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Abstract. While taking into account the nuclear-structure contributions to the Lamb shift, one has to make
various subtractions for the two-photon exchange contributions. Such subtractions should be consistent
with the structureless part of theory. We study here the subtractions for a two-body atomic systems which
consist of a pointlike lepton (an electron or a muon) and a nucleus with spin 0, 1/2, and 1, and find the
recoil contribution in order (Za)® due to the subtractions for I = 0,1. (The related contribution to the
energy levels for I = 1/2 of order (Za)®m is called the Salpeter term.)

1 Introduction

Quantum electrodynamics (QED) for free particles and
bound-state QED deal with Feynman diagrams, but in a
different way. Free-particle QED addresses the diagrams
as they are. In the meantime, a consideration within
bound-state QED suggests that at a certain stage the
bound-state problem is solved. The latter means a summa-
tion of a certain group of diagrams and a rearrangement of
the rest. The rearrangement assumes a subtraction of the
contributions which are related to lower-order diagrams
(say, a subtraction of some specific one-photon contribu-
tions from the two-photon diagrams). Such a subtraction
appears in any approach, be it the effective Dirac equation
[1-4] or the non-relativistic QED [5].

The need of subtraction is also clearly seen from a
pragmatic point of view. There are some irreducible
two-photon diagrams. They should contribute into the
final results. They are not gauge invariant. We should
somehow combine them with the related reducible contri-
butions. The latter are infra-red divergent, and, to obtain
a meaningful result, those divergences should be sub-
tracted. Indeed, it is important to use a method which
would do such subtractions correctly, however, a need for
subtractions is undeniable.

Technically, some subtractions have been introduced
in evaluation of two-photon nuclear-structure-dependent
effects for pragmatic reasons, leaving aside the discussion
whether the pointlike part of the theory is treated in a
way, consistent with those subtractions (see, e.g., a dis-
cussion in [6]). Here we question this consistency for the

#e-mail: savely.karshenboim@mpq.mpg.de

case of the Lamb shift in light muonic atoms with bosonic
nuclei.

Study of the Lamb shift in light muonic atom is a power-
ful tool to explore the nuclear structure. The experimental
results, which have already been published on muonic
hydrogen and deuterium [7,8] and are expected on muonic
helium-3 and helium-4 ions [9], can deliver us an accu-
rate value of the rms nuclear charge radius only if the
higher-order nuclear-structure effects are under control.
The most important part of such higher-order effects is
due to the two-photon exchange contribution (see Fig. 1).
The related contribution to the Lamb shift is defined as
an average over the hyperfine interaction.

It is also necessary indeed to develop a theory for
a muonic atom with a structureless nucleus. That is a
quantum-electrodynamics theory. It is important to define
the structureless and structure-dependent parts of the the-
oretical expression for the Lamb shift in such a way that
nothing is missed and nothing is counted twice, which is
not quite straightforward.

The complete theoretical result includes soft and hard
physics. The soft one with atomic momentum transfer is
marginally sensitive to the nuclear structure. However,
it would be wrong to equalize those soft near point-
like part to a certain fundamental theory for pointlike
particle. A very good illustrative example is with the
hyperfine-splitting theory of the hydrogen atom. The fun-
damental pointlike theory should deal with a pointlike
Dirac’s proton without the anomalous magnetic moment.
However, all the contributions within the external field
approximation may be found ignoring the electric and
magnetic form factors (i.e., ignoring the space distribution
of the electric charge and magnetic moment), but keeping
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Fig. 1. The total two-photon exchange contribution includes
the pointlike, elastic and inelastic terms. The figure is for the
nuclear spin I = 1/2. For the bosonic nuclei, one has also deal
with a seagull diagram.

+

Fig. 2. The Salpeter contribution: the two-photon part
(I=1/2).

the actual value of the proton magnetic moment. A con-
sideration of the recoil effects on the same ground is not
possible. The two-photon recoil ‘pointlike’ contribution is
divergent [10,11]. In an atom with an extended nucleus the
nuclear size plays a role of the cut-off. The ‘pointlike’ part
of a theory of an actual atom is always a certain conven-
tion, on which contributions are included into the pointlike
part and which are a part of the nuclear-structure term.

Such an effective QED theory is still a pointlike the-
ory in a sense that it does not involve any form factors
or charge distributions etc. However, it is not defined by
itself. It is defined when the separation of the complete
expression into its pointlike part and its nuclear-structure
part is considered. Usually, the separation is performed by
the introduction of certain ‘pointlike’ subtractions in the
nuclear-structure part. Here we consider those pointlike
subtractions, introduced by other authors while calculat-
ing the nuclear-structure contribution to the Lamb shift
in muonic atoms (see below), and check what effective
pointlike theory is related to them.

A somewhat similar situation is with the recoil two-
photon effects in the Lamb shift in muonic atoms,
which are involved once one are to calculate higher-order
nuclear-structure effects to the Lamb shift. The structure
of the two-photon diagrams includes the pointlike part
depicted in Figure 2. Such a pointlike part is nuclear-
spin-dependent. The result for the nuclear spin 1/2 is well
known [1,12-15] (for more details see [16,17] and refer-
ences therein) as the Salpeter term. The exact results for
pointlike nuclei with other spins are unknown and in some
cases they are not well defined and may be ultraviolet
(UV) divergent. We consider them in this paper.

A straightforward study of the two-photon exchange
(with neglecting bound effects in the internal propaga-
tors in Fig. 2), which is the only correct starting point
for any rigorous consideration of the hard part of the
two-photon contribution, also leads to a divergence, which
is an infrared (IR) one. That is because at low momen-
tum transfer the dominant physics is with free particles,
i.e., it is reduced to the Salpeter contribution, which
has a soft part (see Fig. 3). The soft part involves the
atomic momentum transfers and therefore the additional
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Fig. 3. The Salpeter contribution (the many-photon part).
The Coulomb exchanges are presented with the dashed line.

exchange by a Coulomb photon is not a small effect. Addi-
tionally to the two-photon exchange, one has to include
the exchange by an arbitrary number of soft Coulomb
photons.

To make the total two-photon exchange IR finite, one
has to make a subtraction of the IR divergent part of the
soft contribution. It is not that important whether such
a subtraction is related to a standard ab initio consid-
eration of a free pointlike particle. It is important that
the contribution of the subtracted terms, whatever it is,
is taken into account additionally to the nuclear-structure
two-photon exchange.

The point-like two-photon contribution (with an exten-
sion to many-Coulomb effects for its soft part) was first
studied for the nuclear spin 1/2 in [12-14] (see also [1]).
The obtained result for that relativistic recoil correction
was found then only in the leading order in m/M. The
result is nuclear-spin independent. Later on the higher-
order corrections in m/M were found (see, e.g., [16,17].
Those results were valid only for I = 1/2. we refer to
the results of the point like physics as to a Salpeter-type
contribution.

Let’s start with the consideration of the subtraction for
the standard case (I = 1/2), which is exactly related to
the Salpeter contribution. We extend our consideration
to the nuclear spins I = 0,1. While the ‘true’ point-
like physics can be derived ab initio, the subtraction for
a calculation with a structured nuclei are chosen [for
some reasons]. To complete the calculation of the sub-
tracted nuclear-structure contributions we have to add an
effective pointlike term, to which we refer to as to the effec-
tive Salpeter contribution or the subtraction contribution.
As we just mentioned for I = 1/2 those two contribu-
tions coincide. Below we consider the effective Salpeter
contribution for I =0, 1.

The soft physics deals with nonrelativistic nuclei and
the result does not depend on the value of the nuclear
spin. The soft correction is a recoil one [12-14]. The hard
contribution depends on the nuclear spin and it differs for
different I. For I = 1/2 it is a recoil contribution, but it
has been not studied for other values of I. Summarizing,
we repeat that the nuclear-spin-dependent terms have the
same soft-physics effects, but different hard contributions.
Because of that, while studying the subtraction for I = 0
and I = 1, it is advantageous to study a difference of two-
photon subtraction terms for nuclei with those spins and
with a nucleus with the same mass and spin 1/2. The soft
contributions vanishes in the difference, while the hard
ones survives and becomes IR finite. Therefore we have
to evaluate only a hard contribution, i.e. the one with the
momentum transfer ~ m or > m, which involves only the
two-photon exchange.

The two-photon structure contribution is of the order
(Za)>m. To make the two-photon expression IR finite, one
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has to subtract the divergences related to the pointlike
(Za)*>m term (the Bohr energy), pointlike (Za)*m term
(the Breit correction) and leading nuclear-finite-size term
of order (Za)*m3r%,. However, different subtractions may
have a different finite part and we need to work with such
finite terms in a consistent way.

2 Nuclear spin 1/2: the Salpeter term and
the subtraction in the two-photon
nuclear-structure contribution

The standard Salpeter term (I = 1/2) is well known (see,
e.g., [16,17])

2 1 1
AFE(ns) = {1 —_—— glnko(ns) -3 f2lnmﬁ

3 Za
14

<1n+w(n+1> w(1) + 2”_1>
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Here, v function stands for the logarithmic deriva-

tive of the I' function, and Inkg(nl) is the standard
Bethe logarithm, which is tabulated in many text
books.

We are interested in the two-photon contribution due
to the nuclear-structure. For the nuclear spin 1/2 it is
defined (for the hydrogen and muonic hydrogen) in [18,19].
It includes a subtraction of the following pointlike terms:
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where @ stands for the Euclidian momentum Q% = —¢?2,
¢ni(r) is the non-relativistic wave function of the
hydrogen-like atom in the coordinate space, and, following
[18], we introduce
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the subscript ! stands for the (orbiting) lepton which may
be an electron or a muon and N is for the nucleus.

That is related to the pointlike Salpeter-type con-
tribution, which means that its two-photon part in a
hard-photon approximation is equal to the subtraction
term. The latter is IR divergent. The IR divergent part
of the subtraction term is

S @l

Let’s remind the main steps of the calculation of the
Salpeter term. Following [1,12-14,17], it is useful to use
the Coulomb gauge and calculate the sum of the ladder
and cross diagrams. There are three types of the con-
tributions depending on the type of the photons in the
two-photon exchange: CC (both photons are Coulomb
photons), CT (one photon is a Coulomb photon, while
the other is a transverse photon), and TT (both photons
are the transverse photons). If the soft momentum area
dominates, then some additional Coulomb photons may
be involved (cf. Fig. 3).

The results for the individual contributions are [17]
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The contribution to the energy of the level with [ £ 0
comes from the CT and TT terms (see, e.g. [17]). They
are the soft-photon contributions and are not our concern
in this paper.

3 Nuclear spin 0: the pointlike two-photon
exchange and the subtraction term

The two-photon exchange for a scalar nucleus due to the
nuclear-structure effects was considered in the case of
muonic helium in [20]. The pointlike subtraction term for
the Lamb shift in an ordinary or muonic atom with a
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scalar nucleus is [20]
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where we use the same notation as in (3).
The IR divergent part of the subtraction term
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(7)
is somewhat different from the result for the nucleus
with spin 1/2 (cf. (4)). The difference is due to the
fact that the Breit-type corrections for the nuclear spin
0 and nuclear spin 1/2 are not the same in order
(Za)*m?®/M? [23-25]. As we mentioned above, the IR
divergent terms follow in part the Breit-type contri-
butions' and should be subtracted. If those Breit-type
terms are different, the subtractions are also somewhat
different.

The effective Salpeter contribution is the contribution
of the subtracted terms (see (6)), where one should sub-
tract the IR divergent part (see (7)) and properly restore
the atomic effects at the soft part of the contribution.
Instead of restoring the atomic effects for the soft part
one may consider the difference of the Salpeter contribu-
tion for the nuclear spin 1/2 and the effective contribution
for the nuclear spin 0. The soft part cancels out in
such a difference and, as the result, to find the differ-
ence one does not need to restore the details of atomic
effects.

One may also consider an ab initio calculation of the
‘true’ Salpeter-type contribution for the nuclear spin 0.
In this case the result for the integrand follows from the
Feynman rules and the realization of the chosen strategy
for the solution of the bound state problem. In the case
of the nuclear spin 0, the effective Salpeter contribution,
which follows from the subtraction for the two-photon
nuclear-structure effects, is exactly related to the pointlike
Salpeter-type contribution, i.e., to complete contributions
of the Feynman diagrams with a pointlike scalar particle
as the nucleus.

The results for the individual contributions with the
scalar nucleus differ from those for the nucleus with

I=1/2 (ct. (5))

loizefms [d0f, | @, @)
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! The Breit equation (see, e.g., [26]) is an equation for two par-
ticles with spin 1/2. Following the same logics one could extend
the consideration for other spins; we refer to such considerations as
‘Breit-type’ ones.
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Summing up those three terms in (8), we obtain a new
original result for AE'/20(ns). We note, that while the
individual contributions for I = 1/2 and I = 0 differ the
complete result

AE'?0(ns) = AEV?'2(ns) (9)

is the same.

In the case of the scalar nucleus there is an additional
diagram, the seagull one. The terms above (for I = 0)
are related to the sum of the ladder, cross, and seagull
diagrams, while the related terms for I = 1/2 are for the
sum of the ladder and cross diagrams. The seagull one
contributes only in the TT term.

The contribution to the energy of the level with [ > 1,
which comes from the CT and TT terms [17], does not
depend on the nuclear spin.

4 Nuclear spin 1: the subtraction term

As we mention here the contribution of the subtractions
terms (to which we refer as to an ‘effective Salpeter contri-
bution’) has a soft and hard part. The soft one dealt with
a nonrelativistic nucleus and is nuclear-spin-independent.
The hard one is determined by the subtraction introduced
in calculations of the nuclear structure effects and in prin-
ciple is chosen to a certain extend arbitrary. For example,
there is no doubt that starting with an ultraviolet finite
consideration of a not-pointlike vector particle, it is pos-
sible to separate the nuclear-structure effects and a soft
physics with a pointlike nucleus in such a way that both
terms are finite. In the meantime, a QED theory with a
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pointlike vector nucleus is divergent, while a fundamental
theory (such as a consideration of the W™ gauge boson0 as
a nucleus is finite, but involves such a contributions (e.g.,
the Goldstone modes) [28] which have nothing to do with
a pointlike limit for a realistic system, such as muonic
deuterium. That means that whatever we consider as a
pointlike QED part of the complete theory, it is rather an
effective theory, than a fundamental one. While building
a fundamental theory one has no choices. On contrary,
a construction of an effective theory gives some options.
It is worth to mention different possibility for the form
factors, nuclear radii (see, e.g., [29,30] for I = 1), a consid-
eration a pointlike limit with an actual value of the nuclear
magnetic moment, which is a standard procedure for the
external-field approximation for the hyperfine structure
(see, e.g., [16,17]) and which may be applied to two-photon
recoil contributions for the Lamb shift in muonic atoms
with 7 = 1/2 [31,32]. A pointlike part of theory for the
Lamb shift of a muonic deuterium and atoms with other
I = 1 nuclei should differ from a fundamental one, since
we are to build former as an ultraviolet finite one, while
the latter is divergent.

The two-photon nuclear-structure effects for an
extended vector nucleus were considered for muonic deu-
terium in [21,22]. The subtraction applied there (see, e.g.,
[21]) is exactly the same as in the scalar case (see (6)).
As we mention above the soft part of the two-photon con-
tributions is nuclear-spin independent. The hard part of
the effective Salpeter term is completely both defined and
determined by the subtraction terms. If the subtraction
terms are the same for the nuclear spin I =0 and [ =1,
the hard part of the effective Salpeter contribution is also
the same. Therefore we arrive at a new result, describing
the subtraction contribution for I =1

AEY21 = AEY/20 (10)

It might be interesting to compare the effective Salpeter
terms and the ‘true’ one. The latter is to be derived from
a fundamental ab initio theory. As well as in the case of
the effective term its soft part, determined by the non-
relativistic nucleus, is nuclear-spin-independent and is the
same as for the effective term. The difference is only in
the definition of the hard part. In contrast to the case of
the scalar nucleus, the subtraction with a vector nucleus is
not related directly to the Salpeter-type contribution, in
the sense that the subtraction relates to a certain ‘point-
like’ construction, but not to a complete contribution of a
pointlike nuclear vector particle. The two-photon contri-
bution to the Lamb shift for a hydrogen-like atom with a
pointlike vector nucleus is UV divergent (see, e.g., [28]).
Such divergences do not cause any practical problem,
because the form factor of a real nucleus serves as a reg-
ularization function which efficiently cuts the divergences
off once the momentum of the integration is above the
inverse radius of the nucleus.

As we mentioned above, the infrared divergences for
I =0 and I = 1/2 are somewhat different (cf. Eqgs. (4)
and (7)). That was interpreted as a consequence of the
differences in the Breit-type contributions. The situa-
tion with a vector nucleus is somewhat more tricky
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than in the case of I = 0. The results for the point-
like Breit-type contributions for I = 1/2 and I = 1 are
different [27]. However, one cannot see it in an ‘easy’
way because the difference in the pointlike results is
absorbed by a difference in the definition of the charge
radius [29,30]. Still, we have to subtract some diver-
gences which are related to all the contributions in order
(Za)*m, which includes both the Breit-type contributions
and the leading nuclear charge contribution. Indepen-
dently of which definition for the nuclear charge is applied,
we have to make the same subtraction for the pointlike
terms.

5 Conclusion

Concluding, we have studied the effective Salpeter term,
the effective pointlike contribution which arises from the
introduction of the ‘pointlike’ subtractions while calculat-
ing the elastic part of the nuclear-structure two-photon-
exchange diagrams, depicted in Figure 1. While the case of
the nuclear spin I = 1/2 has been considered for a while,
the results on I = 0,1 are obtained in this paper for the
first time.

Since the subtractions for I = 0 and I = 1 are the same,
the effective Salpeter contribution is also the same. It is a
structureless QED contribution in a sense that it involves
a nucleus without any internal structure. In the case of
I =0 it exactly matches the contribution for a hydrogen-
like atom with a pointlike scalar nucleus, while for I =1
it does not relate to a pointlike I = 1 nucleus. But that is
not a problem for the consistency of the consideration of
the ‘structured’ and ‘structureless’ parts of the complete
contribution.

The results for pointlike nuclei with 7 =0 and I =1/2
are the same. However, that is just a coincident. There is
no ‘deep’ principle why it should be. In appendix we con-
sider the case of the atom with a scalar orbiting particle
and a scalar pointlike nucleus and the result is different
from the consideration above.

We have also to comment on the composition of the
nuclear-structure effects. As it was explained in [31,32],
there are three kinds of them in the case of the nuclear
spin 1/2. One is due to excitation of the nuclear degrees
of freedom (the so-called nuclear polarizability contribu-
tion). The second is the nuclear-size correction. If we have
an explicit parameter, which describes the nuclear size,
say, the charge radius, the correction should vanish at the
limit of zero radius. The last is the anomalous-magnetic-
moment contribution. This contribution does not vanish
in the limit of the zero radius. It is well-defined (and
finite) for the two-photon contribution to the Lamb shift
for I = 1/2. (It is, however, not finite in the case of the
two-photon contribution for the hyperfine structure (see,
e.g., [10,11])).

In the case of different values of the nuclear spin the
situation changes. For I = 0, apparently there is no
anomalous-magnetic-moment contribution. In the case of
I =1, to discuss the result in the limit of zero radius we
have to return to the ‘true’ pointlike diagrams. The result
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is divergent and contains a logarithmic term

<Za>5mffL<mr)3

(g-12 m?  A?
Xi
m™m3 M\ m

5 a2 Mo

where A is the UV cut-off.

The divergence does not vanish at the limit of the
zero nuclear radius. In ordinary atoms with m < 1/ry
the inverse nuclear radius enters the related would-be
divergent expression as the cut-off parameter and pro-
duces a logarithmically enhanced recoil contribution (cf.
with HFS in hydrogen [10,11]). In muonic atoms with
m ~ 1/ry there is no enhanced term. In the case of g = 1
the divergent term disappear, however, there is no actual
nucleus with g = 1. Besides, there are finite additional
contributions for g = 1 (see [28] for detail).

Open access funding provided by Max Planck Society. The
work has been in part supported by DFG (under grant # KA
4645/1-1) and by RFBR (under grant # 16-02-00042). A part
of work of SGK was done during an MITP workshop “Low-
Energy Probes of New Physics” and he is grateful for their
support and hospitality.

Author contribution statement

The calculations have been performed by the authors
together.

Open Access This is an open access article distributed
under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which
permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Appendix A: Two-photon exchange in the
bound system of two scalar particles

As it is shown in Section 3 the results for AEY2 and
AEY21/2 coincide (see (9)). We note that the result for
AEY?9 is exact in m/M and therefore we may consider
also the case of an atom with a light orbiting scalar and
a heavy spin-1/2 nucleus
AEOL/2 — ARY/20 — ARY/21/2 (A1)
To show that that is a coincident we compare those
results with AE®?. The hard part of this contribution
has been considered in classical works [33-35] (see also
[36,37]). The result is quite different from those discussed
above for other spins. The result for AE®? is UV divergent
(but renormalizable). Due to that the contribution of the
two-photon exchange should be considered together with
a 4-scalar contact term, which is present in the Lagrangian
of the scalar theory and the QED renormalization of which
comes from the two-photon diagram.
The situation with two scalar particles is different from
the case of two-photon exchanges for an atom with at
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least one particle with spin-1/2 also in another aspect.
The Salpeter-type contributions, which are discussed
in the main part of the paper (such as 1/2-1/2, 1/2-0,
and 0-1/2) are recoil contributions with the leading
term of the order (Za)®m?/M. Their differences are
recoil effects of higher order and the related differential
contributions are of the order (Za)>m*/M3. The above
mentioned divergence in the 1/2-1 case is also of the
order (Za)®m*/M?3. In contrast to that, the [divergent]
difference between the 1/2-1/2 contribution and the 0-0
one is of the order (Za)®m?/M, i.e., it is of the same
order that the leading term.
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