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ABSTRACT

Structural connectivity (SC), the physical pathways connecting regions in the brain, and
functional connectivity (FC), the temporal coactivations, are known to be tightly linked.
However, the nature of this relationship is still not understood. In the present study, we
examined this relation more closely in six separate human neuroimaging datasets with
different acquisition and preprocessing methods. We show that using simple linear
associations, the relation between an individual’s SC and FC is not subject specific for five
of the datasets. Subject specificity of SC-FC fit is achieved only for one of the six datasets,
the multimodal Glasser Human Connectome Project (HCP) parcellated dataset. We show
that subject specificity of SC-FC correspondence is limited across datasets due to relatively
small variability between subjects in SC compared with the larger variability in FC.

AUTHOR SUMMARY

We present evidence that, in most standard datasets, the subject variation in structural
connectivity (SC) may be too weak to be reflected in the functional connectivity (FC)
variability. However, subject specificity of SC-FC can be captured via fine, multimodally
parcellated data because of greater SC variability across subjects. Nonetheless, SC and FC
each show a large component that is common across subjects, which sets limitations on the
extent of SC-FC subject specificity. Implications of these findings for personalized medicine
should be considered. Namely, attention to the quality of processing and parcellation
methods is critical for furthering our understanding of the relationship between
individual SC and FC.

INTRODUCTION

It has been shown that there is a relationship between structural connectivity (SC), the phys-
ical white matter tracts between regions, and resting-state functional connectivity (FC), the
temporal coactivations between regions (Greicius, Supekar, Menon, & Dougherty, 2009;
Hermundstad et al., 2013; Honey, Kotter, Breakspear, & Sporns, 2007; Honey et al., 2009;
Koch, Norris, & Hund-Georgiadis, 2002; Misic et al., 2016; Ponce-Alvarez et al., 2015;
Skudlarski et al., 2008; van den Heuvel, Mandl, Kahn, & Hulshoff Pol, 2009; van den Heuvel
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Subject specificity and structural and functional connectivity

& Sporns, 2013) using both simple linear (Honey et al., 2009) as well as more complex metricsStructural connectivity:
The physical pathways connecting
regions in the brain; inferred from
diffusion MRI and tractography.

(Misic et al., 2016). Most of this research, however, considers group-averaged matrices of SC
and FC rather than individual connectomes. Motivated by the recent interest in personalized
medicine and precision science, there is a greater need to understand individual differences
and unique relationships between SC and FC. One important question is whether individual

Functional connectivity:
The temporal co-activations between
regions in the brain; derived by
calculating all pairwise correlations
of regional time series of resting-state
fMRI activity.

SC correlates with the corresponding subject’s FC to a greater extent than between subjects.
Correlations between whole-brain individual SC and FC have been associated with measures
of behavior or clinical conditions (Caeyenberghs, Leemans, Leunissen, Michiels, & Swinnen,
2013; Cocchi et al., 2014; Skudlarski et al., 2010; Zhang et al., 2011). Yet, there are very
few studies that investigate the subject specificity of this SC-FC correspondence (Honey et al.,

Subject specificity of SC-FC:
The finding that an SC correlates
better with its corresponding FC
(within-subject) than random pairing
with another subject’s FC
(between-subject).

2009; Meier et al., 2016), and as far as we know there are no studies that assert that individual
SC maps best onto its corresponding FC by using linear measures of association. One prelimi-
nary investigation conducted by Honey et al. (2009) examined this question; however, results
were inconclusive due to the limited sample size. Clearly, it is not well understood whether
there is a unique portion of variance in SC accounting for unique individual differences
in FC.

It has already been shown that individual structural and functional connectomes can be
sensitive to age (Zimmermann et al., 2016), personality traits (Markett et al., 2013), as well as
cognition, demographics, and behavior (Hearne, Mattingley, & Cocchi, 2016; Ponsoda et al.,
2017; S. Smith, 2016; S. M. Smith et al., 2015). Moreover, SC (Kumar, Desrosiers, Siddiqi,
Colliot, & Toews, 2017; Munsell, 2017; Yeh et al., 2016) as well as FC (Amico & Goñi, 2017;
Finn et al., 2015) can be used to identify individual connectome fingerprints. Nonetheless, the
extent of this individual variability has been called into question (Marrelec, Messe, Giron, &
Rudrauf, 2016; Waller et al., 2017), particularly for smaller sample sizes (Waller et al., 2017).
For instance, it has been shown that variability in FC can be explained by only one or two
dimensions, and that FC is highly degenerate in its ability to capture potential complexities
and variability in underlying dynamics (Marrelec et al., 2016).

Variance decomposition methods, such as principal components analysis (PCA), are helpful
for characterizing the strength of individual differences across connectomes (Amico & Goñi,
2017; Marrelec et al., 2016). PCA provides a simplified representation of the data by reducing
the existing variance into a smaller number of components. In this way, the portion of variance
that is common across subjects can be identified and separated from the unique aspects of
variance.

The aim of the present study was to investigate the subject specificity of the SC-FC rela-
tionship. The analyses were conducted on six datasets with variable acquisition schemes, pre-
processing methods, and sample sizes (N = 48, 626, 171, 766, 754, 754). Four of these were
variations of HCP data (Van Essen et al., 2013). We used simple linear measures of association
with bootstrapping to quantify the correspondence of within-subject and between-subject
SC-FC, and decomposition to quantify the extent of common and unique variability in SC
and FC across subjects.

METHODS

Data Acquisition and Preprocessing

The analyses were conducted on six MRI datasets of healthy subjects: the Berlin dataset
(N = 48; Ritter, Schirner, McIntosh, & Jirsa, 2013; Schirner, Rothmeier, Jirsa, McIntosh, &
Ritter, 2015; Zimmermann et al., 2016), the Nathan Kline Institute (NKI) Rockland dataset
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from the UMCD Multimodal connectivity database (N = 171; Brown, Rudie, Bandrowski,
Van Horn, & Bookheimer, 2012), and four variations from the HCP dataset (S900 release;
Van Essen et al., 2013) that differed in terms of processing methods as well as parcellation
schemes. These were the HCP Lausanne dataset (N = 626), HCP Glasser dataset (N = 766),
HCP Destrieux dataset (N = 754), and HCP Desikan-Killiany (DK) dataset (N = 754). Note that
sample size differences between HCP datasets were due to removal of subjects with problem-
atic parcellations. The HCP Glasser dataset was parcellated via a high-resolution multimodal
scheme based on an areal feature-based cross-subjects alignment method (Glasser et al., 2016).
The research was performed in compliance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki). Written, informed consent was provided by all subjects
with an understanding of the study prior to data collection, and was approved by the local
ethics committee in accordance with the institutional guidelines at Charité Hospital, Berlin,
UCLA, and HCP WU-Minn.

A detailed description of data acquisition procedures is presented in Supporting Information
Table S1 (Zimmermann, Griffiths, Schirner, Ritter, & McIntosh, 2019). Subject sample size, age
range, processing, and parcellation information are presented in Table 1, along with references
to previously published papers with these datasets. Quality control was described in detail in
those papers. For the Berlin and NKI Rockland dataset, noise correction was performed via
nuisance variable regression from the BOLD signal, including six motion parameters, mean
white matter, and CSF signals. For the HCP datasets, we used FIX-denoised data, a tool that
was trained to effectively remove components of the white matter, CSF, physiological noise,
and 24 high-pass-filtered motion parameters from the signal (Glasser et al., 2013).

SC and FC were derived via diffusion-weighted magnetic resonance imaging (dwMRI) and
resting-state blood oxygen dependent functional magnetic resonance imaging (rsfMRI BOLD),
respectively. Structural and functional data were parcellated into predefined regions of interest
(ROIs) that varied in size across datasets (68–378 cortical regions). Fiber track estimation was
performed on the diffusion data, and weight and distance SCs were computed by aggregating
tractography-based estimations of white matter streamlines between ROIs. Each entry in the
SC weights matrix was an estimate of the connection strength between a pair of ROIs. SC
distances were the Euclidian distances (Brown et al., 2012; Glasser et al., 2013; Hagmann
et al., 2008) or average length of tracks (Schirner et al., 2015) in millimeters between pairs of
ROIs. We corrected for SC distance by regressing distances from weight SCs and using residuals
for analysis (as tract length may have an effect on structure-function relations; Romero-Garcia,
Atienza, & Cantero, 2014). To account for age-related differences in parcellation and ROI size
in the Berlin dataset, SCs were weighted by the mean gray-matter white-matter interface area
of connected ROIs. FCs were computed as the Pearson’s correlation between each ROI pair
of BOLD time series, and were transformed to a normal distribution via a Fisher’s r to z.

Subject Specificity of SC-FC Predictions

We compared individual SC and FC within and between all subjects by using Pearson’s corre-
lations in order to determine whether individual SC correlates best with its own individual FC.
We constructed a matrix of size NSC × NFC (N = the number of subjects, NSC = NFC). The
diagonal of this matrix captures the intrasubject (within) SC-FC correlations; the off-diagonal
represents the intersubject (between) SC-FC (see Figure 1 for a visualization of this SC-FC ma-
trix). We corrected the p value of each correlation value in the resulting matrix for multiple
comparisons by using FDR (Matlab function fdr_bky; Benjamini, Krieger, & Yekutieli, 2006).
Note that associations between all individual SC and FC within and between all subjects was
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Table 1. Dataset details for six MRI diffusion and resting-state datasets, including sample sizes, preprocessing methods, and parcellation
schemes

Berlin
NKI

Rockland
HCP,

Lausanne
HCP,

Glasser
HCP,

Destrieux HCP, DK

Processing
reference

Schirner et al.,
2015

Brown et al.,
2012

Glasser et al.,
2013

Glasser et al.,
2013

Glasser et al.,
2013

Glasser et al.,
2013

Sample size 48 171 626 766 754 754

Subject ages
18–80
M = 41.90
SD = 18.47

5–85
M = 35.80
SD = 19.99

22–36
M = 28.65
SD = 3.66

22–37
M = 28.78
SD = 3.70

22–37
M = 28.78
SD = 3.70

22–37
M = 28.78
SD = 3.70

Parcellation
(ROIs)

Desikan-Killiany
(68)
(Desikan et al.,
2006)

Craddock
(188)

Lausanne
(83)
(Daducci et al.,
2012)

Glasser
(378)
(Glasser et al.,
2016)

Destrieux
(164)
(Destrieux, Fischl, Dale, &
Halgren, 2010)

Desikan-Killiany
(84)
(Desikan et al.,
2006)

Structural and diffusion processing

Software
method

FreeSurfer FreeSurfer &
Dipy

TrackVis
Diffusion Toolkit

HCP pipeline
(Glasser et al.,
2013)

HCP pipeline
(Glasser et al.,
2013)

HCP pipeline
(Glasser et al.,
2013)

Motion/eddy
correction

yes yes yes yes yes yes

Intensity
normalization

yes no yes yes yes yes

Tractography Probabilistic
(MRTrix)

Deterministic
(FACT)

Deterministic
(EuDX)

Probabilistic
(MRTrix)

Probabilistic
(MRTrix)

Probabilistic
(MRTrix)

SC metric

Voxel pairs
connected w
streamline, ROI
volume corrected

Streamline
count

Streamline
count

Weighted
streamline
count (SIFT2)
by cross-sectional
area

Weighted
streamline count
(SIFT2)

Weighted
streamline count
(SIFT2)

Functional processing

Software
method

Schirner et al.,
2015

fMRI FEAT Glasser et al.,
2013

Glasser et al.,
2013

Glasser et al.,
2013

Glasser et al.,
2013

Slice-timing no yes no no no no

Motion
correction

MCFLIRT MCFLIRT FIX denoise 6 DOF FLIRT
FIX denoise

6 DOF FLIRT
FIX denoise

6 DOF FLIRT
FIX denoise

Nuisance
regression

6 motion,
mean WM, CSF

24 motion,
mean WM,
CSF, volume

no no no no

Smoothing

no FWHM 5 mm
Gaussian

no Cort surf,
subcort vol,
FWHM 2 mm
Gaussian

Cort surf,
subcort vol,
FWHM 2 mm
Gaussian

Cort surf,
subcort vol,
FWHM 2 mm
Gaussian

Intensity
normalization

no yes no yes yes yes

Temporal
filtering

High-pass
100 s

Band-pass
0.08–0.009 Hz

no no no no

Registration
to standard
space

no MNI152 no MNI152
& surf-based
multimodal (MSMAll,
Robinson et al., 2014)

Motion scrub no yes no no no no
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Figure 1. Individual subject SCs and FCs were stacked into a subjects x connections matrix.
Subject-wise SC and FC were then correlated for all pairs of SC and FC (within and between sub-
jects). On-diagonals of this matrix represent within-subject SC-FC (SC-SelfFC); off-diagonals repre-
sent between-subject SC-FC (SC-OtherFC).

also performed via eigenvector correlations to complement the Pearson’s correlation method.Eigenvector correlations:
Calculated as the maximum
Pearson’s correlation between all
significant eigenvectors from PCA
decomposed individual SC and
decomposed individual FC.

This method is described in the Supporting Information (Zimmermann et al., 2019).

We conducted 1,000 bootstrapped means of SC-SelfFC correlations and 1,000 bootstrapped

SC-SelfFC:
Within-subject SC-FC Pearson’s
correlations; SC and FC are from
different subjects.

means of SC-OtherFC correlations (Matlab function bootstrp), plotting the two bootstrapped

SC-OtherFC:
Between-subject SC-FC Pearson’s
correlations; SC and FC are from the
same subject.

distributions against each other. To evaluate the statistical significance of the differences be-
tween the distributions, we subtracted the SC-OtherFC distribution from the SC-SelfFC distribu-
tion and constructed a 95% confidence interval on this difference distribution (Matlab function
prctile). To confirm our results, we conducted several secondary analysis. First, we conducted
a global signal regression in order to minimize the effects of global signal differences on indi-
vidual SC-FC relationships. We also logarithmized SCs and transformed them to a Gaussian
distribution by resampling (Honey et al., 2009) to correct for exponentially distributed con-
nection weights. Last, we used only SC present connections, as indirect connections may have
an unknown effect on FC (Honey et al., 2009).

Subject Variability in SC and in FC

We examined variability across subjects in SC as well as in FC via PCA. The objective was to
understand whether the lack of subject specificity of SC-FC in the Berlin, HCP Lausanne, and
NKI Rockland datasets was due to a large portion of common variance in the connectomes
across subjects overpowering existing individual differences. To this end, we decomposed the
subject-wise SC matrix (SC connections × subjects) and FC matrix (FC connections × subjects)
via the Matlab princomp function (subjects as variables). The breakdown of variability in SC
as well as FC across subjects was thus ascertained. From the PCA, we obtained for each prin-
cipal component (PC) the following: eigenvalues, principal component loadings per subject,
and principal component scores per each connection. To determine the significance of thePrincipal component scores:

Scores from PCA; here these
represent the weights of individual
connections toward the pattern
identified by each principal
component.

resulting eigenvalues, we generated null distributions of eigenvalues for each PC by permuting
the SC and the FC 100 times (scrambled across connections and subjects) and performing PCA
of the resulting matrices. A p value for each PC eigenvalue was obtained as the proportion of
times that the permuted eigenvalue exceeded the obtained eigenvalue.

We also computed the age effect on connectome variability by calculating the correlation,
via partial least squares, of age (age vector, size: subjects × 1) with the subjects’ principal
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coefficient loadings of the significant PCs (size: subjects × number of significant PCs). Partial
least squares is a multivariate method comparable with canonical correlation in that it
computes the relationship between two matrices via orthogonal latent variables (Krishnan,
Williams, McIntosh, & Abdi, 2011; McIntosh & Lobaugh, 2004).The significance of the result-
ing correlations was assessed via permutation testing (N = 1, 000) of the singular values from
singular value decomposition of the two matrices. Reliability of each principal component
subject loading to the latent variable was assessed via bootstrapping (N = 500). We thus were
able to compute how age corresponded to the significant variance across subjects.

Figure 2. Bivariate Pearson’s correlations are shown for all combinations of SC and FC within
and between subjects in the first column. Distribution histograms of bootstrapped means of
intra- (SC-SelfFC) and inter- (SC-OtherFC) correlations are shown in the second column. Each row
is a different dataset: A) Berlin B) HCP Lausanne C) Rockland D) HCP Glasser, E) HCP Destrieux
F) HCP DK.
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Table 2. Means and 95% CIs on the difference distribution, calculated as the difference between
the SC-SelfFC and SC-OtherFC distributions

Simple correlation
Dataset Mean CI
Berlin M = 0.0013 [−0.0169, 0.0190]
HCP, Lausanne M = 0.0016 [−0.0012, 0.0044]
NKI Rockland M = −5.8447e–04 [−0.0109, 0.0065]
HCP, Glasser M = 0.0032 [0.002, 0.0043]*
HCP, Destrieux M = −2.2348e–04 [−0.0019, 0.002]
HCP, DK M = 0.001 [−0.0001, 0.0017]
*Significant subject specificity, whereby the distribution of intrasubject SC-FC was higher than
the distribution of intersubject SC-FC.

RESULTS

Subject Specificity of SC-FC Predictions

We first quantified the SC-FC relationship at the group-average level. The correlation between
averaged SC and averaged FC was as follows: r = 0.59, 0.47, 0.41, 0.34, 0.40, 0.47, p < 0.001,
for Berlin, HCP Lausanne, NKI, HCP Glasser, HCP Destrieux, and HCP DK, respectively. At
the individual subject level, all subjects’ SCs were significantly correlated with all subjects’
FCs (between and within SC-FC; Pearson’s correlations, p < 0.001, FDR multiple comparison
correction, p < 0.001). However, we found that SC-FC correlations were subject specific only
for the HCP Glasser dataset, and not for the other datasets. This was assessed by comparing the
bootstrapped within-subject SC-FC correlation distribution (SC-SelfFC) with the bootstrapped
between-subject SC-FC correlation distribution (SC-OtherFC), as discussed in the Methods. See
Figure 2 for subject specificity assessed using the simple bivariate correlation, and Supporting
Information Figure S2 (Zimmermann et al., 2019) for subject specificity assessed using the
eigenvector correlation approach. Means and CIs on the difference distributions are shown
in Table 2 for simple correlations and Supporting Information Table S2 (Zimmermann et al.,
2019) for eigenvector correlations. The results were consistent using the two approaches.

In summary, we found that for all but the HCP Glasser dataset, a subject’s SC did not cor-
relate better with its own FC than with another subject’s FC. These results remained consistent
when using distance corrected SCs or only SC present connections. For the HCP Glasser
dataset, the within-subject SC-FC was significantly higher than the between-subject SC-FC.

Subject Variability in SC and in FC

Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, and Figure 8 show PCA results for Berlin, HCP
Lausanne, NKI, HCP Glasser, HCP Destrieux, and HCP DK data, respectively. For both SC and
FC across our datasets, the first component captured a very large portion of common variance
across subject. All subjects loaded heavily on this common PC1; these principal component
subject loadings are visualized in the bar plots on the right-hand side in Figures 3B–8B. The

Principal component subject
loadings:
Loadings from PCA; here these
represent the loadings of individual
subjects towards the pattern
identified by each principal
component.

principal component scores (i.e., reconstructed matrix from PC1) for this common PC are
visualized in the matrices on the left-hand side in Figures 3B–8B. These represent the features
of the connectome that were captured by PC1. The variance explained by this first common
PC was large in the SC (91, 80, 79, 91, and 93% variance explained for Berlin, HCP Lausanne,
NKI, HCP Glasser, HCP Destrieux, and HCP DK datasets, respectively) and lower in the FC (57,
70, 33, 74, and 80% variance explained for Berlin, HCP Lausanne, NKI, HCP Glasser, HCP
Destrieux, and HCP DK datasets, respectively). Eigenvalues for the first 30 PCs for all datasets
are shown in Supporting Information Table S3 (Zimmermann et al., 2019). It is noteworthy
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that the HCP Glasser SC showed the largest number of significant principal components (HCP
Glasser N = 12, Berlin = 1, HCP Lausanne = 7, NKI Rockland = 2, HCP Destrieux = 8, and
HCP DK = 7).

A second pattern of results that we observed across all datasets was that SC was less variable
than FC across subjects. There were fewer significant eigenvalues for the SC compared with
the FC (see Supporting Information Table S3, Zimmermann et al., 2019). From the figures
(Figures 3A–8A), the knee, or drop-off, in the variance explained by subsequent PCs (Cattell,
1966) was evidently sharper for the SC than the FC. Thus, although the common component
was dominant for both modalities, the second and later components explained a larger portion
of variance in the FC than in the SC.

Consistent with the above findings, we also noted differences between SC and FC in the
strength of the age-related differences. We found an age effect in the FC for all six datasets
(Berlin: r = 0.79, p < 0.001; HCP Lausanne: r = 0.42, p < 0.001; NKI: r = 0.63, p < 0.001;
HCP Glasser: r = 0.43, p < 0.001; HCP Destrieux: r = 0.40, p < 0.001; and HCP DK:
r = 0.38, p < 0.001). We found an age effect in the SC for two of the six datasets (Berlin
[nonsignificant]: r = 0.06, p = 0.68; HCP Lausanne [nonsignificant]: r = 0.12, p = 0.48;
NKI [significant]: r = 0.50, p < 0.001; HCP Glasser [significant]: r = 0.14, p = 0.035; HCP
Destrieux [nonsignificant]: r = 0.13, p = 0.13; and HCP DK [nonsignificant]: r = 0.13,
p = 0.05).

We compared brain volume across subjects to check for any age-related differences. For
the Berlin and the Rockland dataset, tissue segmentation was performed and partial volume
maps were derived using FSL FAST. Total brain volume was computed by summing the GM
and WM tissue volumes. Total brain volume across subjects was correlated with region-wise
SC (Berlin: r = 0.22, p = 0.14; Rockland: r = 0.18, p = 0.17) and FC (Berlin: r = 0.17,
p = 0.31; Rockland: r = 0.09, p = 0.40); no effect was found. Volume differences in the HCP
data were already accounted for via the FIX method.

Finally, it is noteworthy that our results remained robust following a number of secondary
analyses. These are described in detail in the Methods, and include the following: global
signal regression, including only SC present connections in the analyses, and logarithmizing
and resampling SCs to a Gaussian distribution. Because results remained robust against these
corrections, the results shown are those based on the original matrices. Please see Supporting
Information Table S2 (Zimmermann et al., 2019) for the PCA results on logarithmized SCs
redistributed to Gaussian.

DISCUSSION

Subject Specificity in SC-FC

Initial studies of SC-FC correspondence (Greicius et al., 2009; Honey et al., 2007; Honey
et al., 2009; Koch et al., 2002) show that there is a relationship between these two entities
via linear (Honey et al., 2009) as well as more complex methods (Misic et al., 2016). However,
there remains a gap in our understanding of how the two measures are related at the individual
level. In the present study, we showcase how individual SC corresponds with individual FC by
using simple linear metrics in six separate datasets (Berlin, HCP Lausanne, NKI Rockland, HCP
Glasser, HCP Destrieux, and HCP DK). The datasets differed in sample size, acquisition, and
processing methods as well as age spectrums. The question was whether the correspondence
of individual SC-FC matrices was greater than if two matrices were randomly paired.

Network Neuroscience 100



Subject specificity and structural and functional connectivity

Our results showed that although there is a correlation between group-averaged SC and FC,
replicating previous findings (Greicius et al., 2009; Hermundstad et al., 2013; Honey et al.,
2007; Honey et al., 2009; Koch et al., 2002; Misic et al., 2016; Ponce-Alvarez et al., 2015;
Skudlarski et al., 2008; van den Heuvel et al., 2009), the specificity of this SC-FC relationship
was not unique to an individual. Five of the datasets examined did not show subject specificity
of the SC-FC correspondence, so that within-subject SC-FC did not exceed random pairings
of SC-FC. This would suggest that individual SC cannot predict individual FC beyond chance.
However, when the analysis was conducted on the HCP data with the Glasser parcellation,
significant subject specificity was observed. This would suggest that while subject specificity
assessed on standard datasets via standard parcellation and processing methods is difficult to
ascertain, it may be obvious only when higher resolution data as well as finer parcellations
are used.

Our finding that intrasubject SC-FC correspondence exceeded intersubject SC-FC corre-
spondence for the HCP Glasser dataset, but not for the remaining datasets, supports the hy-
pothesis by Honey et al. (2009). Honey et al. (2009) speculated that the individual SC-FC fit
would be significant if shown on a large enough dataset of high fidelity. However, fidelity of
the data will depend on a number of factors, including the quality and rigor of the data ac-
quisition procedures, the processing methods (e.g., tractography), and the parcellation used.
The acquisition procedures alone were unlikely to be the sole driving factor behind subject
specificity, as these were consistent across the HCP data. We hypothesized that the superior
subject specificity of the Glasser HCP data (compared with the HCP Lausanne) was due to
the high-precision parcellation used (Glasser et al., 2016). However, these two HCP datasets
also differed in the tractography method (probabilistic vs. deterministic). Thus we endeavored
to reevaluate our findings post hoc by using two additional HCP datasets with probabilistic
tractography processed in the same way as the Glasser HCP, except with different parcellation
methods. We used the FreeSurfer convolution-based probabilistic Destrieux atlas (Destrieux
et al., 2010) and the DK atlas (Desikan et al., 2006). We did not find subject specificity with
the HCP Destrieux and the HCP DK, suggesting that the Glasser parcellation allows for a fit-
ting of individual structure and function that could not otherwise be observed. The Glasser
multimodal parcellation is based on functional properties with improved areal feature-based
cross-subject alignment, rather than solely geometric and morphological properties. Thus, the
method improves the neuroanatomical precision of individual parcellations. It is important
to point out that despite the improvement, the HCP Glasser dataset was only slightly better
than the others, and would not pass a direct head-to-head comparison since the presence of
significance in one dataset and the absence of significance in another does not mean the two
datasets are themselves significantly different.

Subject Specificity in SC-FC is Limited by Variability Within Modality

The second set of findings showed that the unique portion of variance that exists in either
modality alone is limited. This may restrict the portion of SC that can reasonably be captured
by individual FC. We had hypothesized that the lack of subject specificity in the Berlin, HCP
Lausanne, NKI Rockland, HCP Destrieux, and HCP DK dataset was due to a large portion of
common variance in the connectomes across subjects that overpowered any existing individual
differences. Indeed, our results confirmed that there is a large portion of common variance in
SC across subjects. This was the case regardless of the sample size, data quality, or parcellation.
Interestingly, even in the Glasser dataset, where SC-FC subject specificity was observed, the
common component was strikingly large. We did observe, however, that SC variability was
captured via a greater number of components in the Glasser dataset compared with the other
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datasets, suggesting greater interindividual differences in the SC. Although the smaller datasets
(e.g., Berlin) generally had fewer SC components, the variability that was observed in the HCP
Glasser SC was not merely due to sample size, as the HCP Destrieux and HCP DK datasets
were comparable to the HCP Glasser dataset in terms of sample size.

We also observed a large common component in the FC across subjects. However, this
component accounted for a smaller portion of total variance than the SC common component.
Moreover, a smaller number of significant variance components were found in the FC across
subjects compared with in the SC. Together, these results suggest that FC is more variable than
SC across subjects. This can also be observed in the striping of the SC-FC correspondence
matrix, where some FCs correlate strongly with all SCs, while others correlate very little with
all SCs. Note that this does not mean that individual differences in SC were not observed, but
rather that the variance in SC that maps onto the corresponding variance in FC is weaker than
one may expect intuitively.

In the FC, a significant portion of variance was related to age, particularly for the two datasets
with a wide age range (Berlin, NKI: age = 20–80, 5–85). This is consistent with previous reports
of age effects on FC (Andrews-Hanna et al., 2007; Damoiseaux et al., 2007; Ferreira & Busatto,
2013; Sala-Llonch et al., 2014). Interestingly, age did not account for a significant portion of
between-subjects variance in SC for four of the six datasets. We found an age effect in the SC
only for the HCP Glasser dataset and the NKI Rockland dataset. In the NKI Rockland dataset,
the large observed age effect in SC was likely a consequence of the wide age distribution and
the inclusion of child subjects. The gray-white matter boundary is ill defined in children, and
incomplete myelination results in weaker tractography-based estimation of SC (Deoni, Dean,
Remer, Dirks, & O’Muircheartaigh, 2015; Thompson et al., 2005).

The limited amount of between-subjects variability in both SC and FC that we observed
was comparable to findings by Marellec et al. (2016), where a large portion of variance was
accounted for by an invariant core that was consistent across subjects (SC: ∼86%; FC: ∼59%).
There it was shown that the invariant core of SC correlated with the invariant core of FC. Along
the same lines, Waller et al. (2017) suggested that the specificity of connectome fingerprinting
using FC was limited by the large amount of common variance across subjects.

The decomposition approach we used here was helpful for separating common and unique
variance, and identifying aspects of the connectome that express each portion of variance.
Data-driven classification algorithms like clustering are an alternate approach that can be
used to express similarities and differences between-subject connectomes (Amico et al., 2017;
Iraji et al., 2016). Recently, a consensus clustering algorithm has been introduced that can be
helpful for identifying how aspects of the connectome are combined to express these inter-
subject similarities and differences (Rasero, 2017).

Limitations on the Study of Variability Within Modality

The study of variability within SC and FC each faces its unique limitations. Variation in acquisi-
tion, processing, and connectome metrics as well as statistical methods may impact the extent
of between-subjects variability observed. For instance, for SC, the diffusion method, tractogra-
phy (Bonilha et al., 2015), SC metric (Buchanan, Pernet, Gorgolewski, Storkey, & Bastin, 2014),
or ROI size (Bonilha et al., 2015) have been shown to affect variability and reproducibility of
SCs. FC variability across subjects is affected by the choice of metric (Marrelec et al., 2016).
For example, the amount of common variance may be slightly higher when using correlation
compared with mutual information for the calculation of FC. On the other hand, the common
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component of FC that is invariant across subjects was comparable for dynamic and static FC
(Marrelec et al., 2016). Nonetheless, the correlation between SC and FC may be limited by the
dynamic fluctuation of FC on short time windows (Allen et al., 2014; Deco, Kringelbach, Jirsa,
& Ritter, 2016; Hutchison et al., 2013). SCs may better correlate with temporally stable rsFC
(Honey et al., 2009). To this end, we considered only SC present connections in a secondary
analysis, as these have been shown to have more stable resting-state FC (Shen et al., 2015).

One important question is whether increased between-subjects variation in the FC is a
consequence of nonneural influences such as vascular variability or head motion (Geerligs,
Tsvetanov, Cam, & Henson, 2017) or reflects real, meaningful variability in neural activation.
If meaningless between-subjects variability in FC can be reduced, FC has the best chance to
be able to capture subtle individual differences in SC. In addition to the corrections described
in the methods, FC between-subjects variability was minimized via a secondary global signal
regression (GSR) analysis (Berlin dataset, NKI Rockland dataset). Yet, lack of SC-FC subject-
specific correlation in five of the six persists despite these secondary analyses.

Future Directions

Computational models that investigate how SC gives rise to FC may be particularly helpful for
furthering our understanding of how individual SC and FC are linked (Jirsa, Sporns, Breakspear,
Deco, & McIntosh, 2010; Kringelbach, McIntosh, Ritter, Jirsa, & Deco, 2015; Kunze, Hunold,
Haueisen, Jirsa, & Spiegler, 2016; Ritter et al., 2013; Roy et al., 2014). The mechanisms
by which individual FC comes about from individual SC may be the key to understanding
subject-specific differences. To this end, parameters from generative models combining in-
dividual empirical SC and FC can be used (Schirner, McIntosh, Jirsa, Deco, & Ritter, 2018).
Variability in these parameters have already been shown to be useful for revealing individual
differences relevant for cognition (Falcon et al., 2016; Falcon et al., 2015; J. Zimmermann et al.,
2018). These parameters may even exceed the predictive capacity of individual connectomes
(Zimmermann et al., 2018).

ACKNOWLEDGMENTS

Data were provided (in part) by the Human Connectome Project, WU-Minn Consortium
(Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657), funded by
the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research,
and by the McDonnell Center for Systems Neuroscience at Washington University. The authors
gratefully acknowledge the computing time granted by the John von Neumann Institute for
Computing (NIC) and provided on the supercomputer JURECA at Jülich Supercomputing
Centre (JSC) (www.fz-juelich.de, Grant NIC 8344 and NIC 10276 to P.R.).

AUTHOR CONTRIBUTIONS

Joelle Zimmermann: Conceptualization; Data curation; Formal analysis; Funding acquisition;
Investigation; Methodology; Project administration; Software; Visualization; Writing – original
draft. Petra Ritter: Data curation; Funding acquisition; Writing – review & editing. Michael
Schirner: Data curation; Writing – review & editing. John Griffiths: Data curation. Randy
McIntosh: Funding acquisition; Supervision; Writing – review & editing.

FUNDING INFORMATION

Petra Ritter, John von Neumann Institute for Computing, Award ID: 8344 & 10276. Randy
McIntosh, NSERC, Award ID: RGPIN-2017-06793. Petra Ritter, German Ministry of Education

Network Neuroscience 103

www.fz-juelich.de


Subject specificity and structural and functional connectivity

and Research: US-German Collaboration in Computational Neuroscience, Award ID:
01GQ1504A. Petra Ritter, German Ministry of Education and Research: Bernstein Focus State
Dependencies of Learning, Award ID: 01GQ0971-5. Petra Ritter, European Union Horizon
2020, Award ID: ERC Consolidator Grant BrainModes 683049. Petra Ritter, Stiftung Charité/
Private Exzellenzinitiative Johanna QuandtPetra Ritter, Berlin Instititute of Health (BIH Johanna
Quandt Professorship for Brain Simulation)

REFERENCES

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele,
T., & Calhoun, V. D. (2014). Tracking whole-brain connectivity
dynamics in the resting state. Cerebral Cortex, 24(3), 663–676.
https://doi.org/10.1093/cercor/bhs352

Amico, E., & Goñi, J. (2017). The quest for identifiability in hu-
man functional connectomes. arXiv. https://doi.org/arxiv:1707.
02365

Amico, E., Marinazzo, D., Di Perri, C., Heine, L., Annen, J., Martial,
C., . . . Goni, J. (2017). Mapping the functional connectome traits
of levels of consciousness. NeuroImage, 148, 201–211. https://
doi.org/10.1016/j.neuroimage.2017.01.020

Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head,
D., Raichle, M. E., & Buckner, R. L. (2007). Disruption of large-
scale brain systems in advanced aging. Neuron, 56(5), 924–935.
https://doi.org/10.1016/j.neuron.2007.10.038

Bonilha, L., Gleichgerrcht, E., Fridriksson, J., Rorden, C., Breedlove,
J. L., Nesland, T., . . . Focke, N. K. (2015). Reproducibility of
the structural brain connectome derived from diffusion tensor
imaging. PLoS One, 10(8), e0135247. https://doi.org/10.1371/
journal.pone.0135247

Brown, J. A., Rudie, J. D., Bandrowski, A., Van Horn, J. D., &
Bookheimer, S. Y. (2012). The UCLA multimodal connectivity
database: A web-based platform for brain connectivity matrix
sharing and analysis. Frontiers in Neuroinformatics, 6, 28. https://
doi.org/10.3389/fninf.2012.00028

Buchanan, C. R., Pernet, C. R., Gorgolewski, K. J., Storkey, A. J.,
& Bastin, M. E. (2014). Test-retest reliability of structural brain
networks from diffusion MRI. NeuroImage, 86, 231–243. https://
doi.org/10.1016/j.neuroimage.2013.09.054

Caeyenberghs, K., Leemans, A., Leunissen, I., Michiels, K., &
Swinnen, S. P. (2013). Topological correlations of structural and
functional networks in patients with traumatic brain injury.
Frontiers in Neuroscience, 7, 726. https://doi.org/10.3389/fnhum.
2013.00726

Cattell, R. B. (1966). The scree test for the number of factors.
Multivariate Behavioral Research, 1(2), 245–276. https://doi.org/
10.1207/s15327906mbr0102_10

Cocchi, L., Harding, I. H., Lord, A., Pantelis, C., Yucel, M., &
Zalesky, A. (2014). Disruption of structure-function coupling in the
schizophrenia connectome. NeuroImage Clinical, 4, 779–787.
https://doi.org/10.1016/j.nicl.2014.05.004

Daducci, A., Gerhard, S., Griffa, A., Lemkaddem, A., Cammoun, L.,
Gigandet, X., . . . Thiran, J. P. (2012). The connectome mapper:
an open-source processing pipeline to map connectomes with
MRI. PLoS One, 7(12), e48121. https://doi.org/10.1371/journal.
pone.0048121

Damoiseaux, J. S., Beckmann, C. F., Arigita, E. J., Barkhof,
F., Scheltens, P., Stam, C. J., . . . Rombouts, S. A. (2007). Re-
duced resting-state brain activity in the “default network” in
normal aging. Cerebral Cortex. https://doi.org/10.1093/cercor/
bhm207

Deco, G., Kringelbach, M. L., Jirsa, V., & Ritter, P. (2016). The dy-
namics of resting fluctuations in the brain: Metastability and its
dynamical cortical core. bioRxiv. https://doi.org/10.1101/065284

Deoni, S. C., Dean, D. C., 3rd, Remer, J., Dirks, H., &
O’Muircheartaigh, J. (2015). Cortical maturation and myelina-
tion in healthy toddlers and young children. NeuroImage, 115,
147–161. https://doi.org/10.1016/j.neuroimage.2015.04.058

Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson,
B. C., Blacker, D., . . . Killiany, R. J. (2006). An automated labeling
system for subdividing the human cerebral cortex on MRI scans
into gyral based regions of interest. NeuroImage, 31(3), 968–980.
https://doi.org/10.1016/j.neuroimage.2006.01.021

Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Auto-
matic parcellation of human cortical gyri and sulci using standard
anatomical nomenclature. NeuroImage, 53(1), 1–15. https://doi.
org/10.1016/j.neuroimage.2010.06.010

Falcon, M. I., Riley, J. D., Jirsa, V., McIntosh, A. R., Chen, E. E.,
& Solodkin, A. (2016). Functional mechanisms of recovery after
chronic stroke: Modeling with the virtual brain. eNeuro, 3(2).
https://doi.org/10.1523/ENEURO.0158-15.2016

Falcon, M. I., Riley, J. D., Jirsa, V., McIntosh, A. R., Shereen, A. D.,
Chen, E. E., & Solodkin, A. (2015). The virtual brain: Modeling
biological correlates of recovery after chronic stroke. Frontiers in
Neurology, 6, 228. https://doi.org/10.3389/fneur.2015.00228

Ferreira, L. K., & Busatto, G. F. (2013). Resting-state functional con-
nectivity in normal brain aging. Neuroscience & Biobehavioral
Reviews, 37(3), 384–400. https://doi.org/10.1016/j.neubiorev.
2013.01.017

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J.,
Chun, M. M., . . . Constable, R. I. (2015). Functional connectome
fingerprinting: Identifying individuals using patterns of brain
connectivity.NatureNeuroscience,18(11), 1664–1671.https://doi.
org/10.1038/nn.4135

Geerligs, L., Tsvetanov, K. A., Cam, C., & Henson, R. N. (2017).
Challenges in measuring individual differences in functional con-
nectivity using fMRI: The case of healthy aging. Human Brain
Mapping, 38(8), 4125–4156. https://doi.org/10.1002/hbm.23653

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D.,
Harwell, J., Yacoub, E., . . . Van Essen, D. C. (2016). A multi-
modal parcellation of human cerebral cortex. Nature, 536(7615),
171–178. https://doi.org/10.1038/nature18933

Network Neuroscience 104

https://dx.doi.org/10.1093/cercor/bhs352
https://dx.doi.org/arxiv:1707.02365
https://dx.doi.org/arxiv:1707.02365
https://dx.doi.org/10.1016/j.neuroimage.2017.01.020
https://dx.doi.org/10.1016/j.neuroimage.2017.01.020
https://dx.doi.org/10.1016/j.neuron.2007.10.038
https://dx.doi.org/10.1371/journal.pone.0135247
https://dx.doi.org/10.1371/journal.pone.0135247
https://dx.doi.org/10.3389/fninf.2012.00028
https://dx.doi.org/10.3389/fninf.2012.00028
https://dx.doi.org/10.1016/j.neuroimage.2013.09.054
https://dx.doi.org/10.1016/j.neuroimage.2013.09.054
https://dx.doi.org/10.3389/fnhum.2013.00726
https://dx.doi.org/10.3389/fnhum.2013.00726
https://dx.doi.org/10.1207/s15327906mbr0102_10
https://dx.doi.org/10.1207/s15327906mbr0102_10
https://dx.doi.org/10.1016/j.nicl.2014.05.004
https://dx.doi.org/10.1371/journal.pone.0048121
https://dx.doi.org/10.1371/journal.pone.0048121
https://dx.doi.org/10.1093/cercor/bhm207
https://dx.doi.org/10.1093/cercor/bhm207
https://dx.doi.org/10.1101/065284
https://dx.doi.org/10.1016/j.neuroimage.2015.04.058
https://dx.doi.org/10.1016/j.neuroimage.2006.01.021
https://dx.doi.org/10.1016/j.neuroimage.2010.06.010
https://dx.doi.org/10.1016/j.neuroimage.2010.06.010
https://dx.doi.org/10.1523/ENEURO.0158-15.2016
https://dx.doi.org/10.3389/fneur.2015.00228
https://dx.doi.org/10.1016/j.neubiorev.2013.01.017
https://dx.doi.org/10.1016/j.neubiorev.2013.01.017
https://dx.doi.org/10.1038/nn.4135
https://dx.doi.org/10.1038/nn.4135
https://dx.doi.org/10.1002/hbm.23653
https://dx.doi.org/10.1038/nature18933


Subject specificity and structural and functional connectivity

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S.,
Fischl, B., Andersson, J. L., . . . Consortium, W. U.-M. H.
(2013). The minimal preprocessing pipelines for the Human
Connectome Project. NeuroImage, 80, 105–124. https://doi.org/
10.1016/j.neuroimage.2013.04.127

Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009).
Resting-state functional connectivity reflects structural connec-
tivity in the default mode network. Cerebral Cortex, 19(1), 72–78.
https://doi.org/10.1093/cercor/bhn059

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J.,
Wedeen, V., & Sporns, O. (2008). Mapping the structural core of
human cerebral cortex. PloS Biology, 6(7), 1479–1493. https://
doi.org/e15910.1371/journal.pbio.0060159

Hearne, L. J., Mattingley, J. B., & Cocchi, L. (2016). Functional
brain networks related to individual differences in human intelli-
gence at rest. ScientificReports, 6, 32328.https://doi.org/10.1038/
srep32328

Hermundstad, A. M., Bassett, D. S., Brown, K. S., Aminoff, E. M.,
Clewett, D., Freeman, S., . . . Carlson, J. M. (2013). Structural
foundations of resting-state and task-based functional connectiv-
ity in the human brain. Proceedings of the National Academy of
Sciences of the United States of America, 110(15), 6169–6174.
https://doi.org/10.1073/pnas.1219562110

Honey, C. J., Kotter, R., Breakspear, M., & Sporns, O. (2007). Net-
work structure of cerebral cortex shapes functional connectivity
on multiple time scales. Proceedings of the National Academy of
Sciences of the United States of America, 104(24), 10240–10245.

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P.,
Meuli, R., & Hagmann, P. (2009). Predicting human resting-
state functional connectivity from structural connectivity. Pro-
ceedings of the National Academy of Sciences of the United
States of America, 106(6), 2035–2040. https://doi.org/10.1073/
pnas.0811168106

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A.,
Calhoun, V. D., Corbetta, M., . . . Chang, C. (2013). Dynamic
functional connectivity: promise, issues, and interpretations.
NeuroImage, 80, 360–378.https://doi.org/10.1016/j.neuroimage.
2013.05.079

Iraji, A., Calhoun, V. D., Wiseman, N. M., Davoodi-Bojd, E.,
Avanaki, M. R. N., Haacke, E. M., & Kou, Z. (2016). The con-
nectivity domain: Analyzing resting state fMRI data using feature-
based data-driven and model-based methods. NeuroImage, 134,
494–507. https://doi.org/10.1016/j.neuroimage.2016.04.006

Jirsa, V. K., Sporns, O., Breakspear, M., Deco, G., & McIntosh, A. R.
(2010). Towards the virtual brain: Network modeling of the intact
and the damaged brain. Archives Italiennes de Biologie, 148(3),
189–205.

Jülich Supercomputing Centre. (2016). JURECA: General-purpose
supercomputer at Jülich Supercomputing Centre. Journal of Large-
Scale Research Facilities, 2, A62. https://doi.org/10.17815/jlsrf-
2-121

Koch, M. A., Norris, D. G., & Hund-Georgiadis, M. (2002). An
investigation of functional and anatomical connectivity using
magnetic resonance imaging. NeuroImage, 16(1), 241–250. https://
doi.org/10.1006/nimg.2001.1052

Kringelbach, M. L., McIntosh, A. R., Ritter, P., Jirsa, V. K., & Deco,
G. (2015). The rediscovery of slowness: Exploring the timing of

cognition. Trends in Cognitive Sciences, 19(10), 616–628. https://
doi.org/10.1016/j.tics.2015.07.011

Krishnan, A., Williams, L. J., McIntosh, A. R., & Abdi, H. (2011).
Partial least squares (PLS) methods for neuroimaging: A tutorial
and review. NeuroImage, 56(2), 455–475. https://doi.org/10.1016/
j.neuroimage.2010.07.034

Kumar, K., Desrosiers, C., Siddiqi, K., Colliot, O., & Toews, M.
(2017). Fiberprint: A subject fingerprint based on sparse code
pooling for white matter fiber analysis. NeuroImage, 158, 242–259.
https://doi.org/10.1016/j.neuroimage.2017.06.083

Kunze, T., Hunold, A., Haueisen, J., Jirsa, V., & Spiegler, A.
(2016). Transcranial direct current stimulation changes resting
state functional connectivity: A large-scale brain network model-
ing study. NeuroImage, 140, 174–187. https://doi.org/10.1016/
j.neuroimage.2016.02.015

Markett, S., Weber, B., Voigt, G., Montag, C., Felten, A., Elger, C.,
& Reuter, M. (2013). Intrinsic connectivity networks and person-
ality: The temperament dimension harm avoidance moderates
functional connectivity in the resting brain. Neuroscience, 240,
98–105. https://doi.org/10.1016/j.neuroscience.2013.02.056

Marrelec, G., Messe, A., Giron, A., & Rudrauf, D. (2016). Func-
tional connectivity’s degenerate view of brain computation.
PLoS Computational Biology, 12(10), e1005031. https://doi.org/
10.1371/journal.pcbi.1005031

McIntosh, A. R., & Lobaugh, N. J. (2004). Partial least squares anal-
ysis of neuroimaging data: Applications and advances. Neuro-
Image, 23, Suppl 1, S250–263.

Meier, J., Tewarie, P., Hillebrand, A., Douw, L., van Dijk, B. W.,
Stufflebeam, S. M., & Van Mieghem, P. (2016). A mapping
between structural and functional brain networks. Brain Connec-
tivity, 6(4), 298–311. https://doi.org/10.1089/brain.2015.0408

Misic, B., Betzel, R. F., de Reus, M. A., van den Heuvel, M. P.,
Berman, M. G., McIntvosh, A. R., & Sporns, O. (2016). Network-
level structure-function relationships in human neocortex.
Cerebral Cortex, 26(7), 3285–3296. https://doi.org/10.1093/cercor/
bhw089

Munsell, B. C., Hofesmann, E., Delgaizo, J., Styner, M., & Bonilha,
L. (2017). Identifying subnetwork fingerprints in structural con-
nectomes: A data-driven approach. International Workshop on
Connectomics in Neuroimaging. https://link.springer.com/chapter/
10.1007/978-3-319-67159-8_10

Ponce-Alvarez, A., Deco, G., Hagmann, P., Romani, G. L.,
Mantini, D., & Corbetta, M. (2015). Resting-state temporal syn-
chronization networks emerge from connectivity topology and
heterogeneity. PLoS Computational Biology, 11(2), e1004100.
https://doi.org/10.1371/journal.pcbi.1004100

Ponsoda, V., Martinez, K., Pineda-Pardo, J. A., Abad, F. J., Olea, J.,
Roman, F. J., . . . Colom, R. (2017). Structural brain connectiv-
ity and cognitive ability differences: A multivariate distance ma-
trix regression analysis. Human Brain Mapping, 38(2), 803–816.
https://doi.org/10.1002/hbm.23419

Rasero, J., Pellicoro, M., Angelini, L., Cortes, J. M., Marinazzo,
D., & Stramaglia, S. (2017). Consensus clustering approach to
group brain connectivity matrices. Network Neuroscience, 1(3),
242–253. https://doi.org/10.1162/netn_a_00017

Ritter, P., Schirner, M., McIntosh, A. R., & Jirsa, V. K. (2013). The
virtual brain integrates computational modeling and multimodal

Network Neuroscience 105

https://dx.doi.org/10.1016/j.neuroimage.2013.04.127
https://dx.doi.org/10.1016/j.neuroimage.2013.04.127
https://dx.doi.org/10.1093/cercor/bhn059
https://dx.doi.org/e15910.1371/journal.pbio.0060159
https://dx.doi.org/e15910.1371/journal.pbio.0060159
https://dx.doi.org/10.1038/srep32328
https://dx.doi.org/10.1038/srep32328
https://dx.doi.org/10.1073/pnas.1219562110
https://dx.doi.org/10.1073/pnas.0811168106
https://dx.doi.org/10.1073/pnas.0811168106
https://dx.doi.org/10.1016/j.neuroimage.2013.05.079
https://dx.doi.org/10.1016/j.neuroimage.2013.05.079
https://dx.doi.org/10.1016/j.neuroimage.2016.04.006
https://dx.doi.org/10.17815/jlsrf-2-121
https://dx.doi.org/10.17815/jlsrf-2-121
https://dx.doi.org/10.1006/nimg.2001.1052
https://dx.doi.org/10.1006/nimg.2001.1052
https://dx.doi.org/10.1016/j.tics.2015.07.011
https://dx.doi.org/10.1016/j.tics.2015.07.011
https://dx.doi.org/10.1016/j.neuroimage.2010.07.034
https://dx.doi.org/10.1016/j.neuroimage.2010.07.034
https://dx.doi.org/10.1016/j.neuroimage.2017.06.083
https://dx.doi.org/10.1016/j.neuroimage.2016.02.015
https://dx.doi.org/10.1016/j.neuroimage.2016.02.015
https://dx.doi.org/10.1016/j.neuroscience.2013.02.056
https://dx.doi.org/10.1371/journal.pcbi.1005031
https://dx.doi.org/10.1371/journal.pcbi.1005031
https://dx.doi.org/10.1089/brain.2015.0408
https://dx.doi.org/10.1093/cercor/bhw089
https://dx.doi.org/10.1093/cercor/bhw089
https://link.springer.com/chapter/10.1007/978-3-319-67159-8_10
https://link.springer.com/chapter/10.1007/978-3-319-67159-8_10
https://dx.doi.org/10.1371/journal.pcbi.1004100
https://dx.doi.org/10.1002/hbm.23419
https://dx.doi.org/https://doi.org/10.1162/netn_a_00017


Subject specificity and structural and functional connectivity

neuroimaging. Brain Connectivity, 3(2), 121–145. https://doi.org/
10.1089/brain.2012.0120

Romero-Garcia, R., Atienza, M., & Cantero, J. L. (2014). Pre-
dictors of coupling between structural and functional corti-
cal networks in normal aging. Human Brain Mapping, 35(6),
2724–2740. https://doi.org/10.1002/hbm.22362

Roy, D., Sigala, R., Breakspear, M., McIntosh, A. R., Jirsa, V. K.,
Deco, G., & Ritter, P. (2014). Using the virtual brain to reveal
the role of oscillations and plasticity in shaping brain’s dynamical
landscape. Brain Connectivity, 4(10), 791–811. https://doi.org/
10.1089/brain.2014.0252

Sala-Llonch, R., Junque, C., Arenaza-Urquijo, E. M., Vidal-Pineiro,
D., Valls-Pedret, C., Palacios, E. M., . . . Bartres-Faz, D. (2014).
Changes in whole-brain functional networks and memory per-
formance in aging. Neurobiology of Aging, 35(10), 2193–2202.
https://doi.org/10.1016/j.neurobiolaging.2014.04.007

Schirner, M., McIntosh, A. R., Jirsa, V., Deco, G., & Ritter, P.
(2018). Inferring multi-scale neural mechanisms with brain net-
work modelling. Elife, 7. https://doi.org/10.7554/eLife.28927

Schirner, M., Rothmeier, S., Jirsa, V. K., McIntosh, A. R., & Ritter,
P. (2015). An automated pipeline for constructing personalized
virtual brains from multimodal neuroimaging data. NeuroImage,
117, 343–357. https://doi.org/10.1016/j.neuroimage.2015.03.055

Shen, K., Misic, B., Cipollini, B. N., Bezgin, G., Buschkuehl, M.,
Hutchison, R. M., . . . Berman, M. G. (2015). Stable long-range
interhemispheric coordination is supported by direct anatomical
projections. Proceedings of the National Academy of Sciences of
the United States of America, 112(20), 6473–6478. https://doi.
org/10.1073/pnas.1503436112

Skudlarski, P., Jagannathan, K., Anderson, K., Stevens, M. C.,
Calhoun, V. D., Skudlarska, B. A., & Pearlson, G. (2010). Brain
connectivity is not only lower but different in schizophrenia:
A combined anatomical and functional approach. Biological
Psychiatry, 68(1), 61–69. https://doi.org/10.1016/j.biopsych.
2010.03.035

Skudlarski, P., Jagannathan, K., Calhoun, V. D., Hampson, M.,
Skudlarska, B. A., & Pearlson, G. (2008). Measuring brain con-
nectivity: Diffusion tensor imaging validates resting state tem-
poral correlations. NeuroImage, 43(3), 554–561. https://doi.org/
10.1016/j.neuroimage.2008.07.063

Smith, S. (2016). Linking cognition to brain connectivity. Nature
Neuroscience, 19(1), 7–9. https://doi.org/10.1038/nn.4206

Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., Behrens,
T. E., Glasser, M. F., . . . Miller, K. L. (2015). A positive-negative
mode of population covariation links brain connectivity, demo-
graphics and behavior. Nature Neuroscience, 18(11), 1565–1567.
https://doi.org/10.1038/nn.4125

Thompson, P. M., Sowell, E. R., Gogtay, N., Giedd, J. N., Vidal,
C. N., Hayashi, K. M., . . . Toga, A. W. (2005). Structural MRI
and brain development. International Review of Neurobiology,
67, 285–323. https://doi.org/10.1016/S0074-7742(05)67009-2

van den Heuvel, M. P., Mandl, R. C., Kahn, R. S., & Hulshoff Pol,
H. E. (2009). Functionally linked resting-state networks reflect
the underlying structural connectivity architecture of the human
brain. Human Brain Mapping, 30(10), 3127–3141. https://doi.
org/10.1002/hbm.20737

van den Heuvel, M. P., & Sporns, O. (2013). An anatomical sub-
strate for integration among functional networks in human cor-
tex. Journal of Neuroscience, 33(36), 14489–14500. https://doi.
org/10.1523/JNEUROSCI.2128-13.2013

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E.,
Ugurbil, K., & Consortium, W. U.-M. H. (2013). The WU-Minn
Human Connectome Project: An overview. NeuroImage, 80,
62–79. https://doi.org/10.1016/j.neuroimage.2013.05.041

Waller, L., Walter, H., Kruschwitz, J. D., Reuter, L., Muller, S.,
Erk, S., & Veer, I. M. (2017). Evaluating the replicability, speci-
ficity, and generalizability of connectome fingerprints. Neuro-
Image, 158, 371–377.https://doi.org/10.1016/j.neuroimage.2017.
07.016

Yeh, F. C., Vettel, J. M., Singh, A., Poczos, B., Grafton, S. T.,
Erickson, K. I., . . . Verstynen, T. D. (2016). Quantifying dif-
ferences and similarities in whole-brain white matter architec-
ture using local connectome fingerprints. PLoS Computational
Biology, 12(11), e1005203. https://doi.org/10.1371/journal.pcbi.
1005203

Zhang, Z., Liao, W., Chen, H., Mantini, D., Ding, J. R., Xu, Q., . . .
Lu, G. (2011). Altered functional-structural coupling of large-
scale brain networks in idiopathic generalized epilepsy. Brain,
134, 2912–2928. https://doi.org/10.1093/brain/awr223

Zimmermann, J., Griffiths, J., Schirner, M., Ritter, P., & McIntosh,
A. R. (2019). Supporting information for “Subject specificity of
thecorrelation between large-scale structural and functional con-
nectivity.” Network Neuroscience, 3(1), 90–106. https://doi.org/
10.1162/netn_a_00055

Zimmermann, J., Perry, A., Breakspear, M., Schirner, M., Sachdev,
P., Wen, W., . . . Solodkin, A. (2018). Differentiation of
Alzheimer’s disease based on local and global parameters in
personalized Virtual Brain models. bioRxiv. https://doi.org/10.
1101/277624

Zimmermann, J., Ritter, P., Shen, K., Rothmeier, S., Schirner, M., &
McIntosh, A. R. (2016). Structural architecture supports func-
tional organization in the human aging brain at a regionwise
and network level. Human Brain Mapping, 37(7), 2645–2661.
https://doi.org/10.1002/hbm.23200

Network Neuroscience 106

https://dx.doi.org/10.1089/brain.2012.0120
https://dx.doi.org/10.1089/brain.2012.0120
https://dx.doi.org/10.1002/hbm.22362
https://dx.doi.org/10.1089/brain.2014.0252
https://dx.doi.org/10.1089/brain.2014.0252
https://dx.doi.org/10.1016/j.neurobiolaging.2014.04.007
https://dx.doi.org/10.7554/eLife.28927
https://dx.doi.org/10.1016/j.neuroimage.2015.03.055
https://dx.doi.org/10.1073/pnas.1503436112
https://dx.doi.org/10.1073/pnas.1503436112
https://dx.doi.org/10.1016/j.biopsych.2010.03.035
https://dx.doi.org/10.1016/j.biopsych.2010.03.035
https://dx.doi.org/10.1016/j.neuroimage.2008.07.063
https://dx.doi.org/10.1016/j.neuroimage.2008.07.063
https://dx.doi.org/10.1038/nn.4206
https://dx.doi.org/10.1038/nn.4125
https://dx.doi.org/10.1016/S0074-7742(05)67009-2
https://dx.doi.org/10.1002/hbm.20737
https://dx.doi.org/10.1002/hbm.20737
https://dx.doi.org/10.1523/JNEUROSCI.2128-13.2013
https://dx.doi.org/10.1523/JNEUROSCI.2128-13.2013
https://dx.doi.org/10.1016/j.neuroimage.2013.05.041
https://dx.doi.org/10.1016/j.neuroimage.2017.07.016
https://dx.doi.org/10.1016/j.neuroimage.2017.07.016
https://dx.doi.org/10.1371/journal.pcbi.1005203
https://dx.doi.org/10.1371/journal.pcbi.1005203
https://dx.doi.org/10.1093/brain/awr223
https://dx.doi.org/10.1162/netn_a_00055
https://dx.doi.org/10.1162/netn_a_00055
https://dx.doi.org/10.1101/277624
https://dx.doi.org/10.1101/277624
https://dx.doi.org/10.1002/hbm.23200


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


