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In this paper we present a method for numerical computation of collective Thomson scatter-
ing. We developed a forward model, eCTS, in the electrostatic approximation and bench-
marked it against a full electromagnetic model. Differences between the electrostatic and the
electromagnetic models are discussed. The sensitivity of the results to the ion temperature
and the plasma composition is demonstrated. We integrated the model into the Bayesian
data analysis framework Minerva and used it for the analysis of noisy synthetic data sets
produced by a full electromagnetic model. It is shown that eCTS can be used for the infer-
ence of the bulk ion temperature. The model has been used to infer the bulk ion temperature
from the first CTS measurements on Wendelstein 7-X.

Keywords: warm magnetized plasma; coherent Thomson scattering; electrostatic approxima-
tion; Bayesian inference

I. INTRODUCTION

The most advanced concepts for energy generation by
controlled nuclear fusion rely on the magnetic confine-
ment of a hot plasma of the hydrogen isotopes deuterium
and tritium – in a toroidal geometry. The international
flagship project ITER, a reactor of the tokamak-type, has
been designed to produce 500 MW of fusion power, ten
times more than the power needed to sustain the reac-
tion. While the tokamak is furthest developed in terms
of performance, another toroidal magnetic confinement
concept, the stellarator, is thought to offer advantages
over the tokamak. Perhaps the most important one is the
fact that it is intrinsically steady state. The latest and
most advanced stellarator, the Wendelstein 7-X (W7-X)
experiment in Greifswald (Germany), came into opera-
tion in 20151–3. The mission of W7-X is to explore the
potential of the optimized stellarator concept as a fusion
reactor. Of fundamental importance in this programme
is the adequate diagnostic of the key plasma parameters,
ranging from basic plasma parameters such as density
and temperature, to the radial electric field, the distri-
bution function of fast ions (due to external heating) and
to processes such as turbulence driven transport or mag-
netohydrodynamic instabilities.
This paper concerns the development of a diagnostic sys-
tem for W7-X based on collective Thomson scattering
(CTS) of a probing beam of mm-waves. This technique
in principle gives access to a variety of fundamental core
plasma properties, including the ion temperature4–6, the
radial electric field, the fast ion distribution function7–10,
and the composition11–14. The CTS diagnostic for fu-
sion plasmas has originally been proposed by15, impor-
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tant theory developments have been made in e.g.16–19.
CTS has been applied in several fusion experiments7,8,11

and is foreseen for ITER20. The CTS diagnostic is a
fairly complex plasma diagnostic. Apart from the already
complex collective Thomson scattering process, the mm-
wave beam diffracts in the inhomogeneous and fluctuat-
ing plasma and may encounter resonances and cut-offs.
These depend on the plasma state, the wave polariza-
tion, and the angle with respect to the magnetic field.
One must ensure that the diffracting viewing line and
probing beam intersect despite these effects, and these
effects must be taken into account in the interpretation
of the detected signal. CTS is also challenging because
the scattering cross-sections are small, resulting in low
signal levels, while there is a background radiation from
electron cyclotron emission (ECE) as well as the stray
light from the probing beam. Even if the signal-to-noise
ratio is high, the interpretation of the recorded signal
remains a complex task. This firstly requires a com-
puter code which simulates the CTS spectra for the given
geometry of the setup and a set of plasma parameters,
based on a physics model of the microscopic wave-plasma
interaction. Secondly, this forward model must be com-
bined with an integrated data analysis system which pro-
vides all required additional information, such as the den-
sity profile, measured by independent diagnostic systems,
as well as the information on the (modulated) probing
beam. The W7-X integrated data analysis environment
Minerva is a conglomeration of (Bayesian) probability
theory and graph theory21. It provides a standardized
data analysis infrastructure, taking into account the mea-
surements of every implemented diagnostic. In addition,
it facilitates the exchange of any physics models under-
lying a particular diagnostic. This feature will allow the
comparison of CTS physics models in a completely new
way. To implement the CTS model into Minerva, it was
necessary to build a new CTS code, as pre-existing CTS
codes are not open source. It should be remarked here



I. Abramovic et al. 2

that there is no common view in the literature on what
the most appropriate physics model of CTS is. The ba-
sis is formed by plasma kinetic theory and Maxwell’s
equations. A physics model is then constructed by ei-
ther considering the full electromagnetic response of the
plasma to the fluctuations or by making the electrostatic
approximation. The adequacy of the two descriptions
(electromagnetic vs. electrostatic) in a particular experi-
mental situation has been debated in the past by several
authors22–25, who independently developed CTS codes.
Despite these efforts it remains ambiguous in which situ-
ations the electrostatic approximation suffices and when
the full electromagnetic model is required. Although it
has been reported that the choice between the two mod-
els depends on the scattering geometry25,26, the choice is
also dependent on the plasma parameters. One purpose
of this paper is to contribute to resolving this ambiguity
for W7-X plasmas by adopting a systematic approach
to CTS modeling. We will adopt the electrostatic ap-
proximation and discuss its applicability to the bulk ion
temperature measurements. To our knowledge such a
discussion is lacking in literature. Concerning the numer-
ical implementation of the model, we note that theoret-
ical expressions contain infinite summations of modified
Bessel functions, exponentials, and the plasma dispersion
function. We present formulas to evaluate these sums ef-
fectively, which are otherwise not found in the literature.
In this paper we will:

• describe the newly developed CTS code, in partic-
ular the numerical methods employed to deal with
infinite sums (Section II)

• demonstrate the modeling of CTS spectra on the
new fusion experiment Wendelstein 7-X (Section
III)

• outline the implementation of our CTS code into
the Bayesian data analysis framework Minerva
(Section IV)

• compare the results of the code to output gener-
ated with a code based on the full electromagnetic
treatment25–27. (Section V)

• present the first CTS spectrum measured on Wen-
delstein 7-X and analysed by the our model (Sec-
tion VI)

• discuss the implications of the results. (Section
VII)

• Conclusion and outlook are given in Section VIII.

II. METHOD

A. Theoretical Framework

From a diagnostic point of view, it is necessary to esti-
mate the power received by a diffraction limited receiver.
Let P s and P i be the scattered and incident power and
ωi and ωs be the angular frequencies of the incident and

the scattered waves. The spectral power density received
is then given by18:

∂P s

∂ω
= P iOb

ωiωs

2πc2
r2eneGS(k, ω) (1)

where re is the classical electron radius, c is the speed
of light in vacuum, ne is the electron density, Ob is the
beam overlap volume, G is the geometrical form factor
and S(k, ω) is the spectral density. The beam overlap is
defined as the volume integral of the normalized incident
and scattered beam intensities, Ii and Is. In the case
of uniform beam intensities and perfect intersection the
overlap can be approximated by the ratio of the overlap
volume, V, and the product of the beam cross sections,
Ai and As and is given by25:

Ob =

∫
IiIsdV ≈ V

AiAs
(2)

The spectral density S(k, ω) is a function of the scatter-
ing wave vector k and the frequency ω which are defined
as:

ω = ωs − ωi, (3)

k = ks − ki. (4)

To specify the scattering geometry (see Figure 1), we
introduce the angle between the incident and the scat-
tered waves, θ = ∠(ki,ks) and the angle between the
scattering wave vector and the local magnetic field vec-
tor φ = ∠(k,B). The spectral density S(k, ω) contains

FIG. 1. The scattering geometry is defined by the angles indi-
cated in the figure on the left: φi, φs, and the angle χ between
the planes defined by B and ki, and B and ks, respectively.
When φi +φs = π the scattering geometry is uniquely defined
by angles φ and θ indicated in the figure on the right.

the plasma response to the microscopic fluctuations. The
geometrical form factor G accounts for the response to
the incident and the scattered waves. As most spectral
variation of the received power comes from the product
GS(k, ω), the calculation of this product is the main ob-
jective of the CTS theory. We thus define the scattering
function as Σ = GS(k, ω). The geometrical form factor
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is given by the following expression28 :

Gλν =
ω2
sω

2
i

ω4
pe

µsνµiλ|(e∗sν · (Î − ε̂i) · eiλ)|2

(e∗sν · ε̂s · esν)(e∗iλ · ε̂i · eiλ)
(5)

where ωpe = (nee
2/meε0)1/2 is the plasma frequency, the

subscripts s and i indicate the scattered and the inci-
dent wave, respectively, the subscripts ν and λ specify
the polarization (the O mode or X mode propagating in

the plasma), e denotes the polarization vector, and ∗ de-
notes complex conjugation. The corresponding refractive
index is denoted by µ, and ε̂ is the cold plasma dielectric
tensor.
Assuming that the equilibrium distributions for both
electrons and ions are isotropic Maxwellian distributions
without drifts, the expression for the spectral density
function for a magnetized plasma, in the electrostatic
approximation, is given by23:

S(k, ω) =

∣∣∣∣1− He

εl

∣∣∣∣2 2
√
π

|k‖|ve
×

+∞∑
l=−∞

e−k
2
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2
leIl(k

2
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2
le)e
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‖v

2
e

+
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i ni
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×
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2
liIl(k
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‖v
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i

(6)

where ni and ne denote electron and ion densities, ve and
vi are the electron and ion thermal velocities, ωce and
ωci denote the cyclotron frequencies, rle and rli denote
Larmor radii. The parallel and the perpendicular wave
vectors are defined with respect to the direction of the
magnetic field B0 and they are given by k⊥ = k sinφ and

k‖ = k cosφ, respectively. The summation is performed
over the order of the modified Bessel function of the first
kind, Il, and the cyclotron harmonics. The εl = 1 +
He(k, ω)+Hi(k, ω) is the longitudinal dielectric function
in which He and Hi stand for the electron and the ion
susceptibilities:

He(k, ω) = α2
+∞∑
l=−∞

e−k
2
⊥r

2
leIl(k

2
⊥r

2
le)×

(
1 +

ω

k‖ve
Z

(
ω − lωce
k‖ve

))
(7)

Hi(k, ω) = α2Z
2
i niTe
neTi

+∞∑
l=−∞

e−k
2
⊥r

2
liIl(k

2
⊥r

2
li)×

(
1 +

ω

k‖vi
Z

(
ω − lωci
k‖vi

))
(8)

where Z(ω−lωce

k‖ve
) ≡ Z(yl) is the plasma dispersion func-

tion which is defined as29:

Z(yl) = i
√
πe−y

2
l − 2e−y

2
l

∫ yl

0

ep
2

dp. (9)

In the next section we outline the numerical approach for
the computation of summations in equations (6), (7) and
(8).

B. Infinite Summations

We can identify three types of sums in equations (6),
(7) and (8):

+∞∑
l=−∞

e−xIl(x) = 1, (10)

+∞∑
l=−∞

e−xIl(x)Z(yl), (11)

+∞∑
l=−∞

e−xIl(x)e−y
2
l . (12)

The modified Bessel functions of the first kind are nor-
malized and, given the property Il(x) = I−l(x), the nor-
malization relation30,31 is given by:

+∞∑
l=−∞

Il(x) = Io(x) + 2

+∞∑
l=1

Il(x) = ex. (13)

From equation (13) it follows that the sum in equation
(10) is trivial and equal to 130,31. To compute the remain-
ing sums, we will use an algorithm for summing orthog-
onal polynomial series32,33. The sums in equations (11)
and (12) have to be rewritten in a form which facilitates
the use of the chosen algorithm. Using the normaliza-
tion of the modified Bessel functions (13), we can rewrite
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equation (11) in the following way:

+∞∑
l=−∞

e−xIl(x)Z(yl) =

=

∑+∞
l=1 e

−xIl(x)(Z(yl) + Z(y−l)) + e−xI0(x)Z(y0))

exe−x

=

∑+∞
l=1 Il(x)(Z(yl) + Z(y−l)) + I0(x)Z(y0))

Io(x) + 2
∑+∞
l=1 Il(x)

=

1
I0(x)

∑+∞
l=1 Il(x)(Z(yl) + Z(y−l)) + Z(y0))

1 + 2 1
I0(x)

∑+∞
l=1 Il(x)

.

(14)

Adopting the nomenclature from reference32, we will first
compute the sum from the denominator in equation (14):

B0 =
1

I0(x)

+∞∑
l=1

Il(x) =
1

I0(x)

(
+∞∑
l=0

Il(x)− I0(x)

)

=
1

I0(x)

+∞∑
l=0

Il(x)− 1

=
1

I0(x)

(
I0(x) + I1(x) +

+∞∑
l=2

Il(x)

)
− 1

=
I1(x)

I0(x)

(
1

I1(x)

+∞∑
l=2

Il(x) + 1

)

=
I1(x)

I0(x)
(B1 + 1).

(15)

This result is easily generalized and a recurrence relation
is obtained:

Bl =
Il+1(x)

Il(x)
(Bl+1 + 1) ≡ rl+1(Bl+1 + 1). (16)

The ratios of consecutive modified Bessel functions, rl+1

, are defined by:

rl+1 ≡
Il+1(x)

Il(x)
=

1

rl+2 + 2(l + 1)/x
. (17)

This relation follows directly from the recurrence relation
for the modified Bessel functions:

Il+1(x) =
−2l

x
Il(x) + Il−1(x), l ≥ 1. (18)

Starting from the Bessel’s equation, pairs of lower and
upper bounds on rl can be derived for each l33. The
common bounds for all l are found to be 0 and 1. We
use this result to set the starting value for backward
recursion in equation (17): rN+2 = 1 where N repre-
sents the number of steps. The condition BN+1 = 0
enables us to calculate B0 by successively evaluating
Bl, Bl−1, ..., B1. The sum from the numerator of equa-

tion (14) S0 ≡ 1
I0(x)

∑+∞
l=1 Il(x)(Z(yl)+Z(y−l)) satisfies a

similar recurrence relation but with the initial condition
SN = 0:

Sl = rl+1(Sl+1 + Z(yl+1) + Z(y−l−1). (19)

For the eCTS code application to Wendelstein 7-X
plasma (see Section III) we found that N = 200 produces
satisfactory results over the entire parameter range of in-
terest.
This result is derived by the same reasoning used in the
calculation of B0 in equation (15). Both Sl and Bl are
thus calculated by successive evaluation, and the final
result can be written in a concise manner:

+∞∑
l=−∞

e−xIl(x)Z(yl) =
S0 + Z(y0)

1 + 2B0
. (20)

The same approach is used to calculate (12). The only

difference in the procedure is the substitution of e−y
2
l for

Z(yl). The errors do not build up because they satisfy
the same recurrence relations as the quantities Bl and Sl.
Thus the errors are bounded32,33.

III. MODELING CTS AT W7-X

The eCTS code is applied to model a Wendelstein 7-X
plasma. The purpose of this section is to demonstrate the
sensitivity of the forward model to the ion temperature
and to the plasma composition. The scattering function
has been defined previously as the product of the geo-
metrical form factor and the spectral density function
Σ = GS(k, ω). The geometrical form factor G contains
the response of the plasma to the incident and scattered
waves, and the spectral density function S(k, ω) contains
the response to the fluctuations. These two quantities
can be modelled separately, as we show in sections 4.1
and 4.2.

A. Calculations of the geometrical form factor

We calculated the geometrical form factor for four scat-
tering channels: X → X, X → O, O → O, and O → X
in density range typical for W7-X. From the results of
the calculation, we can estimate the density range within
which the diagnostic can operate, as well as the potential
benefits and disadvantages of using a specific scattering
channel. The limits of this range depend on the loca-
tions of the cut-offs and the resonances where reflection
and absorption occurs in the plasma. The cut-offs and
resonances will differ for different modes of the propa-
gating radiation and thus differ for different scattering
channels. Formally we say that a resonance is the point
at which the refractive index of the plasma goes to infin-
ity, and a cut-off is the point at which the refractive index
goes to zero. The geometrical form factor is a function
of the plasma refractive index and its value is therefore
strongly influenced by the cut-offs and resonances of the
incident and scattered waves. The abrupt change of the
value of the G factor is an indication of the absorption or
reflection of the probing radiation. Ideally the scattering
volume of the CTS diagnostic will not be in the vicinity
of a cut-off or a resonance. In addition to the depen-
dence on the plasma parameters, the cut-off frequency
also depends on the strength of the external magnetic
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field. The field strength can vary up to 5% along the di-
rection of propagation of the incident radiation through
the plasma. On the magnetic axis the strength varies be-
tween 2.1 T and 2.5 T. This has been taken into account.
The results are depicted in Figures 2, 3, 4 and 5.

FIG. 2. Geometrical form factor for X to X mode scattering
for two magnetic field configurations

FIG. 3. Geometrical form factor for X to O mode scattering
for two magnetic field configurations

FIG. 4. Geometrical form factor for O to O mode scattering
for two magnetic field configurations

FIG. 5. Geometrical form factor for O to X mode scattering
for two magnetic field configurations

Note that the calculations given here show the density

dependence of the G factor for the probing frequency of
140 GHz. One can also look at the frequency depen-
dence for a fixed density. From the results we see that
the G factor has a significantly lower value for O → O or
mixed mode scattering in comparison to X → X scatter-
ing. However, one advantage of O → O scattering is the
ability to measure at higher densities. From these results
it follows that if the density is below 1.2× 1020 m−3 for
B = 2.5 T (or below 1.0 × 1020 m−3 for B = 2.1 T),
X → X should be used. The strength of the ECE for
each polarization should also be compared when select-
ing the polarization. The strength of the ECE has not
been taken into account in the calculations.

B. Calculations of the spectral density function

The CTS diagnostic on W7-X will have the receiver at
a fixed position, but will be able to switch between two
ports through which the probing beam can be injected
into the plasma. This flexibility allows for a range of scat-
tering angles. Sensitivity of the model to the plasma com-
position and the bulk ion temperature is demonstrated
in Figures 6 and 7. The model correctly reproduces the
ion cyclotron structure of the spectrum34. This structure
results from the hot electrostatic waves known as the ion
Bernstein waves driven by the ion cyclotron motion in a
magnetized plasma. The ion cyclotron structure can be
observed only when the scattering geometry is such that
φ ≈ 90, the ion Bernstein waves are strongly damped
otherwise. As can be seen in Figure 6, the separation
between the peaks corresponds to the ion cyclotron fre-
quency of hydrogen (blue) and deuterium (red). Fig-
ure 6 also shows that the hydrogen spectrum is broader
than the deuterium spectrum as is expected for lighter
species. In Figure 7 we calculate the spectral density for
two different values of the ion temperature while keep-
ing all other parameters fixed. The observation angle is
φ = 130◦, and there is no ion cyclotron structure as ex-
pected. The appearance of the peak in the spectrum is
related to the ratio Te/Ti. When this ratio is small, the
effect of Landau damping is significant and the peak is
not pronounced? . Notice that the hump in the spectrum
is also an enhancement of the scattered power. Such
enhancements are expected at (ω, k) which satisfy the
dispersion relation εl ≡ 1 + He(k, ω) + Hi(k, ω) = 0.
When there is a significant difference in the ion and elec-
tron temperatures, such as in Figure 7, the enhancement
which appears in the spectrum corresponds to the ion
acoustic wave. Observation of the ion acoustic wave al-
lows one to quickly and easily obtain the value of the ion
temperature from the following relation:

facoustic =
k

2π

√
Te + 3Ti
mion

(21)

For this example the values k/2π ≈ 620 1/m, Ti = 3 keV,
Te = 10 keV, and mdeuterium = 3.3435 · 10−27 kg sub-
stituted into equation (21) give facoustic ≈ 0.592 GHz.
This is the frequency at which the enhancement appears
in Figure 7. Given the electron temperature, the ion
temperature can be recovered from the result of the cal-
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FIG. 6. Sensitivity of the output of the code to the plasma
composition: separation between the peaks corresponds to
the ion cyclotron frequency of the given ion species, for
deuterium ≈ 18.3 MHz and for hydrogen ≈ 36.5 MHz at
B = 2.4 T

FIG. 7. Sensitivity of the output of the code to the ion tem-
perature. Spectra are calculated for a deuterium plasma with
the following parameter values: ne = ni = 6 × 1019 m−3,
B = 2.4 T, θ = 100, φ = 130, and Te = 10 keV

culation. In order for the developed model to be used in
a real data analysis on Wendelstein 7-X, it is necessary
to integrate it into the data analysis framework Minerva.

IV. INTEGRATION OF THE CTS FORWARD MODEL
INTO THE MINERVA FRAMEWORK

The implementation of the CTS forward model into the
Minerva framework will allow the inference of the model
parameters, given the measured data, in a Bayesian fash-
ion. Several other plasma diagnostic models operational
on W7-x are already implemented in the framework. It
has also been used in a number of other experiments2135.
The physics model of each diagnostic is represented in the
Minerva framework as a graphical model. In a forward
model of a diagnostic, measured data is derived from the

FIG. 8. Scheme for Minerva implementation of the CTS
model. The green circle represents the free parameters in
the model, the blue circle represents the observed quantities.
The inversion process is indicated with a dashed arrow.

model parameters by using the code implementation of
physical processes. According to Bayesian probability
theory, Bayes formula can be used to solve the inference
of the parameters of the model:

P (M |D) =
P (D|M)P (M)

P (D)
(22)

where P (M |D) represents the posterior probability dis-
tribution for the model parameters M with respect to
the measured data D, P (D|M) is the likelihood of the
data given model parameters, P (M) is the prior proba-
bility distribution assigned to the model parameters be-
fore data acquisition and P (D) is a normalizing factor.
Figure 8 shows a sketch of the implementation of CTS
forward model into Minerva. The measured data is rep-
resented in the graphical model by an observation node
(blue circle). Model parameters can be inferred via a
Maximum A Posterior (MAP) algorithm: the parameters
which maximize the left-hand side of the equation 22 can
then be found. The inversion can be pushed a step fur-
ther. The strength of Bayesian Analysis lies in the fact
that the result of the inference is not just one single set of
model parameter values, instead it is the whole posterior
probability distribution which quantifies uncertainties in
the inversion process. The posterior distribution can be
sampled by using a Metropolis-Hastings Markov Chain
Monte Carlo algorithm36. In this way, the confidence
of the inferred model parameters is determined from the
distribution of the samples. At the end, the aim of the
Minerva framework will be to exploit the central point
of Bayesian Probability Theory: more data brings more
information which in turn increases the accuracy of the
parameter estimation. This can be done by joining to-
gether the information coming from the different diag-
nostics which are used to infer the same parameter(s)21.
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In this way, the uncertainties of the inferred values, given
by the posterior distribution, take into consideration all
the possible information coming from the different diag-
nostics. Consequently, one such integrated framework is
able to give the most reliable estimation of a parameter
by running a joint Bayesian analysis that takes into ac-
count uncertainties in every step of the inference. It is
with this in mind that the CTS model is implemented in
the Minerva framework.

V. ANALYSIS OF SYNTHETIC CTS DATA

An essential part of the implementation of the CTS
forward model into the Minerva framework is the cre-
ation of the model builder class. In this class we specify
the dependencies between the input parameters, the for-
ward model, and the observed data. The model builder
creates a graph object which contains the representation
of the model. Once the graph is created, the operations
can be performed directly on the nodes of the graph. The
nodes on the graph can be parameter values, computa-
tional nodes, and observed data. We can assign a prior
probability distribution to the parameters which we want
to infer by inversion from the observations. Prior distri-
butions are defined by the mean and the variance. For
the analysis of synthetic CTS data we created the model
depicted in Figure 9. Prior distributions have been put
on the electron and ion temperatures and on the geomet-
rical form factor G. To generate noisy synthetic spectra
we have considered the following: during a CTS mea-
surement the probing radiation is modulated, the signal
recorded during the periods when probing beam (the gy-
rotron in our case) is turned off is the background noise
(ECE of 100 eV up to 300 eV) which may or may not be
Gaussian. When this recorded noise signal is subtracted
from the signal recorded when the source is on, and cal-
ibration is applied, what remains is thermal noise. Only
after such pre-processing is the spectrum ready for fur-
ther analysis requiring the use of the forward model and
Bayesian inference. The synthetic data has thus been
generated by the addition of Gaussian noise to the spec-
tra produced by the fully electromagnetic code25. The
data has then been fed into the node Spectrum (see Fig-
ure 9), and the parameter values have been inferred from
this node. Depending on the data set Minerva fits either
the scattering function, Σ(k, ω), or the scattered power
Ps. In order to fit the data, Minerva performs the maxi-
mization of the posterior probability distribution (MAP)
on the free parameters and updates the input to the inte-
grated CTS forward model at each iteration. The process
is repeated until convergence.

A. Scattered Power

Analysis of actual data will require the scattered power
(see equation (1)) to be fitted rather than the scatter-
ing function. In Figure 10 we have fitted the power
scattered by a deuterium plasma. For this purpose we
added the value to the node Pi = 100 kW (incident

power). Other nodes were set to the following values:
ne = ni = 6 × 1019 m−3, B = 2.4 T, φ = 100.7◦,
θ = 169.7◦. The final obtained value of the bulk ion tem-
perature was Ti = 1.2±0.2 keV, while the observed data
has been produced with the value Te = Ti = 1.3 keV.
Note that there is a tilt of the baseline in the negative
frequency region in Figure 10. In the electrostatic ap-
proximation the calculated baseline of a spectrum is al-
ways at 0. This is not the case for the electromagnetic
treatment where the spectrum can be tilted as in Figure
10. To fit such a spectrum in the electrostatic approxima-
tion we can prioritize the fitting of the higher frequency
side to obtain a result for the bulk ion temperature. Ad-
ditionally one can in experiments observe an offset of the
baseline which results from the background radiation.
The spectra have to be pre-processed by making a back-
ground subtraction, applying calibration and averaging
over a number of data acquisition periods before Min-
erva inversions can be employed. Otherwise Minerva will
try to increase the width of the spectrum sufficiently at-
tempting to create a tilt or an offset in a particular spec-
tral range. This will result in unrealistically high ion
temperatures.
Performance of the model for low signals (below 5 eV)
and in the reactor relevant temperature range has been
tested on a data set containing 29 synthetic spectra in the
range from Ti = Te = [1, 15] keV. Results are given in
Figure 11. Error bars indicate the discrepancy between
the recovered ion temperature and the temperature used
as input for the production of the synthetic spectra. The
graph can be divided into three regions according to the
input temperature:

1. [1, 8] keV

2. [8.5, 10] keV

3. [10.5, 15] keV

In the first region there were no tilts or offsets of the
baseline of the spectra. The error is below 10%. In the
second region the electromagnetic effects gave rise to tilt-
ing of the baseline in the low frequency range. Preferen-
tial fitting of the high frequency part of the spectra was
made in order to get feasible values of the ion tempera-
ture. The third region is outside of the foreseen W7-X ion
temperature range. It is also the region where the elec-
tromagnetic effects become more prominent which results
in significant increase of error bars (the largest one is at
Ti = 14 keV, where we have an error of approximately
20%).

B. Applicability of the Electrostatic Approximation

A forward model of collective Thomson scattering
(eCTS) has been developed based on the approach in Sec-
tion II. In this section we compare the results of our code
to the output of a full electromagnetic treatment25–27.
The spectra have been generated by the electromagnetic
model and analyzed by the electrostatic one in an at-
tempt to explore the plasma conditions under which the
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FIG. 9. Probability graphical model produced by the ModelBuilder. The squares indicate either constants/input files or
calculation nodes (the eCTS code for example is in the CTS node). The blue nodes indicates free parameters with a prior
distribution. The grey node indicates the data to be fitted. The arrows do not indicate the direction of information flow.

FIG. 10. Gaussian noise (5% of the maximum value) was
added to a spectrum obtained by the full electromagnetic
code25 for the scattering channel X → X in a deuterium
plasma (black and blue dots). The spectrum has been fitted
by the MAP inversion (red line). Final temperatures obtained
by fitting are indicated in the legend.

electromagnetic effects become relevant for CTS on Wen-
delstein 7-X. For a given plasma state, different features
appear in a CTS spectrum depending on the observation
angle. The benchmark spectra have been produced for
two observation angles φ in a homogeneous deuterium
plasma, while keeping the following input parameters
fixed: ne = ni = 6×1019 m−3, Te = Ti = 1 keV, B = 2.4
T. The incident and scattered radiation is assumed to be
polarized either in X or in O mode. We give the result
for X → X scattering channel in Figures 12 and 13, for
which largest discrepancy between the two models is ob-
served. The observable discrepancy in the width which
can lead to an increase of error of the inferred bulk ion
temperature is caused by the underlying difference of the
physics models. This is a systematic effect. In the case of
φ ≈ 90◦, depicted in Figure 13, we note that our code re-
produces the expected ion cyclotron effects on the CTS
spectrum. Although less pronounced, also in this case
there is a difference in the width of the two results. Note
that the positions of the peaks are exactly the same.

FIG. 11. Recovered ion temperature as a function of the input
ion temperature for 29 spectra. The Gaussian noise added to
the synthetic spectra is %5 of the maximum value.

VI. ANALYSIS OF THE FIRST CTS SPECTRA
OBTAINED AT W7-X

The first results from the CTS diagnostic on W7-X
were obtained in the commissioning phase of the diag-
nostic during the OP1.2a experimental campaign in the
fall of 2017. The CTS system is capable of measuring in
two distinct cross sections of W7-X: the triangular and
the bean cross sections (see Figure 14). Main components
of the system are described in detail in37. During OP1.2a
the diagnostic was commissioned in the bean shaped
cross section. To this end an overlap sweep experiment
was performed. In the preparation of the experiment the
locations of the overlap volume were calculated using the
ray-tracer TRAVIS38 which takes as input parameters
the magnetic field and plasma configurations and the co-
ordinates specifying the direction of the probing beam
(gyrotron A1) and the receiver beam (F1). The coordi-
nates of A1 were fixed for the entire duration of the exper-
iment, while the coordinates of F1 were changed in order
to sweep along the expected region of overlap with A1.
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FIG. 12. Comparison of our code (eCTS) with the result
obtained with a full electromagnetic treatment25. Spectrum
is calculated for a deuterium plasma without impurities, with
the following values of input parameters: ne = ni = 6 ×
1019 m−3, Te = Ti = 1 keV, B = 2.4 T, X → X, θ = 100◦,
φ = 130◦.

FIG. 13. Comparison of our code (eCTS) with the result
obtained with a full electromagnetic treatment25. Spectrum
is calculated for a deuterium plasma without impurities, with
the following values of input parameters: ne = ni = 6× 1019

m−3, Te = Ti = 1 keV, B = 2.4 T, X → X mode scattering,
θ = 100◦, φ = 92◦. The peaks in the spectrum represent the
ion cyclotron signature, which is visible for observation angles
close to 90 degrees.

In Figure 15 we present the result of the overlap sweep.
In each discharge of the experiment the overlap was mea-
sured before and after gas puff. An increase in the CTS
signal was observed after each gas puff. The maximum
overlap was obtained in the discharge 20171011.053 at
an azimuthal angle of −19.3◦. The data was recorded
by a sensitive heterodyne receiver equipped with a na-
tional instruments fast data acquisition card with sam-
pling rate up to 12.5 GS/s. The probing beam was modu-
lated during every discharge in order to obtain a measure-

FIG. 14. Sketch of the CTS system on W7-X. The CTS di-
agnostic can operate in two distinct cross sections of the ma-
chine: the triangular cross section (shown on the left) and
the bean cross section (shown on the right). The names stem
from the shape of the last closed flux surface at the respective
locations (grey grid represents the last closed flux surface).
Half of the vacuum vessel is indicated by the yellow regions.
The red coloured areas are locations of absorption of our prob-
ing radiation. The blue circles at intersection of the beams
are the locations of the overlap volume. First measurements
were obtained in the bean cross section in an overlap sweep
experiment in which the receiver beam was swept across the
region of expected overlap37.

FIG. 15. Measured spectral power density before and after
the gas puff. Maximum overlap was measured at an azimuthal
angle of −19.3◦ during the discharge 20171011.053

ment of the background ECE radiation. The gyrotron on
and off periods were 55 ms and 5 ms, respectively. The
spectrum obtained is depicted in Figure 16 and presents
data averaged over 10 gyrotron pulses. Plasma param-
eters of the discharge 20171011.053 at the location of
the maximum overlap volume were B = 2.34 ± 1 T,
ne = 6 ± 1 1019m−3, Te = 1.5 ± 0.5 keV in a helium
plasma. The CTS system parameters for the experi-
ment in the discharge 20171011.053 were φ = 109± 1 ◦,
θ = 141±1 ◦, Pi = 800±10 kW, ωi = 140.18±0.01 GHz,
Ob = 17±10 m−1, scattering channel X-X. The large un-
certainty in the parameter Ob of ≈ 60% is due to densely
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FIG. 16. Calibrated CTS spectrum with maximum over-
lap obtained during the overlap sweep experiment (discharge
20171011.053). Spectrum contains only one the low frequency
wing since the high frequency wing of the spectrum was cov-
ered by the notch filter. The fit of the spectrum was obtained
by the eCTS model. The bulk ion temperature was inferred
by the MAP inversion in Minerva.

packed magnetic flux surfaces at the location of probe
and receiver beams overlap which effectively leads to a
reduction of spatial resolution in our CTS measurements.
Taking this into account we regard Ob as a scaling fac-
tor and present it as a function of the tilting angle in
Figure 15. The high frequency side of the spectrum was
covered by the notch filter.
To infer the bulk ion temperature from the measured
spectrum we used the eCTS forward model and Bayesian
inference as described in Sections III, IV and V. The
graphical model used for the inference of ion temperature
was the same as in Figure 9 with Ti, Te and G defined
as free parameters having a prior probability distribution
for the MAP inversion.

VII. DISCUSSION

Forward modelling of collective Thomson scattering
spectra is crucial for the data analysis. We have de-
veloped a code for spectrum simulations based on the
approach of23 and22, and we have verified that our code
reproduces the results previously reported by these au-
thors. Discrepancies between the spectra predicted by
eCTS and the full electromagnetic treatment are in agree-
ment with the ones reported in24 and8. The use of the
electrostatic approximation is justified by the fact that
the incident wave is primarily scattered by the fluctu-
ations in the electron density. The fluctuations are as-
sociated with the longitudinal modes in the plasma16,19.
The numerical approach (see section II) for calculating
the sums which appear in the dielectric plasma response
and the scattering function, is based on reference32 and
the methods for calculating the ratios of modified Bessel
functions published in33 and39. The method does not re-

quire the use of any particular scientific libraries and can
easily be extended to the summations appearing in the
full electromagnetic plasma dielectric tensor. It should
be noted that the summation index is an integer. This
in fact means that we assume a cylindrical symmetry in
velocity space. The method can be used also for frac-
tional l and thus allows abandoning the assumption of
cylindrical symmetry.
In section III we have demonstrated the sensitivity of the
result of our forward model to both the ion temperature
and the plasma composition. The ion temperature can
be deduced from the width of the observed spectrum or
from an enhancement of the signal corresponding to the
ion acoustic feature. As expected, the ion acoustic fea-
ture is observable only provided the electron temperature
is substantially higher than the ion temperature.
The developed forward model can be used as it is, but due
to a large amount of dependencies among the parameters,
a better fit is obtained if the model is fitted to the data in
a Bayesian fashion14. To this end, we have implemented
our model into the Bayesian data analysis framework of
W7-X - Minerva - and used it to obtain the ion tem-
perature from synthetic data. The data analysis is per-
formed within a standalone environment in Minerva. The
prior distributions have not been inherited from another
model, but defined within the model builder. In Section
V we show that for spectra with 5% noise and with the
input temperatures in the range Ti = [1, 10] keV, the
recovered temperature is within 10% of the input value.
For input temperatures in the range Ti = [10.5, 15] keV,
the errorbars are larger, with a maximum value of 20%
at Ti = 14 keV. Larger errorbars in the high tempera-
ture region can be attributed to electromagnetic effects,
large width of the spectra and low signals. An electro-
magnetic effect in the bulk ion region is visible in Figure
10: the baseline of this synthetic data set is tilted on the
left side. This is an electromagnetic effect in the X mode
scattering. The effect does not influence the inference
of the bulk ion temperature because it does not change
the width of the spectrum. If such tilting is observed,
eCTS model can be used to preferentially fit the higher
frequency side of the spectrum and in this way overesti-
mations of the ion temperature will be prevented.
In theory CTS is able to simultaneously provide values
of both the electron and ion temperatures. However, we
do not in general expect that to be the case in a fu-
sion plasma. For the analysis of real data the value of
the electron temperature and density, Te and ne, will be
provided by the incoherent Thomson scattering system.
Within the framework this will be achieved by linking
the Te and ne nodes to the incoherent Thomson scatter-
ing forward model. In this scenario the error propagation
is accounted for automatically in the following manner:
the values of Te and ne are obtained from the incoherent
Thomson scattering model. The widths of the posterior
distributions of Te and ne define the widths of the prior
distributions for these nodes in the CTS forward model
and influence the width of the posterior distribution of
the final ion temperature. The first CTS spectrum mea-
sured on W7-X depicted in Figure 16 has been analysed
by the outlined model. The result is in agreement with
the result obtained by the XICS40 diagnostic during the
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same discharge.

VIII. CONCLUSION AND OUTLOOK

The developed code, eCTS, is a forward model of col-
lective Thomson scattering in the electrostatic approx-
imation. It has been integrated into the Bayesian data
analysis framework Minerva and successfully used for the
analysis of synthetic and measured spectra. Taking into
account that the electrostatic approximation is not valid
for arbitrary plasma conditions, or for arbitrary scatter-
ing geometries, we have shown that the model can be
used for the measurements of the bulk ion temperature
and plasma composition in W7-X plasmas.
The model presented here will be expanded into a full
electromagnetic model which will also be implemented
into Minerva. This will allow for a new and unique com-
parison of the two treatments. Furthermore, the subse-
quent versions of the code will include relativistic effects
both in the geometrical form factor and the spectral den-
sity function.
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