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Abstract10

Long term oscillations of genotype abundances in host-parasite systems are difficult to11

confirm experimentally. Therefore, much of our current understanding of these dynamics is12

based on theoretical concepts explored in mathematical models. However, the same biolog-13

ical assumptions can lead to very different mathematical models with diverging properties.14

The precise model can depend on the level of abstraction from reality, on the educational15

background and taste of the modeler, and on the current trends and conventions in the field.16

Here, we first review the current literature in the light of mathematical approaches. We17

then propose and compare our own framework of biologically similar, yet mathematical very18

different models that can all lead to host-parasite Red Queen dynamics. We highlight the19

different mathematical properties and use analytical and numerical tools to understand the20

long term dynamics. We focus on (i) the difference between deterministic and stochastic21

models and (ii) how ecological aspects, in our case population size, can influence the evolu-22

tionary dynamics. Our results show not only that stochastic effects can lead to extinction of23

subtypes, but that a changing population size speeds up this extinction. The loss of strain24

diversity can be counteracted with random mutations which then allow the populations to25

recurrently undergo fluctuating selection dynamics and selective sweeps.26

1 Introduction27

Van Valen (1973) first introduced the term Red Queen Hypothesis in an abstract verbal model28

explaining constant extinction as a result of biotic selection pressure. Today, Red Queen dynam-29

ics are interpreted as oscillations in genotype abundances induced by antagonistic co-evolution30
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between host and parasite populations (Woolhouse et al., 2002). Since other associations with31

the term Red Queen are common in the literature (Salathé et al., 2008; Brockhurst et al., 2014;32

Neiman et al., 2017; Strotz et al., 2018; da Silva, 2018), it may be useful to think of Red Queen33

Dynamics as oscillating selection dynamics (sometimes also called fluctuating selection dynam-34

ics), in contrast to arms race dynamics. The intense interaction with often catastrophic impacts35

on either population strongly determines the genotype distributions over time and evolutionary36

parameters like the diversity within a population and the virulence or resistance of certain strains.37

Although a well known hypothesis, there is only little evidence for the ubiquitous prevalence of38

long term Red Queen oscillations in nature – empirical challenges preclude the observation of39

more than a few subsequent oscillations, as these require an impressive degree of experimen-40

tal ingeniousness Koskella and Lively (2009); Buckling and Rainey (2002); Decaestecker et al.41

(2007). Thus, most work on the actual long term temporal dynamics is theoretical. Here, we42

examine several mathematical models all based on the same verbal models, which all assume a43

very simple form of antagonistic interactions and can verbally be described in exactly the same44

way. While most models so far produce and analyse the oscillations under various aspects and45

foci, only few assess their occurrence and show under what assumptions the oscillations do not46

occur (Gokhale et al., 2013; Schenk et al., 2017).47

Many mathematical models have been formulated in order to address the impact of different48

assumptions like diverse infection matrices, population structure, few/many genotypes, different49

virulence dependencies, sexual vs. asexual reproduction, spatial structure, infection and recovery50

patterns, etc. Other assumptions are often not mentioned, as they are often implicit or not of51

further interest to the scientist. As these models are strong abstractions, there are typically52

numerous such assumptions. Examples are the commonly assumed Markov property, continuous53

time or discrete generations, a constant environment, no influence of life history and continuous54

density due to high population sizes. Finally, certain additional assumptions would make a55

model much too complicated to analyse which is circumvented by collapsing several cascades or56

complex dependencies into one parameter or simple function. We have summarised some of the57

literature and their assumptions in Table 1.58

One (sometimes hidden) property of a model is determinism. This makes a model much59

easier to handle – but makes it impossible to address some important aspects. Coming back to60

the underlying stochastic process is our first main focus. By allowing genetic drift to influence61

the dynamics we enable strains to die out or take over the population. Our second focus is the62

comparison between fixed, constrained, and free population size. Population size is seemingly63

unimportant because Red Queen dynamics are oscillations of genotype abundances within a pop-64

ulation, a change in the composition of the population’s gene pool. To keep the model simple65

and to the point, infinite or constant population size can therefore be asummed by default. But66

in reality, the effect of a changing population size can enhance the influence of genetic drift,67

especially when population size is small (Papkou et al., 2016). These two aspects have been68

examined crudely before (Gokhale et al., 2013). Here, we explore a wider range of possible as-69

sumptions in seven models to obtain a more general understanding of the influence of population70

size and stochasticity on co-evolutionary dynamics. To measure this influence we use the time71

to extinction. In stochastic population models extinction or fixation of a type is often the only72

absorbing state and therefore inevitable, yet the time to extinction varies. The time to extinction73

is an informative measure, because extinction of one type implies that Red Queen dynamics are74

terminated and that genetic variation is reduced. Another important read-out is the stability of75
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an internal fixed point in the analogous deterministic model. Amplitude size and frequency can76

also be of interest, yet in many models these measures vary greatly in the course of the dynamics.77

78

We start by introducing the specificities of the models, then all models are examined via79

individual based simulations, supported by analytical calculations or approximations. The most80

pronounced effect is that Red Queen oscillations survive for a shorter time in models with a81

freely changing population size. A second result is that the strength of selection usually, but82

not always increases the time to extinction in some models. Finally, we include more types and83

argue that species diversity declines based on our assumptions, however, reviving subtypes from84

a reservoir of previously extinct types (by recombination, mutation or immigration) can lead to85

cascades of arms race and oscillating selection dynamics.86
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Table 1: Literature overview. Mathematical models and properties discussed in this paper
sorted by publication year. Many models deal with relative (allele) abundances without con-
sidering ecological dynamics – these have been categorised as constant population size models.
Those models that include a changing population size and stochastic effects focus on completely
different aspects than the possible extinction that are the focus of this paper.

Authors (year) focus deterministic/
stochastic

equations/method time population
size

Schaffer and Rosenzweig (1978) CSS deterministic ODE continuous constrained4

Seger (1988) many genotypes, chaos deterministic recursion equation discrete constant
Nee (1989) co-evolution, recombination deterministic recursion equation discrete constant
Dybdahl and Lively (1998) time lag, experiment deterministic recursion equation discrete constant
Boots and Sasaki (1999) infection on lattice both ODE, IBM, AD continuous variable
Peters and Lively (1999) fluctuating epistasis deterministic recursion equation discrete constant
Sasaki (2000) multilocus GfG deterministic ODE continuous infinite
Agrawal and Lively (2001) selfing vs outcrossing deterministic recursion equation discrete infinite
Agrawal and Lively (2002) GfG vs MA deterministic recursion equation discrete constant
Gandon (2002) local adaptation (spatial) deterministic recursion equation discrete infinite,

constant
Gandon (2004) multihost parasites deterministic ODE, AD continuous,

discrete
constant

Kouyos et al. (2007) oscillations in stochastic
model

both 7 ODE discrete,
continuous

constant5

Alizon and van Baalen (2008) multiple infections deterministic ODE, AD continuous
Agrawal (2009) sex vs recombination deterministic recursion equation discrete constant
Best et al. (2009) transmission, susceptibility deterministic ODE, AD continuous constant
Lively (2010b) sex (long term persistance) both 6 recursion equation discrete variable
Gilman et al. (2012) multiple host traits, resis-

tance
stochastic IBM discrete constant,

constrained4

Gokhale et al. (2013) population size stochastic IBM continuous variable,
constrained

Luijckx et al. (2013) MA, Daphnia deterministic recursion equation discrete constant
Abou Chakra et al. (2014) plastic behaviour both ODE, IBM discrete,

continuous
constant

Taylor et al. (2014) virus of virus deterministic ODE continuous constrained
Ashby and King (2015) diversity, transmission, sex stochastic IBM continuous variable
Engelstädter (2015) infection matrices deterministic recursion equation discrete constant
Rabajante et al. (2015) many types deterministic ODE continuous carrying ca-

pacity
Song et al. (2015) population size, GfG MA deterministic ODE continuous constant,

variable
Hesse et al. (2015) environment, specialisation deterministic ODE, AD continuous variable
Rabajante et al. (2016) rare types deterministic,

noise1
ODE, SDE continuous constrained

Nordbotten and Stenseth
(2016)

RQ vs stasis deterministic PDE continuous variable

Best et al. (2017) no specificity deterministic3 ODE, AD continuous constrained4

Bonachela et al. (2017) crossfeeding deterministic2 ODE and mutants continuous variable
Greenspoon and Mideo (2017) relatedness, transmission deterministic ODE contiunous constant
Lively (2017) allopatric, sympatric para-

sites
deterministic2 recursion equation discrete constrained

Nuismer (2017) local, global adaptation deterministic2 recursion equation discrete constant
Veller et al. (2017) speed of evolution (RQ, RK) stochastic IBM discrete constant
Current paper population size, extinction stochastic IBM discrete,

continuous
constant,
constrained,
variable

ODE/PDE/SDE: ordinary/partial/stochastic differential equation, IBM: individual based model (stochastic simulations),
AD: adaptive dynamics (most often ODE with added mutants), MA: matching alleles, GfG: gene for gene, RQ: Red Queen
(oscillations in genotype abundances or in trait space), RK: Red King (slow evolution favoured), CSS: coevolutionary
stable strategy. 1 not intrinsic stochasticity 2 stochastic mutants added 3 adaptive dynamics simulations (no intrinsic
stochasticity) 4 via carrying capacity 5 but discussed 6 some randomness in infection (+/- 1 in next generation)
7 when time discrete, only host stochastic
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2 Models and properties87

The mean population dynamics is ultimately driven by events on the individual level. These88

individual based models can be written in the form of chemical reactions with a certain reaction89

rate. All our stochastic processes are based on these individual interactions, where parasites have90

negative fitness effects on the hosts, but beneficial effects on the parasite. Although our models91

can be explained with the same words and biological relevance, the mathematics behind them92

can be completely different. A verbal summary of the model is given in Table 2, for mathematical93

details we refer to the supplementary material (Section S1 and Table S1). Whether parasites can94

successfully infect a host or not is controlled by specificities. Parasites are often highly specific95

to certain host subtypes (Carius et al., 2001; Schulte et al., 2011). We define the mathematical96

subtypes by their infectivity/susceptibility to another type. Then we can describe the infection in97

a simple table which records the impact of each parasite type (columns) upon a host type (rows).98

For example, in the simplest case of only two host phenotypes and two parasite phenotypes, we99

have MH =
(
a b
c d

)
. For equally virulent parasite types and strict specificity we obtain a = d = −1100

and b = c = 0, which is the matching allele model where P1 can infect H1 and P2 can infect H2.101

Table 2: Model overview. Model names and their main assumptions. Models are ordered by
population size constraint.

Model reactions time population
size

fixed
point

dimension

discrete time Moran
(dtMoran)

reactions within host (host Birth
death∗) or within parasite pop-
ulation (parasite Birth death),
or simultaneously in both, global
competition

discrete constant attractive 2D

Moran as above, but with continuous
time and no simultaneous reac-
tions

continuous constant attractive 2D

Discrete time Pairwise
Comparison
(dtPC)

like dtMoran but with local com-
petition

discrete constant neutral 2D

Pairwise Comparison
(PC)

like Moran but with local com-
petition

continuous constant neutral 2D

Self controlling popu-
lation size
(SCPS)

reactions between two subtypes
of different populations, single
birth of parasite and death of
host by dynamically adjusted
rates.

continuous nearly con-
stant

neutral 4D

Logistic independent
reactions
(logIR)

reactions between two subtypes
of different populations, or com-
petition in hosts, also single
birth of parasite and death of
host

continuous constrained attractive 4D

Independent reactions
(IR)

like logIR but with no competi-
tion

continuous unconstrained neutral 4D/2×2D

∗ we write Birth death (Bd) when selection is on birth and death is random

We propose seven models ranging between stochastic Game Theory and original models of102

antagonism based on individuals. The most constrained models are the Birth-death processes103

taken from Evolutionary Game Theory and Population Genetics (see Supplement S1.1, Table104
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S2). Every time an individual duplicates (gives birth to the same type), another random one dies,105

keeping population size constant, e.g. H1 +H2
rate(fitness)−−−−−−−→ 2H2. The birthrate is proportional to106

the individual’s fitness, i.e. the payoff gained from this particular antagonistic interaction, which107

depends on the relative abundances of matching or non-matching types of the other population108

(host vs parasite). In the Moran process, fitness of a subtype depends on the average fitness of109

it’s own population over all subtypes. A similar model is the Pairwise Comparison (PC) process,110

where the difference in fitness between two rival types flows into the reproduction rate. Both111

models can be implemented with discrete time (dtMoran, dtPC) or continuous time (Gillespie112

algorithm, see Supplement S1.2). On the other end of the spectrum (and unrelated to Evolution-113

ary Game Theory) is the completely free independent reactions (IR) model (Supplement S1.3).114

Here, an interaction between matching host-parasite pairs directly results in parasite birth, e.g.115

H2 +P2
λ−→ H2 + 2P2 or host death H2 +P2

λ−→ P2. The dynamics can be slightly constrained by116

introducing competition in the hosts, equivalent to logistic growth around a carrying capacity117

(logIR, Supplement S1.3). Finally, an intermediate model with self controlled, but not fixed,118

population size (SCPS, see Supplement S1.4) is built from the individual interactions model,119

but with reaction rates taken from Game Theory. We implement all models using the matching120

allele interaction matrix, as described above. We could work with any other interaction matrix,121

but as we are interested in a comparison of different dynamical process, it is simpler to focus on122

a particular interaction mode.123

In total, these considerations define a microscopic process describing individual deaths and124

births. To analyse these models, we can in some cases directly analyze the stochastic process,125

but often we have to resort to deterministic limits or numerical simulations.126

3 Results127

The distribution of many independent simulations can be approximated by the stochastic process,128

described by a Fokker Planck equation derived from the individual “chemical” reactions (Master129

equation, see Supplementary Material S2 and Table S3). The Fokker Planck equation has a130

drift term (mean deterministic dynamics) and a diffusion term (affecting the variance) and can131

be solved only for simpler models than ours. In addition, the Fokker Planck equation can132

be used to derive a stochastic differential equation (SDE). An SDE describes, like individual133

simulations, a single realisation of the process. Yet while population size is an inherent property134

of the stochastic simulations, it is only a technical parameter affecting the noise in the SDE.135

Importantly, the Fokker Planck equation, or the SDE, provide detailed information on the noise,136

which is not simply white noise added to the deterministic part, but dependent on the variables137

of host and parasite abundance.138

For the deterministic description, we can calculate the fixed points and analyse their stability139

(Table 2 and Supplement S3). A population only departs from fixed points under the influence140

of stochastic fluctuations. An internal coexistence fixed point exists in all models described here.141

Yet, whether this stationary state is reached is another issue and determined by its stability (also142

recorded in Table 2). Attractive fixed points pull the dynamics inward, this produces damped143

oscillations which finally reach the stable state. Neutral fixed points do not excert this pulling144

force; When starting away from the coexistence fixed point, dynamics oscillate around this point145

indefinitely.146
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Figure 1: Oscillations of host and parasite genotype abundances with drift for con-
stant and changing population size. The Moran Process (Gillespie algorithm) with constant
population size and logistic independent reactions (logIR) are simulated until one subtype dies
out (arrow). Note that the time axis is not the same, the logIR oscillations are sustained for
much shorter times. Top: actual abundances of subtypes and total population size, bottom: rel-
ative abundances (densities) within the population. The simulations start with equal abundance
of both types H1(0) = H2(0) = NH/2 and P1(0) = P2(0) = NP /2, which coincides with the
deterministic attractive fixed point. Parameters: NH = 50, NP = 150, wH = 0.6, wP = 0.9,
α = 1, β = 0, dP = 1, bH = 6, K = 100, λ0 = 4, λ = λ0

K , µ = bH
K

Yet, under the influence of stochasticity (diffusion/genetic drift), the dynamics are always147

perturbed. In models with attractive coexistence, the opposing forces can balance the dynamics148

such that oscillations can persist (McKane and Newman, 2005), but in neutrally stable models149

the dynamics are pushed further outwards (oscillations become larger, amplitudes increase) and150

extinction occurs faster. These observations are intuitive and well known in the field of stochastic151

dynamical systems. What is also quite clear is that populations with low total abundances152

(population sizes) a prone to extinction more than large populations, simply by the fact that153

minima in the oscillations of relative abundances refer to lower absolute abundances of subtypes154

when population size is small.155

While a variable population size does not necessarily speed up extinctions, we show in our156

case that it does. In other words, genetic drift (stochastic diffusion) is much more influential157

when population size is not constant. As an example with two host strains and two parasite158

types (Fig. 1), we pick the Moran process and the logistic independent reactions (logIR), which159

both have a pulling force as described above, but in the independent reactions model population160

size is not fixed, merely constrained.161

These single simulations are only a snapshot and one specific realisation of the process.162

Ideally, we would analytically derive extinction times depending on the parameters of the model.163

Yet, to derive an exact analytical solution for this problem is extremely challenging. In addition164

to, simulations, we have calculated the numerical (but exact) sojourn times and provide an165

approximative method based on the averaged drift (see Supplementary material S4 for further166
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Figure 2: Extinction time of one type of host or parasite for different average population
size of the parasite NP and six different models. We show the mean extinction time over 1000
independent simulations (dots) and the distribution of those extinction times (shaded area around
the mean). The simulations start with equal abundance of both types H1(0) = H2(0) = NH/2
and P1(0) = P2(0) = NP /2. Lines denote approximative results from the constant of motion
drift method (see Supplement S4). Parameters: NH = 250, wH = 0.5, wP = 1, α = 1, β = 0,
dP = 1, K = 500, λ0 = 4, λ = λ0

K , µ = bH
K but µ = 0 for the IR model. The birthrate bh

in the logIR model is chosen bh ∈ {0.24, 0.32, ..., 1.6} and with µ = 0 in the IR model without
competition bh ∈ {0.12, 0.16, ..., 0.8} to achieve the population sizes NP displayed.

details). These methods are limited to a subset of the seven models and can thus not be used for167

a comparison of all models, but only to support the computationally costly simulations which168

provide our now following main result.169

We simulate 1000 replicates for several parameter combinations and show that the more170

constrained a population size is (upper models in Table 2), the longer oscillations survive (higher171

extinction times in Figure 2). Thus, as a rule of thumb, the more flexible the population size172

is in a model, the more likely it is that classic Red Queen oscillations of genotype abundances173

subside in the long run. The lines for the discrete time processes in Figure 2 are results from174

an approximate average drift method using a constant of motion (Supplement S4), inspired by175

Claussen (2007); Claussen and Traulsen (2008). The error of this approach cannot be neglected,176

but the qualitative trend is clearly visible and the result is fully analytical. Counterintuitively,177

the population size freedom seems to have a stronger influence on extinction times than the178

stability of the coexistence fixed point, at least in the parameter region tested here. Due to the179

challenges of employing an exact analytical approach, we cannot analytically tune the models180

for the same amplitudes, fluctuations and frequencies/periods of oscillations. The specific choice181

of the parameters is not necessarily directly comparable, but we have made an effort to choose182

them in a meaningful way, such that the fixed points are exactly the same and amplitudes183

comparable. We choose strong selection for the parasite wP = 1 and weaker selection for the184
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Figure 3: Average extinction time for constant population sizes and different selection
intensities. The dtMoran and dtPC process are compared by the mean (�, ×) extinction times
and the standard deviation from simulations with the exact sojourn times (—, - -) calculated
analytically. The simulations start with equal abundance of both types H1(0) = H2(0) = NH/2
and P1(0) = P2(0) = NP /2. Parameters: NH = 250, wH = wP = 1, α = 1, β = 0. Note the log
scale and different ranges on the y-axis.

host wH = 0.5 in the models derived from Game Theory, because the logIR model is built185

in a similar way: Parasite birth can only occur through the antagonistic interaction, but host186

mortality is also influenced by the competition term. While the parasite is obligate and thus187

completely dependent on the host, the host possibly only suffers mildly from an infection. (The188

predator-prey “run for dinner vs. run for life” is reversed here: In predator-prey interactions189

the exploiter can choose a different dinner or hunt later, while in the host-parasite interaction190

the exploiter is an obligate and specialised parasite. One would thus expect a higher selection191

pressure on the prey, but a higher selection pressure on the parasite.)192

Although our focus lies on comparing the variability of the population size, other interesting193

features can be explored in the models we have chosen. We briefly provide some insight into194

global vs. local competition, the influence of selection intensity, and what happens when we195

increase the number of types and add an option for mutation. It would be beyond the scope196

of the paper to provide a complete analysis for all these extensions, thus we limit the results to197

some exemplary set-ups.198

We now go back to a constant population size and turn to the impact of selection intensity199

(in the Moran and PC process from Game Theory), which modulates the pulling force in models200

with an attractive fixed point. For a more robust result we compare the simulations (lines in201

Figure 3) with sojourn times (Supplement S5) calculated for the discrete time dtMoran and202

dtPC processes. Since only discrete time and discrete state processes can be represented by a203

transition matrix, we can only apply this approach to the discrete time constant population size204

processes.205

Although the Moran process has an attracting fixed point, intuitively making extinction206

times longer than in the PC process, for low population sizes and weak selection we see the207

opposite – fast extinction. Furthermore, while the extinction time increases exponentially with208

strong selection in the Moran process, the PC extinction times stay comparably constant, which209

is not surprising considering the neutral stability. One interesting and unexpected result is that210

extinction time is lower for increasing selection intensity of one species while keeping the other211

9

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/490201doi: bioRxiv preprint first posted online Dec. 7, 2018; 

http://dx.doi.org/10.1101/490201
http://creativecommons.org/licenses/by-nd/4.0/


0

25

50

75

100

125

150

175

200

ab
un

da
nc

e

P2

H2
H4
H6
H7
H8
H14
H15
H16
P2
P5
P16
P19

0 5 10 15 20 25
time

100

101

di
ve

rs
ity nH  

nP  

Figure 4: Diversity decline of subtypes of hosts and parasites. Example of a Moran process
implemented with a Gillespie algorithm. The simulations start with equal abundance of all 20
types Hi(0) = NH/20 and Pi(0) = NP /20. At time point t = 16 a well adapted but extinct
P2 = 1 is reintroduced manually, while P5 is reduced by one individual to keep NP constant.
Parameters: NH = 200, NP = 200, wH = wP = 1, α = 1, β = 0.

constant. This occurs when one of the selection intensities is very low (some lines are decreasing,212

especially for example wH = 0.1 and colours are reversed for fixed low values of wP ).213

214

So far we have compared models with two types in each species. We now provide an outlook215

of how diversity can decline for many types. The Moran process simulated with a Gillespie216

algorithm is updated such that the interaction matrix is normalised depending on the number of217

strains (otherwise there is an imbalance between matching and non-matching pairs which results218

in change of selection strength). Strains are constantly lost from the population with a constant219

rate as shown by the exponential decline in diversity (Figure 4).220

Oscillating selection can give an advantage to any type, but at different time points. A previ-221

ously extinct parasite type (P2) is reintroduced manually at time point 16, where the abundance222

of the corresponding host is especially high. Allowing the possibility for a re-introduction or223

mutation thus gives some types an extreme advantage if they are revived at the right time in224

which they are adapted perfectly.225

In reality, subtypes are not as static in their traits as described here, but one of our types can226

be seen as an average of several individuals with slightly different traits. We can now add a form227

of mutation or recombination to the model so that reproduction does not necessarily result in a228

clonal daughter, but a new individual with different traits. For example, parasites could evolve229

fast by allowing (beneficial) mutations to produce other (even extinct) genotypes. Depending230

on the model system, a sexually reproducing host could also store genetic material to revive231

long extinct phenotypes by recombination. We abstract both of these processes by starting with232

many pre-defined genotypes and inserting a conversion rate µ from one type to the neighbouring233

type. For example with five types, H1
µ/2−−→ H5 and H1

µ/2−−→ H2, etc.. The dynamics we now234
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Figure 5: Revival of types and evolution of diverse strains of hosts (top) and parasites
(middle) with conversion rate µH = 0.005 and µP = 0.01 to neighbouring types. Stacked plots:
the area covered by one colour is proportional to the relative abundance of that subtype of host
(top) or parasite (middle panel). Lower panel: total abundance of hosts and parasites. Exam-
ple of a logistic Independent Reaction (logIR) process implemented with a Gillespie algorithm.
The simulations start with equal abundance of all 5 types Hi(0) = NH/5 and Pi(0) = NP /5.
Parameters: NH = 300, NP = 900 (each initially), bH = 6, dP = 1, K = 600, λ0 = 10.

observe (Figure 5) are not pure Red Queen oscillations, but a mixture of oscillations and arms235

race dynamics, where selective sweeps can make a population monoclonal in a very short time,236

but a re-introduction of extinct times allows for short term Red Queen oscillations.237

4 Discussion238

We here provide a systematic comparison of seven related host-parasite co-evolution models and239

the resulting interaction dynamics. We demonstrate that the presence of stochastic effects and240

limited population size, which are likely common in nature, yet usually ignored in mathematical241

models, have a significant effect on evolutionary dynamics, often leading to rapid loss of genotypes242

and thus termination of Red Queen dynamics. In detail, the seven models are all based on the243

same widely used biological assumptions, but with differences in their mathematical properties:244

discrete and continuous time models with attractive or neutral deterministic dynamics in differ-245

ent dimensions. Instead of analysing only the deterministic versions, we have allowed genetic246

drift (intrinsic stochasticity) to govern the dynamics. We have found that flexible population247

sizes lead to a faster extinction of subtypes when genetic drift is allowed (Figures 1 and 2). We248

see that global competition stabilises the coexistence of types and leads to a prolonged period of249

oscillations when selection is strong. This effect is greater for large population sizes (Figure 3).250

Diversity (the number of types or strains present in the population) declines exponentially with251

time at a constant rate (Figure 4), but can be stabilised when types are allowed to mutate or252

recombine (Figure 5).253

254
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The models suggested here differ in many aspects, for example in the stability of the inner255

fixed point. Throughout the paper we discuss the flexibility of population size as the most in-256

fluential factor, but as population sizes increase, the stochastic models become more like their257

deterministic analogues, as intuitively expected. When the stability of the fixed point gains in258

importance, the dynamics are pulled more towards the inner equilibrium state, making stochas-259

ticity less influential. It is challenging to find the parameters that determine the tipping point260

from which drift becomes less influential and the pulling force of stable fixed points take over. An261

estimate can be made from the average drift method. Our results are mostly based on simula-262

tions owing to the complexity of stochastic models, but we have compared them with numerical263

results and even analytic approximations where possible. The infection pattern is restricted to264

the matching alleles model, yet other zero-sum infection matrices would not gain more qualitative265

insight into the outcome of extinction studied here.266

The term Red Queen has been used to explain several different phenomena, always following267

the metaphor describing co-evolution derived from Lewis Caroll’s children’s book ‘Through the268

looking glass’: you have to run to stay in the same place (because your surroundings are also269

running). Originally Van Valen (1973) observed that over millions of years taxa go extinct270

with a constant rate. In the Red Queen Hypothesis, he proposed that biotic forces, especially271

antagonistic interactions, are a source of changing selection pressure which can explain the law272

of constant extinction. He further envisioned a zero-sum game theory approach, at a time when273

Evolutionary Game Theory was being developed (Maynard Smith and Price, 1973). Bell (1982)274

then used the term Red Queen dynamics to describe oscillations of genotype relative abundances275

over time, without extinction. Since parasites are selected to target the most common resource276

and thus the most abundant host genotype, being a rare strain is advantageous for the host.277

This temporary high fitness makes the subtype grow in relative abundance, but before it can278

take over the whole population, it is severely diminished by new evolved parasites, which now279

target this common host type. Bell also put the spotlight on host-parasite interactions (rather280

than predator-prey or other victim-exploiter interactions) as the most influential antagonistic281

association, as they are common, often inter-dependent and exert the required high selective282

pressures on the interacting organisms. These dynamics are now often called fluctuating selection283

dynamics (oscillations of genotype abundances), to distinguish them from arms race dynamics284

(selective sweeps of new types taking over the population), but both are often referred to as Red285

Queen dynamics. The most prominent usage of the term Red Queen, is probably the Red Queen286

Hypothesis for the maintenance of sex (see reviews (Lively, 2010a; Neiman et al., 2017; Ashby287

and King, 2015; West et al., 1999)), which uses persistent changes of selection pressure (induced288

by parasites) to justify otherwise costly sexual reproduction.289

We propose here, that Red Queen dynamics are not as regular and ongoing as previously be-290

lieved and often illustrated. Even in the most simple and pure form of antagonistic interactions,291

as implemented in all models discussed here, oscillating selection dynamics cannot withstand a292

loss in diversity in the long run. The more complete picture includes all possibilities discussed293

in the Red Queen literature: there can be constant extinction, as suggested by Van Valen on294

a taxonomic level and there can be oscillations and arms race dynamics as suggested by host-295

parasite interactions and the resulting co-evolution. With our preliminary results we might be296

going too far if we also justify sexual reproduction, yet, without recombination or mutation,297

diversity decline is inevitable. If parasites can evolve more quickly due to shorter generation298

times and larger numbers, then hosts are given an advantage by being able to store genotypes299
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through recombination. See Neiman et al. (2017) for a comprehensive connection to the Red300

Queen Hypothesis for sexual reproduction. Here, we merely wish to show that under simple301

mathematical models, arising from the same verbal biological description, many possible dy-302

namics can occur. Our most important point remains an increased extinction under a variable303

population size, which we believe should be considered in modelling and when discussing the304

underlying co-evolutionary mechanisms of two antagonistic organisms.305

These model predictions may also apply to the real world. Bottlenecks are likely more306

common in natural host-parasite associations (Papkou et al., 2016) than usually assumed and,307

therefore, the interaction dynamics are likely shaped by genetic drift and, thus, stochastic effects.308

For example, seasonal epidemics in influenza are characterised by changes in diversity in the309

pathogen (Rambaut et al., 2008). While in Daphnia the epidemic size changes diversity in310

the host (Auld and Brand, 2017). Yet, cyclic oscillations of population sizes also occur on311

smaller time scales (Bjørnstad et al., 2001). In consideration of model results, it would thus312

be of particular importance to assess the occurrence of bottlenecks, drift and stochasticity in313

natural host-parasite associations and relate them to the resulting allele frequency dynamics.314

Such empirical data would help us to obtain a more general understanding of host-parasite315

co-evolution and the importance of Red Queen dynamics in this context.316
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