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Abstract

Computational screening for new and improved
catalyst materials relies on accurate and low-
cost predictions of key parameters such as ad-
sorption energies. Here, we use recently de-
veloped compressed sensing methods to iden-
tify descriptors whose predictive power extends
over a wide range of adsorbates, multi-metallic
transition metal surfaces and facets. The de-
scriptors are expressed as non-linear functions
of intrinsic properties of the clean catalyst sur-
face, e.g. coordination numbers, d-band mo-
ments and density of states at the Fermi level.
From a single density-functional theory calcu-
lation of these properties, we predict adsorp-
tion energies at all potential surface sites, and
thereby also the most stable geometry. Com-
pared to previous approaches such as scaling
relations, we find our approach to be both more
general and more accurate for the prediction of
adsorption energies on alloys with mixed-metal
surfaces, already when based on training data
including only pure metals. This accuracy can
be systematically improved by adding also alloy
adsorption energies to the training data.

Introduction

Surface catalysis has an enormous impact on
the environment and our society’s health and
prosperity.! However, the reliable description

of catalytic properties and the prediction of
what materials may be even better catalysts
than what we know today is still weak. This
is due to the highly nonlinear and intricate re-
lationship between the ”catalyst material” (the
static material that is introduced before the cat-
alytic process is running) and the strongly ki-
netically controlled surface reactions at realis-
tic conditions.” Simply speaking, the basic un-
derstanding of heterogeneous catalysis is given
by the Sabatier principle and the Bregnsted-
Evans-Polanyi (BEP) relation.” The first states
that there is an optimum adsorption strength
for which the reactants bind strong enough to
allow for adsorption and dissociation into re-
action intermediates, but weak enough to al-
low for consecutive desorption of products. In
turn, the BEP concept tells that the energy
barriers of the chemical reactions scale approx-
imately linearly with the adsorption energies of
the molecules.

In consequence, the reliable prediction of ad-
sorption energies is a key element of any theo-
retical description and search for new catalyst
materials. For this, we here present a data-
driven approach that does not start from a
specific physical model, e.g. the tight-binding
description of chemical bonding, but accepts
that the intricacy of processes that cooperate
or compete in materials properties may not
necessarily be describable by a closed physi-
cal equation. This has been described as the
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fourth paradigm of materials science.” Previ-

ous data-driven approaches to the prediction of
adsorption energies®1? have exploited an ap-
proximately linear correlation between the ad-
sorption energies of certain adsorbates on pure
transition metal (TM) surfaces (scaling rela-
tions™) to extend the data-driven predictions of
one or two species to other adsorbates involved
in the reaction. We instead directly learn the
adsorption energies of a whole range of atoms
and molecules at all potential adsorption sites
(thereby also the most stable site) only from
properties of the clean surface. This allows
us to go beyond scaling relations and the of-
ten unfulfilled assumptions tied to this partic-
ular physical model. It furthermore opens the
perspective of directly searching for outliers to
scaling relations, which can be highly interest-
ing catalyst materials missed by the standard
approach. 1214

The method for identifying the key descrip-
tive parameters is the recently developed com-
pressed sensing method SISSO™® (sure inde-
pendence screening and sparsifying operator),
which enables us to identify the best multidi-
mensional descriptor out of an immensity of
candidates (billions). Our descriptors are more
general and less costly to use than previous ap-
proaches and allow for making predictions for a
huge number of surfaces including both multi-
metallics and various facets. Through BEP re-
lations our approach can also describe chemical
reactions, as well as the diffusion of atoms and
molecules at the surface visiting metastable ad-
sorption sites.

Computational details

Density Functional Theory

The data sets employed in the present
work were obtained from plane-wave density-
functional theory (DFT) calculations (Quan-
tum ESPRESSO code®) using the van
der Waals-corrected BEEF-vdW exchange-
correlation functional. ™ The larger data set
consists of adsorption energies of atomic and

molecular adsorbates (C, CH, CO, H, O, OH)

on the stepped fec(211) facets of nine TMs
(Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt and Au) and
selected single-atom (SA) and AB bimetallic
alloys. The metals were modeled in fcc stack-
ing using a (1 x 3) ((1 x 2) for AB alloys)
supercell with fifteen metal layers. The con-
sidered adsorption sites are illustrated in Fig.
(a) and cover both high-symmetry terrace and
step sites. For each adsorbate, all adsorption
sites that correspond to local minima on the
potential energy surface were included. The
SA alloys™1418 were constructed by replacing
one metal atom at the step with a different
metal (see Fig. [I{b)). Specifically, we consid-
ered Ag@QCu (Ag atom in Cu surface), Pt@QRh,
Pd@Ir and Au@Ni. For the AB L1, alloys™
(AgPd, IrRu, PtRh and AgAu) the considered
surface termination is depicted in Fig. [If(c).
The total numbers of adsorption energies in
the data set are 344 (metals), 281 (SA alloys),
and 259 (AB alloys). The smaller facets data
set consists of one adsorption site for each ad-
sorbate on the fcc(111), (110) and (100) facets
of the nine TMs, leading to a total of 54 ad-
sorption energies on each facet. All data sets
are compiled in Supplementary Sec. S1 together
with further computational details.

(a)

(b) ()

Figure 1: Top view of the structure of (a) the
fee(211) facet along with the considered terrace
and step adsorption sites, which cover one four-
fold-coordinated site (purple dot), four three-
fold-coordinated (fcc and hep) sites (red dots),
five bridge sites (yellow dots) and two top sites
(white dots). Perspective views of the struc-
tures of (b) a single-atom (SA) alloy and (c) an
AB alloy.

Compressed sensing

The SISSO method™ employed for descriptor
identification makes the ansatz that the prop-
erties of interest Py, ..., Pi € R, (in this case a



vector of N adsorption energies of adsorbate j)
can be expressed as linear functions of candi-
date features di,...,dy; € RY, where the fea-
tures are constructed as non-linear functions
of user-defined primary features (see below).
SISSO identifies the few best features (the num-
ber of which corresponds to the dimensionality
of the descriptor) out of immense feature spaces
by use of the sparsifying ¢, constraint. This
is carried out in a smaller feature subspace se-
lected by a screening procedure (sure indepen-
dence screening (SIS)). The size of the subspace
is equal to a user-defined SIS value times the di-
mension of the descriptor.

In this work we make use of multi-task learn-
ing?? to identify common descriptors for the
adsorption energies of several different adsor-
bates simultaneously. That is, the identified
features are constrained to be identical for ev-
ery adsorbate, while the fitting coefficients are
allowed to vary between the adsorbates. We
find that multi-task learning gives a better pre-
dictive performance compared to the identifica-
tion of separate descriptors for each adsorbate
(see Supplementary Fig. S2). We consider two
hyperparameters in the SISSO method: the di-
mension of the descriptor and the feature space
rung (see below) as well as the SIS value (see
Supplementary Sec. S2), that we fix for the cur-
rent application through a validation data set
(see below).

Primary features

The decision which primary features to use as
input for the feature construction is crucial for
the predictive performance of the resulting de-
scriptors. Inspired by previous studies® &7t
we consider four classes of primary features (see
Table [1)) related to the metal atom, the metal
bulk, the metal surface and the metal adsorp-
tion site. For pure metals the primary features
of the site class were calculated as averages over
the metal atoms making up the site ensemble,
while for alloys this was the case for the primary
features of all classes. We note that the consid-
eration of fixed adsorption sites as well as the
averaging over the site ensemble is an approx-
imation. It may break down in case of surface

reconstruction or any other appearance of new
adsorption motifs that were not accounted for
in the calculation of the primary features. Fur-
ther details regarding the primary features and
all data are given in Supplementary Sec. S1.

Table 1: Primary features used for the feature
construction.

Class Name Abbreviation
Atomic Pauling electronegativity PE
Tonization potential 1P
Electron affinity EA
Bulk fce nearest neighbor distance bulkyna
Radius of d-orbitals Tq
Coupling matrix element squared V3
Surface  Work function w
Site Number of atoms in ensemble sitene
Coordination number CN
Nearest neighbor distance sitennd
d-band center €4
d-band width Wy
d-band skewness Sy
d-band kurtosis Ky
d-band filling fa
sp-band filling fsp
Density of d-states at Fermi level DOS,
Density of sp-states at Fermi level DOS,,

Feature construction

As discussed above, candidate features are con-
structed as non-linear functions of the primary
features. In the SISSO method this is achieved
in practice by applying algebraic/functional op-
erators such as addition, multiplication, expo-
nentials, powers, roots etc. to the features.™? A
full list of the used operators can be found in
Supplementary Sec. S2. Arbitrarily large fea-
ture spaces can be constructed by iteratively
applying these operators to the already gen-
erated features. The starting point ®, corre-
sponds to the 18 primary features listed in Ta-
ble [1, We consider up to three iterations, gen-
erating thereby the feature spaces ®;, ®, and
®;. Note that a given feature space ®,, contains
also all of the lower rung feature spaces. The
@, and P, feature spaces are still comparatively
small. They consist of 783 and about 10° fea-
tures, respectively. For the third iteration gen-
erating ®3 the approach we chose consisted in
carrying out two rounds of feature construction
and descriptor identification, each for a subset



of only 16 out of the 18 primary features, in or-
der to limit the ®3 feature space of each round
to a tractable value of about 10, In the first
round the skewness and kurtosis of the d-band
were excluded, since the higher order d-band
moments are expected to be less important than
the lower order moments. Among the identified
best descriptors (i.e. with lowest validation er-
rors, see below) of the first round, two primary
features of the site class never appeared, namely
the nearest neighbor distance and the density of
d-states at the Fermi level. In the second round
these two primary features were then excluded,
while the skewness and kurtosis of the d-band
were re-included. At every dimension the best
performing ®3 descriptor originated from the
first round and therefore only the results of the
first round are presented below.

Results and discussion

Scaling relations

We begin by evaluating the performance of
prevalent scaling relations for predicting ad-
sorption energies on SA and AB alloys. In Fig.
2[a) and (b) we show two examples of scaling
relations constructed by linear fits to the DFT-
calculated adsorption energies on the pure TMs
(black stars). Corresponding explicitly calcu-
lated adsorption energies on SA and AB al-
loys are also indicated by colored stars. While
many bimetallics are well described by the lin-
ear scaling relations, there are also a number
of serious outliers. Some systems with particu-
larly large prediction errors of the order of 1eV
are highlighted. They typically contain mixed-
metal sites made up of metals with very differ-
ent reactivity towards O (e.g. Cu and Ag) or
C (e.g. Ag and Pd). This poor performance
of scaling relations derives from their calcula-
tion of the descriptors at one specific site, which
fails to account for the variation in metal com-
position of the many other sites on the alloy
surface. This issue likely occurs most severely
for the considered thermochemical scaling re-
lations. BEP relations for activation energies,
in contrast, are more local in the sense that

often both the transition state and the initial
and final reaction intermediates coordinate (or
can be chosen to coordinate) to the same metal
atoms at the considered site ensemble. Corre-
spondingly, BEP relations are typically found
to exhibit significantly lower errors than ther-
mochemical scaling relations even for the pure
metals.%®

We note that an alternative scaling-relation-
based approach is to calculate all potential ad-
sorption sites for the descriptors on a mixed-
metal surface and then to consider only the
most stable adsorption sites.*” However, at con-
comitantly increased screening costs this still
does not alleviate the problem since different
adsorbates (e.g. O and OH) generally adsorb
to different site types (e.g. O typically prefers
higher coordinated sites than OH). As a conse-
quence, the metal composition of the preferred
sites could be different. We will come back to
this point in the discussion of the compressed
sensing results. In addition, not only the most
stable sites, but also metastable sites missed by
this approach, can get populated at higher cov-
erages and then play an important role in the
catalytic pathway.“

Descriptor identification

The demonstrated failure of scaling relations to
predict accurate adsorption energies on alloys
with mixed-metal surfaces, as well as the high
cost associated with the calculation of two or
more adsorption energies on each alloy to be
screened, emphasizes the need for new, accu-
rate and low-cost descriptors for computational
screening. In Fig. [3[(a) we compare the perfor-
mance of scaling relations to new descriptors
identified by SISSO in terms of the root-mean-
square error (RMSE) on training and validation
data sets. We define the best descriptor as the
descriptor that achieves the lowest RMSE on
the validation data set. In the calculation of the
RMSE the same weight is given to every adsor-
bate considered in the multi-task learning irre-
spective of how many data points exist for the
adsorbate (see Supplementary Table S1). The
training data consists exclusively of the adsorp-
tion energies on the pure metals and the vali-
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Figure 2: Scaling relations for adsorption energies of (a) OH at the top-s site and (b) CH at the
hep-s site. The black lines are fits to the DFT adsorption energies on the pure metals (black stars).
Explicitly calculated DFT adsorption energies for (a) SA alloys and (b) AB alloys are shown with
colored stars. Some particularly large deviations between predictions from scaling relations and
actual adsorption energies for the alloys are highlighted. SISSO predictions (8D, ®3 descriptor
trained on the pooled metals and alloys data set, see text) for the calculated alloys (32 additional
AB alloys) are shown with colored (gray) circles. For the prediction of the DFT-calculated alloys,
these predicted data points were excluded from the training set. All scaling relations can be found
in Supplementary Fig. S3. Histograms of SISSO-predicted adsorption energies on all potential
adsorption sites of all 36 AB alloys for (¢) O and OH and (d) C and CH. The black shaded regions
highlight literature volcano optimal adsorption energies for the oxygen reduction reaction (ORR)
on (111) facets®” and for selective ethanol synthesis on (211) facets.*! The colored circles mark
those materials for which the predicted most stable (c¢) O adsorption energy among the (111)-like
(terrace) sites and (d) C adsorption energy among all (211) sites falls within the desired range.
The corresponding most stable OH and CH adsorption energies for these materials are also marked
in the histograms above. A predicted near-optimal ORR material (AgPt) that breaks the O-OH
scaling relation due to different metal compositions of the preferred O and OH adsorption sites is
highlighted. The black arrow points from the SISSO-predicted to the scaling-relation-predicted OH
adsorption energy.



dation data consists of 50% of each of the SA
and AB alloys data. SISSO data are shown for
1D-8D descriptors identified from each consid-
ered feature space ®,,. For each case a number
of SIS values have also been tested (see Supple-
mentary Fig. S4) and the best descriptor (i.e.
the descriptor with the lowest RMSE on the
validation data set) is shown. As expected, the
SISSO training errors systematically decrease
when increasing either the complexity and size
of the feature space (larger n) or the dimen-
sionality of the descriptor. The validation er-
rors show the same trend, but the errors level
out around the 5D to 8D descriptor depend-
ing on the rung of the used feature space. We
would expect the validation errors to increase
again at even higher dimensions. However, such
higher dimensions are outside of the scope of
the present study since the leveling out of the
validation errors suggests that going beyond 8D
is unlikely to result in descriptors with lower
validation errors.

The 5D to 8D descriptors of @3 all have very
low validation errors, differing from each other
by only about ten meV. Likely, there is no
statistical significant difference in their perfor-
mance. A detailed statistical analysis to derive
error bars is outside of the scope of this work,
which aims at a simple comparison to scaling
relations. The latter are usually derived based
on only one fixed training data set considering
only the pure metals and we therefore follow
the same approach here. In the absence of er-
ror bars we choose the descriptor with the low-
est observed validation RMSE (of 0.15eV) as
our best descriptor, i.e. the 8D, ®3 descriptor.
This descriptor is significantly better than scal-
ing relations, for which the validation RMSE
is 0.28 ¢V (horizontal dashed line). In fact, al-
ready the 2D descriptor of @3 (with a validation
RMSE of 0.22eV) performs better than scaling
relations. The best descriptor among the pri-
mary features (the SISSO 1D, ®, descriptor)
is found to be the d-band center, i.e. SISSO
identifies the physics that has already been dis-
covered in form of the d-band model more than
twenty years ago.=?

A comparison of the performance of the d-
band center, scaling relations and the best (8D,
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Figure 3: (a) RMSE for the descriptors identi-
fied using exclusively the pure metals data set
for training and 50% of the alloys data for vali-
dation as well as corresponding results for scal-
ing relations. (b) Box plots of the absolute er-
rors on the test set consisting of the remain-
ing 50% of the single-atom (SA) and AB alloys
data for the d-band center, for scaling relations,
for the best SISSO descriptor for the validation
data set (8D, ®3) and for the best SISSO de-
scriptor when including 50% of the (111), (110)
and (100) facets data set in the validation data
(8D, @4, see Supplementary Fig. S5). The up-
per and lower limits of the rectangles mark the
75% and 25% percentiles, the internal horizon-
tal line marks the median, and the ”error bars”
mark the 99% and 1% percentiles. The crosses
mark the maximum absolute errors. (c¢) Corre-
sponding box plots for the two SISSO descrip-
tors on the facets data sets, where for the (8D,
®,) descriptor only the remaining 50% of the
facets data set not used for validation are in-
cluded.



®;) SISSO descriptor on the test data set (the
remaining 50% of the SA and AB alloys data)
is shown in Fig. 3(b). The RMSEs are: d-
band center: 0.37 eV, scaling relations: 0.28 eV,
SISSO: 0.15eV, and the maximum absolute er-
rors (maxAEs) are: d-band center: 1.31eV,
scaling relations: 1.43eV, SISSO: 0.61eV. Here,
the maxAE is the maximal error observed for
any of the adsorbates considered in the multi-
task learning. As already observed for the val-
idation data, the test results thus demonstrate
the great improvement of the new SISSO de-
scriptor compared to previous approaches. In
Supplementary Table S7 we provide additional
information about the largest deviations be-
tween calculated and SISSO-predicted adsorp-
tion energies for the alloys. In general, the C
adsorption energies are the most difficult to pre-
dict since they vary much more over the TM
series than e.g. the H adsorption energies. In
addition, the most difficult alloys to predict ad-
sorption energies for are those that combine a
more noble and a more reactive metal such as
Au@Ni or Ag@Cu. The maximum absolute er-
ror of 0.61eV is found for the OH adsorption
energy on top of the Au atom in the Au@Ni al-
loy. The embedding of the larger and more no-
ble Au atom in the smaller lattice constant and
more reactive Ni surface (see Fig. [I(b)) prob-
ably provides an adsorption site that is both
geometrically and electronically very different
from everything else in the data set and thus
harder to predict.

Transferability of descriptors

To further test the predictive performance of
the best (8D, ®3) SISSO descriptor we show in
Fig. 3{c) the error distribution for the predic-
tion of adsorption energies on three new facets,
the (111), (110), and (100) facets. Some sites,
in particular those found on the (111) facet, are
very similar to sites found on the (211) facet
in the training data. However, the (110) and
(100) facets contain sites that are very differ-
ent, albeit of similar coordination numbers (7
— 9.5), compared to the (211) facet sites. It
is seen that the descriptor with the best perfor-
mance for (211) facets performs very well for the

(111) facet (RMSE of 0.17eV), but significantly
worse for the (110) and (100) facets (RMSEs of
0.29eV and 0.30eV, respectively). This shows
a well-known limitation of compressed sensing
(and machine learning) methodologies, namely
that a good transferability cannot be expected
a priort for cases not previously encountered
in the training or validation data. However,
to put this in perspective, we note that this
"poor” RMSE for the other facets is essentially
of the same level as the RMSEs obtained for the
widely used scaling relations in the first place.

In order to identify a descriptor that has a
good compromise between accuracy for alloys
and facets, we include 50% of the facets data
in the validation data (see Supplementary Fig.
S5). The new best descriptor is found for the
hyper parameters 8D, ®;. It is interesting to
note that since this is a ®; descriptor, the func-
tional form of the features is much less complex
than for the ®3 descriptor optimized for the al-
loys alone. This suggests that a less complex
mathematical form is required for a descriptor
that is transferable across both alloys and ac-
tive site motifs.

The RMSEs (maxAEs) of the (8D, ®,) de-
scriptor for the remaining 50% of the facets data
are found to be: (111): 0.17eV (0.44¢V), (110):
0.21eV (0.59eV), (100): 0.24eV (0.48eV).
These very moderate errors show that it is pos-
sible to identify a descriptor with a good pre-
dictive performance for a wide range of struc-
tural motifs as exemplified by the low-index fcc
facets. The improved performance on the facets
data sets comes at the very moderate expense of
increasing the RMSEs for the alloys to 0.18 eV
compared to 0.15eV before. We therefore sug-
gest the (8D, ®,) SISSO descriptor for cases
where simultaneous screening of alloys and a
wide range of active site motifs is desired. It
should be emphasized though that in general
a good performance can only be expected for
active sites types that resemble to some extent
those types that the descriptor was optimized
for. Likely, more varied training and validation
data will be required to identify a descriptor
that would work for very different active site
motifs such as kinks, vacancies and adatoms.



Composition of descriptors

Having confirmed the predictive performance of
the identified descriptors, we now move on to
discuss their composition. As an example of a
descriptor identified by SISSO, we give in eq.
the best 2D descriptor of ®; from Fig. [3(a)
(alloy validation data set):

, . 2 IP - si
Pl = - (Vad — sin(siteyo) + —Sm(gd)>

PE €d
- o - 10g(DOS,,) - (g — W
—f—c;-(PE-fd—fp 8( V2p> (€a )
' ad
+c

(1)

where P/ is an adsorption energy of adsorbate j
and the primary features entering the descriptor
are evaluated for the material /site combination
relevant for P/. The d-band center and sp-band
properties such as the Pauling electronegativity
are identified as highly important primary fea-
tures. This was also found in previous studies
employing artificial neural networks,®” but is
here expressed in an explicit non-linear func-
tional form owing to the compressed sensing
methodology. Among the remaining primary
features entering the descriptor we especially
highlight the DOS at the Fermi level (here of
the sp-band), which is a feature not considered
in these previous studies, even though its im-
portance for the reactivity of TM surfaces was
discussed already more than 30 years ago by
Yang and Parr.*

An overview of the identified descriptors of
each dimension and rung for both the alloy val-
idation data set and the combined alloy and
facets validation data set together with the fit-
ting coefficients cZ is given in Supplementary
Table S8 and S9.

Enlarging the training data set

The predictive performance of the identified de-
scriptors for alloy screening is already impres-
sive, given that no explicit information on al-
loys was given in the training data. However,
a further advantage of data-driven approaches
is that the learning can be systematically im-

proved by enlarging the training data set. In
contrast, the rigid format of linear scaling re-
lations does not allow for significant improve-
ments, even if fitting also to the alloys data,
as evidenced by the scattering of the alloy data
points around the fitted line in Fig. 2f(a) and
(b).

To provide a simple estimate of the learning
improvement possible when including also al-
loys in the training data, we identify a new
SISSO descriptor (see Supplementary Table
S10) based on the pooled metal and alloys data
sets, but excluding the 23 DFT-calculated al-
loy data points (colored stars) shown in Fig.
2(a) and (b). For this we use the hyperparam-
eters that were found to be best for alloys (8D,
®;). The colored dots in Fig. [2[(a) and (b) show
the SISSO predictions for the data points left
out in the training. Already a visual inspection
reveals that the agreement is very good. The
maxAE (of 0.52eV) is found for the OH ad-
sorption energy of the dark green point in Fig.
2(a), which corresponds to OH adsorption on
top of the Au atom in the Au@Ni alloy. Note
that exactly this data point is also the maxAE
(with the slightly larger value of 0.61 eV) for the
descriptor trained only on the pure metals. The
RMSE over the 23 predicted alloy data points in
Fig.[2(a) and (b) decreases from 0.23 eV (train-
ing on pure metals only) to 0.18 eV (training on
pooled data set).

Overall, the good agreement between the
DFT-calculated values and the SISSO predic-
tions shows that our models have the required
accuracy to systematically search for outliers to
scaling relations. In addition, our approach is
computationally cheap enough to allow for the
screening of immense alloy spaces. For this, we
will next present a simple example.

A first screening example

In the following we make use of a SISSO de-
scriptor (see Supplementary Table S11) iden-
tified using the hyperparameters (8D, ®3) and
the entire pooled metals and alloys data sets for
training. We predict the adsorption energies for
the adsorbates and sites considered in Fig. [2(a)
and (b) on the additional 32 possible AB alloys



(those that were not explicitly calculated by
DFT) as shown with the gray dots. Similar to
the explicitly DFT-calculated alloy data points,
there is a considerable scatter around the scal-
ing relation lines. This shows that there indeed
exist many materials with potentially interest-
ing catalytic properties, which would be missed
by a scaling-relation-based screening approach.

A particularly interesting perspective for cat-
alyst screening is to be able to search directly
for candidate materials that break scaling rela-
tions. For many reactions, the incentive would
be to break scaling relations in a desired way,
since it has been suggested that scaling rela-
tions impose an upper limit to the possible cat-
alyst activity. For example, it is known that
for the oxygen evolution reaction it would be
desirable to find a material where O is desta-
bilized relative to OOH,*? and for electrochem-
ical CO4 reduction it is desirable to destabi-
lize CO relative to CHO.®? For other reactions,
where optimum catalytic activity has hitherto
been exclusively formulated in terms of singu-
lar descriptors, the interest would be to evalu-
ate the effect of scatter in the binding of other
important intermediates that hitherto has been
assumed as fixed through scaling relations. For
the oxygen reduction reaction (ORR), optimum
catalytic activity has for instance been associ-
ated with an optimum oxygen adsorption en-
ergy,** while for selective ethanol synthesis both
the carbon and the oxygen adsorption energy
must be simultaneously optimized.®! The activ-
ity at the top of this theoretical volcano curve is
then independent of e.g. the OH (ORR) or CH
(ethanol) adsorption energy, as the latter are
connected to the optimum O or C adsorption
energy through a scaling relation, respectively.

In Fig. [J(c) and (d) we specifically check on
the scatter by showing histograms of the pre-
dicted adsorption energies for (c) O and OH
and (d) C and CH at all potential adsorption
sites of all 36 AB alloys. There are more pre-
dicted points for OH (around 1000) than for the
other adsorbates (around 400), since OH ad-
sorption can take place at more site types, i.e.
also at top and bridge sites. The black shaded
areas highlight in Fig. () the ORR "volcano
optimal” O adsorption energy on (111) facets="

and in Fig. [J(d) the optimal C adsorption en-
ergy on (211) facets for selective ethanol syn-
thesis.®! For this simple screening example, we
will assume that only the most stable adsorp-
tion site of a given adsorbate plays a catalytic
role, keeping in mind that in reality also less
stable (meta-stable) sites could get populated
at higher coverages. The SISSO approach di-
rectly gives us the energetics for the most sta-
ble and all meta-stable sites, so in general we
are not limited to considering only most sta-
ble sites. Since the ORR volcano was devel-
oped for (111) facets, we search for materials
for which the most stable O adsorption energy
among the (111)-like (terrace) sites of the (211)
facet falls within the desired range. This results
in three candidate materials: PdPt, AgPd, and
AgPt. The latter material is highlighted in Fig.
2(c), since it has an OH adsorption energy on
its most stable bridgel-t site that is 0.23 eV
lower than the value that would be predicted
for this site from scaling relations (indicated by
the black arrow) based on the O adsorption en-
ergy on its most stable hcp-t site. The opposite
behavior (a lower O adsorption energy relative
to OH) is seen for the material shown with the
green dot (PdPt). The cause of this breaking
of scaling relations is thereby the slightly dif-
ferent oxygenate adsorption energy for Pt and
Ag, and the fact that the preferred adsorption
sites for OH and O have a different composition
of Pt and Ag. A similar breaking of scaling
relations is observed for the ethanol synthesis
example. Here, SISSO recovers the scatter in
the most stable CH adsorption energies for ma-
terials (RuAg, RhAu, RuAu, IrAu, and Culr)
that all have about the same most stable ” opti-
mum” C adsorption energy. This scatter shows
the extent to which it is possible to tune the
CH adsorption energy independently of the C
adsorption energy and thereby further tailor the
catalytic activity.

A high-throughput screening per-
spective
It should be noted that the moderate breaking

of scaling relations observed in the simple ex-
amples from the previous section is related to



the consideration of only a handful of "near-
optimal” materials (out of a total of only 36
considered materials) and in particular the con-
sideration of only most stable adsorption sites.
A full assessment of the extent to which scaling
relations can be broken on alloys with mixed-
metal surfaces would only be revealed by a full
high-throughput screening of hundreds of thou-
sands of materials that is beyond the scope
of the present study. Such a high-throughput
screening could also involve the evaluation of
a microkinetic model for each catalyst material
that takes into account all possible adsorption
sites of every adsorbate, as well as kinetic bar-
riers for reaction and diffusion steps through
BEP relations. If such a microkinetic model
was initially carried out within the simplifying
mean-field approximation,®” the cost of its eval-
uation would still only be a negligible fraction
of the (already small) cost of carrying out a
DFT calculation of the primary features of the
clean catalyst surface for the descriptor eval-
uation. Once a selection of promising cata-
lyst materials had been identified, a next step
could then be the evaluation of a more thorough
microkinetic model from e.g. a kinetic Monte
Carlo simulation,*® possibly taking into account
also lateral interactions between the adsorbates
through cluster expansion methods.®® A full as-
sessment of identified promising catalyst mate-
rials would ultimately also need to take into
account other aspects such as bulk and sur-
face segregation stability under realistic surface
coverages for the chemical reaction and reac-
tion conditions of interest, as well as stability
against metal stripping in electrocatalysis ap-
plications.

Conclusions

In summary, we have used compressed sensing
to identify new and better descriptors that al-
low to predict adsorption energies for a whole
range of atoms and molecules at all potential
surface sites of TMs and bimetallics formed of
TMs. The descriptors can be obtained from
a single DFT calculation of the clean surface
and their predictive power extends over both
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multi-metallics and various surface facets. Im-
portantly, this enables low-cost catalyst screen-
ing not only in materials, but also in active site
space®” with unprecedented accuracy. With
respect to materials, the thereby enabled sys-
tematic identification and analysis of outliers
to traditional scaling relation energetics seems
particularly promising. With respect to active
sites, the availability of energetic data for a wide
range of site types paves the way to actively em-
brace the uncertainty in surface structure and
composition of working catalysts.

Supporting Information Avail-
able

Supporting Information. Additional DFT and
SISSO computational details, multi-task learn-
ing versus learning of separate descriptors,
overview of largest prediction errors, all scaling
relation plots, tested SIS values, hyperparame-
ter testing with facets data in validation data
set, and all identified descriptors. This mate-
rial is available free of charge via the Internet
at http://pubs.acs.org.
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