Supplementary Information

A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta

Sara Moeys ${ }^{1,2,3 \dagger}$, Johannes Frenkel ${ }^{4 \dagger}$, Christine Lembke ${ }^{4 \dagger}$, Jeroen T. F. Gillard ${ }^{\mathbf{1 , 5}}$, Valerie Devos ${ }^{1,2,3}$, Koen Van den Berge ${ }^{6}$, Barbara Bouillon ${ }^{1,2,3}$, Marie J. J. Huysman ${ }^{2,3}$, Sam Dedecker ${ }^{1}$, Julia Scharf ${ }^{4}$, Atle Bones ${ }^{7}$, Tore Brembu ${ }^{7}$, Per Winge ${ }^{7}$, Koen Sabbe ${ }^{1}$, Marnik Vuylsteke ${ }^{2,3}$, Lieven Clement ${ }^{6}$, Lieven De Veylder ${ }^{2,3}$, Georg Pohnert ${ }^{4}$, Wim Vyverman ${ }^{1}$

${ }^{1}$ Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Ghent, Belgium; ${ }^{2}$ Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; ${ }^{3}$ Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium; ${ }^{4}$ Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University, 07743 Jena, Germany; ${ }^{5}$ Department of Biology, California State University, 9001 Stockdale Highway, Bakersfield, CA 93311, USA; ${ }^{6}$ Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium; ${ }^{7}$ Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
${ }^{\dagger}$ These authors contributed equally to this work

Correspondence should be addressed to Lieven.DeVeylder@psb.vib-ugent.be, Georg.Pohnert@uni-jena.de or Wim.Vyverman@ugent.be

Supplementary Figure S1. The cytostatic pheromone has no effect on cells above the SST. Means \pm s.e. ($\mathrm{n}=3$) of proportions of mitotically dividing MT^{+}or MT^{-}cells above the $\mathrm{SST}, 9 \mathrm{~h}$ after illumination, depending on the administration of fresh medium (blank), medium from a mating culture or medium from the opposite mating partner (above or below the SST).

Supplementary Figure S2. Cytostatic effect of MT medium. Light microscopy images of MT^{+}(85B) cells treated for 8 h with control medium (i-ii), or with filtered medium of MT^{-}(85 A) cells below the SST (iii-iv). Cells are shown in the girdle (i, iii) or valve (ii, iv) view. Scale bar $=10 \mu \mathrm{~m}$.

Supplementary Figure S3. Mass spectral analysis of SIP ${ }^{+}$. The MS^{2} spectrum of $[\mathrm{M}-\mathrm{H}]^{-}=842$ acquired by LC-ESI-Orbitrap mass spectrometry indicated a sulphated molecule.

Supplementary Figure S4. Differential expression of meiosis-related genes after treatment with SIP ${ }^{+}$. Mean \pms.e. ($\mathrm{n}=3$) counts per million (cpm) for MRE11, MCM8, RAD50 and MSH4 in untreated (blue) and treated (red) cultures.
a
BT_AC1_C1 291 RIFHKIYIQRHDNVSILFADIVGFTGLASQCT. . . AQELVKLLNELFGKFDELATE. . .NHCRRIKILGDCYYCVSGLT BT_AC1_C2 857 PRNMDLYYQSYSQVGVMFASIPNFNDFYIELDGNNMGVECLRLLNEIIADFDELMDKDFYKDLEKIKTIGSTYMAAVGLA BT_AC2_C2 872 LKNEELYHQSYDCVCVMFASIPDFKEFYTESDVNKEGLECLRLLNEIIADFDDLLSKPKFSGVEKIKTIGSTYMAATGLS DD ACG 382 ENGEDVVAERSNNACVFFLDIAGFTRFSSIHS....PEQVIQVLIKIFNSMDLLCAK...HGIEKIKTIGDAYMATCGIF BT_sGCa 468 WQGHAVQAKRFGNVTMLFSDIVGFTAICSQCS....PLQVITMLNALYTRFDRQCGE...LDVYKVETIGDAYCVAGGLH BT_sGCb 407 RHKRPVPAKRYDNVTILFSGIVGFNAFCSKHASGEGAMKIVNLLNDLYTRFDTLTDSRKNPFVYKVETVGDKYMTVSGLP HS rGC1 866 KTGTPVEPEYFEQVTLYFSDIVGFTTISAMSE....PIEVVDLLNDLYTLFDAIIGS... HDVYKVETIGDAYMVASGLP
$\frac{\text { SR NC/PDE } 582 \text { NDSMKPIADLFPNTTVMFADISGFIAWSSTRD. ...PSQVFMLLQRIYGEFDEVARRRN...VFKVETIGDCYVACAGLP }}{* *}$

BT_AC1_C1	
BT_AC1_C2	.PTAGTRAKKSISSHLSTLADFAIDMFDVLDEINYQSY. .NDFVLRVGINVGPVVAGVI GARRPQYDIWGNTVNVASRMD
BT_AC2_C2	AIPSQEHAQEPERQYMHIGTMVEFAYALVGKLDAINKHSF. .NDFKLRVGINHGPVIAGVI. GAQKPQYDIWGNTVNVASRMD
DD ACG	P........KCDDIRHNTYKMLGFAMDVLEFIPKEMSFHL . . GLQVRVGIHCGPVISGVI. SGYAKPHFDVWGDTVNVASRME
BT_sGCa	KESDTHAVQIALMALKMMELSHEVVSPHG. . EPIKMRIGLHSGSVFAGVV. GVKMPRYCLFGNNVTLANKFE
BT_sGCb	EPCIHHARSICHLALDMMEIAGQVQVD.G..ESVQITIGIHTGEVVTGVI.......GQRMPRYCLFGNTVNLTSRTE
HS rGC1	.QRNGQRHAAEIANMSLDILSAVGTFRMRHMPEVPVRIRIGLHSGPCVAGVV.GLTMPRYCLFGDTVNTASRME
SR NC/PDE	
b	***
HS_PDE4A	LENLNKWGLNIFCVSDYAGGRSLTCIMYMIFQERDLLKKFRIPVDTMVTYMLTLEDHYHADVAYH
HS_PDE7B	LSKVGMWDFDIFLFDRLTNGNSLVTLLCHLFNTHGLIHHFKLDMVTLHRFLVMVQEDYHSQNPYHNAVHAADVTQAMHCYLKEPK
HS_PDE8B1	LDNEESWDFNIFELEA ITHKRPLVYLGLKVFSRFGVCEFLNCSETTLRAWFQVIEANYHSSNAYHNSTHAADVLHATAFFLGKER
BT_PDE5	TLKITDFSFSDFELS----DLETALCTIRMFTDLNLVQNFQMKHEVLCKwILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK
HS_PDE6	SAELYEFRFSDFPLT----EHGLIKCGIRLFFEINVVEKFKVPVEVLTRWMYTVRKGYR-AVTYHNWRHGFNVGQTMFTLLMTGR
HS_PDE9	IEALRKPTFDVWLWE----PNEMLSCLEHMYHDLGLVRDFSINPVTLRRWLFCVHDNYR-NNPFHNFRHCFCVAQMMYSMVWLCS--------LQ
SR_NC/PDE	VEAIKLPDFDDNAVT--------------EEDLSFVHIPEVVVDQLRAHVTAIAESYQ-DNPFHNFEHACHVTMSTTKFLGRIASMEIDLPTLQGKDARAAVAS
	: . . : . : * : ** * . :
HS_PDE4A	AIHDVDHPGVSNQFLINTNSELALMYNDESVLENHHLAVGFKLL-QEDNCDI---FQNLS--------AVFTDLEILAALFAAKRQRQSLRKMVIDMVLATDMSK
HS_PDE7B	AAHDVDHPGVNQPELIKTNHHLANLYQNMSVLENHHWRSTIGML-RESR--L---LAHLP--------SFLTPLDIMLGLLAAKEMTQDIEQQLGSLILATDINR
HS_PDE8B1	TVHDVDHPGRTNSFLCNAGSELAVLYNDTAVLESHHTALAFQLTVKDTKCNI---FKNID--------GSLDQLDEVAALIAARNHYRTLRQAIIDMVLATEMTK
BT-PDE5	LSHDLDHRGVNNSYIQRSEHPLAQLYC-HSIMEHHHFDQCLMIL-NSPGNQI---LSGLS--------KRLTDLEILALLIAAIEEYKTTLKIIKQAILATDLAL
HS_PDE6	FCHDIDHRGTNNLYQMKSTSPLARLHG-SSILERHHLEYSKTLL-QDESLNI---FQNLN--------KYYTDLEAFAMLAAAKRQFETVIHLFEVAIIATDLAL
HS_PDE9	ICHDLDHPGYNNTYQINARTELAVRYNDISPLENHHCAVAFQIL-AEPECNI---FSNIP--------EKFSQTDILILMTAAPDGFKQIRQGMI TLILATDMAR
SR_NC/PDE	LIHDCDHAGVGNAQTIKENPKMGEKYQGKSVAEQNSLDIAWNLLMSERFAELRALLFANDHIHDYTHGILSDPLTLFGIVYSSKAEMARFRQVVVNIVLATDIFD
	** ** : . : : : * : . :
HS_PDE4A	HMTLLADLKTMVETKKVTSS-------GVLLLDNYSDRIQVLRNMVHCADLSNPTKPLELYRQWTDRIMAEFFQQGDRERERGME-ISPMCDKHT-AS
HS_PDE7B	QNEFLTRLKAHLHNK-------------DLRLEDAQDRHFMLQIALKCADICNPCRIWEMSKQWSERVCEEFYRQGELEQKFELE- ISPLCNQQK-DS
HS_PDE8B	HFEHVNKFVNS INKPMAAEIEGSDCECNPAGKNFPENQILIKRMMIKCADVANPCRPLDLCIEWAGRISEEYFAQTDEEKRQGLPVVMPVFDRNT-CS
BT_PDE5	YIKRRGEFFELIMK------------NQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPADLMNREKKNK
HS_PDE6	YFKKRTMFQKIVDACE---QMQTEEEAIKYVTVDPTKKEIIMAMMMTACDLSAITKPWEVQSQVALMVANEFWEQGDLERTVLQQQP
HS_PDE9	HAEIMDSFKEKMENF--------------DYSNEEHMTLLKMILIKCCDISNEVRPMEVAEPWVDCLLEEYFMQSDREKSEGLP-VAPFMDRDK-VT
SR_NC/PDE	KE--LNGLRKGRWNKA--------FEESAEGSNSHLRATIVLEHIIQASDVSHTMQHWHIYRKWNRRLFLEMYSAYKQGRMGAD--PS--------SF

Supplementary Figure S5. Conservation of the cyclase and phosphodiestase domains of GC/PDE. (A) Sequence alignment of the catalytic core of the following adenylyl/guanylyl cyclases: BT_ACI_C1 (NP_776654.1), BT_ACI_C2 (NP_776654.1), BT_ACII_C2 (NP_112269.1), DD_ACG (Q03101.2), BT_sGC α (NP_786972.1), BT_sGC β ($\overline{\mathrm{N}}$ _ $7 \overline{7} 7066.1$), ${ }^{-}$HS_rGC1 (AAI48422.1) and SR_NC/PDE ($\mathrm{BT}=$ Bos Taurus, $\mathrm{DD}=$ Dictyostelium discoideum, $\mathrm{HS}=$ Homo sapiens, $\mathrm{SR}=$ Seminavis robusta).The first four proteins are adenylyl cyclases, the next three are guanylyl cyclases. Adenine/guanine binding residues are indicated in yellow in SR_NC/PDE and catalytic sites are indicated in red, conversed residues are indicated with * (adapted from Liu et al. (1997)). (B) Sequence alignment of part of the following PDE proteins: three cAMP-specific PDEs (PDE4, PDE7 and PDE8), three cGMP-specific PDEs (PDE5, PDE6 and PDE9) and the bifunctional S. robusta GC/PDE. The eight amino acids conserved only in cAMP-hydrolyzing PDEs are indicated in red.

Table S1: General statistics on the S. robusta transcriptome

total number of transcripts	50231
total transcriptome length	71.10 Mbp
minimal transcript length	501 bp
maximal transcript length	17339 bp
average transcript length	1416 bp
N50	1730 bp

Table S2: See file: TableS2.xlsx
Table S3: Primers used in the RT-qPCR on CYCA/B1, CYCB1, P5CS and GC/PDE.

gene	forward primer	reverse primer
$\mathbf{V 1}^{1}$	CAAGGCAAGAAGGATGGCAAG	GCGACAAGCAAATTAGCAAACC
$\mathbf{V 4}^{1}$	AGGCTACCGTGGGACTTGG	GATCTGGACTGCGCTGGTTC
$\mathbf{C Y C A / B 1}$	GCTTGGGTCGATGCAATACT	ATCCGAGAGGGTCAAGAGGT
$\mathbf{C Y C B 1}$	GGGATGTAACAAACGCCAAT	CCTCTCATCCATGACGGACT
$\mathbf{P 5 C S}$	AATCGAAAACGGGGTAGCTT	CCCTCGACAATCTCAACCAT
GC/PDE	TCCTTCCCAAGTTTTCATGC	CATGGTTTGGTTGCTTGTTG
${ }^{1}$ Normalization genes.		

