities are based on the exchange of metabolites between the

species and constraint-based metabolic modeling has become an important approach for

a formal description and quantitative analysis of these metabolic dependencies. However,

the complexity of the models rises quickly with a growing number of organisms and the

space of predicted feasible behaviors often includes unrealistic solutions. Here we present

RedCom, a new approach to build reduced stoichiometric models of balanced microbial

communities based on net conversions of the single-species models. We demonstrate the

applicability of our RedCom approach by modeling communities of up to nine organisms

involved in degradation steps of anaerobic digestion in biogas plants. As one of the first

studies in this field, we compare simulation results from the community models with

experimental data of laboratory-scale biogas reactors for growth on ethanol and glucose-

cellulose media. The results also demonstrate a higher predictive power of the RedCom

vs. the full models.

Introduction

Microbial communities are of major importance for human health [1,2], geochemical cycles

[3,4] and biotechnological processes [5–7]. Despite of their importance, most microbial com-

munities are still poorly understood due to their complex nature. Mathematical modeling can

help to uncover the interactions and dependencies of the members of these communities. Dif-

ferent modeling formalisms have been used to simulate microbial communities including stoi-

chiometric models, which can be analyzed by constraint-based methods [8–18]. An increasing

number of stoichiometric community models considers balanced growth as a key assumption

stating that all organisms must grow with the same growth rate in a stable community

[11,15,16]. One central goal of these models is the characterization and prediction of possible

community compositions and the analysis of the different modes of cross-feeding between the

involved organisms.

Stoichiometric models of microbial communities with balanced growth usually result in

bilinear models, where, in some equations, independent variables are multiplied with each

other. Thus, apart from their increased size, these models have a more complex nature than

the linear metabolic models of single species. To make bilinear models amenable to established

constraint-based modeling approaches, they can be linearized by fixing either the community

growth rate [16] or the community composition [11,15]. In this study, we first provide a uni-

fied framework for setting-up, analyzing, and linearizing community models. Even in linear-

ized community models, the application of certain constraint-based techniques becomes

quickly infeasible with an increasing number of organisms. Furthermore, one shortcoming of

existing methods for modeling of communities is that the solution space often contains
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unrealistic solutions (where, for example, a species behaves unrealistically altruistic to produce

substrates needed by other community members). We therefore introduce a new approach,

RedCom, to build reduced community models. The main principle of RedCom is similar to

what has been suggested by Taffs et al. [10], namely to compute, in a first step, relevant net

conversions of the single-species models which serve as reactions for the reduced model. This

reduced model can then be used to identify suitable combinations of single-species net conver-

sions to obtain community-level conversions. However, while Taffs et al. [10] used elementary

modes to describe the single-species net conversions, RedCom is based on the more general

concept of elementary flux vectors [19,20]. This will be required to ensure balanced growth in

the community model and to appropriately account for flux bounds and other (e.g. proteome

allocation) constraints. Reduced community models obtained with RedCom do not only focus

on most relevant solutions but allow for a comprehensive characterization of solution spaces

also for communities with more than only two or three species. In the following, we apply the

proposed techniques for different community models with increasing complexity from three

up to nine species. The investigated communities are capable of degrading different substrates

to biogas, a renewable energy source. Community models of the biogas process give insights

on interdependencies and feasible community compositions and may contribute to increase

productivity and stability of this process. As one of the first studies, we also compare simula-

tion results from the community models with experimental data of laboratory-scale biogas

reactors for growth on ethanol and glucose-cellulose media.

Methods

Constraint-based modeling

Constraint-based (stoichiometric) modeling of metabolic networks [21] relies on the assumption

of a steady-state for internal metabolite concentrations leading to the mass balance equation:

Nr ¼ 0 ð1Þ

The structure of the network is captured by the stoichiometric matrix N storing the stoi-

chiometric coefficients of the metabolites (rows) in the metabolic reactions (columns). As con-

sequence of eq. (1), steady-state flux vectors r fulfill the condition that no net accumulation or

depletion of internal metabolites occurs. Additionally to the steady-state condition, reversibil-

ity constraints (2), flux bounds (3) and other types of inhomogeneous linear constraints (4)

can be included:

rj � 0 for j 2 Irrev ð2Þ

aj � rj � bj ð3Þ

Ar � b: ð4Þ

The set Irrev contains the indices of irreversible reactions. If only the steady-state (1) and

the irreversibility constraints (2) are taken into account, the solution space forms a polyhedral

(flux) cone; with any constraint of type (3) or (4) its shape becomes a (flux) polyhedron.

Assembling a compartmented community model from single-species

models

In order to create a community model combining all (n) single-species models, herein referred

to as full model, a compartmented approach is usually employed [9,11,12,15,22,23]. Each

Reduced metabolic modeling of microbial communities and application for the biogas process
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organism represents one compartment and an additional exchange compartment allows for

exchange of metabolites (substrates/products) between organisms and with the medium (Fig

1). With the new exchange compartment, the former external (unbalanced) metabolites

become now internal ones and must be balanced in eq. (1). Exchange metabolites used by sev-

eral species are combined such that they exist only once in the community model.

As described in [15] the units of the (specific) single-species reaction rates must be adapted

to refer to the total community (instead of single-species) biomass. Accordingly, the units of

all reaction rates change from mmol/gDWi/h to mmol/gDWc/h. Exceptions are the n biomass

synthesis (growth) reactions producing the species biomasses BMi from a (species-specific) set

of precursors:

gi;1pi;1 þ gi;2pi;2 þ � � � þ gi;qpi;q ! 1 BMi ½gDWi� ði ¼ 1 . . . nÞ ð5Þ

In the single-species models, the specific (growth) rates μi (i = 1. . .n) of these n reactions

referred to unit 1/h, which is now changed to gDWi/gDWc/h. We indicate the changed units

of these reaction rates in the community model by the symbol ~m iði ¼ 1 . . . nÞ:
Furthermore, n new pseudo-reactions are introduced in the community model to describe

the integration of the n species biomasses into the community biomass BMc (Fig 1):

1 BMi½gDWi� ! 1 BMc½gDWc� ðrate : rBMi!BMc
½gDWi=gDWc=h�Þ ði ¼ 1 . . . nÞ ð6Þ

Finally, a new community growth reaction is introduced “exporting” the synthesized com-

munity biomass to the medium (Fig 1); the rate of this reaction is the community growth

rate μc [1/h]:

1 BMc½gDWc� ! ðrate : mc½1=h�Þ ð7Þ

Note that, in steady state, ~m i ¼ rBMi!BMc
and

Pn
i¼1

~mi ¼
Pn

i¼1
rBMi!BMc

¼ mc. The obtained

structure of the whole community network is captured in the community stoichiometric

matrix Nc and the reaction rates in the community flux vector rc (with units as described

above). As for the single-species models, we demand steady-state for the metabolites (includ-

ing all metabolites in the exchange compartment):

Ncrc ¼ 0: ð8Þ

In a stable continuous culture, the growth rate of microorganisms is typically equal to the

dilution rate. We assume that the same is true for a microbial community cultivated in a con-

tinuous process. In that case, the growth rates μi of all organisms (each normalized to the

respective specific biomass) must be identical and equal the community growth rate μc:

m1 ¼ m2 ¼ � � � ¼ mn ¼ mc: ð9Þ

This concept of balanced growth of microbial communities has previously been proposed

by Khandelwal et al. (2012) and is also an underlying principle of the OptDeg [15] and the

SteadyCom [16] approach. It has been argued that, even if there is no steady state in a continu-

ous cultivation, the specific growth rates of the organisms need to be the same on average

because otherwise the fastest organism would outgrow the others. With constant growth rates,

also the fractional biomass abundances

Fi ¼
BMi

BMc
ð10Þ

of each species i in the community biomass BMc must be constant. The fractions Fi define the

Reduced metabolic modeling of microbial communities and application for the biogas process
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Fig 1. Schematic overview of the structure of single-species models (A) and the resulting community model (B). Metabolites are indicated with boxes,

reactions are represented by arrows. External metabolites in single-species models become internal metabolites in the community model.

https://doi.org/10.1371/journal.pcbi.1006759.g001
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community composition F = (F1,. . .,Fn) and sum up to unity:

Pn
i¼1

Fi ¼ 1: ð11Þ

With balanced growth, the fraction Fi of species i is given by the ratio of the specific biomass

production rate of species i (normalized to the community biomass) and the community

growth rate:

Fi ¼
BMi

BMc
¼

rBMi!BMc

mc
¼

~mi

mc
ð12ÞÞ

Note that the fractional contributions to the synthesis of the community biomass

(~mi ¼ rBMi!BMc
; normalized to BMc) are not identical over the species, hence, the ~mi need not

fulfill (9). However, for the specific growth rates μi (referring to BMi) it holds that mi ¼

~mi=Fi ¼ mc and thus (9) is indeed satisfied. For each species, we can rewrite (12) to the follow-

ing constraint:

rBMi!BMc
¼ Fimc: ð13Þ

(Alternatively we could also use ~mi instead of rBMi!BMc
in this equation). In the optimi-

zation problems considered below, constraints of type (13) need to be included only for

n−1 species, because (6), (7), and (11) already imply (13) for the n-th species: rBMn!BMc
¼

mc �
P

i¼1...n� 1
rBMi!BMc

¼ mc �
P

i¼1...n� 1
Fimc ¼ mc � ð1 � FnÞmc ¼ Fnmc.

Due to the re-normalization of the reaction rates from specific to community biomass, as

the last step in assembling the community model we also need to adjust the normalization of

the original flux bounds (3) and other inhomogeneous conditions (4) by multiplying them

with the fractional abundances:

Fiaij � rc
ij � Fibij ð14Þ

where αij and βij are the lower and upper bounds for reaction j in organism i and rc
ij is the reac-

tion rate of reaction j in organism i in the community model. Likewise, constraints (4) are

adjusted for each organism to

Air
c
i � Fibi ð15Þ

(Ai, bi correspond to the respective variables in (4) for species i). The irreversibility con-

straints for the reaction rates are kept from the single-species models:

rc
ij � 0 for j 2 Irrevi: ð16Þ

To exclude solutions with non-zero fluxes rc
ij 6¼ 0 in organisms that are not present in the

community (Fi = 0), we assume that every flux in species i is bounded (i.e., αij and βij are

bounded). With (14), a non-zero flux rc
ij then implies Fi>0. In principle, with the chosen con-

straints, one can also consider the case where the community is not growing (μc = 0), i.e.,

where dependencies arise exclusively from the maintenance metabolism of the participating

species. However, if the community is growing (μc>0), a non-zero flux rc
ij 6¼ 0 in species i

implies again Fi>0 and, due to (13), then also rBMi!BMc
¼ ~mi > 0.

In analogy to classical flux balance analysis (FBA) in single organisms, we may formulate a

(linear) objective function maximizing certain (combinations of) reaction rates in the

Reduced metabolic modeling of microbial communities and application for the biogas process
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community model:

Maximize cTrc

s:t: ð8Þ; ð11Þ; ð13Þ � ð16Þ
ð17Þ

Due to the multiplication of (independent) variables in constraints (13), the community

model and the associated optimization problem become bilinear. While non-linear solvers can

be employed to solve the optimization problem (e.g., to search for maximum community

growth rates or to scan feasible ranges of fluxes or community compositions; see below), a line-

arization can be applied to enable application of standard linear programming solvers and

methods routinely used in (linear) constraint-based modeling.

Linearization of the community model

Two approaches have been used to linearize bilinear community models and to simplify its

analysis (Fig 2). In the first approach (utilized in SteadyCom [16]), the community growth rate

μc is fixed to a constant (known) value. The constraints (13) become then linear and the opti-

mization problem (17) thus treatable with standard linear programming (LP) solvers. Lineari-

zation by fixing the community growth rate is useful, for example, to analyze which

community compositions are feasible for a given community growth rate. Repeating these

analyses (in discrete steps) for the feasible range of community growth rates yields a more

complete picture of the whole solution space.

Fig 2. Workflow of constructing three different types of community models considered in this study.

https://doi.org/10.1371/journal.pcbi.1006759.g002
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An alternative linearization method was used in community FBA [11] and in the OptDeg

approach [15]. Here, instead of the community growth rate, the community composition, i.e.

all the fractional abundances Fi, are fixed. Eq (13) becomes then again linear allowing the utili-

zation of LP solvers. With given fractional abundances, constraint (11) can be removed from

the optimization problem (17).

This second linearization approach is useful to scan, for example, the feasible community

flux space for a given community composition. However, with a growing number of organ-

isms, this scanning becomes very expensive in terms of the number of linear programs to be

solved [16]. In this study, we therefore linearize community models by fixing μc as proposed in

the SteadyCom approach. We used an iterative approach to find the maximum community

growth rate μc,max in these linearized models. First, we set μc to a value of 0.005 h-1. If a feasible

flux distribution exists (here, any (including a zero) objective function can be used in Eq (17)),

we double μc and check again for a feasible flux distribution. We repeat these steps until no fea-

sible flux distribution is found. We then take the average of this μc and the last feasible μc (or

zero if the first μc did not yield a flux distribution). These steps are repeated (check for feasibil-

ity, use average of latest feasible and infeasible μc as new constraint and check again for feasibil-

ity) until the difference between the last feasible and infeasible μc is smaller than 0.00001 h-1.

Generally, for both linearization variants, apart from the FBA-like optimization in (17),

other constraint-based methods like flux variability analysis (FVA) or metabolic pathway

analysis based on elementary flux modes or elementary flux vectors can be carried out (see

below).

Species-level optimality in the community models

The described approaches for modeling communities under balanced growth can be used to

define and analyze community solution spaces. However, these solution spaces often include

unrealistic solutions on the species-level (e.g., a species synthesizes, without any benefit for its

own growth, products required by another species in the community [15]). Consequently, the

predicted ranges for community compositions or growth rates may become very large as they

include many non-relevant phenotypes. FBA could be used to find community compositions

fulfilling certain optimality criteria, but the question of suitable objective function in commu-

nities arises. In single-species models, a typical objective function is maximization of the

growth rate. In community models we can also maximize the community growth rate [11].

But, again, even these optimal solutions may represent unrealistic community compositions in

which some organisms waste substrate to ensure survival of the others [15]. We therefore pro-

posed previously an optimization approach to minimize a weighted sum of substrate uptake

rates to find community compositions in which all organisms grow with their maximum bio-

mass yields [15]. This approach enabled us to narrow down the solution space to community

compositions in which all organisms grow optimally with their maximum biomass yields at a

given community growth rate. When introducing our model reduction approach below, we

will use a similar method to exclude unrealistic community flux distributions.

Elementary flux modes and elementary flux vectors

Elementary flux modes (EFMs) are non-decomposable flux vectors fulfilling Eqs (1) and (2)

[24]. EFMs represent balanced pathways or cycles and have become an important tool for

exploring metabolic networks [20,25–28]. However, one shortcoming of EFMs is that inhomo-

geneous constraints (Eqs (3) and (4) in the single-species models and (14) and (15) in the com-

munity model), such as non-growth associated ATP maintenance demand and substrate-

uptake limits, cannot be considered. We therefore make use of the concept of elementary flux

Reduced metabolic modeling of microbial communities and application for the biogas process
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vectors (EFVs), a generalization of EFMs which can account for inhomogeneous constraints

[19,20]. From the theory of EFVs, it is known that the flux polyhedron P resulting from a set of

linear constraints is generated by convex combinations of bounded EFVs pk and conic linear

combinations of unbounded EFVs xi and yj:

P ¼ fr 2 <n
jr ¼

P
k2Kgkp

k þ
P

i2Iaix
i þ
P

j2Jbjy
j; gk � 0;

P
k2Kgk ¼ 1; ai � 0g ð18Þ

Due to combinatorial explosion, EFVs can usually only be calculated in medium-scale met-

abolic networks and, thus, only in smaller community models combining the central metabo-

lism of two or three species.

RedCom: Building reduced community models with balanced growth from

net conversions

We present RedCom, a new method to generate community models of reduced size and with

reduced solution spaces excluding unrealistic community behaviors. The main idea of the

reduction approach, which has some similarities with but is not identical to an approach pre-

sented by Taffs et al. [10], is to describe the metabolism of each organism by certain net con-

versions taken from the EFVs of the single-species models (Fig 2). Since we are mainly

interested in community compositions and metabolic interactions (exchange reactions)

between the community members, it is often sufficient to focus only on net conversions of the

respective species instead of taking its whole metabolic reaction network explicitly into

account. Furthermore, from the list of all net conversions of a species we select only those that

obey certain optimality criteria avoiding unrealistic phenotypes in the community model. The

selected net conversions are used as reactions in the reduced community model to be built.

The construction of reduced community models with the RedCom approach is described in

the following, a detailed example is given in S1 Text in the Supplements.

Computation of EFVs. For obtaining the reduced community model, the (community)

growth rate μc is fixed to a particular (e.g., measured) value μc,fix and the growth rate in the sin-

gle-species models is then also set to this value: μi = μc,fix. Afterwards, all bounded and

unbounded EFVs are calculated for each single-species network. Apart from the fixed commu-

nity growth rate, other frequently used inhomogeneous constraints are (known) upper bounds

for substrate uptake and product formation rates as well as a lower bound for the rate of the

ATP consuming pseudo reaction reflecting the maintenance coefficient (rATPmaint; Table 1).

We can assume that all thermodynamically feasible solutions involve substrate uptake (internal

cycles are discarded) and that substrate uptake is bounded by some upper limit. Therefore, we

only need to consider bounded EFVs (pk in Eq (18)) in our approach.

Selecting EFVs with minimal conversions. In a next step, for each organism, we select

the EFVs, which we consider as relevant (realistic) “phenotypes”. Criteria for EFV selection

can be adjusted as needed. Herein, we select EFVs with minimal (parsimonious) exchange

fluxes and discard solutions, which lead to inefficient substrate conversion (e.g. with low bio-

mass or/and ATP yields) and may result in unrealistic altruistic behavior of an organism in a

given community. For this purpose, we project each EFV e to its (q) exchange reactions includ-

ing the growth rate: e ¼

e1

..

.

eq� 1

em

0

B
B
B
B
B
@

1

C
C
C
C
C
A

. Next, to avoid redundancies, for EFVs with identical projec-

tion on the exchange reactions, we keep only one candidate. Assume now we have, for a given

Reduced metabolic modeling of microbial communities and application for the biogas process
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species, s non-redundant (projected) EFVs. We discard an EFV ek if there exists a convex com-

bination w of other projected EFVs in which all rates of the exchange reactions are smaller

than or equal to the ones in ek. This condition is fulfilled (and ek removed) if a solution w exists

for the following system:

E�w � ek

ð1 � � � 1Þw ¼ 1

w � 0

ð19Þ

with E� = [e1. . .ek−1 ek+1. . .es]. Note that the combination of the EFVs must be convex (second

Table 1. Overview of the single-species models with model dimensions and constraints used for the community model. The last three columns indicate which mod-

els were used to build the three-, six- and nine-species community models.

Organism # internal metabolites × #reactions Constraints [mmol/

gDW/h]

Number of EFVs

(for

μc = 0.008 h-1)

Three-species

model

Six-species

model

Nine-species

model

Escherichia coli (EC) 99 x 117

Substrates: O2, Glyc, Glucn, Glc, CO2

Products: CO2, Succ, Lac, Eth, Ac,

Form

rATPmaint�3.15

rGlcup�18.5

rGlycup = 0

rGlucup = 0

rO2up = 0

60653 x

Acetobacterium woodii (AW) 107 x 116

Substrates: Glc, H2, Eth, CO2, Lac,

Fruc, Form, MeOH

Products: Ac, CO2

rATPmaint�0.29

rGlcup�2.75

rFrucup = 0

rLacup�3

rEthup�9

rMeOHup = 0

rH2up�19.5

rFormup�19.5

μ�0.162

4582 x x

Propionibacterium
freudenreichii (PF)

105 x 111

Substrates: Lac, Eth, Glc, CO2

Products: Prop, Ac, Succ, CO2

rATPmaint�0.76

rGlcup�4

rlacup�11

rEthOHup�11

μ�0.16

23878 x x

Clostridium acetobutylicum
(CA)

111 x 123

Substrates: Glc, Glyc, Ac, Buty

Products: Lac, Eth, Buty, Butol, Ac,

Acon, Form, CO2, H2

rATPmaint�1

rGlcup�12.75

rGlyc_up = 0

rAconex = 0

rBuolex = 0

1596 x

Syntrophobacter
fumaroxidans (SF)

104 x 114

Substrates: Prop, Fum SO4

Products: Ac, Form, Succ, CO2, H2,

H2S

rATPmaint�0.14

rPropup�1.6

rFumup�0.5

rSO4up = 0

39932 x x

Syntrophomonas wolfei (SW) 110 x 114

Substrates: Buty, Crot

Products: Buty, Ac, H2, Form, CO2

rATPmaint�0.14

rButup�4.25

rCrotup�2.85

443 x

Desulfovibrio vulgaris (DV) 99 x 115

Substrates: Pyr, Lac, Eth, Ac, CO2, H2,

SO4

Products: Ac, Form, CO2, H2, H2S

rATPmaint�4.3

rAcex�50

rSO4up = 0

840 x x x

Methanosarcina barkeri (MB) 96 x 103

Substrates: Ac, MeOH, H2, CO2

Products: CH4, CO2

rATPmaint�2.5

rCH4ex�15

35 x x x

Methanospirillum hungatei
(MH)

95 x 102

Substrates: H2, CO2, Form

Products: CH4, CO2

rATPmaint�0.9

rCH4ex�15

23 x x x

https://doi.org/10.1371/journal.pcbi.1006759.t001
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row in (19)) to ensure that the predefined growth rate and other inhomogeneous constraints

are met. We thus only keep EFVs whose total turnover of at least one of the external metabo-

lites is smaller compared to a convex combination of the other EFVs (recall that redundant

projected EFV had been discarded before). In particular, this criterion ensures that, for a given

combination of substrate(s) and product(s), only biomass-yield optimal EFVs will be kept. If

there are, for a given substrate, different potential products, then at least one EFV will be kept

for each product, even if it is biomass-yield suboptimal compared to another product. The rea-

son is as follows: in some cases, accumulation of certain products in the medium can inhibit

growth and result in a shift to another pathway. With the approach described above, we keep

these options in the model to retain a certain metabolic flexibility. We save the retained EFVs

in Matrix E (each row in E represents one selected projected EFV).

Net conversions from EFVs and reduced single-species model. Next, we calculate the

stoichiometric matrix Nred of the reduced (single-species) network:

Nred ¼ NEX � E:

(NEX is the sub-matrix of N containing the columns and rows corresponding to the

exchange reactions and external metabolites.) Hence, the net conversions (in terms of external

metabolites) of the selected EFVs become now reactions (columns in Nred) in the reduced

model. The reversibility of a reaction in Nred depends on the reversibility of the respective EFV

from which it was derived. Since the EFVs represent net conversions of substrates to products

and biomass, the reactions are normally all irreversible.

Constructing the community model. We repeat these steps for all n organisms of the

community. Afterwards we proceed as described earlier to construct the (reduced) commu-

nity model from the (reduced) single-species models. By their nature, each reduced species

network consists only of exchange metabolites and (overall) reactions converting them.

Therefore, effectively only two compartments need to be considered in the community

model: the exchange compartment and the medium (see Fig 2). However, each reaction is

associated with exactly one of the species. Exchange metabolites occurring in several species

are again combined such that they only exist once in the community model. All exchange

metabolites, that are not allowed to accumulate in the medium, must fulfill the mass balance

Eq (8) and the community growth rate is fixed to the value used in the reduced single-spe-

cies models (μc = μc,fix) by which the reduced community model becomes linear. Impor-

tantly, no other inhomogeneous constraints need to be considered; all flux bounds (and

other constraints) from the original single-species models are automatically fulfilled in the

reduced community model as long as μc>0 (see S2 Text in the Supplements). S1 Text in the

Supplements illustrates the construction of a reduced community model for an example

community and also explains how the special case of μc = 0 can be treated by a minor modi-

fication of the reduced community model.

The linear reduced community model can be explored with standard analysis methods of

constraint-based modeling. In particular, the feasible community compositions F can be deter-

mined and studied. Furthermore, “community EFVs” can be computed and analyzed (which

should not be confused with the EFVs computed in the original single-species models to con-

struct the reduced single-species models).

Calculations

All models presented in the Results section were implemented and analyzed with CellNetAna-
lyzer version 2018.1, a MATLAB package for structural and functional analysis of metabolic

and signaling networks [29,30]. CPLEX was used as a solver for linear optimizations and
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efmtool for computation of EFVs. For solving bilinear problems, we used the fmincon solver

for nonlinear optimization in MATLAB. The solver needs an initial flux distribution that we

retrieved from the linearized model.

Data from laboratory-scale biogas reactor on glucose-cellulose medium

Experimental data from a laboratory-scale biogas reactor on a defined glucose-cellulose

medium were published earlier [31] and used for a comparison with predictions from the

nine-species biogas producing community (see Results). The data were taken from steady-

state conditions [31]. We calculated the average methane and CO2 production rates over a

course of 100 days. To achieve steady-state conditions, the reactors were operated under simi-

lar conditions for 190 days prior to this time period. Additionally to the data already published,

we estimated biomass dry weights by measuring protein concentrations with the Lowry Assay

[32] and dividing them by the factor 0.64 (assumed fraction of protein of the total biomass in

the model). We used these data to calculate specific production and consumption rates for

comparison with simulation results.

Continuous enrichment cultures on ethanol

A detailed description of the procedures applied for inoculation, feeding, and sample analyses

along with cultivation setup and parameters is given in the S6 Text. Briefly, two 1.5 L bioreac-

tor systems were inoculated with sludge from the aforementioned enrichment and fed with

the same medium containing 14.6% (v/v) ethanol as main carbon source instead of glucose

and cellulose. After an adaption period, continuous cultivation mode was initiated using con-

stant feeding rates and volume control. In the following, different dilution rates were sampled

at steady-state conditions, starting from 5.3�10−4 h-1 further increasing until the biogas produc-

tion collapsed. Sampling and subsequent analyses comprised pH, biomass protein content,

biogas composition and biogas volume produced. In addition, samples were analyzed for

residual ethanol and accumulated organic acids. Finally, taxonomic analysis was carried out

using an established MS-based metaproteomic workflow (see S8 Text).

Results

In the following, we first describe the construction of metabolic models of nine organisms cap-

turing major degradation steps in the biogas process. Subsequently we combine these single-

species models to community models of increasing complexity containing three, six, and nine

strains. For each considered community, we construct, analyze and compare three different

types of models (bilinear model, linearized full model, reduced model obtained with RedCom)

as described in the Methods section. For the six- and nine-species communities, we compare

model predictions with experimental data.

Model organisms

Using KEGG [33] and MetaCyc [34] as well as various literature references we manually con-

structed single-species models of the central metabolism of nine different organisms all being

relevant for the biogas process: four primary fermenting bacteria (Acetobacterium woodii,
Escherichica coli, Clostridium acetobutylicum, Propionibacterium freudenreichii), three second-

ary fermenting bacteria (Syntrophomonas wolfei, Syntrophobacter fumaroxidans, Desulfovibrio
vulgaris) and two methanogenic archaea (Methanospirillum hungatei and Methanosarcina bar-
keri). As suggested by Taffs et al. [10], we consider each of these organisms as one functional

guild in the biogas process with certain metabolic properties. More specifically, under
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anaerobic conditions, E. coli produces ethanol as well as different organic acids like formate,

lactate, acetate and succinate from glucose, glycerol and gluconate. A. woodii is an homoaceto-

genic organism that can either ferment sugars like glucose and fructose but also lactate, for-

mate or hydrogen and CO2 to produce acetate via the Wood-Ljungdahl pathway [35,36]. P.

freudenreichii can ferment glucose, glycerol and lactate to succinate and propionate. The

organism uses the methyl-malonyl-CoA pathway to produce propionate. Some organisms

using the methyl-malonyl-CoA pathway like Pelobacter propionicus are also capable of using

ethanol as a substrate [37]. Since we aimed to represent the functional guild of propionate pro-

ducing bacteria using the methyl-malonyl-CoA pathway, we also added ethanol oxidation to

propionate to the model. C. acetobutylicum ferments glucose and glycerol to different organic

acids and solvents like acetate, butyrate, ethanol, butanol and aceton. The organism is known

to grow in two different phases [38]. In the first phase, the organism produces organic acids

like acetate and butyrate. These pathways have high ATP yields but the acids produced lower

the pH in the medium. In the second phase, acids are taken up and solvents like butanol and

aceton are the main product. C. acetobutylicum represents primary fermenting bacteria in our

community model and we assumed that mainly production of formate, acetate, butyrate and

ethanol is relevant in anaerobic digestion. We therefore disabled production of the other sol-

vents in the community model. D. vulgaris is a sulfate-reducing bacterium that can grow on

organic substrates like pyruvate, lactate and ethanol using sulfate or thiosulfate as an electron

acceptor. In the absence of electron acceptors, the organism can also grow in syntrophic asso-

ciations with hydrogen utilizing organisms. The products formed by D. vulgaris are either ace-

tate and hydrogen plus CO2 or formate (in syntrophic cultures) or acetate plus hydrogen

sulfide (when sulfate is present). Additionally, the organism can utilize hydrogen with acetate

as a carbon source and sulfate as an electron acceptor. S. fumaroxidans can grow on propionate

in syntrophy or with sulfate as an electron acceptor [39]. In pure culture the organism can

grow on fumarate, fumarate plus propionate or succinate, formate or hydrogen plus sulfate

[39]. S. wolfei is a secondary fermenting bacterium that can degrade saturated fatty acids from

butyrate through octanoate either to acetate and hydrogen (even number of C-atoms) or to

acetate, propionate and hydrogen (odd number off C-atoms) in syntrophic cultures [40].

Growth of S. wolfei is also possible on crotonate in monoculture [41].

The methanogenic organism M. hungatei (cytochrome-free) produces methane from for-

mate or from hydrogen plus CO2 while M. barkeri (possesses cytochromes) can use hydrogen

plus CO2, acetate, methanol and methylamines for methanogenesis. In addition to different

substrates utilized by the methanogens they also differ in ATP yields and substrate affinities.

M. barkeri has higher ATP yields but lower substrate affinity for hydrogenotrophic methano-

gens. In our M. barkeri model we only implemented methanogenesis from acetate, methanol,

and hydrogen with CO2.

A summary of the single-species models with model dimensions (number of metabolites and

reactions) and constraints is given in Table 1. The models of D. vulgaris, M. barkeri and M. hun-
gatei were published before [15]. We estimated flux bounds for substrate uptake and product

formation from experimental data or existing models, partially also from closely related organ-

isms (see S3 Text). Maintenance coefficients (rATPmaint) were taken from literature data but the

reported values varied by more than one order of magnitude between the different species

(Table 1, S3 Text). Below we will therefore carry out a sensitivity analysis to investigate the influ-

ence of the maintenance coefficients on simulation results. For model validation, we also com-

pared model predictions with measured biomass yields reported in the literature (see S4 Text).

All models are listed (and also provided in SBML format) in S1 Table in the Supplements.

For the simulations performed in this work, we focused on ethanol (three and six-species

community) and glucose (nine-species community) as the only available substrates and
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switched the uptake of other substrates (glycerol, gluconate, methanol, fructose, sulfate) off to

reflect the composition of media used in the experiments.

Simulations of a three-species community

We investigated a three-species community model (Table 2) consisting of D. vulgaris, M. hun-
gatei and M. barkeri. This community can convert ethanol to methane, CO2, and acetate and

thus covers the last two steps of anaerobic digestion. A similar community was experimentally

investigated by Tatton et al. [42] and simulated with FBA in a previous study [15]. In analogy

to the study of Tatton et al. [42], the uptake of external CO2 was allowed to also include solu-

tions in which the acetoclastic methanogen is non-essential.

Simulations with the full (bilinear) model. We constructed the community model by

combining the models of the three participating species in a compartmented approach (see

Methods). Initially, neither the community composition F nor the community growth rate μc

were fixed resulting in a bilinear community model (see Methods). We used this bilinear

model and a non-linear solver to compute the maximum community growth rate μc,max of the

three-species community for growth on ethanol and obtained μc,max = 0.052 h-1. As another

important characteristic of a community model, we next computed the possible ranges of the

fractional abundances (Fi), of the exchange reactions, and of the methane yield (by separately

minimizing and maximizing each off these values). We considered two different scenarios

(with and without allowed accumulation of acetate) and the results can be found in S5 Text.

Generally, the bilinear model predicts broad ranges for exchange rates, community composi-

tion, and methane yield. This is not surprising given that these predictions are made for all

possible growth rates (dilution rates). The bilinear models also predicts correctly that D. vulga-
ris is essential for the community while the methanogens are compositionally variable in the

scenario with allowed acetate accumulation and M. barkeri essential in the second scenario

where no acetate accumulation is allowed.

Linearized model with fixed community growth rate. Next, we derived the linearized

full model from the bilinear model by fixing the community growth rate (see Methods). We

used an iterative approach for fast identification of the maximum community growth rate

μc,max via a series of linear optimizations with different (fixed) μc (see Methods). The maxi-

mum community growth rate for growth on ethanol predicted with the linearized model is

0.052 h-1 and thus, as expected, identical to the result retrieved with the bilinear model. We

then fixed the community growth rate to four different values corresponding to 99%, 50%, 5%

and 0% of μc,max and computed the feasible ranges of fractional abundances and exchange

Table 2. Model dimensions of full and reduced community model as well as the number of computed EFVs for a chosen scenario. Additionally, the chosen substrate

for the community is listed. EFVs could not be computed for communities with five or more species in the full linearized model. For species abbreviations see Table 1.

Number of organisms #internal metabolites ×
#reactions

Number of flux-bound constraints Number of EFVs

(for μc = 0.008 h−1)

Substrate

(products)

Full model Reduced model Full model Reduced model

2 (DV, MM) 205 x 233 13 x 24 6 254 2 Lactate (CH4,CO2,Ac)

3 (+ MB) 302 x 337 15 x 29 8 13,574 13 Ethanol, CO2 (CH4,CO2,Ac)

4 (+ AW) 411 x 454 18 x 44 17 380,800 14 Ethanol (CH4,CO2,Ac)

5 (+ PF) 523 x 568 25 x 80 22 - 28 Ethanol (CH4,CO2,Ac, Prop)

6 (+ SF) 628 x 684 27 x 115 26 - 172 Ethanol (CH4,CO2,Ac, Prop)

7 (+ CA) 742 x 813 31 x 129 29 - 51,021 Glucose (CH4,CO2,Ac, Prop, Buty)

8 (+ SW) 854 x 929 34 x 137 32 - 70,074 Glucose (CH4,CO2,Ac, Prop, Buty, Mal)

9 (+ EC) 953 x 1,048 35 x 158 37 - 147,694 Glucose (CH4,CO2,Ac, Prop, Buty, Mal)

https://doi.org/10.1371/journal.pcbi.1006759.t002
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rates (via flux variability analysis with linear optimizations) as well as for methane yield (via

linear-fractional optimization; see [43]), again, for the two scenarios with and without acetate

accumulation (S5 Text). As expected, the predicted ranges are consistent with (lie always

within the feasible ranges of) the bilinear model. Due to the fixed growth rates, the predicted

ranges are significantly smaller than in the bilinear model (where ranges where computed for

all feasible growth rates), however, they are partially still relatively large and thus not very con-

clusive, especially for exchange rates (S5 Text). The blue area in Fig 3A illustrates predicted fea-

sible ranges for community compositions, yields and exchange rates in the full linearized

model for a fixed μc = 0.026 h-1 (corresponding to 50% of μmax).

While the min/max ranges for fractional organism abundances and exchange rates can be

calculated in the bilinear as well as in the linearized full model, interdependencies between

these abundances are not immediately obvious. To analyze the space of possible community

compositions more thoroughly, a sampling approach could be used where the Fi for one (or

Fig 3. Elementary flux vectors (EFVs) in the linearized full model (A) and in the reduced three-species community model (B) and their projection onto the

fractional biomass abundances (C). In all cases, ethanol served as substrate, the community growth rate was fixed to μc = 0.0261 h-1 and acetate accumulation was

allowed (cases in which no acetate accumulates correspond to EFVs with rAc = 0; compare also with S5 Text). In (A) and (B), the EFVs are projected onto their fractional

biomass abundances (FX: fractional biomass abundance of species X), methane yields (YCH4/Eth) and exchange rates (rEth: ethanol uptake, rCH4: methane production, rAc:

acetate production) and are colored from red (highest methane excretion rate) via purple, orange, yellow, green, cyan, blue to black (lowest rate). The blue axes refer to

biomass abundances and methane yield and the black axes to the exchange rates. The feasible ranges of compositions, exchange rates, and yields spanned by the EFVs

are indicated by a blue area in (A) and (B). The 2D-plot in (C) shows the EFVs of the linearized full model (blue) and of the reduced model (red) projected onto the

fractional biomass abundances of D. vulgaris (FDV) and M. hungatei (FMH)). The abundance of M. barkeri (FMB) follows from FDV+FMH+FMB = 1.

https://doi.org/10.1371/journal.pcbi.1006759.g003
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several) organism(s) is fixed and the influence on the remaining Fi is then investigated (see, for

example, [15] and [16]). However, even in medium-scale community models, the computa-

tional costs for such a sampling approach become quickly prohibitive when sampling along

the abundances of more than four or five species, even in the linearized model. Here, an analy-

sis of elementary flux vectors (EFVs; [20]; see also Methods) can deliver useful insights. In the

three-species linearized full model with fixed μc = 0.026 h-1 we computed these characteristic

vectors yielding 13,574 EFVs (Fig 3A and 3C). The resulting ranges for F are the same as

obtained by linear optimization but more subtle dependencies are uncovered by the EFVs.

Each EFV contains a community composition and corresponding flux rates for all reactions in

the model (Fig 3A shows the fractional abundances and community exchange rates for all

EFVs, whereas Fig 3C shows a projection of the EFVs onto their fractional abundances). This

enables us to immediately identify and characterize community compositions and flux distri-

butions which have high CH4 production rates or yields and which reactions or pathways are

essential for these solutions. In our example, M. barkeri becomes essential if acetate does not

accumulate in the medium or if no external CO2 is supplied (see also S5 Text). Additionally, all

EFVs with a methane yield above 0.5 require M. barkeri and the acetoclastic methanogenesis

pathway and the highest methane yield is reached with high but not with the highest abun-

dance of M. barkeri. Acetate produced by D. vulgaris is an additional substrate for methano-

genesis and M. barkeri is the only organism present in the community, which is capable of

converting acetate to methane and CO2. Such relationships, which are often non-obvious espe-

cially in more complex or less studied communities, can exhaustively be analyzed with EFVs.

The information retrieved via EFVs can subsequently also be used to find interventions in the

community to increase product yields (e.g. removal of certain species; knockout of certain

pathways etc.).

Reduced model based on EFVs of single species models. Next, we constructed a reduced

community model of the three-species community using our new reduction approach Red-

Com (see Methods and the example in S1 Text in the Supplements). RedCom is based on

reduced single-species models constructed from the net conversions of EFVs that fulfill a

minimality criterion in the exchange fluxes. Solutions with inefficient substrate use are dis-

carded by this criterion which also ensures that flux vectors with suboptimal biomass yield for

a given substrate and product combination are excluded avoiding solutions in the community

model where a species altruistically synthesizes large amounts of products (instead of biomass)

required by other species. The reduced community model is constructed for a particular μc

and thus linear.

Using the iterative approach also employed in the full linearized model, we first determined

the maximum community growth rate μc and found that it is, as expected, the same as in the

bilinear and linearized full model (0.052 h-1). As for the linearized full model, we computed

then the feasible ranges of species abundances, exchange reactions and methane yield for four

different μc for each of the two considered scenarios with allowed / not allowed accumulation

of acetate. (S5 Text). Due to the exclusion of unrealistic solutions with low biomass yields in

the single-species models, the reduced model has a smaller solution space compared to the lin-

earized full model resulting in significantly smaller predicted ranges, especially for exchange

rates. This can exemplarily be seen by comparing the blue areas in Fig 3A and 3B showing the

predicted feasible ranges in the linearized full vs. the reduced model for the fixed μc = 0.026 h-1

(50% of μc,max). For a more detailed analysis of the reduced model, we also computed the EFVs

in the reduced model for a given μc = 0.026 h-1 yielding 12 EFVs, a tremendous reduction com-

pared to 13,574 EFVs in the linearized model. The EFVs span the reduced solution space with

narrower ranges especially for the exchange reactions (Fig 3B). In the biomass abundance

diagram (Fig 3C), they span a smaller subset of the possible biomass compositions from the
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linearized model. In this region, all organisms use their substrates efficiently. In particular,

solutions with larger fractions of D. vulgaris are excluded favoring solutions with a higher per-

centage of M. barkeri. The EFVs of the reduced model also reveal that solutions with high

methane yields (green and yellow EFV in Fig 3B) have lower methane production rates

whereas in the linearized full model solutions with high methane yields and rates exist which

most likely stem from (unrealistic) substrate-wasting pathways of some organism(s) resulting

in higher overall conversions.

Computation of EFVs in larger community models. As emphasized before and exempli-

fied in Fig 3, EFVs are very useful to analyze the solution space of community models instead

of focusing only on single flux ranges or fractional abundances. However, in general, computa-

tion of EFVs becomes quickly infeasible in the linearized full version of complex community

models with a larger number of species. To test the limits of both approaches, we stepwise

increased the number of organisms in the community model and computed EFVs first for the

full linearized and then for the reduced model (which, again, is itself constructed from the net

conversions of selected EFVs of the single-species models). While the reduced model approach

enables us to compute and analyze EFVs even for the nine-species model (discussed below),

the computation of EFVs was not possible in linearized full models of communities with five

or more organisms (Table 2).

A six-species ethanol-degrading community model and comparison with

experimental data

We extended the three-species community model to a model with six of the nine model organ-

isms by additionally integrating A. woodii, P. freudenreichii, and S. fumaroxidans (Tables 1 and

2). The three additional organisms were chosen according to their potential of being part in an

ethanol-degrading community; they represent functional guilds that extend the capability of

the three-species community investigated above by additional pathways for homoacetogenesis

and propionate fermentation. Growth of the other (remaining) three organisms (CA, SW, EC;

see Table 1) is not supported with ethanol as substrate and they have therefore not been

included yet. Note that, at this initial point, no experimental data have been used yet to adjust

the composition of the community model; this will later be done when including metaproteo-

mic data from a concrete enrichment culture.

Full bilinear model. In a first step, we used again the bilinear model to compute the maxi-

mum community growth rate. The solver delivered 0.0087 h-1 which is significantly lower

than the predicted rate in the three-species model. Since the latter is a particular solution of the

six-species community (where the other three species have zero abundance) the maximum

community growth rate should be at least as high as in the three-species model (in fact, the

true maximum community growth rate is μc,max = 0.10 h−1; see below). We observed that max-

imizing the growth rate in the bilinear model yields different results depending on the initial

flux distribution used by the solver. This is likely due to plateaus in the objective function and

indicates potential problems when solving this large non-linear system. Different starting solu-

tions (flux vectors) and/or other solvers must therefore be tested in the bilinear model to

obtain predictions with high fidelity. In contrast, the predicted ranges for substrate uptake and

product formation rates as well as for methane yield (S7 Text) appear reasonable but are rather

large providing thus only some rough information about the orders of magnitude.

Experimental data of enrichment cultures. We carried out continuous cultivation exper-

iments with enrichment cultures grown on ethanol (see Methods). Exchange rates calculated

from measurement data are shown in Table 3 and Fig 4 for a dilution rate of D = μc = 0.001 h-1

(additional data for other dilution rates are provided in S7 Text). To compare the experimental
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results with the linearized full model and the reduced model (see below) we fixed μc to 0.001 h-

1 and disabled accumulation of butyrate, propionate and acetate in the models because the

concentration of these products were below the limit of quantification in the experiments.

Linearized full six-species model. As already mentioned above, EFV computation was

not possible in the linearized full six-species model, but the ranges of substrate uptake and

product formation rates as well as maximum yields could be computed for community growth

rates fixed to the respective dilution rate with linear and linear-fractional optimization, respec-

tively (Table 3, Fig 4A, S7 Text). The predicted ranges for the methane yield are very narrow.

The experimental data do not always lie within but are very close to the predicted ranges thus

largely confirming the community model (Table S7). Regarding the exchange rates, we found

that the measured values lie all within the ranges of simulations. However, the ranges predicted

by the linearized full model are very large and thus of low predictive power: maximum rates

are partially more than 40 times higher than the minimum rates. These results can again be

explained by many solutions with energy-wasting pathways where some organisms have a

high substrate turnover with only little growth, which demands to take substrate efficiency

into account. To focus on most relevant solutions in the full model, we may use flux balance

analysis to identify solutions with high substrate efficiency (the same objective as used in the

proposed RedCom approach to obtain the reduced model). However, maximizing the biomass

yields of all organisms simultaneously is not trivial, especially if some organisms are capable of

using multiple substrates [15]. One option is to maximize the total community biomass yield

by minimizing the ethanol uptake rate for the community. We therefore first minimized the

ethanol uptake rate (with fixed community growth rate), fixed the ethanol uptake flux to the

minimum value and carried out a flux variability analysis for the remaining fluxes and yields

(Fig 4A). Only four of the six organisms (A. woodii, P. freudenreichii, S. fumaroxidans and M.

barkeri) are predicted to be present and no variability in exchange fluxes, yields and commu-

nity composition was observed (hence, only a single optimal solution with maximal biomass

yield exists). Further analysis of the flux ranges revealed that P. freudenreichii converts ethanol

to propionate which is then consumed by S. fumaroxidans which produces acetate, hydrogen

and CO2. All hydrogen is converted with CO2 to acetate by A. woodii and M. barkeri metabo-

lizes the acetate to methane and CO2 by acetoclastic methanogenesis. The total biomass opti-

mization always prefers organisms which have high biomass yields for the same substrate

compared to other organisms for the chosen growth rate. Alternatives (in this case: different

ethanol oxidizers, hydrogenotrophic methanogenesis) are excluded neglecting that other

organisms may still have higher fitness, e.g. due to higher substrate affinities. In fact, in the

metaproteomic data analysis described below, we will see that D. vulgaris and different metha-

nogens are part of the studied enrichment culture while no homoacetogenesis or ethanol oxi-

dation via propionate was observed.

Table 3. Feasible ranges for exchange rates, methane yields and methane to CO2 ratio predicted by the linearized full model and the reduced model for the six-spe-

cies community with ethanol as substrate. For comparison, experimental data from the enrichment culture for growth on ethanol (average of two experiments) are listed.

In the simulations, μc was fixed to the dilution rate of the experiments (0.001 h-1) and accumulation of organic acids was switched off (according to experimental data). A

table with simulation results and experimental data for other dilution rates can be found in S7 Text. The six species in the model are: P. freudenreichii, A. woodii, D. vulga-
ris, S. fumaroxidans, M. barkeri and M. hungatei.

Exchange rates [mmol/gDWc/h] Product yields and ratios [mol/mol]

Ethanol CO2 Methane CH4:CO2 CH4:Ethanol

Full model 0.21–8.35 0.086–4.15 0.29–12.50 3.01–3.43 1.40–1.50

Reduced model 0.21–1.31 0.086–0.63 0.30–1.94 3.06–3.43 1.40–1.48

Experimental data 0.59 0.27 0.87 3.25 1.48

https://doi.org/10.1371/journal.pcbi.1006759.t003
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Fig 4. Predicted community compositions (FX: fractional abundance of organism X; AW: A. woodii, PF: P. freudenreichii, SF: S. wolfei, DV: D. vulgaris, MH: M.

hungatei, MB: M. barkeri), methane yield (YCH4/Eth), ratio of methane to CO2 in the biogas (YCH4/CO2), substrate uptake (rEth) and product excretion rates (rCO2:

CO2 excretion, rCH4: methane excretion) of the linearized full six-species model (A) and the reduced six-species model (B) for fixed μc = 0.001 h-1. The blue axes

refer to biomass abundances, methane yield and methane to CO2 ratio whereas the black axes to the exchange rates. The ranges for the community

composition in the full model were computed with flux variability analysis (FVA) (light blue area) whereas in the reduced model the EFVs were computed

and plotted (solid lines) together with their convex hull (light blue area in (B)). The EFVs in (B) are colored from red (highest methane excretion rate) via

orange, yellow, green, cyan and blue to black (lowest rate). In the linearized full model, we additionally minimized the ethanol uptake rate (corresponds to

total biomass yield optimization), fixed the ethanol uptake rate to the computed minimum value and carried out another FVA for the remaining rates (orange

area). In panel A as well as in panel B, experimental data (red circles) for a dilution rate of 0.001 h-1 are plotted (average values from two reactors; see

Table 3).

https://doi.org/10.1371/journal.pcbi.1006759.g004
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Reduced six-species model. As before, we constructed the reduced six-species commu-

nity model in which, in contrast to the full model, we could easily compute the (117) EFVs and

from them the ranges of exchange rates and product yields (Table 3, S7 Text, and Fig 4B). The

experimental data for the specific rates were again in the ranges predicted by the model but

considerably smaller and thus more conclusive in the reduced model compared to the linear-

ized full model. Hence, these results support the assumption of substrate-efficient flux distribu-

tions. The yield ranges are also very narrow and thus, similar to the full model, with high

predictive power and in good agreement with measurements.

Again, the EFVs of the reduced model help to uncover more complex dependencies

between fractional abundances and exchange rates in the reduced model and illustrate the

enhanced predictive power compared to the linearized full model (Fig 4). While the latter pre-

dicts, for example, independent ranges (in blue in Fig 4A) for the community composition, the

reduced model shows that e.g. P. freudenreichii and S. fumaroxidans always occur together in

the community and that the methanogens are anti-correlated but at least one methanogen is

always present (Fig 4B). Each EFV represents one possible (minimal) community phenotype

with a characteristic community composition and substrate uptake rate as well as product

yields and synthesis rates. Furthermore, any feasible community is a convex combination of

these EFVs. Fig 4 also indicates again much tighter ranges in the exchange fluxes in the

reduced model while the range of feasible methane yields is small in both the reduced and the

full model. Contrary to the results from the total biomass optimization in the linearized full

model (orange line in Fig 4A), we obtained several alternative community compositions and a

range of possible exchange fluxes and yields. A. woodii, P. freudenreichii and D. vulgaris are

alternative ethanol oxidizers in the community and both methanogens can be involved in

methanogenesis. No organism is excluded based on its specific biomass yield since we selected

net conversions from each organism with substrate efficiency at single-species level.

We noticed that the maximum community growth rate of μc,max = 0.10 h−1 calculated with

both the reduced and the linearized full model was much higher than the highest dilution rate

that supported a stable community in the experiments. Generally, μc,max is limited by the slow-

est essential organism in the community. The maximum substrate uptake rates (limiting the

maximum growth rate) for these organisms were taken from single-species experiments. In

these experiments, the growth conditions are usually optimized for that particular organism,

which is not the case in the community experiments. In addition, substrates may differ

between monocultures and enrichment cultures because growth on some substrates is only

possible in the presence of other organisms (e.g. syntrophic acetate or ethanol oxidation) [44].

Furthermore, some substrate concentrations (e.g., hydrogen) in the experiments might not

suffice for some organism to grow with μmax.

Model predictions are sensitive against ATP maintenance demand. As mentioned ear-

lier, while the measured exchange rates lie within the predicted ranges, these ranges are rather

large, especially in the full but–partially—also in the reduced model. We therefore carried out

further simulations with the reduced model to find the reasons for this variability. We first

compared results using only one of the three different ethanol oxidizers at a time ((i) D. vulga-
ris, (ii) A. woodii, (iii) P. freudenreichii together with S. fumaroxidans, which can use propio-

nate produced by P. freudenreichii; Fig 5). The variability in the exchange rates in these

simulations is much smaller. The predicted exchange rates for simulations with D. vulgaris are

considerably higher than the experimental data, with A. woodii, they are slightly above and

with P. freudenreichii and S. fumaroxidans slightly lower than the experimental data (Fig 5B).

One major difference between the ethanol oxidizers is the non-growth associated ATP mainte-

nance demand. The maintenance coefficient for D. vulgaris estimated from literature was
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much higher than for the other organisms (Table 1), which may explain why the fractional

abundance of D. vulgaris is predicted to be relatively low (Fig 4).

In a second simulation, we therefore investigated the influence of the ATP maintenance

coefficient (Fig 6). We used identical maintenance coefficients for all organisms and observed

that this leads to smaller ranges for the predicted rates and yields. As expected, higher mainte-

nance coefficients imply higher specific rates. Typically, the energy produced from substrate

conversion is partly used for growth and partly for maintenance of the cell. The small growth

rates measured in the experiments imply that a large portion of the substrate taken up is dedi-

cated to maintenance processes. Out of the tested “averaged” maintenance coefficients, we

found that 1 mmolATP/gDW/h for each organism reflected the experimental data best.

While the choice of the ethanol oxidizer as well as the maintenance coefficient clearly

affected predicted uptake and production rates, we found that product yields and rate ratios

barely changed and are thus less sensitive against uncertainties in these factors.

Mass spectrometric analysis of an ethanol enrichment culture and model refinement.

In addition to the abiotic data, we also analyzed metaproteomic data of the enrichment culture

aiming for a taxonomic characterization and identification of active metabolic routes in the

community (described in detail in S8 Text). The spectral abundances revealed that the most

abundant taxonomic orders were Methanosarcinales, Methanobacteriales, Desulfovibrionales,

Enterobacteriales, Methanomicrobiales, Methanococcales, Bacillales, Clostridiales and Archae-

oglobales (Fig 7).

Additionally, we looked at the respective spectral counts for pathways potentially involved

in the process of anaerobic digestion (S8 Text). High abundances could be found for enzymes

for ethanol oxidation, methanogenesis, acetoclastic methanogenesis and acetate production

while homoacetogenesis (A. woodii) and ethanol oxidation via propionate (P. freudenreichii

Fig 5. Influence of the different ethanol oxidizers in the reduced six-species model on predicted flux and yield ranges (colored areas) for the ethanol uptake rate

(rEth), CO2 excretion rate (rCO2), methane excretion rate (rCH4), methane to CO2 ratio (YCH4/CO2) and methane yield (YCH4/Eth). The blue axes refer to methane

yield and methane to CO2 ratio whereas the black axes refer to the exchange rates. We first simulated all six organisms together (A) (cf. with Fig 4B) and then the

community with only one of the three different ethanol oxidizers active at a time (B): D. vulgaris: orange area; P. freudenreichii (with S. fumaroxidans, which consumes

the propionate produced by P. freudenreichii): magenta area; A. woodii: cyan area. Note that the cyan and magenta regions are almost identical. The red circles show

data from enrichment culture experiments (averaged values from two reactors for a dilution rate of 0.001 h-1; see Table 3). The community growth rate in the model was

set to the measured dilution rate of 0.001 h-1 with ethanol as the only substrate.

https://doi.org/10.1371/journal.pcbi.1006759.g005
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and S. fumaroxidans) seem to be of minor relevance. As a consequence, mainly three out of

the six (guild) organisms of the original six-species model are relevant to represent the ethanol

enrichment culture. These organisms are D. vulgaris, M. hungatei and M. barkeri, which, acci-

dentally, exactly correspond to the three-species community studied above. Accordingly, we

adapted the reduced six-species model to reflect this composition (basically, the fractional bio-

mass abundance of A. woodii, P. freudenreichii and S. fumaroxidans was set to zero). Further

analysis also revealed that the majority of the spectral counts in Methanosarcinales belonged to

the Methanosaeta species, which can only use acetate for methanogenesis. Since we have

Methanosarcina instead of Methanosaeta as guild organism in our model, we also switched off

the hydrogen uptake for M. barkeri to mimic Methanosaeta.

Fig 6. Influence of the maintenance coefficient on the predicted flux and yield ranges (light blue area) for the ethanol uptake rate (rEth), CO2 excretion rate

(rCO2), methane excretion rate (rCH4), methane to CO2 ratio (YCH4/CO2) and methane yield (YCH4/Eth). The blue axes refer to methane yield and methane to CO2

ratio whereas the black axes refer to the exchange rates. The maintenance coefficient was set to the original specific values (A) or to equal values of 1 (B), 2 (C) and 3

mmolATP/gDW/h (D) for all organisms. The red circles show data from enrichment culture experiments (averaged values of two reactors for a dilution rate of 0.001 h-1,

see Table 3). The community growth rate was fixed to 0.001 h-1 with ethanol as the only substrate.

https://doi.org/10.1371/journal.pcbi.1006759.g006

Reduced metabolic modeling of microbial communities and application for the biogas process

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006759 February 1, 2019 22 / 32

https://doi.org/10.1371/journal.pcbi.1006759.g006
https://doi.org/10.1371/journal.pcbi.1006759


Including the respective constraints for the observations made in the six-species model

(which then becomes effectively a three-species model) we can further confine the solution

space of the reduced model (Table 4 and S8 Text). Due to the tighter constraints, the rates of

specific ethanol uptake as well as of CO2 and methane production can now be determined

exactly (no range) but the predictions appear, again, to be higher compared to the experimen-

tal data (Simulation 1 in Table 4). With the results from the six-species model, we may assume

that the comparably very high maintenance coefficient of D. vulgaris (4.3 mmolATP/gDW/h)

was overestimated. Indeed, using a common maintenance coefficient of 1 mmolATP/gDW/h

for all three species (Simulation 2 in Table 4) the simulation results are closer to experimental

data thus confirming a likely overestimation of the D. vulgaris maintenance coefficient. For

Simulation 2, rates deviated less than 0.5 mmol/gDW/h and methane yields and methane to

CO2 ratio less than 15% from the experimental data. Given a relatively high variation of the

rate and yield measurements (cf. the two datasets for μc = 0.001 h-1 in S8 Text), a reasonable

agreement between experimental data and predictions can thus be concluded.

The model predicts a community composition of 62% Methanosarcinales, 33% hydrogeno-

trophic methanogens and 5% Desulfovibrionales when we use the original maintenance coeffi-

cients (Simulation 1) and 75% Methanosarcinales, 15% hydrogenotrophic methanogens and

Fig 7. Spectral abundance for different taxonomic orders in the ethanol enrichment culture for different dilution rates. Spectral counts assigned to the

superkingdom of virus or eukaryota and spectra not assigned to any taxonomic order were not considered; taxonomic orders which reached less than 5% in every

sample were combined in ‘others’.

https://doi.org/10.1371/journal.pcbi.1006759.g007

Table 4. Feasible ranges for exchange rates, methane yields and methane to CO2 ratio for two simulations with different maintenance coefficients in the six-species

model constrained by metaproteomic data (effectively, only the three species D. vulgaris (DV), M. barkeri (MB) and M. hungatei (MH) remain active). Simulation 1:

original maintenance coefficients, simulation 2: maintenance coefficients of 1 mmolATP/gDW/h for all species. Additionally, experimental data from the enrichment cul-

ture for growth on ethanol (average of two experiments; see S8 Text) are listed. In the simulations, μc was fixed to the dilution rate of the experiments (0.001 h-1). Accumu-

lation of organic acids was switched off (according to experimental data). A table with simulation results and experimental data for other dilution rates can be found in S8

Text.

Exchange rates [mmol/gDWc/h] Product yields and ratios [mol/mol] Community composition

Ethanol CO2 Methane CH4:CO2 CH4:Ethanol FDV FMH FMB

Simulation 1 1.30 0.63 1.93 3.06 1.48 0.05 0.33 0.62

Simulation 2 0.66 0.31 0.97 3.13 1.46 0.10 0.15 0.75

Experimental data 0.59 0.27 0.87 3.25 1.48 0.26 0.30 0.44

https://doi.org/10.1371/journal.pcbi.1006759.t004
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10% of Desulfovibrionales if we use maintenance coefficients of 1 mmolATP/gDW/h for all

three organisms (Simulation 2). The spectral abundance of the three taxonomic groups in the

experiment was 44% of Methanosarcinales, 30% of the hydrogenotrophic and formate using

methanogens and 26% of Desulfovibrionales (Table 4). Hence, simulations correctly predict

the dominance of archaea and Methanosarcinales. However, the calculated percentage of

Methanosarcinales was considerably higher than indicated by the spectral counts. One reason

might be that we used a Methanosarcina species as a model organism whereas the experimen-

tal data suggest Methanosaeta species for acetoclastic methanogenesis. Methanosaeta has a

lower ATP yield per acetate and therefore, also a lower biomass yield compared to Methano-

sarcina, which could explain this discrepancy. Additionally, many spectra could not be

assigned to any of the above mentioned taxonomic orders leading to relatively large uncertain-

ties in these results.

Nine-species community model

We finally simulated a community capable of growth on glucose. Here, all of our nine guild

organisms can potentially be involved in the process and are thus part of the community

model (Tables 1 and 2). In addition to the six-species community studied above, this model

included E. coli, C. acetobutylicum and S. wolfei. We first simulated the community with the

bilinear model to predict the maximum community growth rate as well as ranges for substrate

uptake, product excretion, biogas composition and methane yield (Table 5). As already

observed for the six-species model, a reliable prediction for μc,max was thus not possible with

this model (with the iterative approach in the linearized models we found that μc,max = 0.23 h-

1) In contrast, the predicted ranges for reaction rates and yields seem reasonable.

We then compared predictions of the linearized full model and the reduced model with

experimental data (Table 5) from an enrichment culture grown on glucose-cellulose medium

([31]; see also Methods). Data were available for two duplicate experiments with identical dilu-

tion rate. Since hydrolysis of cellulose is not included in the model, we used glucose as a start-

ing point and assumed that cellulose is converted to glucose by hydrolytic enzymes. We set the

community growth rate to 0.00067 h-1, which corresponds to the dilution rate of the experi-

ment and derived the corresponding linearized full community model and the reduced com-

munity model. EFV computation was possible with the reduced model (213689 EFVs) but not

with the full model where we computed only ranges for biomass compositions, exchange rates,

and methane yield via flux variability analysis (Table 5 and Fig 8).

Table 5. Simulation results of the nine-species community model (bilinear and linearized full model and reduced model). The minimum and maximum substrate

uptake and product formation rates were computed with nonlinear optimization (bilinear model), FVA (linearized full model) or EFV analysis (reduced model). The com-

munity growth rate was set to 0.00067 h-1 (linearized full model, reduced model), which was the dilution rate used in an experiment with an enrichment culture grown on

glucose-cellulose medium. The experimental data of two experiments and their average is also listed in the table. The nine species in the model are: E. coli, C. acetobutyli-
cum, S. wolfei, P. freudenreichii, A. wooddii, D. vulgaris, S. fumaroxidans, M. barkeri and M. hungatei (see also Tables 1 and 2).

Community growth rate [h-1] Exchange rates [mmol/gDW/h] Product yields / rate ratios [mol/

mol]

Glucose CO2 CH4 CH4:CO2 CH4: Glucose

Bilinear model (feasible ranges) Range could not be determined reliably 0.059–4.07 0.18–10.95 0.17–10.95 0.94–1.00 1.91–3.00

Experiment 1 0.00067 0.042 0.074 0.11 1.44 2.56

Experiment 2 0.00067 0.074 0.14 0.19 1.38 2.64

Average of both experiments 0.00067 0.057 0.11 0.15 1.40 2.61

Linearized full model 0.00067

(fixed to dilution rate)

0.069–3.65 0.19–10.95 0.19–10.94 0.99–1.00 2.79–3.00

Reduced model 0.00067

(fixed to dilution rate)

0.069–0.48 0.19–1.41 0.19–1.41 0.99–1.00 2.78–2.97

https://doi.org/10.1371/journal.pcbi.1006759.t005
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Fig 8. Community composition (F: fractional biomass abundance, AW: A. woodii, EC: E. coli, CA: C. acetobutylicum, PF: P. freudenreichii, SF: S. fumaroxidans,
DV: D. vulgaris, MH: M. hungatei, MB: M. barkeri, SW: S. wolfei), methane yield (YCH4/Glc), methane to CO2 ratio: (YCH4/CO2)) and metabolic rates (rGlc: glucose

uptake, rCO2: CO2 excretion, rCH4: methane excretion) for the bilinear model (A), linearized full model (B) and the reduced model (C). The blue axes correspond to
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Confirming findings from the three- and six-species models, we observed that the predicted

ranges, especially of exchange rates and community compositions, are again considerably

smaller in the reduced model compared to the linearized full model. In fact, the calculated

ranges of exchange rates of the linearized full model are almost identical to the ones from the

bilinear model, although the latter did not consider a fixed growth rate. The measured

exchange rates were only slightly smaller than the minimum rates predicted by the models.

The predicted ranges of the reduced model lie on the lower end of the range of the linearized

full model and are thus closer to the experimental data indicating that the organisms use their

substrate efficiently as assumed by our model reduction approach (Table 5 and Fig 8). The

slight overestimation of the rates could again be a consequence of overestimating maintenance

coefficients or an underestimation of ATP yields in the models. Furthermore, we noticed a rel-

atively high variance of the measurements for the exchange rates which may partially explain

deviations between data and model predictions. We also measured higher methane to CO2

ratios and lower methane yields than predicted by the models. Typically, we would expect a

ratio of 1 methane to one CO2 for carbohydrates like glucose. However, some of the released

CO2 might have been lost due to its better solubility in water (compared to methane).

Discussion

Microbial communities are of major importance for health, nature, and biotechnological

applications. Constraint-based stoichiometric modeling helps to obtain a better understanding

of interrelationships in these communities and to make quantitative predictions. However,

compared to classical constraint-based modeling of single-species metabolic networks, analysis

of community models based on the favored concept of balanced growth is hampered by four

major technical difficulties:

1. In contrast to linear single-species metabolic models, community models are bilinear due

to the necessary explicit consideration of the community composition. In order to solve

optimization problems in these models, one either has to rely on non-linear solvers, which

may deliver only sub-optimal solutions, or one has to linearize the model, which requires to

fix either the fractional abundances of the involved species or the community growth rate.

While the latter case is generally easier to handle, multiple optimizations have to be per-

formed to identify, for example, the maximum community growth rate and associated com-

munity compositions.

2. Flux variability analysis (FVA) is an essential tool for analysis of community models, espe-

cially for computing feasible ranges of community compositions and exchange rates. While

min/max values of single abundances can be computed easily, deeper insights in relation-

ships between fractional abundances (and metabolic exchange rates) require an exhaustive

scanning of the whole solution space, which, becomes quickly prohibitive for communities

with more than five species due to combinatorial reasons.

3. The solution space of a community model often contains spurious solutions in which one

species behaves altruistically by synthesizing large amounts of products required by another

species (instead of synthesizing its own biomass). Such unrealistic solutions may occur even

for community compositions allowing maximum community growth rate [15]. It is thus

the biomass abundances, methane yield and methane to CO2 ratio whereas the black axes to the exchange rates. In the bilinear model, the ranges (light blue area) were

obtained by nonlinear optimization, in the linear model with FVA. For the reduced model, we computed the EFVs (solid colored lines, colored from red (highest

methane production rate) via orange, yellow, green, cyan and blue to black (lowest methane production rate). Additionally, the experimental data (average from two

reactors) are plotted (red circles) in all three cases. In the linear (full and reduced) models, μc was set to 0.0067 h-1 corresponding to the dilution rate of the experiment.

https://doi.org/10.1371/journal.pcbi.1006759.g008
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important to identify and remove such solutions from the solution space before starting

detailed analyses.

4. Due to their combinatorial complexity, linearized community models are often not amena-

ble to detailed pathway analysis based on elementary flux modes (EFMs) or elementary flux

vectors (EFVs), even if the community model has been compiled from smaller single-spe-

cies core models where the EFVs are actually computable (cf. Tables 1 and 2). As shown in

this paper, EFV analysis of the community models, if feasible, is very useful yielding deeper

insights than simple FVA and avoids, for example, the problems mentioned under point

(2).

Our introduced RedCom approach, where reduced community models are constructed

from net conversions of the linear single-species models, addresses three of the above four

issues ((2)-(4)). Taffs et al. [10] also published an approach where EFMs (instead of EFVs) of

single-species models were used as input for the community model (“nested pathway consor-

tium analysis approach”). While the basic principle is the same, our RedCom approach uses

EFVs instead of EFMs which is mandatory to guarantee balanced growth of the community

and to allow the consideration of flux bounds, maintenance coefficients, and other inhomoge-

neous constraints. A necessary pre-processing step is the calculation of EFVs in the single-spe-

cies models for the fixed community growth rate followed by the selection of relevant EFVs

projected onto their exchange fluxes. Different optimization or selection criteria can be used

for selecting the relevant single-species behaviors. We decided to use all EFVs representing

minimal conversions of exchange metabolites, which, as one particular advantage, ensures

exclusion of unrealistic (altruistic) community behaviors of the respective species (see point

(3)). Dependent on the application, other criteria could be used as well. In the three-, six-, and

nine-species community models considered herein, the RedCom approach led to community

models with desired properties: the models (a) are much smaller than the full (linearized)

models, (b) exclude many spurious solutions, and (c) are amenable for detailed EFV analysis

enabling the extraction of many important features of the community while avoiding an elabo-

rate scanning of the solution space. There are two potential disadvantages of the reduction

approach. First, the reduced community model contains information on the exchange fluxes

while the internal flux distributions are not visible. However, in most applications of commu-

nity models, the focus is indeed on predictions on the exchange fluxes, product yields, and fea-

sible community compositions, which can all be derived from the respective flux vector of the

reduced model. Furthermore, internal flux distributions of single-species could be “unpacked”

from particular community net conversions whenever needed. A second potential disadvan-

tage concerns the calculation of EFVs from the single-species models, which is usually not fea-

sible if the latter are at genome-scale. However, with the typical application focus on exchange

fluxes, single-species metabolic network models at the level of the central metabolism seem to

be sufficient in many cases. Third, since the reduced community model requires eventually

only the (minimal) net conversions of the single-species models, the (direct) calculation of ele-

mentary conversions might be a feasible approach even in genome-scale models [45].

We applied our RedCom approach to build community models of up to nine species rele-

vant for the biogas process. We used a compartmented approach where each functional guild

in anaerobic digestion is represented by a core model (central metabolism) of one organism.

For the respective communities, we analyzed the maximum community growth rate and the

feasible ranges of exchange rates, yields and fractional abundances of the involved species—

with the bilinear as well as with the linearized and the reduced community model. Results

were always consistent (in bilinear models, as long as the solver could reliably compute the

respective minima and maxima). However, the reduced models obtained with the RedCom
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approach show a significantly narrower solution space by excluding solutions from the single-

species models that are physiologically very unlikely resulting in more conclusive model pre-

dictions. While bilinear community models are usually linearized to make them amenable to

constraint-based analysis techniques, we found that they can, in principle, be used to roughly

gauge the community’s solution space. However, in larger models, some solutions found by

the solver, especially for the determined maximum community growth rate, depended on

starting values used for the solver pointing to potential issues with finding the global optimum

in this non-linear optimization problem. Whenever the community growth rate can be fixed

(e.g., to the maximum growth rate or to the dilution rate used in an experiment), the bilinear

model becomes linear making its analysis and calculations simpler. With increasing numbers

of organisms the computational costs, e.g. for an FVA-based scanning of the solution space,

increase drastically also in the linearized (full) community model and EFVs could only be

computed for models of up to four organisms. With the reduced community models, we were

able to compute and analyze EFVs also for the largest community consisting of nine

organisms.

In order to compare simulation results with experimental data from biogas communities

and to investigate which solutions of the solution space are the most relevant in a concrete cul-

ture, we carried out experiments with an ethanol enrichment culture for different dilution

rates. First, we compared experimental data with predicted ranges for specific substrate uptake

and product formation rates as well as for biogas composition and methane yields obtained

from the linearized full and the reduced six-species model. The predicted ranges of the specific

rates covered the measured values but were very large and thus of low predictive power, espe-

cially in the full model. Confirming earlier findings [15], the maintenance coefficient of the

different species has a tremendous impact on many properties of the community, especially on

the predicted rates and community composition. Therefore, the maintenance coefficient

should be determined as precisely as possible to obtain valid community models. As many

other microbial communities, anaerobic digestion communities usually have a low growth

rate implying that a relatively large fraction of the metabolism is devoted to maintenance pro-

cesses. Generally, our results for the anaerobic digestion community indicate that the best

agreement of model predictions and experimental data can be achieved when the maintenance

coefficients of all species are approximately set to 1 mmol/(gDW�h). In contrast to rates and

community compositions, the predicted ranges for methane yields and biogas composition

were much smaller and appeared to be less sensitive to the maintenance coefficients making

these model predictions generally more reliable. In fact, methane yields and biogas composi-

tions from the experiments were close to the predicted values for both the reduced and the

full model. The predicted maximum growth rate of the full and the reduced six-species com-

munity model were identical but considerably higher than the maximum dilution rates that

supported a stable process with the enrichment culture. Here, maximization of the community

growth rate might not be a suitable objective function for communities in a realistic continu-

ous process. In particular, maximum substrate uptake rates used in the models are usually

derived from single-species cultures under their respective optimal conditions and it is likely

that process conditions do not support optimal conditions and maximum growth rates for

all organisms. The slowest (essential) species will then limit the overall community growth

rate.

We used metaproteomic data from enrichment cultures for growth on ethanol to find out,

which taxonomies and pathways were present in these cultures and to use this information to

build a more constrained community model for this culture. The most abundant taxonomic

orders identified in the experiments were Methanosarcinales, Methanomicrobiales, Methano-
coccales, Methanobacteriales and Desulfovibrionales, which correspond to the guilds
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represented by M. barkeri, M. hungatei and D. vulgaris in our six-species model. Furthermore,

we found enzymes for ethanol oxidatation in Desulfovibrionales, acetoclastic and hydrogeno-

trophic methanogenesis in the archaeal superkingdom. There was little to no evidence for syn-

trophic acetate oxidation, homoacetogenesis and ethanol oxidation to propionate, which

agrees well with the taxonomic analysis. In a last step, we used that information to further con-

strain the reduced six-species model and explored options to predict community compositions

from the remaining solution space. The model predicted M. barkeri to be the dominant species

in the community and D. vulgaris to be the least abundant organism. In fact, Methanosarci-
nales was also the taxonomic order with the highest spectral count abundance in the experi-

ments while D. vulgaris had the lowest abundance confirming the model predictions. The

experimental data also indicated that mainly Methanosaeta species were involved in acetoclas-

tic methanogenesis. These organisms grow with lower biomass yield but higher substrate affin-

ity compared to Methanosarcina species. Therefore, Methanosaeta should be added as a

separate guild to the community model for future studies. Overall, to the best of our knowl-

edge, the presented model-driven analysis of metaproteomic data from communities involved

in anaerobic digestion is the biggest of its kind reported so far and demonstrates the high

potential of a computer-aided approach to investigate properties and to assess experimental

data of microbial communities.
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