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Abstract
The concept of connectionism states that higher cognitive functions emerge from the interaction of many simple elements.
Accordingly, research on canonical microcircuits conceptualizes findings on fundamental neuroanatomical circuits as well
as recurrent organizational principles of the cerebral cortex and examines the link between architectures and their associated
functionality. In this study, we establish minimal canonical microcircuit models as elements of hierarchical processing net-
works. Based on a combination of descriptive time simulations and explanatory state-space mappings, we show that minimal
canonical microcircuits effectively segregate feedforward and feedback information flows and that feedback information
conditions basic processing operations in minimal canonical microcircuits. Further, we derive and examine two prototypical
meta-circuits of cooperating minimal canonical microcircuits for the neurocognitive problems of priming and structure build-
ing. Through the application of these findings to a language network of syntax parsing, this study embodies neurocognitive
research on hierarchical communication in light of canonical microcircuits, cell assembly theory, and predictive coding.

Keywords Canonical microcircuit · Hierarchical model · Neural computations · Adaptive mechanisms · State-dependent
operation · Syntax parsing

1 Introduction

Connectionism states that higher cognitive functions emerge
from the constructive interaction of a large number of rel-
atively simple and uniform fundamental units. The concept
of canonical microcircuits (Douglas and Martin 1991, 2007;
Douglas et al. 1989) postulates the existence of such fun-
damental units in the neocortex, which can be effectively
described by a common basic circuitry. This idealized local
architecture is supposed to give rise to a limited set of stereo-
typic functions (Silberberg et al. 2002; Harris and Shepherd
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2015), referred to as basic operations (Kunze et al. 2017),
universal computational capabilities (Haeusler et al. 2009),
or computational primitives (Douglas and Martin 2007).
In Kunze et al. (2017), we defined a minimal canonical
microcircuit (mCMC) as a system of interacting excitatory
and inhibitory neural populations whose structural topology
reflects the homogeneity of neocortical matter and whose
functional repertoire features the basic operations of signal
flow gating and working memory.

Various computational models have been proposed for the
cooperation of multiple canonical microcircuits to realize
higher cognitive functionality, such as attentional processing
(Ardid et al. 2007), predictive coding (Bastos et al. 2012), lan-
guage processing (Pulvermüller et al. 2014; Wennekers et al.
2006), and visual steering (Heinzle et al. 2007). Extending
this research, here we investigate how structure building and
priming emerge from the hierarchical interaction ofmCMCs.

Cognitive functions correspond to specific neural acti-
vation patterns. Structure building refers to the underlying
mechanisms of their establishment (Fries 2005; Rolls and
Deco 2015; Friston 2008; Spiegler et al. 2016) and is a cen-
tral element of cell assembly theory (Hebb 1949; Braitenberg
1978; Pulvermüller et al. 2014; Palm et al. 2014). Cell assem-
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blies (sometimes called neuronal assemblies) denote groups
of neurons with strong mutual excitatory connections that
together represent objects ormore abstract entities of thought
(Wennekers et al. 2003). The progressive activation of these
cell assemblies, called association,was proposed to embody
cognitive processing. It has been used to describe mecha-
nisms in various cognitive disciplines including perception,
memory, decisionmaking, attention, and language tasks (Pul-
vermüller et al. 2014; Wennekers et al. 2006). Wennekers
et al. (2006) formalize three different kinds of cell assem-
bly associations: (i) auto-association, where cell assemblies
project onto themselves to enhance localized activations (that
is, attractor states), (ii) heteroassociations, where two or
more cell assemblies sequentially activate each other, similar
to the concept of synfire chains (Abeles 1991), and (iii) con-
ditioned associations that extend the spontaneous transitions
of heteroassociations by an additional input that is required
to gate the activation of cell assemblies and support selec-
tive structure building (termed synfire graphs). Notably, this
formalized functionality is very similar to the basic opera-
tions of working memory and signal flow gating, identified
in mCMCs (Kunze et al. 2017). In this study, we explicitly
identify state-dependent operations in mCMCs.

Priming involves the activation of implicit memory con-
tents by the primer stimulus in a bottom-up fashion, which
then influences the processing of the subsequently presented
target stimulus in a top-down fashion (Schacter and Buck-
ner 1998; Tulving and Schacter 1990; Kristjansson 2008).
It may entail facilitation of perception, increase in attention,
and increase in response probability and speed (Kristjansson
2008; Tulving and Schacter 1990). Though considered a non-
conscious form of memory, priming operates independently
from explicit memory systems. It is difficult to localize and
occurs for various sensorymodalities and levels of perception
(Schacter andBuckner 1998; Kristjansson 2008; Tulving and
Schacter 1990). The neuralmechanistic underpinnings of this
multi-scale processing principle remain elusive, although it
is suggested to share some characteristics of top-down atten-
tional guidance (Kristjansson 2008).

Both selective structure building and priming involve
some sort of conditioning where prior information narrows
down the possibilities of subsequent processing steps and
thus predicts them. This fundamental processing principle
is known as predictive coding (Mumford 1992; Rao and
Ballard 1999). It suggests that the brain is continuously
predicting future states based on an internal model of the
environment which integrates novel sensory and established
conceptual information, conveyed by forward and backward
connections, from different levels of the cortical hierarchy
(Mumford 1992; Bastos et al. 2012; Friston 2005; Shipp
2016).

In the present study, we systematically investigate the
characteristic behavior of mCMCs that are employed in hier-

archical networks. We show that a mCMC differentiates
between feedforward and feedback input and demonstrate
how feedback conditions the availability of basic process-
ing operations. We propose two prototypical meta-circuits
of cooperating mCMCs that support priming and structure
building. Finally, based on these findings, we extended a
previously proposed (Kunze et al. 2017) network model per-
forming syntax parsing during sentence perception, in which
hierarchically interacting mCMCs integrate unspecific sen-
sory and conceptual information to yield a specific neural
activation pattern.

2 Theory and analysis

2.1 Description of theminimal canonical
microcircuit model

To formularize a canonical microcircuit, we used a neural
mass model (Zetterberg et al. 1978; Jansen and Rit 1995)
that has recently been examined for its inherent basic process-
ing operations (Kunze et al. 2017). Importantly, this model
emphasized the canonicity of a neural circuit not in the strict
reproduction of a cortical column (Haeusler et al. 2009), but
in the minimal realization of internal positive and negative
feedback loops. In the past, this type of mean-field model
already served to elucidate mechanisms in processing sys-
tems, such as the description of local steady-state system
behaviors (Grimbert and Faugeras 2006; Spiegler et al. 2010;
Touboul et al. 2011), inferring neural system architectures
from empirical data [dynamic causal modeling (David et al.
2006; Friston et al. 2003)], or a potential realization of pre-
dictive coding (Bastos et al. 2012, 2015).

ThemCMCmodel was designed such that it embodies the
most important key features of the local cortical circuitry: (1)
pyramidal cells providing output to other areas, (2) excita-
tory and inhibitory feedback to these output neurons, and (3)
separate input and output layers. It consists of three neural
masses, namely pyramidal cells (Py), excitatory interneurons
(EIN),1 and inhibitory interneurons (IIN) (Fig. 1a). The Py
comprise pyramidal cells in both supragranular (layers II–III)
and infragranular (layers V–VI) cortical layers, projecting to
other cortical locations. The EIN mainly consist of spiny
stellate cells in granular layer IV, but may also include other
excitatory cells (pyramidals) that project locally to Py. They
are themain target for bottom-up input, thus realizing the sep-
aration between input and output populations. Finally, the IIN
summarize all inhibitory neurons providing local feedback

1 Note that the term “interneuron” is often reserved for inhibitory cells.
Here, an interneuron is any neuron that receives local input and projects
to nearby cells. This nomenclature has been used by previous authors,
including Jansen and Rit (1995).
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Fig. 1 Model architecture and principle analysis approach. a The
investigated canonical microcircuit model considers three neural mass-
es—pyramidal cells (Py), excitatory interneurons (EIN), and inhibitory
interneurons (IIN)—that interact through mean firing rates ϕ(t) scaled
by connectivity gains Nab. The mean membrane potential VPy, inte-
grating both positive and negative local feedback from the interneuron
populations (VPy � V2 − V3), serves as output signal. b The efferent
signal VPy (blue line) is compared to a firing threshold uth (red line)
in three consecutive analysis windows (gray planes) to characterize the
response behavior following a transient stimulation (green line). c This
response behavior was classified into three types: nonresponsive, trans-
fer, and memory behavior (color figure online)

to both infragranular and supragranular Py. Certainly, this
model is a strong simplification. The next sensible extension
would be the separation between deep and superficial Py and
their associated IIN, which was considered, for example, in
Wang and Knösche (2013). Moreover, our model does not
feature recurrent feedback loops for the three populations,
which certainly do exist (Häusler et al. 2009). Here, however,
we used the simplest architecture that has been shown to fea-

ture the basic operations of information gating and working
memory in our previous study (Kunze et al. 2017).

Each of the three neural masses is described by two state
variables: the mean membrane potential V (t) and the mean
firing rate ϕ(t). For the synaptic response and the activa-
tion functions, we followed the approach by Spiegler et al.
(2010), which is based on previous models (Jansen and Rit
1995; Jansen et al. 1993). In each neural mass, the afferent
mean firing rate ϕ(t), arriving at the dendritic tree of a neural
population, is transformed to a respective mean membrane
potential V (t) by convolving the firing rate with a synaptic
response kernel he,i(t) as in:

Ve,i (t) � ϕ(t) ∗ he,i (t), (1)

where the index e (i) denotes the synaptic response kernel of
an excitatory (inhibitory) neural mass. The synaptic response
kernel is modeled as an alpha-function:

he,i (t) � He,i

τe,i
· t · θ(t) · e

−t/
τe,i , (2)

where θ (t) denotes theHeaviside function,He,i is the synaptic
gain, reflecting number and efficacy of synaptic contacts, and
τe,i is the characteristic time constant of either excitatory or
inhibitory operating neural masses. The mean membrane
potential Vc(t), c ∈ [P,E, I ], of the respective neural masses
then depends on the sum of all incoming input components.
Using Green’s function, this can be expressed as:

De,i Vc �
∑

ϕin(t), (3)

where D is a second-order temporal differential operator:

De,i � τe,i

He,i

(
d2

dt2
+

2

τe,i
· d

dt
+

1

τ 2e,i

)

, (4)

and Eq. (2) represented the Green’s function of this dif-
ferential operator. The transformation of mean membrane
potential to mean firing rates, representing the processes
occurring at the axonal hillock of a neuron, is modeled by a
sigmoidal activation function, in this case the logistic func-
tion:

ϕ(t) � S(Vc(t)) � 2eo
1 + er(v0−Vc(t))

. (5)

Here, e0 represents half of the highest achievable mean firing
rate of the respective neural mass, r is the maximum slope of
the sigmoid function and v0 denotes the membrane potential
for which half of the maximum firing rate was invoked. The
system was parameterized with values listed in Table 1.
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Table 1 Parameterization of the
employed neural mass model Parameter Value Unit Parameter Value Unit Parameter Value Unit

He 3.25 mV NEP 135 – r 0.56 mV−1

H i 22 mV NPE 0.8 * NEP – v0 6 mV

τ e 10 ms N IP 0.25 * NEP – e0 2.5 s−1

τ i 20 ms NPI 0.25 * NEP –

Themeanmembrane potential of the Py,VPy(t), integrates
both positive and negative local feedback from the interneu-
ron populations (VPy � V2 − V3) and forms the observable
signal of the circuit (e.g., by EEG). At the same time, VPy(t)
serves as output signal that is transmitted to other coupled
mCMCs through the activation function.

Anatomical studies postulated a hierarchical organization
of the neocortex with forward connections and backward
connections that interlink the different levels of the hierarchy
(Felleman and Van Essen 1991). These findings suggest that
afferent inputs to a canonical microcircuit target either neu-
rons in the granular layer IV, associated with forward input,
or neurons in the agranular layers II/III and V/VI, associ-
ated with backward input (Felleman and Van Essen 1991).
Following this simplified, though established (Bastos et al.
2012), reflection of hierarchical connections, we associated
feedforward signals with input to the excitatory interneurons
(pEIN) and feedback signals with input to the pyramidal cells
(pPy).

According to the scheme depicted in Fig. 1a, the system
of governing equations of a single mCMC is:

De · V1 � NEP · ϕPy + pEIN

De · V2 � NPE · ϕE + pPy

Di · V3 � NPI · ϕI

De · V4 � NIP · ϕP

ϕP � S
(
VPy

) � S(V2 − V3)

ϕE � S(VE) � S(V1)

ϕI � S(VI) � S(V4). (6)

The parameters Nab denote the connectivity gains between
the source population b and the target population a, where
a, b ∈ [P,E, I]. Heun’smethodwas employed for the numer-
ical integration of this equation system (6).

2.2 Time simulations, characteristic fingerprints,
and bifurcation analysis

Themodel equationswere simulated in a dimensionless form
in MATLAB (The MathWorks, Inc., Natick, Massachusetts,
USA), and a bifurcation analysis was performed using the
numerical continuation tool DDE-BIFTOOL (Engelborghs
2002). Standard methods to compute fixed point curves were

used, namely computation of fixed points, derivation of the
Jacobian matrix, linearization of the system around the fixed
points, and evaluation of the eigenvalues to determine the
local stability. We performed time simulations to describe
the system behavior, i.e., the formation of neural activity pat-
terns. All state variables were initialized with a zero vector
and without external stimulation so that the system consis-
tently resided on the lower branch of the S-shaped fixed point
curve in the case of a bistable regime.

The information processing in the mCMC model was
characterized in terms of the stimulation-induced response
behaviors. Following a previous study (Kunze et al. 2017), a
neural population was stimulated with a rectangular impulse
of defined intensity and duration. The maximum membrane
potential of the Pywas compared to a firing threshold in three
consecutive analysis windows, i.e., prestimulus, immediate
response, and asymptotic, see Fig. 1b. Based on the sig-
moidal activation function, the firing threshold was defined
relative to the maximum firing rate of 5 s−1, so that about
25% of the maximum firing rate is reached at the threshold
of 4 mV. Three general types of response behavior constitute
the basic operations of signal flow gating and working mem-
ory: (a) nonresponsive for subthreshold transient deflections
in VPy, (b) transfer for supra-threshold transient deflections,
and (c)memory for sustained supra-threshold deflections; see
Fig. 1c. The response behaviors were mapped to the stimu-
lus’ properties (namely stimulus duration and intensity) in
so-called characteristic fingerprints (see Fig. 2, for exam-
ple), which typified the dynamical response repertoire of the
respective parameterization. For further details regarding the
mechanisms underlying basic information processing, see
Kunze et al. (2017).

3 Results

In the following, we first demonstrate that the mCMCmodel
differentiates between afferent feedforward and feedback
information and how feedback information conditions the
availability of basic processing operations. We then show
how the identified facilitative feedback signal gives rise to
higher information processing, namely priming and structure
building, in prototypical meta-circuits of two cooperating
mCMCs. Finally, we apply our findings to a language net-
work for syntax parsing, which integrates syntax predictions
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Fig. 2 Concomitant stimulation of the mCMC with feedforward and
feedback information. a The mCMC model simultaneously received
transient forward (pEIN) and constant feedback (pPy) stimulations.
b–f For increasing levels of constant feedback input (pPy) the left-
hand bifurcation diagrams exhibit stable (solid lines) and unstable
(dashed lines) states of the mean membrane potential VPy for a range
of feedforward input values (pEIN). These bifurcation plots explain

the right-hand characteristic fingerprints that illustrate the consequent
response behaviors for transient pEIN stimulation. The characteristic
fingerprints color-coded the stimulation-induced response behaviors:
nonresponsive (green), transfer (gray), and memory behavior (orange).
The markers (cross, triangle, and circle) denoted stimuli whose spe-
cific response behavior changed according to the level of concomitant
feedback input (pPy) (color figure online)

and sensory word information in order to establish a syntax
prototype.

3.1 Input channels differentiate information flow

The proposed mCMC model features two separate popu-
lations to receive feedforward and feedback information,
respectively. We stimulated both populations independently
with rectangular impulses of definedmagnitude and duration
and mapped the respective response behaviors (nonrespon-
sive, transfer, and memory; see “Theory and analysis”).

For stimulation of the Py, we observed large ranges of
nonresponsive behavior and only sparse traces of mem-
ory behavior embedded in transient behavior (Fig. 3b). In
contrast, the same stimuli applied to the EIN evoked nonre-
sponsive behavior for weak stimulations, transfer behavior
for strong but brief stimulations, and memory behavior for
strong and long stimulations (Fig. 2b) (Kunze et al. 2017).
This confirms the driving character of feedforward inputs.
Note that the stripe-like memory response behaviors reflect
a dependence of the system’s intrinsic oscillation phase on the

stimulus’ switch-off time, further explained in Kunze et al.
(2017).

These response behaviors were based on dynamics in the
state space. For both stimulation targets (EIN and Py) bifur-
cation and stability analysis yielded an S-shaped fixed point
curve whose turning points reflect fold bifurcations, one of
saddle–saddle and one of saddle-node type (left panels in
Fig. 2b, 3b). Two stable sections of the fixed point curve
(one of higher and one of lower activity, see solid lines in
left panels) denote a bistability that conditions the basic
operation of working memory. The distance between the
working point (pEIN � pPy � 0) and the saddle-node bifurca-
tion (lower fold) reflects the intensity threshold (green-gray
border in right panels in Figs. 2b, 3b) that separates trans-
fer and memory behavior from nonresponsive behavior. For
both stimulation targets a subcritical Hopf bifurcation give
rise to a separatrix that bounds the basin of attraction of
the upper (memory) state. Only if the system state is within
that basin at the time the input signal is switched off, the
stimulus will be memorized. This way, stimulation signals
will be selected according to their temporal consistency and
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ings) were present. b–e Contrary to Fig. 2, we applied increasing levels
of constant input to EIN concomitant to a transient Py stimulation.
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only sparse traces of memory behavior (orange). c–e For higher lev-
els of modulating pEIN input, characteristic fingerprints (right) show
increased stimulation ranges that inducedmemory behavior. This is due
to the extinction of the separatrix that delimits the memory behavior
(left-hand-side state-space projections). In the fingerprints the inten-
sity threshold that separated nonresponsive (green) and transfer (gray)
behavior declined, because distance between working point (pPy � 0)
and the lower fold bifurcation decreased (color figure online)

duration. Together with the intensity threshold this filter
mechanism conditions the signal flow gating operation of the
mCMC (see Kunze et al. 2017) for further information on the
mechanisms underlying the basic operations of the canon-
ical microcircuit model). Moreover, two stable limit cycles
introduce sustained oscillations for stimulation of the Py (left
panel in Fig. 3b), in contrast to the stimulation of EIN (left
panel in Fig. 2b). These large-amplitude oscillations prevent
the system from settling down within the separatrix when
the stimulation ends (pPy � 0). This explains the few sparse
traces of the memory response behavior in the characteristic
fingerprint (right panel in Fig. 3b). For further information
on the system’s bifurcation structure, see Kunze et al. 2017
(stimulation of EIN) and Spiegler et al. 2010 (stimulation of
Py).

In summary, the response behaviors indicate distinguish-
able operational roles for the separate input channels: While
both channels gate information via an intensity threshold,
only the EIN input channel, supposed to receive forward
input, allows storing information. This differentiated pro-
cessing documents the model’s capability to react differently
to afferent information streams, as required in hierarchical
setups.

3.2 Concomitant stimulationmodulates response
behavior

Hierarchically interacting mCMCs might simultaneously
receive feedforward and feedback information, effectively
integrating low-level sensory and high-level conceptual
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information. Accordingly, we examined the transient feed-
forward stimulation of theEINwhile concomitantly applying
a constant feedback input, reflecting long holding times due
to slower top-level processes (Bastos et al. 2015), to the Py
of the mCMC model (see Fig. 2a).

We documented the consequently changed stimulation-
induced response behaviors through bifurcation diagrams
and characteristic fingerprints (Fig. 2). For increasing lev-
els of constant feedback input to Py and transient forward
input to the EIN, the range of memorized stimuli (orange
area in Fig. 2b–f) increases. Meanwhile, the range of stim-
uli evoking nonresponsive behavior (green area in Fig. 2b–f)
decreases, due to the lower stimulation intensity threshold
(that is the upper edge of the green area). Hence, input to
the Py causes formerly unresponsive stimuli to be perceived
or even memorized (see markers in Fig. 2)—a behavior con-
firming the modulatory character of feedback information.
These changes in transfer behavior are caused by a modi-
fied state space: According to the bifurcation diagrams (left
plots in Fig. 2b–f), an increasing concomitant Py input shifts
the lower fold bifurcation to smaller values (from pEIN �
78 s−1 to pEIN � 48 s−1) and widens the unstable Hopf cycle
(i.e., a separatrix). This shorter distance between the working
point (pEIN � 0) and the lower fold bifurcation, determin-
ing the stimulation intensity threshold, and the larger space
enclosed by the separatrix, effectively reducing the necessary
stimulation duration to settle within the basin of attraction of
the upper fixed point, promote the memory response behav-
ior.

For comparison, we also considered the less plausible
opposite case and applied increasing levels of constant input
to EIN simultaneously to a transient stimulation of the Py.
We find a modulatory effect that favors a stripe-like estab-
lishment of memory response behavior that is very sensitive
to variations in stimulation duration (see Fig. 3b–e). Hence,
there exists an asymmetry in themutualmodulatory influence
of the input channels. The underlying bifurcation structure
in the state space further clarifies this asymmetry and reveals
configurations of constant input for which bistable behav-
ior, a necessary condition for the memory behavior, is in fact
present (see Fig. 3a).

In summary, simultaneous stimulation of the mCMC
model with forward and feedback information causes an
asymmetric mutual modulation of the response behaviors,
which enriches the dynamic repertoire. Feedback input to
the Py effectively modulates the system’s sensitivity to the
driving feedforward input applied to the EIN.

Importantly, this modulatory effect causes different
response behavior for identical stimuli and designates the
feedback input as a facilitation signal. This facilitative
feedback signal can be used in two ways to modify the
stimulation-induced response behavior: (i) a non-perceivable
stimulus (compare triangles in Fig. 2b, f) becomes per-

ceivable and (ii) an either non-perceivable (circle) or
non-memorizable stimulus (cross) becomes memorizable
(Fig. 2b, f).

3.3 Prototypical meta-circuits

So far we have shown how the minimal canonical cir-
cuit model processes feedforward and feedback information
flows differently, and that feedback input can effectively reg-
ulate the access to basic operations for feedforward input.
In the following, we derived prototypical meta-circuits of
two interacting mCMCs that effectively make use of these
processing traits in order to support priming and structure
building.

In the initial meta-circuit (Fig. 4a), a higher level mCMC
A1 conveys facilitative feedback signals to a lower-level
mCMC A2, which also receives a feedforward stimulation
pff-Stim. The feedback signal is weak if A1 resides in a low
activity state and high if A1 resides in a high activity state.
This initial meta-circuit is theminimal canonical architecture
that establishes a genericmechanism for state-dependent pro-
cessing where the activity of one mCMC (here A1) governs
the stimulation-induced response of another mCMC (here
A2) with self-evident consequences in perception and mem-
ory.Notably, this state-dependent processing operation forms
a potential building block for predictive coding by integrating
conceptual model information (feedback input) with novel
sensory information (feedforward input).

From this initial meta-circuit, we derived a prototypi-
cal meta-circuit for priming by introducing a feedforward
connection from the lower to the higher mCMC (Fig. 4b).
The inherent mechanism, adaptively shifting the perceptual
threshold, is extensively studied for its boundary conditions
in Sect. 3.4.

To derive a prototypical meta-circuit for structure build-
ing (Fig. 4c), we conceptually treat Ã2 now as a higher level
microcircuit that still receives a facilitative feedback signal
pfac,in from Ã1. The feedforward stimulation signal pff-Stim
is supposed to arrive from another lower-level mCMC Ã3

which in turn receives stimulations to its EIN. The facil-
itative feedback signal pfac,in will effectively regulate the
availability of working memory in Ã2, a mechanism studied
in Sect. 3.5. By providing a facilitative signal pfac,out to fur-
ther connected circuits, this structure-building meta-circuit
supports the establishment of spatiotemporal activation pat-
terns and is used as a module for the syntax-parsing network
examined in Sect. 3.6. Note that in real cortical circuitry,
there will likely be also feedback connections from Ã2 to
Ã3 that influence the transfer and memorization behavior of
the latter and affect pff-Stim. This may give rise to multiple
hierarchical levels of structure building.
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Fig. 4 Prototypicalmeta-circuits of cooperatingmCMCs. a In the initial
meta-circuit a lower mCMC A2 receives a facilitative feedback signal
(dashed line) from a highermCMCA1 thatmodulatesA2’s response to a
feedforward stimulation pff-Stim. Two computationally relevant deriva-
tions are investigated: b Facilitation modifies perception (priming),
where a recurrent feedforward coupling from A∗

2 to A∗
1 (solid line)

allows A∗
2 to activate A∗

1. The consequent facilitative feedback signal
lowers the perceptual threshold in A∗

2. Note that the facilitative feedback
signal, conveyed by A∗

1,may alsomodify the perceptual threshold of yet

another circuit. c Facilitation modifies memorization (structure build-
ing), where Ã2 is considered a higher microcircuit, but still receives a
facilitative feedback signal, pfac,in, from Ã1. The feedback signal con-
ditions the memorization of a feedforward stimulation pff-Stim arriving
from a lower mCMC Ã3. In case of such an activation of Ã2, a facilita-
tive feedback signal pfac,out is conveyed to connected circuits, effectively
cascading this local operation and supporting the incremental build-up
of sustained activity patterns

3.4 Primingmeta-circuit: dynamic shift
of a perceptual threshold

Priming is an ubiquitous aspect of the brain’s processing
abilities where one stimulus can influence the processing
of subsequent stimulations (Kristjansson 2008). In the fol-
lowing, we examine a neural mechanism for priming that is
based on the local cooperation of two mCMCs A∗

1 and A∗
2

(see Fig. 5a–c). Initially (Fig. 5a), an afferent target stimulus
(light gray bar in Fig. 5d) does not considerably affect the
output of a mCMC A∗

2, see Fig. 5e. However, a priming stim-
ulus (dark gray bar in Fig. 5d) with higher intensity (and/or
duration) causes a transient output in A∗

2 that activates the
hierarchically higher mCMC A∗

1 (Fig. 5b). Through a feed-
back connection, the sustained high activation of A∗

1 now
modulates the sensory sensitivity in A∗

2 and effectively shifts
the perceptual threshold (Fig. 5c). Consequently, the same
target stimuli that had no effect before priming now causes
a considerable output in A∗

2 that is available for further pro-
cessing. A deactivation of the higher level microcircuit A∗

1
would make A∗

2 insensitive to the target stimuli again. This
homeostasis mechanism is readily implementable into the
present model.
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Fig. 5 Principlemechanism for the dynamic shift of a perceptual thresh-
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2, is not able to cause a
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2. However, as soon as a priming stimulus acti-
vates the higher mCMC A∗

1 (light blue line in b), A
∗
1 emits a facilitative

feedback signal (green dashed line in c) that allows A∗
2 to perceive the

target stimulus. d Time course of afferent feedforward stimulations of
the mCMC A∗

2. e Efferent signals of the mCMCs (color figure online)
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Fig. 6 Analysis of the primingmechanism. a For the characterization of
the priming mechanism, we applied stimulation streams that comprised
two target stimuli separated by a priming stimulus. bWe evaluated the
response behaviors of A∗

1 and A∗
2 by comparing VPy to a firing thresh-

old of 4 mV in seven analysis windows: before, after (i.e., resting level,
light gray sections), and during a stimulation (dark gray sections). As
indicated by the arrows, a stimulation stream was said to be effectual,
i.e., evoked a perceptual threshold shift, if (a) the priming evoked a sus-

tained high activation in the higher mCMC A∗
1, but not A

∗
2, and (b) the

target stimulus evoked a transient high activation only after priming.
c Target stimuli of different duration (tdur) and intensity were applied.
The sum of all effectual stimulation streams was scaled by the total
number of considered stimulation streams. d This color-coded percent-
age was mapped to a range of connectivity gains cf and cb in order to
characterize their constraining influence on the priming mechanism

Compared to a single mCMC, the prototypical meta-
circuit conceptually separates the basic operations of signal
flow gating and working memory. The lower-level circuit A∗

2
primarily perceives and transmits salient inputs for further
processing.Meanwhile, the higher level circuit A∗

1 modulates
the processing in A∗

2 via facilitation that rests on A∗
1’s current

activation state reflecting past processing events. In general,
the feedback facilitation signal emitted by A∗

1 does not need
to facilitate the same circuit that received the primer, i.e.,
self-priming, but may also facilitate processing in a different
target-receiving microcircuit, representing the perception of
another modality (as indicated in Fig. 4b).

We characterized the conditions of existence of this prim-
ing mechanism by closer inspection of a few key parameters.

– The inter-circuit connectivity gains cf and cb The strength
of forward and backward connections scale the signal
strength at the targetedmicrocircuits. Forward connections
regulate the switchover point of the dynamic threshold
shift in the higher circuit A∗

1, that is when A∗
1 switches

from a low to a high activation state. Backward connec-
tions scale the facilitative feedback signal that modulates
the response behavior in the lower circuit A∗

2.
– The afferent stimuli Intensity and duration of the target
stimulus decide whether a stimulus can be perceived or
not. The priming stimulus, being salient in terms of its
intensity (or duration), evokes a sustained high activation

(i.e.,memory behavior) in A∗
1, causing the facilitative feed-

back signal. We examine the relationship between target
and priming stimuli in terms of varying intensity while
keeping their durations equal.

– Individual adaptation of the microcircuits In an earlier
study we showed that individual levels of the local net-
work balance can bias the response dynamics of mCMCs
(Kunze et al. 2017). In particular, a slight increase of inhi-
bition, relative to the default parameterization, favors the
transfer behavior, while a slight decrease of inhibition
favors the memory behavior. Accordingly, we examined
how inhibitory synaptic gains Hi, characterizing each
population’s inhibitory synaptic response, constrained the
working range of the priming mechanism.

To evaluate these critical parameters in the priming
mechanism, we applied individual stimulation streams, each
composed of two target stimuli separated by a priming stim-
ulus (see Fig. 6a), to the lower-level circuit A∗

2 of the priming
meta-circuit. The response behaviors of A∗

1 and A∗
2 were

assessed in seven analysis windows (before, during, and after
the individual stimuli, see Fig. 6b) by comparing the mem-
brane potential of the pyramidal cells with a firing threshold.
A stimulation stream was defined as effectual (i.e., evoking a
shift of the perceptual threshold), if (a) the priming stimulus
evoked a sustained high activation in A∗

1, but not in A∗
2 and (b)

the target stimulus evoked a supra-threshold transient deflec-
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Table 2 Parameter values for the assessment of the perceptual priming
mechanism

Parameter
Target stimulus Priming stimulus

Stimulus duration

Minimum 50 ms 50 ms

Step 50 ms 50 ms

Maximum 700 ms 700 ms

Stimulus intensity

Minimum 5 s−1 Target + (20, 80) %

Step 5 s−1 5 s−1

Maximum 150 s−1 Target + (20, 80) %

cf cb

Connectivity gains

Minimum 0 0

Step 3 3

Maximum 150 200

Inhibitory synaptic
gain H i

Default (Fig. 7a) A∗
1 and A∗

2 bias
(Fig. 7b)

H i (A∗
1) (mV) 22 21

H i (A∗
2) (mV) 22 23

tion in A∗
2 only after, but not before, the priming stimulus

(see Fig. 6b). Whereas the target stimuli varied in intensity
and duration, the priming stimulus was of equal length but
of higher intensity (see Table 2) in relation to the target stim-
uli. Supraliminal target stimuli that evoked supra-threshold
deflections (i.e., transfer or memory behavior) in A∗

2 without
priming were disregarded. For all other stimulation streams
we mapped the percentage of effectual stimulation streams
(see Fig. 6c) to the inter-circuit connectivity gains cf and
cb, see Fig. 7. This stimulation procedure was repeated with
modified inhibitory synaptic gains H i in A∗

1 and A∗
2, signify-

ing an altered network balance ratio compared to the default
network balance (Jansen and Rit 1995). Table 2 lists the var-
ied parameter values.

The connectivity gains cf and cb constrain the priming
mechanism (see Fig. 7). Effectual stimulation streams occur
for cf >30, signifying a minimum feedforward strength in
order to convey A∗

2’s activation to the higher level circuit dur-
ing priming, and for cb <45, signifying amaximum feedback
strength in order to limit the facilitation in the lower-level
circuit and keep it sensitive to further stimulation (i.e., pre-
vent self-activation). Note, however, that the exact values are
subject to the chosen model parameterization. These con-
nectivity constraints were observed for a varying intensity
of the priming stimulus (20% and 80%, respectively) and
for all considered configurations of the inhibitory synaptic
gains H i (Fig. 7). The percentage of the effectual stimula-
tion streams increased with the relative strength of priming

and target stimulus for all considered configurations of the
inhibitory synaptic gains Hi. For the default configuration
(Fig. 7a), high rates of effectual stimulation streams were
restricted to a small range of connectivity values. A slight
decrease in inhibition in the higher circuit A∗

1 and simultane-
ous increase in inhibition in the lower circuit A∗

2 maximized
the range of suited connectivity values and the rate of effec-
tual stimulation streams (Fig. 7b).We further identified those
target stimuli that evoked the perceptual threshold shift that is
characteristic for the priming mechanism (see Fig. 8). Strong
and long target stimuli (i.e., supraliminal) were already
recognized, making priming superfluous (sandy coloring).
Furthermore, weak and brief target stimuli were not suited to
initiate the priming, as they fail to evoke a memory behav-
ior in the higher level circuit A∗

1 (light blue coloring).Tuning
the inhibitory synaptic gains increased the range of suited
stimulation parameters. Importantly, the described priming
mechanism is not achievable in alternative topologies of the
local network (see Fig. 9).

In summary, we propose a mechanism for priming in a
prototypical meta-circuit of two mCMCs that is based on the
effect of top-down facilitation. The mechanism rests on the
constructive cooperation of the involved mCMCs and pre-
dicts their conceptual specialization to either signal gating,
thereby avoiding insensitivity to future stimuli, or memo-
rization, to guide further information processing through
facilitation. This functional specialization can be biased by
means of the local ratio of excitation and inhibition in the
involved microcircuits. The topology of feedforward and
feedback connectionswithin themeta-circuit and the salience
of stimuli constrain the priming mechanism.

3.5 Structure-buildingmeta-circuit

In the previous section we showed how top-down facilitation
via feedback connections permits the dynamic perception of
subliminal stimuli. In the following, we show how a facilita-
tion signal conditions thememorization of stimulation events
in the structure-building meta-circuit (Fig. 4c).

In the meta-circuit for structure building, we applied tran-
sient rectangular feedforward stimuli to Ã3 and mapped the
consequent functional states of Ã2 and Ã3 for increasing lev-
els of facilitative external feedback pfac,in (see Fig. 10). For
the default inhibitory synaptic gains, weak and short stim-
uli are not able to activate Ã2 (no memorization, gray area)
and strong and long stimuli activate both Ã2 and Ã3 (total
memorization, black area). Few stimuli are able to selec-
tively activate Ã2, but avoid a sustained high activity of Ã3

and thus preserve its responsiveness to further input (mem-
orization and responsiveness, green area). Higher levels of
the facilitative feedback signal pfac,in promote the selective
activation of Ã2 (red crosses in Fig. 10a). A slight increase of
inhibition in Ã3 further promotes this selective activation (see
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Fig. 7 Impact of connectivity gains, priming intensity and network bal-
ance to the priming mechanism. Connectivity gains constrain effectual
stimulation streams. Each plot varies over the connectivity gains cf and
cb and sums over stimulations of different length and intensity (see
Fig. 6). Colors code the percentage of effectual stimulation streams that
evoked priming. Priming and target stimulus were equally long, but
the primer’s intensity was 20% (left column) or 80% (right column)
larger. Larger primers lead to more effectual stimulations streams both

in terms of themaximum rate and the range of suited connectivity gains.
Compared to the default configuration of inhibitory synaptic gains (a),
a slight decrease of inhibition in A∗

1 combined with an increase of inhi-
bition in A∗

2 (b) enhances the maximum rate of effectual stimulation
streams and the range of suited connectivity gains. Note the different
color scaling in the single subplots and that the percentages are specific
for the chosen stimulation parameter ranges (see Table 2)

Fig. 10b), effectively favoring a transfer response behavior
(Kunze et al. 2017). In summary, the top-down facilitation
signal pfac,in conditions the establishment of sustained activ-
ity in one part (i.e., Ã2) of the prototypical meta-circuit for
structure building, while preserving its input sensitivity (i.e.,
Ã3). In the following, we exemplify how this local operation
supports the sequential and selective establishment of spa-
tiotemporal structures in a simple realization of incremental
(i.e., word by word) syntax parsing during the perception of
a sentence.

3.6 Syntax-parsing language network

Understanding a spoken or written sentence comprises many
processing steps, including acoustic perception, mapping of
syntactic and semantic information, and inclusion of addi-
tional information (i.e., context and individual experience)
(Friederici 2002).This process of sentence perception mani-

fests itself as the sequential activation of neural populations
in the involved neocortical areas (Kunze et al. 2017; Rolls
and Deco 2015; Pulvermüller et al. 2014). In the following
example, we revisit a language model (Kunze et al. 2017)
which focuses on the representation of syntactic information
in a distributed network of mCMCs. In particular, it accounts
for the decoding and temporal storage of syntactic informa-
tion, here referred to as parsing, that is necessary for further
processing (Friederici 2002). Words are thought to be rep-
resented by word webs, comprising numerous nodes for all
aspects of the word, including word forms, various seman-
tic associations, and one or several syntactic roles. Here, we
adopt a simplified model containing, for each word, only
nodes for the possible syntactic roles (i.e., subject, verb, and
object) that follow the principle of place coding (Rolls and
Deco 2015), and one node for the rest of the word web. Each
node is represented by a mCMC.
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Fig. 8 Characterization of stimuli that evoked a perceptual threshold
shift. Each subplot varies over stimulus duration and intensity and shows
the number of effectual stimulations (summed above all cf–cb com-
binations) in grayscales. Supraliminal target stimuli, i.e., very strong
or long stimuli, were already recognized, making priming superfluous
(sandy coloring). Subliminal target stimuli, i.e., weak and brief tar-
get stimuli, were not suited to initiate the priming, because they failed
to evoke a response memory behavior in the higher circuit A∗

1 (light
blue coloring). Columns relate to the priming intensity, where the prim-

ing stimulus is 20% (80%) larger than the target stimulus. A stronger
priming intensity increased the range of perceived target stimuli. Com-
pared to the default configuration of the inhibitory synaptic gains (a),
a decreased inhibitory synaptic gain in the higher circuit A∗

1 combined
with an increased inhibitory synaptic gain in the lower circuit A∗

2 did
not only promote the number of perceived target stimuli, but also their
invariance to variations in intensity or duration, marked by the larger
range of effectual stimulations. Note the different grayscales for each
subplot

Consecutive afferent word information, stemming from
auditory areas of the cerebral cortex, incrementally evokes
a sustained higher activation in the respective word-
representing microcircuits. This generic structure-building
mechanism, referred to as dynamic recruitment, emphasizes
the potential freedom of the parse concerning the number and
order of its elements (Kunze et al. 2017). The analysis of this
initial model revealed the following issues:

– Multiple instantiations of single words Due to a single
object-module, comprising all known nouns of an individ-
ual’s vocabulary, the initialmodelwas not able to represent
a repeated instantiation of the sameword, as in the sentence
“I draw a wall on a wall”. A recognized word activated the

respective microcircuit, which became insensitive to fur-
ther stimulation—and was hence not available for further
recruitment.

– Simple syntax structure The modularized organization of
the network constrained more complex syntax structures.
The selection andflexibility of order of syntactic categories
required the repetition of entire word-grouping modules,
implying a redundancy of words and the effort for their
maintenance.

– Self-activation by means of pre-activity Due to the linear
superposition of pre-activation, transmitted by connected
microcircuits, and afferent word information in a single
population of the mCMC, an aggregation of pre-activation
allowed a self-activation of a mCMC.
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Fig. 9 Importance of the prototypical meta-circuits’ topology. a For the
priming mechanism, we considered a specific topology within the pro-
totypical meta-circuit, where the higher microcircuit connected to the
lower microcircuit via a backward connection, i.e., targeting the Py, and
the lower microcircuit connects to the higher microcircuit via a forward
connection, i.e., targeting the EIN. This arrangement supported a func-
tional specialization: the forward connection allowed storing events and

favors memory in the higher circuit. The backward connection allowed
the lower microcircuit to perform a dynamic signal flow gating. In con-
trast, alternative topologies, such as consideration of pure feedforward
(b), pure feedback connections (c), or a permutation of feed forward
and feedback connections (d) failed to support the priming mechanism,
but may be relevant for other cooperative neural operations
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Fig. 10 Facilitative signal enable the memorization of stimulation
events. A mCMC Ã3 received stimuli of distinct length and intensity
and in turn stimulated a mCMC Ã2 via a forward connection. a For
default inhibitory synaptic gains, few stimuli to Ã3 enable the selective
activation of Ã2 while keeping Ã3 responsive (i.e., memorization and
responsiveness, green area). Weak and brief stimuli fail to activate Ã2
(no memorization, gray area), whereas strong and long stimuli activate

both Ã2 and Ã3 (total memorization, black area). Higher levels of the
facilitative feedback signal pfac,in promote the selective activation of
Ã2. b A slight increase of the inhibitory synaptic gain Hi, favoring a
transfer response behavior in Ã3, promotes the selective activation of
Ã2. Red crosses denote an exemplary stimulation of defined intensity
and duration applied to Ã3 (color figure online)

In the following, we advance this model and capitalize
our findings on state-dependent processing and functional
specialization of mCMCs in hierarchical networks. We

designed a distributed syntax-parsing network with 17 inter-
acting mCMCs as network nodes (see Fig. 11b)—effectively
implementing structure-buildingmeta-circuits (see Fig. 11a).
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Fig. 11 Architecture of the syntax-parsing network. a The structure-
buildingmeta-circuitwas used as a building block for the syntax-parsing
network. We interpreted the higher mCMC as a syntax node, represent-
ing syntactic categories, and the lower as a word node, representing
single words of a vocabulary. Note that there can be several syntax
nodes for each role the word can assume. b In the syntax-parsing net-
work 17 interacting mCMCs represented either syntax nodes (1–12) or
word nodes (13–17). One word and several syntax nodes form a word
web (color-coded),while all syntax node of the samekind forma syntac-

tic pool (dotted frames). Word nodes project unidirectionally to syntax
nodes via feedforward connections (black arrows). Syntax nodes in
different pools are interconnected by lateral connections (gray arrows)
and exchange facilitative signals that condition the establishment of sus-
tained activity patterns. Mutual inhibition within syntax pools ensures
that a particular syntactic role is only assumed by one word (not shown
for simplicity). Contextual information assists the semantic interpreta-
tion (dashed arrows)

Each word web comprises one word node (nodes 13–17 in
Fig. 11b) representing the acoustic word form and between
1 and 3 syntax nodes (nodes 1–12 in Fig. 11b) for the poten-
tial syntactic roles the word can assume. For instance, the
word web of the noun “thief” contains subject and object
nodes (see Fig. 11b). Other constituents of the word webs,
like the numerous semantic associations, are omitted for sim-
plicity. Within each word web, the output of the word node
(Py) projects to the inputs (EIN) of the syntax nodes. Back-
ward connections from the syntax nodes to the rest of the
word webs (including the word nodes), which are neces-
sary to remap syntactic roles to the actual semantic content,
are omitted for simplicity. All syntax nodes representing a
particular syntactic role (e.g., subject) in the different word
webs form syntax pools, where they are connected by mutu-
ally inhibitory connections (omitted in Fig. 11b for the sake
of clarity). This ensures that a particular role can only be
assumed by one word (while a word can fulfill several roles,
like in the sentence “I drawawall on awall”). Finally, the syn-
tax pools are connected according to the syntactic rules (e.g.,
subjects to verbs, but not to objects). If two syntax pools are
connected, all syntax nodes in the source pool connect in an
all-to-all fashion to the Py populations of all syntax nodes in
the target pool. The projection to the Py causes an increase
of excitability (facilitation) without actually activating the
node (thus establishing expectation). Similar to the model
of Kunze et al. (2017), contextual information guides struc-

ture building by means of inhibitory connections in order to
address ambiguity in sentences.

For the simulation of sentence perception, the word nodes
perceived brief acoustic inputs and transmitted their transient
activation to the respective syntax nodes. Among the syn-
tax nodes only those that had been previously syntactically
predicted, i.e., received a lateral facilitative signal, became
activated. The initial expectation to perceive a sentence is
modeled as an initial driving signal received by the subject-
reflecting syntax node. Important parameters of the language
model are summarized in Table 3.

For the simulated parsing process, we considered the sen-
tence “I hit the thiefwith the club” (Kunze et al. 2017).During
the parsing process, word nodes responded to their consecu-
tive stimulation (top plot in Fig. 12a) and selectively activated
the syntax nodes (bottom plots in Fig. 12a)—providing a sus-
tained activity trace at the end of the parsing process. This
way, information is stored about the activated syntactic roles
(cumulative signals of each syntactic pool) and the actual
word web linked to that role (which node within a syntactic
pool is activated, note that due to mutual inhibition only one
node per pool can be active).

Depending on the contextual information, the phrase with
the club further specified the verb hit, i.e., operating as an
adverbial phrase, or the object thief, i.e., operating as an
adjective phrase (Kunze et al. 2017). Parsing the sentence
“the thief hit the thief with the club” is also possible, due
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Table 3 Important parameters of the language model

Connections from word to syntax nodes (excitatory
Py→EIN)

cf 34…54 Contextual information pinh 3.8 s−1

Connections between syntax nodes of different pools
(excitatory Py→Py)

clat 5 Intensity of acoustic input pstim 140 s−1

Connections between syntax nodes within pools
(inhibitory Py→ IIN)

cinh 10 Duration of acoustic input tdur 500 ms

Fig. 12 Analysis of the
syntax-parsing network. a Top
plot: word nodes respond to their
consecutive stimulation (gray
areas) and selectively activate
syntax nodes. Bottom plot:
activations of syntactic pools as
sums of their respective syntax
nodes. b Changing contextual
information, i.e., blocking the
object modifier, changes the
interpretation of the sentence
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to the separation of lexical word information and syntactic
categories that allows multiple instantiations of words inde-
pendent of their syntactic categories.

The feature of the structure-building meta-circuit con-
siderably increases the face validity of the syntax-parsing
network as it allows more complex syntactic structures to
be considered. The perception of single words (e.g., thief) is
transient in the word nodes and excites all connected syntax
nodes (e.g., S, O1, O2). However, the excitation only remains
for syntactically predicted syntax nodes (S), but vanishes for
unpredicted nodes that do not receive a facilitative signal (O1,
O2).

4 Discussion

Contributing to the concept of the minimal canonical micro-
circuit (mCMC), we showed that afferent feedforward and
feedback stimulations led to different responses. While both
streams are gated by an intensity threshold, only feedforward

input, potentially representing novel sensory information,
can be stored for prospective processing. Moreover, constant
modulatory feedback input, reflecting longer holding times
due to slower top-level processes (Bastos et al. 2015), modi-
fies the system’s sensitivity to simultaneously applied driving
feedforward input, effectively conditioning the access to
basic operations. This observation is in line with empirical
studies showing the modulatory effect of top-down informa-
tion (Spillmann et al. 2015). The facilitative feedback signal
is thus a flexible and effective way to regulate information
processingwithout the need for synaptic adaptations.Wefind
that both feedforward and feedback input can modulate the
respective other, though in an asymmetric way, supporting
the notion that feedforward information is not strictly driving
and feedback information is not strictly modulatory (Covic
and Sherman 2011; Bastos et al. 2015).

On the basis of cooperating mCMCs we identified state-
dependent processing operations that are similar to the
concept of conditioned associations in cell assembly theory
(Wennekers et al. 2006), further proving the compatibility of
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basic operations in mCMCs and cell assembly theory (Palm
et al. 2014; Pulvermüller et al. 2014). Here, state-dependent
processing, mediated by a facilitative feedback signal, rests
on the basic operation of working memory that allows one
mCMC to store processing events over time and keep this
information available for future processing steps. The result-
ing temporal processing history gives rise to a broad set of
conceivable adaptive processing mechanisms, two of which
we further exemplified in this paper. Note that here we con-
sider persistent neural activity as basis for working memory,
which, alternatively or additionally, may also rest on poten-
tiated synapses.

The initial prototypical meta-circuit (Fig. 4a) is the min-
imal model for this form of state-dependent processing as
it conceptually separates the basic operations of working
memory and signal flow gating and assigns them to sepa-
rate mCMCs, which functionally specialize to distinct basic
operation. In a recent study, we showed that the inhibitory
synaptic gain biases the response behavior in a canoni-
cal microcircuit model (Kunze et al. 2017). In the present
study, we showed how the adaptation of inhibitory synaptic
gains favored the functional specialization of areas and that
this adaptation improves the reliability and efficiency of the
facilitative feedback signal. Because this functional special-
ization does not require any structural changes, the possibility
to dynamically re-assign the dominant basic operations of
mCMCs also underscores the task-based adaptability of net-
works of mCMCs and eventually the cortical matter. This
might be an important aspect if a part of the cortex needs to
adapt to a new functionality, such as during remapping after
stroke (Cheng et al. 2016) or acquisition of new skills. Our
model suggests that functional specialization is reversible on
different time scales and through different modalities that
affect the local ratio of excitation and inhibition, referred
to as local network balance. Although we chose inhibitory
synaptic gains, lumping together parameters of synaptic
transmission (Jansen and Rit 1995), other neurobiologically
plausiblemeans to regulate the local network balance include
the received neural activity, synaptic plasticity, pharmaco-
logical neuromodulation, and electrical brain stimulation
(Kunze et al. 2016). While the neural causes that give rise
to the behavioral effects of electrical brain stimulation are
still unclear (Fertonani and Miniussi 2016), one explanation
might be that anodal tDCS increases the excitability of neu-
ral population by shifting the network balance. Our findings
on the consequences of a shifted network balance are thus
an interesting starting point for the investigation of the func-
tional mechanisms of electrical brain stimulation.

Our study demonstrates the value of state-dependent
processing through facilitative feedback signals in two appli-
cations, namely priming and structure building. Priming
refers to a behavioral phenomenon, generally stating that
past experience modifies the current processing performance

(Tulving and Schacter 1990; Schacter and Buckner 1998;
Kristjansson 2008). Because of its ubiquity, and despite
its behavioral diversity, priming may depend on a small
set of generic neural mechanisms that are individualized
for the respective task. Based on the dependence on past
states, priming must involve some kind of storage and was
proposed as a special form of memory (Tulving and Schac-
ter 1990). Here, we proposed a prototypical meta-circuit
embodying a mechanism for perceptual priming that rests
on the dynamic shift of a perceptual threshold by means
of a facilitative feedback signal. Analysis of topology, con-
nectivity weights, and stimulation characteristics suggested
that the meta-circuit’s architecture must support a functional
specialization to working memory and signal flow gating,
i.e., feature a forward connection to evoke a memorized high
activity and a feedback connection for facilitation. Notably,
here we only considered repetition priming (or self-priming),
where a single mCMC receives both target and priming stim-
uli. In reality, the ‘single-channel’ circuit treated here may be
replaced by multiple channels, where the connection matrix
fromA1 toA2 (Fig. 5b) defines the association between prim-
ing and primed inputs. Note also that in addition (and in
competition) to priming there will also be sensory adapta-
tion (or habituation), causing attenuation of the processing
of repeated stimuli. This process is likely to rely on short term
synaptic plasticity, which can be easily incorporated into the
mCMC model (see, e.g., Wang and Knösche 2013).

Importantly, themechanism presented here is based solely
on the sustained activation of the memory node(s) A1 of the
primer representation, which automatically pre-activate the
perception nodes A2 of the target representation. No further
top-down influence fromwider networks is considered.How-
ever, attention may influence and even counteract priming
mechanisms (e.g., Keane et al. 2015). In our model, such
top-down modulation could be realized by additional pre-
excitation or inhibition on the perception or memory nodes.
Moreover, priming may in turn also affect the attentional
focus.

Interestingly, similar to our priming scenario, Ardid et al.
(2007) proposed a model for attentional processing that
investigates the hierarchical cooperation of the prefrontal
cortex and the visual middle-temporal area. The similarity of
both computational approaches supports a supposed common
mechanism underlying top-down attention processing and
perceptual priming (Kristjansson 2008). Bothworks describe
a neural circuit for the modulation of perception that is com-
posed of two different modules: one representing a memory
system and one a sensory system. However, the canonicity
of the circuit is described on different scales. Ardid consid-
ers the entire circuit as canonical, because it reflects diverse
attentional effects. Here, we assume each singlemodule to be
canonical, as it reflects basic processing operations (Kunze
et al. 2017). The meta-circuit of this study would there-
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fore reflect the organizational level of Ardid’s neural circuit.
Hence, whereas Ardid’s work enlightens numerous cogni-
tive attentional effects, our work extends the mechanistic
understanding of the intermodular interaction by even sim-
pler basic operations.

We showed that the facilitative feedback signal conditions
the memorization of stimulations. We then applied this find-
ing in a syntax-parsingnetwork that effectively cascadesmul-
tiple structure-building meta-circuits. In the syntax-parsing
network, word-representing mCMCs selectively activated
higher-order mCMCs that represented syntactic categories.
Both kinds of mCMCs are thought to be part of a word web
(Pulvermüller 2002), which collectively represents features
of a distinct object and is, for instance, excitable through
the reception of acoustic word information. The word webs
are activated by perceived word information transiently and
independently from the expected syntactic category. This
allows the word to be used multiple times in a sentence,
extending a former syntax-parsing network (Kunze et al.
2017). In contrast, the sustained activation of syntax nodes,
selectively excited by the word nodes, causes predictions
among the syntax nodes that guide the parsing according
to syntax rules. In principle, both afferent word informa-
tion and syntax predictions are unspecific (e.g., the word
drink can be an object or a verb and, as an object, can
be succeeded by many syntactic categories). Nevertheless,
through the integration of unspecific word information and
unspecific syntactic predictions, the syntax-parsing network
yields a specific syntax prototype. Potential ambiguities are
resolved by contextual information. The separation of mini-
mal redundant word nodes and syntactic nodes suggests the
construction of detailed syntax structures up to the point of
reflecting phrase structures and symbolic operations (Chom-
sky 1995); a point that needs to be further investigated. With
these developments, the present syntax-parsing network sig-
nifies a promising step toward amechanistic link between the
research on canonical microcircuits and linguistics. Here, we
only consider a single type of syntax prototype (i.e., subjec-
t–verb–object–object). It is flexible in its structure, though,
by distinguishing adjective and adverbial phrases and the
optional use of the second object. However, our model is
only a little cutout of a much more complex network that
allows greater variety of prototypes through higher numbers
of syntax nodes and their connections.

In the literature, many other binding mechanisms have
been proposed. For instance, Eliasmith et al. (2012) describe
a neural network of single spiking neurons that, besides other
cognitive tasks, provides for serial working memory. In their
neural model of workingmemory, an item is explicitly bound
to a specific position and can be recalled by rerouting this
neural activity. In contrast, our model stores the syntactic
roles of the items. This ensures the necessary flexibility for
coding sentences. Although the proposed mechanisms may

not yet reflect the entire complexity of psycholinguistics, we
show how generic principles, such as binding, can be realized
in models of neural interaction.

Common to both phenomena of priming and structure
building is the notion that past processing steps modify the
current processing. In particular, the facilitative feedback,
arising from the sustained activation of one microcircuit,
either shifts the perceptual threshold (perceptual priming) or
permits the stimulation-induced sustained activation (struc-
ture building) in another microcircuit. In both examples,
the facilitative feedback signals confine potential subsequent
processing steps so that non-facilitated, that is, unpredicted
stimulations are ineffective. This ability of anticipation,
together with the notion that the mCMC integrates feedfor-
ward stimulations (i.e., sensory or prior information) with
feedback information (i.e., conceptual or model informa-
tion), suggests a conceptual proximity of state-dependent
processing in mCMCs to predictive coding (Mumford 1992;
Rao and Ballard 1999; Friston 2005; Shipp 2016). However,
in contrast to other established canonicalmicrocircuitmodels
that embody predictive coding (Bastos et al. 2012, 2015), our
framework does not consider the explicit exchange of predic-
tion errors, potentially reflecting differentmechanisms (Palm
et al. 2014).

With this work, we follow the notion that the brain’s infor-
mation processing rests on a hierarchically organized net-
work structure across multiple organizational scales (Stam
and van Straaten 2012). The concept of canonical microcir-
cuits mostly refers to the level of cortical columns (Douglas
andMartin 2004; Haeusler et al. 2009). However, themCMC
considered here emphasizes positive and negative feedback
loops and can thus be regarded as valid on multiple spa-
tial levels of brain networks, ranging from single neurons to
entire cortical areas. Accordingly, we interpret our results as
not specific for a distinct typeof neocortex (Beul andHilgetag
2014), or for elaborated architectures (Haeusler et al. 2009),
but as part of a set of generic, though not trivial, neural mech-
anisms of the brain’s processing.

The mCMC and the derived meta-circuits presented here
are designed to bear a minimum of structural features.
They disregard most features of laminar organization, such
as the distinction between supragranular (layers II/III) and
subgranular (layers V/VI) cell populations. More detailed
architectures have been proposed for, both, rate-based (Wang
and Knösche 2013; Joglekar et al. 2018) and spiking neuron
models (Lee et al. 2013). A very complex and realistic spik-
ing neuron model for a local cortical microcircuit (80,000
neurons and 300 million synapses) incorporating a wealth of
microanatomical knowledge taken from the literature was
proposed by Potjans and Diesmann (2014). Models with
realistic laminar organization provide the ground for inves-
tigating a wider range of phenomena. For example, the
separation of subgranular and supragranular circuits and
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their respective tuning to alpha and gamma band oscillations
allowedMejias et al. (2016) to reproduce several experimen-
tal findings concerning the modulation and coupling of these
oscillations. It remains to be investigated in future work to
what extent the dynamics and, most importantly, the func-
tional behavior of mCMCs as described in this work would
be modified by such more detailed models.

Also, in this study, we focused on the modulatory effect
of excitatory input channels, although long-range neural pro-
jections do target inhibitory interneurons (IIN) aswell.While
a thorough investigation of their influence on the effects
is left to future studies, we can draw some preliminary
conclusions from our present and previous studies (Kunze
et al. 2017). Due to the mathematical formulation, a time-
constant stimulation of the IIN within the linear section
of the sigmoidal activation function is proportional to an
increase in the inhibitory synaptic gain. Although this view
disregards the effect of potential inter-circuit inhibitory feed-
back loops, it allows assessing the effect of an additional
inhibitory stimulation. On the level of a single mCMC, an
inhibitory stimulation would suppress memory behavior and
favor transfer behavior (Kunze et al. 2017). In the prim-
ing meta-circuit canonical microcircuit, a stimulation would
enhance priming effects, if it targets the lower-level mCMC
A2* (Fig. 7), and in turn diminish priming effects if it targets
the higher-level mCMC A1*.

5 Conclusion

Our results support the notion of conceptual compatibility
between mCMCs and operating cell assemblies. This leads
to the idea that mCMCs may serve as biologically plausible
nodes in models of hierarchically operating cell assemblies,
effectively addressing the structural realization of cell assem-
blies in the neocortical matter. Such networks of canonical
microcircuits—that have already been used for EEG, MEG,
and fMRI replication—may support systematic experiment-
based investigations of cognitive functions. Exemplifying
this notion, we found mechanistic evidence that cognitive
priming involves the dynamic shift of a perceptual threshold
and that structure-building computations are likely subfunc-
tions in a neural network for syntax parsing.
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