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We present a maximum Caliber approach for reweighting transition rates of Markov
state models for different non equilibrium steady state systems. In order to do this,
we look at a reference model and reweight it into a model for another non equi-
librium steady state system, only characterized by its average flux. For testing this
method a minimalistic two dimensional toy model is used. The dynamical proper-
ties in this system, in particular the entropy production rate and the first passage
time distributions, are compared for models obtained by the reweighting method
and by simulation. Furthermore we introduce the local entropy production which
gives us a more detailed look at the dynamics than the entropy production rate. This
yields a relation similarly to detailed balance for non equilibrium steady states. We
show that the reweighted Markov state models are able to predict the dynamics of
the new system, but do not reproduce its stationary distribution correctly.
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Chapter 1

Introduction

Markov state models of conformational dynamics have significantly advanced our
understanding of biomolecular structure and dynamics [1]. They represent a master
equation framework, i.e. they are able to describe the dynamics of a system in ques-
tion. The master equation formalism has been used in many scientific fields [2]. In
the Markov state model approach, the dynamics are modeled as a kinetic network
of transitions between discretized states. This analysis works well with large collec-
tions of simulation trajectories which enable the identification of relevant metastable
states and efficient sampling of the rates of transitions between them [3]. Further-
more, it allows to estimate the long timescale behavior which is otherwise not acces-
sible by simulations. A complete description of the system is based on the estimates
of the discrete time transition probability pij (τ), i.e., the probability of transitioning
between states i and j in some time interval τ [4].

While these models are well studied in the equilibrium scheme, we will describe
a systematic approach to construct Markov state models for systems driven out of
equilibrium with dynamics that break detailed balance. Here we will focus on non
equilibrium steady states where weaker conditions still hold true [5].

A non equilibrium steady state is the thermodynamic case where particle or en-
ergy fluxes still exist, but all physical variables are time independent. The work to
maintain the steady state is provided by an external reservoir. It is one of the most
important physical concepts for understanding biological processes [6]. This is not
to say that all these processes are generally in steady states. In many cases though a
steady state is a reasonable approximation to a short window of time or a localized
region of interest, when populations, concentrations and stationary distributions are
unchanging in time.

Entropy maximization principles provide a framework for understanding dy-
namics of systems in equilibrium. An off-equilibrium extension is the principle of
maximum Caliber, which is a path entropy maximization applied to trajectories of
dynamical systems [7]. It can be used to interpret dynamical fluctuations in biol-
ogy and on the nanoscale, in single molecule and few particle systems by inferring
stochastic dynamics from limited data [8]. The fundamental idea of the maximum
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Caliber is to collect information about micro-trajectories such that it connects macro-
scopic quantities to these micro-trajectories. However, in principle these micro-
trajectories are computationally not accessible in a non discretized space since their
number diverges [7]. The space of trajectories is reduced by approximating the tra-
jectories using Markovian transitions between predefined microstates. By inducing
macroscopic information in the construction of the Caliber, we receive microscopic
constraints. This information can be used to construct an off-equilibrium Markov
state model.

We will introduce a minimal simulation model designed to test fundamental be-
havior of non equilibrium steady states [9]. Dynamical quantities like the entropy
production [10] and first passage time distributions [11] are used to get macroscopic
information about these steady states. It will be shown, how microscopic relations
found by maximizing the Caliber are used to predict outcome of simulations. This
opens opportunities to correctly sample otherwise not accessible rare events.

In the course of this thesis we will first build the theoretical framework on the
simulation model, Markov state models in general and the principle of maximum
Caliber. Using these principles we will derive a method to predict Markov state
models for different systems given a reference model and the macroscopic average
flux, used to characterize different non equilibrium steady states. The dynamical
properties of these reweighted models will be compared to Markov models build di-
rectly out of a simulation trajectory to access the quality of the reweighting method.
This will be done by analyzing the entropy production rate, as well as the first pas-
sage time distributions between metastable sets.
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Chapter 2

Theory

2.1 Simulation Model

We are interested in examining a system in a non equilibrium steady state. In order
to do this, we simulate a single particle in a two dimensional potential with periodic
boundary conditions coupled to an equilibrium heat bath. Furthermore, we let a
constant external force interact with the particle to simulate a non equilibrium steady
state. This is achieved by using overdamped Langevin dynamics. Hereinafter the
theoretical framework of such a simulation will be described shortly.

2.1.1 Overdamped Langevin Dynamics

The Langevin equation is a stochastic differential equation which is used to simu-
late a single particle/molecule in a solvent (like water), where the particle has much
larger mass compared to the solvent. Therefore, the solvent molecules move much
faster. These fast degrees of freedom are not explicitly taken into account, but im-
plicitly by making use of a random force. We are not interested in the motion of
the solvent molecules but rather in the motion of large particles (slow degrees of
freedom). This means that we assume that the solvent molecules interact with the
larger particles via collisions which occur at a characteristic time τcoll . The Langevin
equation gives a description for times t� τcoll and takes the form (for simplicity we
will focus on the one dimensional form but the expression can be easily expanded
to a system of n particles in multiple dimensions) [12]:

mv̇ = F−mγv + fR, (2.1)

where m is the particle mass, v the velocity of the large particle of interest, F the
deterministic force field acting on the particle, γ the friction coefficient and fR the
random force. We can split the deterministic force F in a part induced by the poten-
tial V and another one representing the external force fext:

F = −∂V
∂x

+ fext. (2.2)
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The solvent is effectively replaced by an effective friction, described by a constant
γ, and a random force. It can be shown that in order to reproduce the thermody-
namic behavior of the solvent the random force has to fulfill the following equations
[13]:

〈 fR (t)〉 = 0 (2.3)

〈 fR (t) fR
(
t′
)
〉 = 2mγkBTδ

(
t− t′

)
, (2.4)

where t and t′ indicate two given times, kB is the Boltzmann constant and T the
temperature of the heat bath. Equation 2.3 ensures that the random force is unbiased
and the delta function in equation 2.4 indicates that it is uncorrelated in time.

In the overdamped limit, which describes the high friction limit where the iner-
tial term is neglected (set to zero), the Langevin equation 2.1 becomes (by also setting
mγ ≡ 1):

0 = −∂V(x)
∂x

+ fext − ẋ + fR. (2.5)

This equation is now describing Brownian dynamics [13]. We will use the over-
damped limit in order to drive the system further out of equilibrium while still
keeping track on the direction the particle is heading. Since we will use periodic
boundary conditions, without the overdamped limit, we could run into problems
here since the path of a transition not well defined anymore if we sample the system
for higher times τ = n∆t, where n is an integer factor of the integration time step ∆t.

2.1.2 Numerical Integration

Following [12] we can derive an expression for a first order integrator for the over-
damped Langevin equation 2.5 if we assume small discrete time steps ∆t:

x(t + ∆t) = x(t) + F(x(t))∆t +
√

2kBTζ
√

∆t, (2.6)

where ζ is given by a Gaussian distributed random number with zero mean and unit
variance. In practice, this number needs to be generated at every time step ∆t.

2.2 Markov State Models

Markov state models are used to describe the entire dynamics of a system, in our
case assumed to be in a thermodynamic non equilibrium steady state. This model
can be represented by a n × n transition probability matrix, where the entire con-
figuration space spanned by the system has been divided into n states. It is often
constructed using a trajectory tracking the dynamical progress of the system (for
example molecular dynamics simulation) by checking which states the system occu-
pies at time steps separated by the so called lag time τ. For the transition probability
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matrix to be Markovian, the system must be “memoryless”. This means the proba-
bility to jump from a state i to a state j does not depend on its history prior to state i
[14].

2.2.1 Markov Model Theory

2.2.1.1 The Transfer Operator

Consider a state space Ω containing all variables needed to describe the current
state of the system. We will first treat the more general case of a continuous state
space. x (t) ∈ Ω denotes the state of the system at time t. The dynamical process
(x (t))t∈T , T ⊂ R0+ is therefore continuous in space and can be either time con-
tinuous or time discrete (for computational purposes this will be the case). We will
assume that the dynamic process has the following properties [4]:

1. (x (t))t∈T is a Markov process in the full state space Ω. This means that x (t + ∆t)
is calculated based on x (t) alone and does not require the previous history. In
other words: A Markov process is a random process in which the future is
independent of the past, given the present. Thus, Markov processes are the
natural stochastic analogs of processes described by equations of motion. [15].

In addition, we assume the transition probability density p (x, y; τ) is well de-
fined. p (x, y; τ) tells us the probability of the trajectory to go from state x to y
in time τ, or more precisely, the density associated with it so that∫

Ω
dy p (x, y; τ) = 1 (2.7)

holds true. Such a probability density for a one dimensional diffusion process
is depicted in figure 2.1(b).

2. x (t) is ergodic, i.e. the space Ω does not have two or more subsets that are
dynamically disconnected and for t → ∞ each state x will be visited infinitely
often. The process therefore has a normalized stationary density µ (x) : Ω→
R+ [see figure 2.1(a)] such that

µ (y) =
∫

Ω
dx p (x, y; τ) µ (x) . (2.8)

These conditions are rather general and certainly hold true for the overdamped
Langevin dynamics in both the equilibrium and the non equilibrium steady state
case.

Now we look at an ensemble, distributed by a probability density pt (x) in the
state space Ω, instead of a single trajectory. After some time τ the system undergoes
transitions in state space according to the transition probability density p (x, y; τ).
This change of the probability density pt (x) to pt+τ (x) can be described as a contin-
uous transfer operator which we can define as the following:
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ut+τ (y) = T̂ (τ) ◦ ut (y) =
1

µ (y)

∫
Ω

dx p (x, y; τ) µ (x) ut (x) . (2.9)

T̂ (τ) does not propagate probability densities but instead functions ut (x) that
differ by a factor of the stationary density µ (x) [4]:

pt (x) = µ (x) ut (x) . (2.10)

This transfer operator has the following properties:

• T̂ (τ) can be used to propagate the dynamics to arbitrarily long times t + kτ

since it fulfills the Chapman-Kolmogorov equation: [4]

ut+kτ (x) =
[
T̂ (τ)

]k ◦ ut (x) . (2.11)

• We consider the transfer operator in the Hilbert space of square integrable,
µ-weighted functions L2

µ with the scalar product:

〈u, v〉µ =
∫

Ω
dx u∗ (x) v (x) µ (x) . (2.12)

In this space T̂ (τ) has eigenfunctions Ψi (x) with the associated eigenvalues
λi:

T̂ (τ) ◦Ψi (x) = λiΨi (x) . (2.13)

The length of these eigenfunctions is defined by the normalization condition
〈Ψi, Ψi〉µ = 1. We can now introduce the left eigenfunctions Φi (x) which cor-
respond to the probability density again and as such are related to Ψi (x) by a
factor of the stationary density µ (x):

Φi (x) = µ (x)Ψi (x) . (2.14)

In the case of a sufficiently fine discrete state space we can approximate T̂ (τ)

by a transition matrix T (τ) (more on that in section 2.2.1.2). Φi (x) and Ψi (x)
are then approximated by the left and right eigenvectors of that transition
matrix respectively. This approximated transition matrix is per definition a
stochastic matrix [16] and has as such only eigenvalues (real or complex) with
|λi| ≤ 1. Furthermore, 1 is always an eigenvalue of this matrix [17].

Using such a state space with a suitable lag time τ (more on this later in sec-
tion 2.2.2.2) the largest of these eigenvalues correspond to the largest ones of
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the actual transfer operator λ1 = 1 ≥ |λ2| ≥ |λ3| ≥ ... ≥ |λm|. This finite num-
ber of m isolated, dominant eigenvalue/eigenfunction pairs form the so called
discrete spectrum of the transfer operator. All the eigenvalues with |λi| ≤ |λm|
(infinitely many ones) form the essential spectrum, which is the fast decaying
part of the transfer operator, and as such correspond to all fast processes which
are usually not of interest [4].

• The eigenfunction corresponding to the largest eigenvalue λ = 1 is a constant
function on all state space Ω [see figure 2.1(c), top] [17]:

T̂ (τ) ◦ 1 = 1 = Ψ1 (x) (2.15)

and due to relation 2.14 Φ1 (x) corresponds to the stationary density µ (x) [see
figure 2.1(d), top]

If the Markov process is reversible (equilibrium case) the detailed balance condi-
tion

µ (x) p (x, y; τ) = µ (y) p (y, x; τ) (2.16)

is satisfied and the transfer operator is self adjoint. In this case all the eigenvalues λi

are real valued. Also different eigenfunctions are orthogonal [18]:

〈
Ψi, Ψj

〉
µ
= δij. (2.17)

To see the significance of the eigenvalue/eigenfunction pairs in the reversible case
we separate the dynamics of the system into a superposition of the discrete and
essential spectrum. The discrete spectrum can, again, be decomposed into a super-
position of m individual slow dynamical processes. This yields:

ut+kτ (x) = T̂slow (kτ) ◦ ut (x) + T̂f ast (kτ) ◦ ut (x) (2.18)

=
m

∑
i=1

ciλ
k
i Ψi (x) + T̂f ast (kτ) ◦ ut (x) , (2.19)

where ci are the Fourier coefficients of this superposition [4]. 1

In this equation we can associate the eigenfunctions Ψi (x) of the discrete spec-
trum to different dynamical processes which decay with increasing time index k. In
the long time limit k → ∞ only the first term with λ1 = 1 remains and the system
relaxes to its stationary density. Thus we can identify a physical timescale for the
eigenvalues with λ 6= 1, indicating how quickly the process is decaying (the closer
λi is to 1 the slower it decays) [see figure 2.1(e)]. If we define the timescales as the

1It shall be noted that this decomposition is only valid in the equilibrium case. In the Markov state
models for the non equilibrium steady states the detailed balance condition 2.16 is not fulfilled and the
eigenfunctions are not orthogonal anymore. Furthermore, the eigenvalues not equal to 1 can become
complex. This leaves their physical interpretation still open for discussion.
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FIGURE 2.1: (a) A potential energy function with four metastable sets A, B, C and D for a
diffusion-in-potential dynamics and the corresponding stationary density. (b) Density Plot
of the transfer operator. One can clearly see the diagonal block structure where the transi-
tion density is large within the four metastable sets and very low in between those. (c) The
four dominant eigenfunctions of the transfer operator weighted with the stationary den-
sity. (d) The four dominant eigenfunctions associated with different dynamical processes at
different timescales. Ψ2 for example indicates the slowest transition between the sets A+B
and C+D. (e) Eigenvalues of the transfer operator. A gap between the slow (λi ≈ 1) and
the fast processes is visible. Reprinted from JH Prinz et al. [4], with the permission of AIP

Publishing.
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FIGURE 2.2: The true
dynamics (dashed
line) is projected
onto a discrete state
space. The resulting
Markov State Model
approximates this as a
Markov jump process.
Reprinted from JH
Prinz et al. [4], with
the permission of AIP

Publishing.

following:

ti = −
τ

ln λi
, (2.20)

we can rewrite equation 2.19 in terms of these implied timescales:

ut+kτ (x) = 1 +
m

∑
i=2

ci exp
(
− kτ

ti

)
Ψi (x) + T̂f ast (kτ) ◦ ut (x) . (2.21)

In this equation ti inherits the role of a timescale, thus, legitimating our definition
in equation 2.20. This implies that there are simultaneous dynamical processes act-
ing on different timescales if there are gaps amongst the first m eigenvalues. For
example if λ1 = 1, λ2 ∼ 1 and λ3 � 1 the system has a two state kinetics [4].

2.2.1.2 Discretization of State Space

Markov State Models are appropriate discretizations of the eigenvalue problem that
allow to approximate the dominant eigenvalues and eigenvectors of the transfer op-
erator T̂ (kτ), and thus, describe the kinetics of long timescale processes using an
underlying Markov process [18]. This is achieved using the Galerkin approach [19]:

Looking at a Markovian jump process between a set of states, we consider a
discretization of state space Ω into k crisp sets 2 (figure 2.2). This means that the
probability of jumping to a new state only depends on the current state and, as such,
the dynamics are Markovian and can be completely described by a transition matrix
T [20]:

Tij = P
(
xt+τ ∈ sj|xt ∈ si

)
. (2.22)

In this equation the states {si}k
i=1 are a set of non overlapping subsets of Ω that

partition the space as follows: si ⊆ Ω ∀ i, ∪k
i=1si = Ω and si ∩ sj = ∅ ∀ i 6= j.

2In some cases it can be desirable to use a fuzzy partitioning but that case is not important for this
Thesis.
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Using a partitioning function:

χi (x) =

1 x ∈ si

0 x /∈ si

(2.23)

we can get a relation for the transition matrix T (τ) ∈ Rk×k [20]:

Tij =

∫
sj

dx µ (x)
(
T̂ (τ) ◦ χi (x)

)∫
si

dx µ (x)
. (2.24)

Each element of Tij describes the probability to find the system in state j at the time
t + τ given it was in state i at time t. The stationary probability πi to be in state i is
given by:

πi =
∫

si

dx µ (x) (2.25)

or respectively, as the i-th entry of the first left eigenvector of the transition matrix
[4].

Modeling the original process with this discrete state space Markov process is
an approximation and, as such, involves a systematic discretization error. In order
to keep it small, a suitable lag time has to be determined (more on this in section
2.2.2.2).

We can now relate the functions that get propagated by the transfer operator T̂
(ut in equation 2.9) to the right eigenvectors of the matrix Tij and the probability
densities pt (equation 2.10) as the left eigenvectors. This means that if we consider a
probability vector to be in state j at time t: p (t) ∈ Rk, after time τ the distribution of
the probabilities will develop according to [4]:

pj (t + τ) =
k

∑
i=1

pi (t) Tij (τ) , (2.26)

or in matrix form:

pT (t + τ) = pT (t)T (τ) . (2.27)

2.2.2 Building a Markov State Model

In this section we will discuss the problem of estimating the transition matrix T (τ),
since in most practical cases it is not obtained by directly discretizing the transfer
operator. Instead, we can build a Markov Model by using a set of trajectory data, a
discretization of state space Ω and selecting an appropriate lag time τ (our observa-
tion interval) [21].
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2.2.2.1 Transition Count Matrix

Consider a trajectory X with N configurations sampled at a fixed time ∆t:

X = x1 = x (t = 0) , x2 = x (t = ∆t) , ..., xN = x (t = (N − 1)∆t). (2.28)

Using a state space discretization [s1, ..., sK] with K microstates, we can assign each
element of the trajectory to a discrete state si. All the trajectory information can now
be stored as a sequence of discrete states. Constructing a count matrix with this
data is now simply a matter of counting the transitions between two states at times
τ = l∆t where l ∈ N. In doing so, we have to distinguish between two different
counting schemes (figure 2.3): Either the trajectory is sampled at lag time τ and
only these sample points are used for counting or a count window of length τ is
shifted along the time line. On the on hand most of the data is ignored in the first
approach which can lead to numerical problems. On the other nearby transitions
in the second one are not statistically independent and the resulting count Matrix is
therefore harder to deal with later on. In our case we have sufficient sampling to use
the first method without any problems [4].

We can now define a state to state count matrix C (τ) = [cij (τ)] at lag time τ.
Each element is given by:

cij (τ) = cij (l∆t) =
[(N−1)/l]−1

∑
k=0

χi (xlk+1) χi

(
xl(k+1)+1

)
. (2.29)

Therefore, each element of this count matrix describes the number of times a
transition from state i to state j was observed. If we have multiple trajectories instead
of one we can simply add the resulting count matrices [4].

Intuitively we can estimate a true stochastic transition matrix by:

Tij (τ) =
cij (τ)

ci (τ)
. (2.30)

FIGURE 2.3: Tran-
sition counting
schemes for estimat-
ing the count Matrix.
Reprinted with per-
mission from GR
Bowman et al. [21],

Chapter 4.
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In this equation ci (τ) describes the row sums of C (τ) which is simply the number
of times the trajectory (sampled at τ) visited state i:

ci (τ) =
K

∑
j=1

cij (τ) . (2.31)

However, equation 2.30 is only true for infinite sampling. In practice estimating
transition matrices is more complicated due to a number of issues, like finite sam-
pling and imperfections in microstate definitions. For example in the equilibrium
case detailed balance (πiTij = πjTji in terms of the discrete description) is not neces-
sarily fulfilled even though it is a physical property of the system. Therefore, it has
to be enforced on the transition matrix (by Bayesian model selection approaches3).

Nonetheless, we will stick to equation 2.30 in this thesis in order to determine the
transition matrix. Our system is simple and the sampling rate high enough to keep
the error obtained from this estimation neglectable. Furthermore, the detailed bal-
ance condition which yield the most information is not fulfilled in non equilibrium
steady states.

2.2.2.2 Validation of the Markov State Model

In this section we will discuss how to choose an appropriate lag time τ for our
Markov State Model.

It is important that the assumption we made when discretizing the state space,
that the underlying process is still a Markov process, holds true. So in order to test
the validity of the model we can use the Chapman Kolmogorov equation 2.11. It can
be reformulated in terms of our transition matrix T (τ):

T (nτ) = T (τ)n , (2.32)

where n is an integer number of steps.
Plotting the slowest relaxation timescale (equation 2.20) of a model as a function

of the lag time, we can use the Chapman Kolmogorov equation to provide some
model validation and an estimated lag time. Based on the Markov assumption, the
relaxation times of a Markov model with lag time nτ should be the same as the ones
with lag time τ [21]:

ti =
nτ

ln λi,T(nτ)
=

nτ

ln λn
i,T(τ)

=
τ

ln λi,T(τ)
. (2.33)

In the second step we made use of the fact that the Chapman Kolmogorov equation
is also true for the eigenvalues corresponding to the transition matrices (multiply
equation 2.32 with each eigenvector Ψi).

3Further information on how to do this can be found in Bowman [21], chapter 4.
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So beyond our chosen lag time τ the timescale plot should converge. This lag
time should be chosen as small as possible to achieve the finest time resolution pos-
sible for our model.

Note that while Markovian dynamics (Chapman Kolmogorov equation 2.32 holds
true) implies that the timescales will be constant in τ, the reverse is not necessar-
ily true. However, constant implied timescales are a very strong indicator that the
Markov state model approximates the underlying dynamics well [22]. To provide
full validation of the model one also needs to conduct the Chapman-Kolmogorov
test as described in JH Prinz et al. [4].

In this test we are interested in checking whether the approximation

[T (τ)]k ≈ T (kτ) , (2.34)

holds within statistical uncertainty.
At this point the importance of a proper state space discretization becomes ap-

parent4 in order to keep the already mentioned discretization error as small as pos-
sible. If the error is large the Markov assumption is violated and the error has to be
compensated by a larger lag time.

2.3 Maximum Caliber

2.3.1 Maximum Entropy for Dynamical Pathways

The principle of maximum Caliber is an extension of the principle of maximum en-
tropy and not limited to states of equilibrium. Rather than seeking probability dis-
tributions of static observables (like energy, magnetization...), we now want to find
probability distributions of dynamical observables. This is done by maximizing a
path entropy over all possible dynamical pathways which are subject to an observ-
able quantity like an average velocity or a flux.

For problems of this type we can define the path entropy as [7]:

H ({pC}) = −∑
C

pC log pC, (2.35)

where pC is the probability for a certain dynamical pathway following path C. Fur-
thermore, we suppose constraints on the dynamics:

F(α) (pC) = 0, (2.36)

where α is indexing the number of constraints. These constraints also include nor-
malizations. In order to analytically handle the maximum Caliber, we are mostly

4There are a number of Methods to construct a kinetically relevant clustering using geometric crite-
ria(Bowman [21],chapter 2) and there is not necessarily a single right answer. However, these are not
relevant in the course of this thesis since we only use a fairly simple clustering.
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interested in constraints that are linear in pC:

∑
C

A(α)
C pC − A(α) = 0. (2.37)

A(α) describes the measured average of the quantity A(α)
C over the paths C.

The principle of maximum Caliber is now to maximize the entropy over path-
ways (equation 2.35), given the constraints introduced in equation 2.37. Admittedly
the principle is formalistic and usually not explicitly computable for continuous
pathways C since the number of trajectories goes to infinity. However, if a set of
pathways is specified, like in the case of discrete states, maximum Caliber can be
readily applied [7].

2.3.1.1 Maximization of Path Entropy for discrete Paths

We now consider trajectories which are composed of discrete time steps and also
mapped to discrete states. In this case a particular pathway is described by a se-
quence C = {i0, i1, ..., iT} with a total number of time steps T. ix describes the state
occupied by the system at time step x. If we now assume a Markov process the
probability for a discrete path is given by [7]:

pC = pi0 pi0i1 pi1i2 ... piT−1iT , (2.38)

where pij is the transition probability from state i to state j and pi a single state
occupation probability. These transition probabilities correspond to the transition
matrix of a Markov State model described in the previous section. The single state
occupation probability corresponds to i-th entry of the stationary distribution πi.

If we plug this probability in equation 2.35 and express the logarithm as a sum
over each individual terms we obtain:

H (T) = − ∑
{i0,i1,...,iT}

πi0 pi0i1 ...piT−1iT log pi0 − ∑
{i0,i1,...,iT}

πi0 pi0i1 ...piT−1iT log pi0i1 − ... .

(2.39)

This equation can be simplified assuming time independent distributions and tran-
sition probabilities as it is the case for an equilibrium system as well as a non equi-
librium steady state system. We do so by using a normalization and the so called
global balance condition [7], characteristic for a non equilibrium steady state:

∑
j

pij = 1, (2.40)

∑
i

πi pij = πj. (2.41)

Performing the summation over all indices except i0 in the first term of equation
2.39 using these conditions yields −∑i πi log pi with a simplified notation for the
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dummy indices. In the second term we sum over all indices expect i0 and i1. All the
other terms can be treated similarly and each term reduces to −∑ij πi pij log pij. All
together we obtain:

H (T) = −∑
i

πi log pi − T ∑
ij

πi pij log pij. (2.42)

For large T the first term is negligible and we can approximate the path entropy per
step as [7]:

H = −∑
ij

πi pij log pij. (2.43)

Here we derived the form of the path theory assuming Markov chain kinetics.
By maximizing the Caliber given all constraints of the system we would obtain our
Markov State model characterized by pij.

2.3.2 Reweighting Dynamics

In theory the maximum Caliber as described above allows us to build a Markov
State model using constraints via Lagrangian multipliers. However, this requires
full knowledge of which constraints are dominant for a given system. This is usually
not possible for more complex systems. Instead,we can make use of the relative path
entropy.

2.3.2.1 Relative Path Entropy

Suppose a Markov State model defined by the transition probabilities qij, the prior,
is perturbed. Our goal is to find a new model with new transition probabilities pij

and a new stationary distribution πi. The Lagrangian multipliers now represent
how much the original system is altered by the given constraints which describe the
perturbation.

In general the information on a distribution p with respect to another distribution
q is quantified by the relative entropy, or Kullback-Leibler divergence [3]:

D (p|q) = ∑
x

p (x) log
p (x)
q (x)

. (2.44)

For a Markov chain the relative path entropy is then given by:5

D = ∑
i,j

πi pij log
pij

qij
. (2.45)

Minimizing this relative path entropy of the perturbed system with respect to the
unperturbed one is equivalent to maximizing the Caliber [3].

5The derivation of this formula is in conjunction to the one of the path entropy for Markov chains
in the previous section.
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As an example consider the simulation of a system in equilibrium, and thus,
with no external force and no average flux in order to use this information to build a
reference model qij. Minimizing the relative path entropy with constraints that char-
acterize a system out of equilibrium, like introducing a time-independent average
flux describing a non equilibrium steady state, allows us to predict the Markov state
model of this new system.

Minimizing the relative path entropy forces the new Markov state model to be
close to the reference model. Considering that there exist multiple Markov state
models fulfilling the given constraints, this is a reasonable assumption. The prior qij

contains dynamical information about the system we want to preserve.
In the following we want to derive an analytic expression of the new transition

matrix.

2.3.2.2 Macroscopic average Flux

In the course of this thesis we are interested in reweighing different non equilibrium
steady state systems (including equilibrium) into each other. We can introduce the
macroscopic average flux 〈J〉 as an experimentally measurable quantity. This av-
erage flux is sufficient to describe the perturbation on our system (later on we will
validate this assumption), and thus, can quantify the distance of a system to thermal
equilibrium. Therefore a microscopic description of the average flux is needed:

〈J〉 = 1
τ ∑

i,j
πi pijFij. (2.46)

In this equation Fij describes the distance from state i to state j projected onto the
direction of the external force. The sign gets determined by the direction of the
transition in question. In the direction of the force it will be positive and otherwise
negative. Since we deal with a system containing periodic boundary conditions this
direction is not necessarily clear. However, our lag time is small enough that it is
unlikely (in practice zero) for a single transition to cover the whole system (or rather
half of it). Therefore the direction of the transition is well defined. Fij also introduces
a distance metric on the macroscopic average flux.

The prefactor 1/τ, on the other hand, introduces a timescale in the description
of the macroscopic average flux. This allows the comparison of this macroscopic
average flux to, for example, the average flux calculated from a simulated trajectory
or an average flux obtained from experimental results.

2.3.2.3 Derivation of the Reweighed Markov State Model

This derivation follows the approach suggested in [23] applied to our problem.
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In addition to the constraint describing the perturbation to the reference system,
we also need normalization constraints as well as a constraint enforcing the global
balance condition 2.41.6

All combined this yields a Caliber of the following form:

C = −∑
ij

πi pij log
pij

qij︸ ︷︷ ︸
Relative Path Entropy

+∑
i

mi

(
∑

j
πi pij − πi

)
+ ζ

(
∑
ij

πi pij − 1

)
︸ ︷︷ ︸

Normalization

+ ∑
j

nj

(
∑

i
πi pij − πj

)
︸ ︷︷ ︸

Global Balance

− γ

(
∑
ij

πi pijFij − 〈J〉
)

︸ ︷︷ ︸
External Constraints (e.g. Flux)

. (2.47)

We will now maximize this with respect to pij and πi: Differentiating the Caliber
with respect to pij yields the following relation:

∂C
∂pij

= ∑
i,j

πi

(
− log

pij

qij
− 1 + mi + nj + ζ − γFij

)
!
= 0 (2.48)

⇒ pij = qij emi+nj+ζ−1−γFij . (2.49)

On the other hand, differentiating the Caliber with respect to πi, we get:

0 = −∑
j

pij log pij + ∑
j

pijmi −mi + ∑
j

pijnj − ni + ζ ∑
j

pij − γ ∑
j

pijFij. (2.50)

We can now substitute the result we obtained in equation 2.49. Together with
the normalization condition ∑j pij = 1, we get another relation, this time for the
Lagrangian multipliers:

mi + ni = 1. (2.51)

At this point we introduce a matrix Wij = qij e−γFij , the vectors Φi = e−mi and
respectively, using the relation above, Φj = e−mj = enj−1 as well as a scalar η = e−ζ .
Using this notation we get a reformulation for the maximum path entropy transition
probabilities:

pij =
Φj

ηΦi
Wij. (2.52)

If we now impose the normalization constraint ∑j pij = 1 once again, the reason

6At this point one could ask why we did not enforce these constraints on the transition matrix we
obtained in section 2.2.2.1. By our definition 2.30 the transition matrix is already normalized. On the
other hand the global balance condition, which is an intrinsic property of a steady state, is not neces-
sarily fulfilled. Though by testing this condition with the model one realizes that it is only violated by
a factor of around ∼ 10−10 and as such can be ignored.
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for this reformulation becomes apparent: Our problem gets reduced to an eigen-
value problem only dependent on one Lagrangian multiplier γ and qij:

1 = ∑
j

Φj

ηΦi
Wij (γ) ⇔ ∑

j
Wij (γ)Φj = ηΦi (2.53)

Since Wij is per definition a positive matrix, we can apply the Perron-Frobenius the-
orem [17] which guarantees that the maximum eigenvalue of W is positive and the
corresponding eigenvector has only positive elements. We now choose η to be the
maximum eigenvalue and ~Φ the corresponding eigenvector. This way the transition
probabilities are guaranteed to be positive (negative transition probabilities have no
physical interpretation).

By defining the desired system with its average flux 〈J〉, we find a corresponding
Lagrangian multiplier γ that reweights the system accordingly. Thus, with equation
2.52, we have an analytic expression for our new Markov state model characterized
by pij.

2.4 Dynamical properties

The intention of this thesis is to test the quality of the reweighting method described
in the previous section. In order to do this, we compare the dynamical properties of
the reweighted Markov state model with a model obtained by a simulation trajec-
tory. These properties include the first passage time and the entropy production rate
of each model.

2.4.1 First Passage Time Distribution

First passage times are widely used to characterize different stochastic processes
like chemical reactions, protein folding and diffusion processes since it contains key
information on the kinetics of any process. It gives an approximate description (in
the form of a probability distribution) on the timescale of a certain process. [11]

In the context of a Markov state model, the first passage time is a probability
distribution associated with the discrete state space. It can be derived from the tran-
sition matrix pij:

f (n)ij will now refer to the probability that the first passage time to get from state
i to state j is equal to nτ. Here τ, again, denotes the lag time of our model. By
definition, we get that f (1)ij = pij, since pij already describes the probability of the

transition i → j in the time τ. To get that value for f (2)ij , we need to sum over all
possible paths over a third state m 6= j (otherwise n would be 1). Thus, we can
derive it from f (1)ij and the probability pim [11]:

f (2)ij = ∑
m 6=j

pim f (1)mj . (2.54)
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Similarly, we get relations for any f (n)ij from f (n−1)
ij for all n > 1 following a recursive

formula:

f (n)ij =

pij f or n = 1

∑m 6=j pim f (n−1)
mj f or n > 1

(2.55)

This formula yields a first passage time distribution in time steps of τ. In order
to compare different models, it is suitable to also have a look at the moments of this
distribution. Hereby the first moment corresponds to the mean first passage time of
the transition in question.

2.4.2 Entropy Production

Driving a system away from thermal equilibrium implies a non-vanishing entropy
production which therefore describes a macroscopic property of a non equilibrium
steady state. Its importance for the system dynamics and its appliance to Markov
state models will be discussed hereinafter.

The Entropy production in the system arises from non-vanishing probability cur-
rents Φij−Φji where Φij = πi pij represents probability fluxes along a transition from
state i to j. Following J. Schnakenberg [10] the total entropy production rate is given
by:

Ṡtot = ∑
ij

Φij log
Φij

Φji
= ∑

ij
Φij log

πi

πj︸ ︷︷ ︸
Ṡsys

+∑
ij

Φij log
pij

pji︸ ︷︷ ︸
Ṡmed

(2.56)

In thermal equilibrium, the condition of detailed balance Φij = Φji holds true
which implies zero entropy production.

The first term describes the time derivative of Gibbs Entropy production Ssys =

−∑i πi log πi and thus represents the entropy production caused by the system it-
self. For non equilibrium steady states this term vanishes since the stationary dis-
tribution is time independent. Consequently Ṡtot = Ṡmed where the second term
represents the coupling of the system with the medium. The coupling can be, for
example, caused by a heat or particle flux flowing from the medium into the system
[24].

The entropy production describes the asymmetry in the probability fluxes and
thus is an important property of a non equilibrium steady state and has to be repro-
duced by a reweighted Markov state model.

2.4.2.1 Local Entropy Production

To get more insight on the microscopic level inside the system we want to take a
closer look at an entropy production between two states. We will call this the lo-
cal entropy production. This entropy production ∆sij of the medium between two
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discrete states i and j is given by the logarithm of the ratio of probabilities for the
forward and backward path, pij and pji respectively [9, 25]:

∆sij = log
pij (τ)

pji (τ)
. (2.57)

By assuming a single trajectory going from i to j this ratio can be calculated in
terms of the path integral representation of the Langevin equation [26]:

log
pij (τ)

pji (τ)
=

1
T

∫ τ

0
dt F (x, t) ẋ, (2.58)

where F combines the effect from the potential V and external force fext and is given
by F = − ∂V

∂x + fext. This equation gives a theoretical expression on the local entropy
production of the medium which our Markov model has to replicate.

Since it is not possible to compute equation 2.58, we can rewrite it in terms of the
discretized time and space of the Markov state model:

1
T

N

∑
i=1

(
−Vi −Vi−1

xi − xi−1
+ fext

)
xi − xi−1

∆t
∆t =

1
T

N

∑
i=1

(Vi−1 −Vi) + fext (xi − xi−1) ,

(2.59)

where N is a factor relating the lag time τ and the time step of the simulation ∆t:
τ = N∆t. In our model fext is the same in all microstates. We will make use of the
assumption that paths from i to j always follow the same overall direction (possibly
against the external force). For big enough systems this assumption holds true, even
for periodic boundary conditions. Therefore, all paths in between i and j give us the
same result in equation 2.58 and we can use the following relation for the transition
probabilities of our Markov model. Performing the sum in equation 2.59 yields:

log
pij (τ)

pji (τ)
= ∆sij =

1
T
(V0 −VN + fext (xN − x0)) , (2.60)

since all other terms (with indices not equal to 0 or N) cancel each other. The in-
dices 0 and N describes the potential and the position of state i and j (if we consider
the transition i → j) respectively. This discretized version gives us theoretical de-
scription of the local entropy production of the medium ∆sij independent of the
transition matrix, and therefore, the Markov state model. The theoretical value on
the right hand side can now be compared to the left hand side value of the Markov
state model.
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Chapter 3

Implementation and Model
Building

While the Simulation is written in C++, the entire of the following part was imple-
mented in Python.

3.1 Performing the Simulation

The simulations which yield the count matrices to build a Markov state model were
performed like described in the theory part in section 2.1 for a single particle in a
two dimensional potential.1 It is essential to get an understanding on the parameters
involved and their effect on the simulation.

The equation of motion given in 2.5 is dependent on the external potential V,
the external force fext, the thermal energy kBT as well as an integration time step ∆t.
In the following we will disregard all units except for the time. To allow an easy
comparison between different simulations, we set the last three parameters constant
for all simulations: kBT ≡ 5 and ∆t ≡ 10−5s.

Our potential V consists of three Gaussian wells in a two dimensional box [0, 3]×
[0, 1] with periodic boundary conditions. These Gaussian wells are symmetric in
both directions x ∈ [0, 3] and y ∈ [0, 1] with standard deviations of σ = 0.2. They
are centered at the positions (0.5, 0.5), (1.5, 0.5) and (2.5, 0.5) so they are equally
distributed in the configuration space. The depths of these wells, indexed by i from
1 to 3 in ascending order, are of the order ∆Vi ∼ kBT but can be varied and are not
fixed. This way, we can analyze symmetric potentials where each well has the same
depth, and also asymmetric ones where the potential depth can vary for different
wells (see figure 3.1 for two examples). For the symmetric potentials we choose
depths ranging from 1 to 5 ∆Vi ∈ {1, 2, 3, 4, 5}kBT. For the asymmetric ones we set
∆V1 = 1, ∆V2 = 1 and vary ∆V3, again from 1 to 5. In the analysis part we will
mainly focus on the two potentials shown in figure 3.1: The smallest symmetric one
and the asymmetric one with a ∆V3 = 1.

1It has to be noted that I did not perform the simulations myself. They were provided by Marius
Bause, a PhD student in the group.
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FIGURE 3.1: Left: A Symmetric potential. Right: An asymmetric potential. For illustrative
purposes he x- and y-axis scales do not match with each other, in reality the individual wells

are symmetric in both directions.

If we apply an external force fext in the x direction and observe a transition from
one well into the other, we want to be able to tell which way the particle took, re-
spectively, if it moved with or against the direction of the force. The smallest system
in which this is possible, is a system with three potential wells. For bigger forces
this is actually not true anymore and the probability that the particle goes over two
wells in the direction of the force is bigger than only jumping one well against it.
However, if we compare different strengths of the external force, we can tell which
of these processes dominates. The force itself has varying strengths in integer steps
from 0 (equilibrium case) to 9 (far of equilibrium) and is pointed in negative x direc-
tion. To set the strengths of these forces into context: The greatest force the particle
can experience through the external potential is ∼ 6∆Vi.

Since the trajectories consume a substantial amount of storage space, we want to
build the count matrices while performing the simulation. In order to do this, we
need a space discretization. In our simple system a partitioning of the configuration
space into 30 x 10 square boxes of equal size was shown to be sufficient to capture the
dynamics. Building the count matrix is simply a matter of counting the transitions,
sampled at the lag time τ = n∆t, n ∈ N, between these states. Since we do not
know a suitable lag time for a Markov state model at this point, we capture count
matrices for lag times between 1∆t and 999∆t.

3.2 Building the Markov State Model

The estimation of the transition matrix T (τ) is straightforward using equation 2.30.
We now need to choose a suitable lag time to build the model which we want to use
later on. Since the timescale analysis described in section 2.2.2.2 is only possible for
reversible transition matrices, we have to look at an equilibrium system. We will
assume that the lag time we obtain from this system can also be used for the non
equilibrium steady state models. But since we can not have complete certainty about
it, we take a conservative estimate of the lag time to leave some room for error. The
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FIGURE 3.2: Convergence of the slowest implied timescales (t2 is the same as t1), calculated
for the symmetric potential with depths equal to one. For lag times τ > 300 we do not see
any significant changes in the timescales anymore so this is the lag time we will choose to

build our model.
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FIGURE 3.3: The first 20 eigen-
values for the symmetric poten-
tials with depths equal to one.
The eigenvalues not equal to

one always occur in pairs.

slowest implied timescales can be calculated by the highest eigenvalues not equal to
1 with equation 2.20. t0, with the eigenvalue equal to one, belongs to the stationary
distribution and therefore the timescale becomes infinite. Now we need to compare
these timescales for different lag times (figure 3.2). The lag time we will use for the
model can be determined by looking for convergence in the timescale-lag time plot.

These timescale plots are remarkably similar for all different potentials we use,
both symmetric and asymmetric ones. From now on we will use the same lag time
of τ = 300∆t = 3ms for all these systems. This also allows an easy comparison.

It is worth mentioning that the two biggest eigenvalues, and therefore the two
slowest timescales, are almost the same, even for asymmetric potentials. This can be
explained by the choice of our potential. In order to be able to represent all transition
between the three wells, a superposition composed of two processes is necessary.
This effect also continues for faster processes as can be observed in figure 3.3. The
eigenvalues always appear as pairs. In the case of the asymmetric potentials, this
effect is not as pronounced but nonetheless clearly noticeable.



24 Chapter 3. Implementation and Model Building

In order to validate our model, we will now conduct the Chapman-Kolmogorov
test (equation 2.34). We will do this by following the implementation suggested in
J.H. Prinz et al. [4]. In this test, we want to compare the probability of being in a
given set of states A, when starting from a well defined starting distribution. As this
starting set A we will choose the ten closest states to a potential minimum in order
to represent a metastable set. The corresponding stationary distribution restricted to
this set A is then given by:

wA
i =


πi

∑j∈A πj
for i ∈ A

0 otherwise,
(3.1)

where πi is the probability to be in state i.
We will now compute the probability of finding the system in set A at times

kτ, k ∈ N: p (A, A; kτ). Starting with the initial probability vector wA, we will use
the observed trajectory data, as well as our Markov state model in order to do this.
If the probabilities calculated by the trajectory data and the Markov model conform
with each other, we essentially confirmed the Chapman-Kolmogorov equation.

The probability to be in at set A according to the Markov model is given by:

pMarkov (A, A; kτ) = ∑
i∈A

[
(

wA
)T

Tk (τ)]i , (3.2)

where T (τ) is the transition matrix of our Markov state model.
On the other hand is the trajectory based probability given by:

pTraj (A, A; kτ) = ∑
i∈A

wA
i

∑j∈A cij (kτ)

∑n
j=1 cij (kτ)

, (3.3)

where n is the total number of states and cij the entries of the count matrix obtained
from the trajectory for transitions at every step kτ. The fraction in this equation
describes the probability to be in set A at time kτ when starting in state i.

Since there are only a finite number of transitions available to estimate these
probabilities, there will be statistical error involved. To account for this, the uncer-
tainties (one sigma standard error) of the probabilities estimated from the trajectories
are calculated using the following equation:

errTraj (A, A; kτ) =

√
k

pTraj (A, A; kτ)− [pTraj (A, A; kτ)]2

∑i∈A ∑n
j=1 cij (kτ)

(3.4)

The test will now consist of whether the two probabilities confirm with each
other within this uncertainty. In figure 3.4 this was done for several k-values (for
bigger values the statistical uncertainty gets too large). We used the Markov model
and a simulation trajectory for the smallest symmetric potential (figure 3.1 on the
left) and the lag time we obtained from the timescale analysis of τ = 300∆t.
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FIGURE 3.4: Chapman-Kolmogorov test performed for the symmetric potential and a lag
time of τ = 300∆t. The probabilities to stay in a potential minimum A are calculated by the
Markov model and directly from the trajectory itself. Within their statistical error these two

values conform with each other.

As we can see in figure 3.4, both values conform with each other and we have
therefore validated the Markov state model built with lag time τ = 300∆t. This
test was only performed for this specific case. Since the timescale plots for differ-
ent potentials did not vary much for different potentials, we will assume that the
Chapman-Kolmogorov equation will still hold true in these cases.

We have discretized space and time in order to capture the timescales of interest.
Now that we have Markov state models for all our desired systems, we can start
with the reweighting process.

3.3 Reweighting

3.3.1 Legitimation of the Average Flux

First we want to legitimize our choice for the average flux 〈J〉 defined in equation
2.46.

In order to do this, we need to define the matrix Fij which depends on the ge-
ometry of the system. In our case the external force only acts in the x direction, so
all entries for transitions in y direction are zero. For every step in the x direction
we need to add ±1/10 (the size of one microstate), dependent on the direction of
the transition in question. This way our matrix has entries ranging from −1.4 to 1.4
since we can go 14 steps in each direction. If we go 15 steps we do not know which
direction the transition took, so we set it to zero. However, the transition matrix
shows transitions in a range of 1-9 states with our choice of microstates, potential
and external force (figure 3.5). All the other ones are so unlikely that they did not
happen once in the sampled trajectory. This way we always know the direction the



26 Chapter 3. Implementation and Model Building

FIGURE 3.5: The transition matrix is sketched for a single reference point i on top of a
potential well to allow the farthest transitions.

transition has taken. The average flux for systems with different external forces plot-
ted against the lag time (figure 3.6), shows with great certainty that the average flux
describes a Markovian macroscopic observable.2 This legitimizes our definition for
the average flux 〈J〉 and the matrix Fij.

Furthermore, there seems to be a direct relation between the average flux and the
external force. This relation can be obtained directly from the overdamped Langevin
equation 2.5 by averaging over time:

0 = −〈∂V
∂x
〉t + 〈 fext〉t − 〈v〉t + 〈 fR〉t. (3.5)

In this equation 〈〉t indicates the averaging over time. From 〈 ∂V
∂x 〉t we obtain some

number ε caused by the perturbation from the external force. The force on the other
hand is constant in time, so 〈 fext〉t = − fext (the − sign comes from the direction

2Furthermore, the average flux was calculated directly from a trajectory. This value was in conjunc-
tion with the one determined by the Markov model.
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FIGURE 3.6: The average flux
〈J〉 describes a Markovian be-
havior for high enough lag
times τ. We also see the di-
rect relation between the aver-
age flux and the external force

fairly well.
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of the force). The temporal mean of the velocity corresponds to our average flux
〈v〉t = 〈J〉 and the mean of the random force is zero by definition. From this we can
set up the following equation:

〈J〉 = − fext − ε. (3.6)

By our observation in figure 3.6 we conclude that epsilon is some small number since
the average flux deviates only by a very small amount, which slowly increases with
increasing force.

3.3.2 Reweighting Algorithm

We have derived an analytic expression for the Markov state model pij of a desired
system, characterized by its flux 〈J〉, given a reference model qij (equation 2.52):

Here we test the reweighting between models which have the same potential but
are in different non equilibrium steady states. The reference system does not need
to be in equilibrium.

The only challenge remaining is to determine the Lagrange multiplier γ, control-
ling the 〈J〉 part in the Caliber. In order to this, we first look at the new calculated
average flux with varying γ given the same reference system:

〈J〉rew (γ) = ∑
ij

πi (γ) pij (γ) Fij. (3.7)

The results are depicted in figure 3.7. Whereby the reference system in this particular
case is the system with symmetric potential in the equilibrium state (therefore we
have a flux of 0 for γ of zero). We conclude that the reweighted average flux is
strictly monotonically increasing in γ. This is an important realization since in order
to determine our new model pij (γ), we need to minimize the following function:

(〈J〉rew (γ)− 〈J〉desired)
2 . (3.8)

Because of the strictly monotonically behavior of the reweighted flux, this problem
has exactly one solution and can be solved by a simple downhill simplex algorithm
[27]. The desired flux 〈J〉desired will be obtained by a Markov model, built from sim-
ulation outcome, in the same steady state.

Another important realization to be made is that the reweighted flux shows a
strictly linear behavior in γ for values of interest to us (figure 3.7 on the right). This
means that we only have to conduct the reweighting algorithm one or two (to be
sure) times in order to get a relation between the average flux and γ. This is very
beneficial for us since it allows us to determine the Markov state model for any
desired system, in a certain range, instantly without having to minimize equation
3.8. This reduces the time needed to perform a reweighting significantly.
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FIGURE 3.7: The reweighted average flux 〈J〉 plotted against the Lagrange multiplier γ. On
the left we see the bigger picture: 〈J〉 is strictly monotonically increasing in γ (shows an
arctan behavior). On the right we have a zoomed in plot of the for us interesting area. Here

〈J〉 shows a linear behavior which we can use to our advantage.

3.4 Calculating the First Passage Time Distribution

In order to access the quality of the reweighting process we take a look at the first
passage time distributions. These can be obtained as described in section 2.4.1.

In our system the most interesting first passage times are the ones between the
different potential wells. Therefore, we need to assign microstates to these minima.

These can be obtained by determining each local minimum in the non discretized
space. By defining a threshold κ we can assign an area in this space to each mini-
mum using the following condition: V (x, y) < −∆Vi + κ ,where ∆Vi describes the
potential depth. At this point we can search for the microstates which overlap with
this area and assign them to these minima. In our case we get four microstates for
each minimum (with a κ value of ∆Vi/10) where each minimum is located at an
intersection between these four states.

So in order to calculated the first passage time distributions, we need to expand
our formula (equation 2.55) for different sets A and B: First we redefine f (n)ij :

f (n)ij =

pij f or n = 1

∑m/∈B pim f (n−1)
mj f or n > 1

(3.9)

This way we do not take pathways into account which already visited the ending
set B. Now we need to sum over all states in the starting set A and the ending set
B and weight the starting states with the probabilities that the system will start in
these states. These weights are defined as follows:

wi = ∑
k/∈A

πk pki (3.10)
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Note that we do not use the stationary distribution as weights. We do need to ac-
count for the fact that our system is moving. Therefore, we are calculating the prob-
ability of the starting state being entered. Our equation for the first passage time
distribution becomes,

f (n)AB = ∑
i∈A,j∈B

wi

∑i∈A wi
f (n)ij . (3.11)

Calculating this for several n gives us a probability distribution of the first passage
times for transitions from set A to set B in steps of the lag time τ. An example for
such a distribution is given in figure 3.8. From this distribution we can calculate
the first three moments: The mean value, the standard deviation and the skewness.
These moments allow for an easier comparison of different distributions.
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Chapter 4

Analysis

4.1 Mean First Passage Time

First we want to have a look at the first passage time distribution for different lag
times τ. We can calculate these by using the formula we derived in section 3.4. In
order to compare the distribution we will have a look at the mean first passage times.
If we plot the mean first passage times for different lag times (figure 4.1 on the left)
we observe a non Markovian behavior. At first (until τ ∼ 200) the discretization
error of the Markov model dominates. This is the same behavior we also observe
during the timescale analysis for different lag times. However, even after this initial
part there is a steady increase for increasing lag times. We conclude that the mean
first passage time is not a Markovian observable.

This is rather surprising since the mean first passage time is often used to de-
scribe the dynamical properties of Markov state models [11]. Nevertheless, the first
passage time distribution gives the best description of a process for a chosen lag time
while the timescale analysis is not available off equilibrium [28].

In the following we will stick to the lag time of τ = 300 in order to be able to
compare different first passage time distributions with each other.
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4.2 Shift of the Stationary Distribution

If we take a look at the stationary distribution, one would expect that it would shift
inside the minima according to the direction of the force (particle gets pushed to the
side in the potential well). However, the exact opposite effect occurs. In figure 4.2
we see the stationary distribution in the full discretized state space. The author can
not give an explanation on this behavior at this point and further research needs to
be done.

FIGURE 4.2: Stationary distribution for the smallest symmetric potential. The arrow indi-
cates the direction of the external force and one can clearly see that the occupation prob-
abilities shift in the opposite direction. Furthermore we illustrate the indexing for each

minimum.

4.3 Reweighting Tested for Symmetric Potentials

In this section we will first have a look at the reweighted Markov state models for
the smallest symmetric potential (the one where all potential wells have the same
depth ∆Vi = 1, figure 3.1 on the left).

4.3.1 Predicting First Passage Time Distributions

In figure 4.3 we see mean first passage times for transitions with or against the direc-
tion of the external force, obtained from models directly build out of the simulation
outcome. In order to determine error bars this was done for 20 different count ma-
trices.

The behavior of the two transitions is different depending on the direction the
transition is taking. The plot on the left of figure 4.3 shows the mean first passage
times for a transition in the direction of the external force. As we would expect in
this case, the mean first passage time is linearly decreasing with an increasing force
fext. The particle gets pushed in the direction of the transition we are investigating
and therefore the mean first passage time decreases.
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FIGURE 4.3: Mean first passage times (MFPT) for different strengths of the external force.
On the left a transition in the direction of the external force is depicted, on the right the

transition against the direction of the force.
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In the right plot we are looking at the transition in opposite direction. First the
mean first passage time is increasing because the particle has to go against the direc-
tion of the force. For larger forces however, it is decreasing again. The explanation
for this is straightforward: For larger forces we are actually observing the transi-
tion in the direction of the force over two wells. Different processes dominate for
different external forces.

Now we will take a look at the first passage time distribution for a reweighted
Markov state model 3.3.2. We will reweight the equilibrium system into the system
out of equilibrium with highest external force fext = 9. In figure 4.4 the distributions
are depicted for the models in and out of equilibrium obtained by a simulation, as
well as the first passage time distribution obtained by the reweighted model. In this
case the error bars are not included since they were smaller than the point size.

As we can see, in this case the reweighting accurately reproduced the expected
behavior. But we might want to know what happens if we take a system out of
equilibrium as our reference model.

Turning to these cases in figure 4.5 we take an off equilibrium reference model
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FIGURE 4.5: Mean first passage times of the reweighted models (red) compared to the ones
calculated from the simulation models (blue). On the left we go in the direction of the
external force, on the right against it. The dashed line illustrates that we can reach all these
areas with a suitable γ. We reweight from the system with fext = 5 in these plots which is

indicated by a bigger cross.

with an external force fext = 5 that is reweighted into every other system in its
vicinity. We compare the mean first passage times, both from the simulated and
reweighted models, for transitions in both directions.

All the reweighted models predicted the mean first passage times of the simu-
lated models. These results are independent of the reference model we use. Further-
more, when looking at higher moments we get the same results (data is not shown
in this thesis).

Apparently the reweighting successfully predicts first passage time distributions
between different minima. Now we will take a look at the entropy production.

4.3.2 Predicting the Entropy Production Rate

In order to estimate the entropy production rate, as well as the local entropy produc-
tion, from our Markov state models we use the equations derived in section 2.4.2.

First we look at the entropy production rate for simulated and reweighted mod-
els. As a reference model we take the equilibrium system, reweight it into every
available steady state and compare it with the simulated model. As one can see in
the upper plot in figure 4.6 the entropy production for the reweighted and simu-
lated models fit perfectly. Again errors are not taken into account since they are not
noticeable in the plot.

Secondly we want to discuss the local entropy production (figure 4.6 bottom):
We take the difference between the theoretical value (equation 2.60) and the one cal-
culated by our model (equation 2.57). For the starting microstate we chose a state in
the middle of a potential well. The simulated model as well as the reweighted model
are set in the system with the highest external force fext = 9 while the equilibrium
system was used as a reference model. These differences are in the range of around
10% (deep red/blue) of the theoretical value. The transitions with larger distance
from the starting microstate suffer from poor sampling and, therefore, have a higher
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FIGURE 4.6: Top figure: The Entropy production rate for each simulated model and the
reweighted one (reweighted from equilibrium). They fit perfectly. Bottom two figures: Il-
lustration of the difference between the theoretical local entropy production and the one
calculated from the Markov model. Both for the model obtained from a simulation (top)

and from reweighting (lower). There are no major differences between the two models.

deviance and are not representable.1 In general (also taken other systems and refer-
ence systems into account which are not illustrated here) it can be said both models
recover the theoretical description of the local entropy production. We can draw
two conclusions from this: First the assumption we make in the theory part 2.4.2.1,
replacing a single trajectory by all possible paths described by our Markov model,
can be validated. Furthermore, this local entropy production allows us to have a
detailed look at the dynamics of the system which get recovered by the reweighting
process.

Again, these results are independent of the reference model we used.

4.3.3 Stationary Distributions

The stationary distribution of our two dimensional model is defined as the probabil-
ity to find our system at a certain microstate for each state in the x-y plane. In order

1In order to calculate these we build in a cutoff transition probability so the logarithm does not
diverge. These are already taken out of the plot in figure 4.6
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to allow for an easy comparison of stationary distributions for different non equilib-
rium steady state systems, we project the distribution onto the x-probability plane.
In this case we can observe how the stationary distribution is changing along the
x-axis. We do not expect any change along the y-axis for different driven systems.

In figure 4.7 we compare the stationary distributions of the reference model, the
simulated model we want to reweight to and the reweighted model. We do this
once for a reweighting from an equilibrium system in a far off equilibrium system
( fext = 9) (left plot) and once the other way around (right plot).
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FIGURE 4.7: Comparison of the stationary distribution of a reference model (blue), a sim-
ulated model (the one we will reweight in, red) and a reweighted model (green). On the
left: Reweighting from an equilibrium system into a non equilibrium one. On the right:
Reweighting from a non equilibrium system into an equilibrium one. The reweighted mod-

els are not able to reproduce the stationary distributions of the systems in question.

We observe that the stationary distribution of the reweighted model is very sim-
ilar to the one from the reference model. It does not adapt to the asymmetry of the
non-equilibrium system (or keeps it, if the reference model is the non-equilibrium
one).

However, these small deviations in the stationary distributions do not seem to
have an influence on the dynamics of the system as was shown by the first passage
times and the entropy production rate.

The results we obtained in this section are independent on the potential well
depth (data not shown in this thesis) as long as we deal with a symmetric potential.

4.4 Reweighting Tested for Asymmetric Potentials

We access the quality of the reweighting method the same way we did for the sym-
metric potentials but starting with the stationary distribution. In order to do this
we have a look at an asymmetric potential where two wells have the same depths
(∆Vi = 1) and one (the ’middle’ one) is deeper than the other two (∆V1 = 3) (see
figure 3.1 on the right).
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FIGURE 4.8: Comparison of the stationary distribution of a reference model (blue), a simu-
lated model (the one we will reweight in, red) and a reweighted model (green). The num-
bers indicate the indices of the potential wells. After microstate 30 the system crosses the

periodic boundary conditions and start in well 0 again.

In figure 4.8 the stationary distribution is shown for a reweighting from an equi-
librium system to a system far off equilibrium (again fext = 9). It is compared to the
stationary distribution of the reference model as well as the one of the non equilib-
rium simulated model.

The same effect as for the symmetric potential occurs: The stationary distribution
shape is similar to the one of the reference system. Not only does it disregard the
shift of the probability caused by the external force in each peak but also changes
in the amplitude. Especially the probability of finding our system in between two
potential wells is not recovered correctly. In between the wells 0-1 and 1-2 we find
significant deviations.

4.4.1 Dynamics

We will look at the same dynamical properties as for the symmetric potential and
see if the reweighted model still predicts these correctly.

The entropy production rate (figure 4.9 top) is correctly given by the reweighted
model. Furthermore, we see that also the local entropy production is correctly re-
covered, even for the area where the stationary distributions show a significant de-
viation (figure 4.9 bottom).

However, the reweighted model can no longer predict the mean first passage
times between different potential wells anymore (see figure 4.10). We assume sys-
tematic error to be involved, causing the reweighted model to either over- or under-
estimate a certain transition. In figure 4.10 we look at the transitions 0 → 1 (on the
left) and 1 → 2 (on the right) where 1 is the deep potential well. The equilibrium
system is chosen as the reference system. Comparing these errors with the errors in
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FIGURE 4.9: Top figure: The Entropy production rate for each simulated model and the
reweighted one (reweighted from equilibrium). They fit perfectly. Bottom four figures:
Illustration of the difference between the theoretical local entropy production and the one
calculated from the Markov model for different starting points. Both for the model obtained
from a simulation (left) and from reweighting (right). Here the upper two plots are for the
starting point within a potential well (same as in fig 4.6) and the lower two for a starting

point in between two wells where the stationary distribution is not recovered correctly.
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FIGURE 4.10: Mean first passage times of the reweighted models (red) compared to the
ones calculated from the simulation models (blue). On the left we see the mean first passage
times for the 0→ 1 transition, in the right one the 1→ 2 transition. The equilibrium model

is chosen to be the reference model in these plots indicated by the bigger cross.

the stationary distributions leads us to the conclusion that they are correlated. For
the transition 0 → 1 the reweighted mean first passage times are too fast. At the
same time the probabilities of our system to be in between these two wells (figure
4.8) is overestimated. The reweighted system is more likely to be in states between 0
and 1 and therefore the transition occurring between these two is a faster process. In
the second case for the 1 → 2 transition it is the other way around. The reweighted
mean first passage time is too slow and the probability in between underestimated.

All the other transitions are illustrated in figure 4.11. For the 1 → 0 transition
the same explanation as for the 0 → 1 one can be given. However, for the transi-
tions starting in the potential well 2 the explanation is not as obvious anymore since
the stationary distribution also shows a deviation inside this well which affects the
transition times as well.

In the case of the symmetric potentials this was no problem since the overall
probability of the system to be in a certain potential well, respectively be in between
two potential wells, did not change because the error is averaged out when defining
sets of microstates in the minima.

The reweighting process with the maximum Caliber approach does not account
for the changes in the stationary distribution, at least not enough. For simple systems
like the symmetric potential well this does not have any effects on the macroscopic
dynamics of the systems. However, for more complex systems the deviations in
the stationary distribution do have a significant effect on the dynamics and lead to
wrong predictions. The entropy production rate of the whole system is not affected
by these deviations. Furthermore, the local entropy production can be recovered as
well.

We can conclude the following statements:

• The dynamics of the system as a whole, described by the entropy production
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FIGURE 4.11: Mean first passage times for all other transition paths. The reweighted models
(red) compared to the ones calculated from the simulation models (blue). The equilibrium

model is chosen to be the reference model in these plots indicated by the bigger cross.

rate, can be recovered and are unaffected by the deviations in the stationary
distribution.

• Dynamics between potential wells, between different potential wells can not
be predicted properly since they get influenced by the false stationary distri-
bution.

• There seems to be some microscopic property that preserves the local entropy
production rate, namely the ratio pij/pji (Markov model description of the lo-
cal entropy production: ∆sij = log

(
pij/pji

)
) is reproduced by the reweighting

process.

In order to solve the issue of falsely predicted local dynamics within the system,
we need the reweighted Markov state model to correctly predict the stationary dis-
tribution. This has to be done by tweaking the Caliber. One way to solve this would
be to find a theoretical approach to predict the changes in the stationary distribu-
tion. In order to do this, we first need to understand what causes the asymmetry
in the stationary distributions on a fundamental level. Another way would be to
find another macroscopic property, such as we already have with the average flux,
that influences the stationary distribution and can be put into the caliber as another
constraint.
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Conclusion and Outlook

In this thesis we tested a reweighting method based on the principle of maximum
Caliber applied to Markov state models. This allows to predict Markov state models
which normally have to be calculated by a simulation.

An important realization to be made is that the Lagrangian coefficient γ shows a
strictly linear behavior to the average flux that we use to describe how far a system is
off-equilibrium. This means that we only have to simulate two steady state systems
in order to be able to reweight into a broad range of other steady state systems. How
far off-equilibrium one ca go with this method is only limited by the periodic bound-
ary conditions: Jumps in the Markov model have to be smaller than half system size
in order to still be able to determine their direction.

In order to assess the quality of the reweighted model, we compared dynami-
cal properties like the entropy production rate and the first passage time distribu-
tions for reweighted models in different non equilibrium steady states. We discov-
ered that the entropy production rate, describing the dynamics of the whole system
can be correctly predicted by the reweighted Markov state models. However, more
local dynamics like the first passage time distributions between different potential
minima are not necessarily recovered by the reweighting process, dependent on the
complexity of the system in question. This is due to the fact that the reweighted
models falsely predict a stationary distribution which is too similar to the one of the
reference model used for reweighting. This result was verified in a one dimensional
potential by implementing the correct stationary distribution as a further constraint
in the Caliber: The system obtained by this tweaked Caliber recovered the first pas-
sage time distributions perfectly, both in the case of a symmetric as well as asym-
metric potential. Therefore, we need to find the reasons behind the behavior of the
stationary distribution and expand our maximum Caliber accordingly, so it is able
to predict the changes in the stationary distribution.

Nonetheless, we can conclude that the reweighting is already working , although
only to a certain extend. This allows to save simulation time. The reweighting
method also offers the possibility to built models for different non equilibrium steady
states in a continuous manner, whereby simulations are only able to model a single
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one. For all of that we only need one single characteristic quantity so far, the aver-
age flux. These results also support the theory of maximum Caliber and the assump-
tion of the Kullback-Leibler divergence, that reference and the reweighted model are
closely related, since the reweighting results are independent of the reference model
we use.

We confirmed the relation for the local entropy production between a theoretical
value and the one calculated by the Markov state model. This property is conserved
in the reweighting process. The assumption to replace a single trajectory by the
Markov model is therefore verified for systems with a constant external force. This
yields a new relation, similar to the detailed balance one, for non equilibrium steady
states:

detailed balance:
pij

pji
=

πj

πi
, local entropy production:

pij

pji
= exp

(
∆sij

)
. (5.1)

The same way detailed balance is used to construct Markov state models in equilib-
rium systems, this relation can be used for the construction of models in non equilib-
rium steady state systems. This allows to improve the model for transitions which
suffer from poor sampling in only one direction. Testing this new relation in the con-
struction of Markov state models and as a constraint in the Caliber is an objective for
the future.

Furthermore, we should reconsider the role of the mean first passage time as an
observable in a Markov state model. It is not Markovian, but for same lag times we
still get comparable results.

In the future the reweighting can be tested for more complex systems, for exam-
ple multiple particle and polymer systems.

We could also test the reweighting method on coarse grained Markov state mod-
els obtained by the clustering method G-PCCA (generalized Perron-cluster clus-
ter analysis) [29] which works for Markov state models breaking detailed balance.
New challenges will occur, because the clustering is not necessarily equal for all off-
equilibrium systems.



43

Bibliography

[1] Nuria Plattner and Frank Noé. “Protein conformational plasticity and com-
plex ligand-binding kinetics explored by atomistic simulations and Markov
models”. In: Nature Communications 6.1 (2015). DOI: 10.1038/ncomms8653.

[2] Stephen J. Klippenstein, Vijay S. Pande, and Donald G. Truhlar. “Chemical Ki-
netics and Mechanisms of Complex Systems: A Perspective on Recent Theo-
retical Advances”. In: ChemInform 45.18 (2014). DOI: 10.1002/chin.201418296.

[3] H. Wan, G. Zhou, and V.A. Voelz. “A Maximum-Caliber Approach to Predict-
ing Perturbed Folding Kinetics Due to Mutations”. In: Journal of Chemical The-
ory and Computation 12.12 (2016). DOI: 10.1021/acs.jctc.6b00938.

[4] Jan-Hendrik Prinz et al. “Markov models of molecular kinetics: Generation
and validation”. In: The Journal of Chemical Physics 134.174105 (2011).

[5] Han Wang and Christof Schütte. “Building Markov State Models for Period-
ically Driven Non-Equilibrium Systems”. In: Journal of Chemical Theory and
Computation 11.4 (2015), pp. 1819–1831. DOI: 10.1021/ct500997y.

[6] Daniel M.Zuckerman. “Non-equilibrium: Steady States”. Physical lens on the
cell. 2015.

[7] Steve Pressé et al. “Principles of maximum entropy and maximum caliber in
statistical physics”. In: Reviews of Modern Physics 85.3 (2013), 1115–1141. DOI:
10.1103/revmodphys.85.1115.

[8] Purushottam D. Dixit et al. “Perspective: Maximum caliber is a general vari-
ational principle for dynamical systems”. In: The Journal of Chemical Physics
148.1 (2018). DOI: 10.1063/1.5012990.

[9] Udo Seifert. “Stochastic thermodynamics, fluctuation theorems and molecular
machines”. In: Reports on Progress in Physics 75.12 (2012).

[10] J. Schnakenberg. “Network theory of microscopic and macroscopic behavior
of master equation systems”. In: Reviews of Modern Physics 48.4 (1976), 571–585.
DOI: 10.1103/revmodphys.48.571.

[11] Ernesto Suárez et al. “Estimating first-passage time distributions from weighted
ensemble simulations and non-Markovian analyses”. In: Protein Science 25.1
(2015), 67–78. DOI: 10.1002/pro.2738.

[12] M. Laleman E. Carlon and S. Nomidis. “Computational Physics, Molecular
Dynamics Simulations”. Lecture notes.

http://dx.doi.org/10.1038/ncomms8653
http://dx.doi.org/10.1002/chin.201418296
http://dx.doi.org/10.1021/acs.jctc.6b00938
http://dx.doi.org/10.1021/ct500997y
http://dx.doi.org/10.1103/revmodphys.85.1115
http://dx.doi.org/10.1063/1.5012990
http://dx.doi.org/10.1103/revmodphys.48.571
http://dx.doi.org/10.1002/pro.2738


44 BIBLIOGRAPHY

[13] G. E. Uhlenbeck and L. S. Ornstein. “On the Theory of the Brownian Motion”.
In: Physical Review 36.5 (1930), 823–841. DOI: 10.1103/physrev.36.823.

[14] Brooke E. Husic and Vijay S. Pande. “Markov State Models: From an Art to
a Science”. In: Journal of the American Chemical Society 140.7 (2018), pp. 2386–
2396. DOI: 10.1021/jacs.7b12191.

[15] Erhan Cinlar. Introduction to Stochastic Processes. Prentice-Hall, 1975.

[16] Paul A. Gagniuc. Markov chains from theory to implementation and experimenta-
tion. Wiley, 2017, pp. 9–11.

[17] Joseph Rabinoff and Dan Margalit. Interactive Linear Algebra. Georgia Institute
of Technology, 2018, 312–326. URL: https://textbooks.math.gatech.edu/
ila/.

[18] Ch. Schütte and M. Sarich. “A critical appraisal of Markov state models”. In:
The European Physical Journal Special Topics 224.12 (2015), pp. 2445–2462. DOI:
10.1140/epjst/e2015-02421-0.

[19] Ch. Schütte. “Conformational Dynamics: Modelling, Theory, Algorithm, and
Application to Biomolecules”. Habilitation thesis at the Free University of
Berlin. 1999.

[20] C. R. Schwantes, R. T. Mcgibbon, and V. S. Pande. “Perspective: Markov mod-
els for long-timescale biomolecular dynamics”. In: The Journal of Chemical Physics
(2014). DOI: 10.1063/1.4895044.

[21] Gregory R. Bowman. An introduction to Markov State Models and their application
to long timescale molecular simulation. Springer, 2014.

[22] John D. Chodera et al. “Long-Time Protein Folding Dynamics from Short-Time
Molecular Dynamics Simulations”. In: Multiscale Modeling and Simulation 5.4
(2006), 1214–1226. DOI: 10.1137/06065146x.

[23] Purushottam D. Dixit. “Stationary properties of maximum-entropy random
walks”. In: Physical Review E 92.4 (2015). DOI: 10.1103/physreve.92.042149.

[24] Fabian Knoch and Thomas Speck. “Cycle representatives for the coarse-graining
of systems driven into a non-equilibrium steady state”. In: New Journal of Physics
17.11 (2015). DOI: 10.1088/1367-2630/17/11/115004.

[25] Udo Seifert. “Entropy Production along a Stochastic Trajectory and an Integral
Fluctuation Theorem”. In: Physical Review Letters 95.4 (2005). DOI: 10.1103/
physrevlett.95.040602.

[26] J. Kurchan. “Fluctuation theorem for stochastic dynamics”. In: Journal of Physics
A: Mathematical and General 31.16 (1998). DOI: 10.1088/0305-4470/31/16/003.

[27] M. J. D. Powell. “On search directions for minimization algorithms”. In: Math-
ematical Programming 4.1 (1973), 193–201. DOI: 10.1007/bf01584660.

http://dx.doi.org/10.1103/physrev.36.823
http://dx.doi.org/10.1021/jacs.7b12191
https://textbooks.math.gatech.edu/ila/
https://textbooks.math.gatech.edu/ila/
http://dx.doi.org/10.1140/epjst/e2015-02421-0
http://dx.doi.org/10.1063/1.4895044
http://dx.doi.org/10.1137/06065146x
http://dx.doi.org/10.1103/physreve.92.042149
http://dx.doi.org/10.1088/1367-2630/17/11/115004
http://dx.doi.org/10.1103/physrevlett.95.040602
http://dx.doi.org/10.1103/physrevlett.95.040602
http://dx.doi.org/10.1088/0305-4470/31/16/003
http://dx.doi.org/10.1007/bf01584660


BIBLIOGRAPHY 45

[28] William C. Swope, Jed W. Pitera, and Frank Suits. “Describing Protein Fold-
ing Kinetics by Molecular Dynamics Simulations”. In: The Journal of Physical
Chemistry B 108.21 (2004), 6571–6581. DOI: 10.1021/jp037421y.

[29] Marcus Weber and Konstantin Fackeldey. “G-PCCA: Spectral Clustering for
Non-reversible Markov Chains”. Takustr. 7, 14195 Berlin, 2015.

http://dx.doi.org/10.1021/jp037421y

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Theory
	Simulation Model
	Overdamped Langevin Dynamics
	Numerical Integration

	Markov State Models
	Markov Model Theory
	Building a Markov State Model

	Maximum Caliber
	Maximum Entropy for Dynamical Pathways
	Reweighting Dynamics

	Dynamical properties
	First Passage Time Distribution
	Entropy Production


	Implementation and Model Building
	Performing the Simulation
	Building the Markov State Model
	Reweighting
	Legitimation of the Average Flux
	Reweighting Algorithm

	Calculating the First Passage Time Distribution

	Analysis
	Mean First Passage Time
	Shift of the Stationary Distribution
	Reweighting Tested for Symmetric Potentials
	Predicting First Passage Time Distributions
	Predicting the Entropy Production Rate
	Stationary Distributions

	Reweighting Tested for Asymmetric Potentials
	Dynamics


	Conclusion and Outlook
	Bibliography

