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Abstract

The structure of the Osborn (“Local Renormalization Group”) Equation in the presence

of integer dimensional irrelevant operators is studied. We argue that the consistency of

the anomalous part of the generating functional requires a beta-function for the metric.

The modified form of the Weyl anomalies is calculated.
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1 Introduction

Integer dimensional primary operators in Conformal Field Theories (CFT) give rise to

conformal anomalies [1]. While at separate space-time points the correlators of these

operators are well defined, at coincident points the singularity needs a regulator. As

a consequence there is an irremovable violation of the conformal Ward identities. The

singularities involved are typically logarithmic, leading to the so-called “type B” conformal

anomalies [2]. In particular situations involving identities valid in special space-time

dimensions, the logarithms are converted into integer power singularities without a scale

(“type A” conformal anomalies) [3].

Higher order correlators of integer dimensional operators produce increasing powers of

logarithms. The recursive nature of the correlators related to their analytic structure in

momentum space reduce the higher powers of logarithms to the independent, universal

information contained in the single logarithm term in each correlator.

This structure is summarized in the Osborn Equation. While the equation can be used

to describe the perturbative renormalization group flow in a CFT perturbed by relevant

operators, in the present paper we will use it strictly in the CFT: the space-time dependent

couplings will be considered as sources of the primary operators. The coefficients of the

Taylor expansion of the partition function around zero sources are the CFT correlators.

We give now a brief description of the Osborn Equation [4].1 Consider in a CFT relevant

and marginal primaries Oi with integral dimensions ∆i. The operators Oi are coupled to

space-time dependent sources Ji(x). In the list of primary operators we include the energy-

momentum tensor Tµν(x) coupled to the background metric gµν(x). All other operators

which we will consider in this work are scalars. The connected generating functional W

depends on Ji(x) and gµν(x). The local Weyl variation operator acts on W as

δσW =

∫

ddx

{

2 σ(x)gµν(x)
δ

δgµν(x)
+
∑

i

βi
(

{Jj}, gµν ; σ
) δ

δJi(x)

}

W (1.1)

where the first term represents the canonical Weyl transformation of the metric and the

second term involves the local “beta-functions” of the sources (couplings) linear in the

infinitesimal Weyl parameter σ(x) and its derivatives.

We remark that the non-classical part of the beta-function, i.e. the part which contains

information about logarithms in correlation functions, arises from the action of the Weyl

transformation on the anomalous part of the generating functional. Equivalently, the

correlation functions satisfy the SO(d, 2) (the conformal group in d dimensions) Ward-

identities, as long as all operators are inserted at separate points.

The Osborn Equation states that the Weyl variation of W gives the Weyl anomalies

δσW =

∫

ddx
√
g σ(x)A({Ji}, g) (1.2)

1For further discussions and applications see also [5–7].
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where A is the local anomaly polynomial. The generating functional can be chosen to re-

spect diffeomorphism symmetry. Then there are two cohomological structures underlying

the Osborn Equation which are related to the realization of the abelian Weyl symmetry:

1. Since the Weyl transformation should obey

[δσ1
, δσ2

] = 0 (1.3)

the transformation of the sources implied by (1.1)

δσgµν ≡ 2 σ gµν (1.4a)

δσJi ≡ βi
(

{Jj}, gµν ; σ
)

(1.4b)

should obey the integrability condition following from (1.3). While (1.4a) obviously

obeys it, for (1.4b) we get the non-trivial constraint

δσ2
βi
(

{Jj}, gµν ; σ1
)

= δσ1
βi
(

{Jj}, gµν ; σ2
)

(1.5)

where the second variations are calculated using (1.4).

The integrability conditions have trivial solutions corresponding to local changes of

variables of the sources

J ′

i(x) ≡ γi
(

{Jj}, gµν
)

(1.6)

such that J ′

i(x) transforms just following the dimension, i.e. without a non-trivial

beta-function:

δσJ
′

i(x) = σ(x)
(

∆i − d
)

J ′

i(x) (1.7)

The solutions of (1.5) modulo (1.6) define the cohomologically nontrivial beta-

functions.

Once these non-trivial beta-functions are found, the Weyl anomaly, i.e. the r.h.s.

of eq.(1.2), is the solution of a second cohomology problem:

2. The anomaly should obey

δσ2

∫

ddx
√
g σ1(x)A

(

{Ji}, gµν
)

= δσ1

∫

ddx
√
g σ2(x)A

(

{Ji}, gµν
)

(1.8)

where the variations are calculated using (1.4a) and (1.4b). This is the Wess-

Zumino (WZ) consistency condition. Cohomologically nontrivial Weyl anomalies

are solutions of (1.8) modulo variations of local diffeo-invariant functionals of {Ji}
and gµν .

When the beta-function reduces to the classical term (1.7), the Osborn Equation pro-

duces the ordinary Weyl anomalies related to single logarithms in the generating func-

tional. The universal information contained in the beta-function is the coefficient of the
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single logarithm in the correlator corresponding to each power of the source in the ex-

pansion. The presence of the nontrivial part of the beta-function is related to multiple

logarithms in the generating functional: due to the recursive relations incorporated into

the equation (1.2) the logarithms in the left hand side of the equation are cancelled pro-

ducing at the end the anomaly.

The role of the beta-function can be made explicit in the lowest non-trivial order. Con-

sider the correlator of three integer dimensional operators Oi,Oj ,Ok which has a double

logarithm corresponding to a nonvanishing structure constant (the simplest realization of

this situation is for three marginal but not truly marginal operators). This means that at

least for one choice of the indices the OPE (operator product expansion) of two operators

contains the third one with a logarithmic singularity:

Oi(x)Oj(y) = cijk|x− y|∆k−∆i−∆jOk(y) (1.9)

Together with the logarithm in the 〈Ok(y)Ok(z)〉 correlator this produces the double loga-
rithm in the three point function or equivalently in the appropriate term in the generating

functional:2

W = ...+ cijkJiJj(log(✷/µ
2))2Jk + ..+ Jk log(✷/µ

2)Jk + ... (1.10)

where we made explicit also the contribution of the Ok two point function and we left out

the powers of ✷ implied by the dimensions of the operators. The singularity in the OPE

is translated into the first nontrivial term in the beta-function of the source Jk:

δσJk ≡ βk = σcijkJiJk + ... (1.11)

Now we can follow the cancellation of the single logarithm in (1.2) corresponding to (1.10):

the action of the Weyl variation of the metric on the covariant Laplacian in the first term

cancels the variation of the second term when acted upon by βk
δ

δJk
.

The recursion relations which are underlying the perturbative validity of the Osborn

Equation are a consequence of the analytic structure of the CFT: in momentum space

the correlators obey (subtracted) dispersion relations and a finite number of subtractions

depending on the dimensions of the operators control all correlators. This is of course

valid provided the operators are relevant (∆i < d) or marginal (∆i = d).

For integer dimension irrelevant operators (∆i > d) the number of subtractions needed

increases with the order of the correlator, but we expect that for any finite number of

irrelevant operators the general structure of the Osborn Equation will be still valid since

one needs a finite number of subtractions to control the logarithms.

We will see, however, that in the presence of irrelevant operators a rather basic fea-

ture of eq.(1.1) is changed: we have to introduce a non-trivial beta-function also for the

transformation of gµν . This changes the definition of the Weyl transformations but it is

necessary since correlators of irrelevant operators with energy-momentum tensors acquire

2the exact position of the double logarithms is not essential for the following argument.
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an increasing number of logarithms. This feature becomes evident already for the terms

in the generating functional involving only two irrelevant operators when as for relevant

or marginal operators the beta-function does not contribute. The sources transform just

following their dimension and the Osborn Equation should produce a unique local Weyl

anomaly. There is, however, a general proof that such a local expression with the required

cohomological properties cannot exist for two irrelevant operators. We correlate this fea-

ture with the existence of multiple logarithms in correlators involving energy-momentum

tensors and we argue that a “metric beta-function” should be introduced, which modifies

the transformation rule of the metric under a Weyl transformation. The non-classical

contribution contains information about logarithms and acts on the anomalous part of

the effective action, in analogy to the beta-function of the scalar operators which we

have discussed before. We analyze in detail the consistency of this assumption in lowest

non-trivial order through the OPE involving the energy-momentum tensor and through a

general cohomological analysis. We discuss the physical consequences of this generaliza-

tion, in particular the implications for the RG transformation properties of the geometry

dependence when the CFT is formulated on a compact manifold.

In Section 2 we review the Weyl anomaly involving two relevant or marginal operators

and the mathematical results determining its form. Similar expressions for two irrelevant

operators are proven not to exist. We study the OPE involving the energy-momentum

tensor and two irrelevant operators generating a metric beta-function to lowest non-trivial

order.

In Section 3 we examine in detail the cohomological structure of the metric beta-function

and corresponding anomaly in d = 4. The explicit expression is worked out for the lowest

irrelevant dimension, i.e. ∆ = 5.

In Section 4 we discuss the peculiar features produced by irrelevant operators in d = 2,

in particular the interplay with type A Weyl anomalies.

In the Conclusions we discuss the general structure of Weyl anomalies involving an ar-

bitrary maximal number of irrelevant operators and energy-momentum tensors. We also

point out the implications for the dependence of the partition function on the metric when

the theory is formulated on a compact manifold: in the presence of an irrelevant deforma-

tion the background geometry is “running” under a RG transformation. The relevance of

the irrelevant operator anomalies for the structure of the chiral ring in supersymmetric

gauge theories is indicated.

2 Anomalies and beta-functions

Given a CFT in d dimensions, consider the two-point function of scalar primary operators

of dimension ∆. With a suitable normalization, conformal invariance fixes it to be

〈O(x)O(0)〉 = N

|x|2∆ (2.1)
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For ∆ − d/2 = n ∈ N0 this is singular, i.e. it has no Fourier transform. It needs regu-

larization and this necessarily introduces a scale. This is most easily done in momentum

space where one finds

〈O(p)O(−p)〉 = (−1)n+1 N πd/2

22nΓ(n+ 1)Γ(n+ d
2
)
p2n

(

log(p2/µ2) + cn,d

)

(2.2)

where the constants cn,d are scheme dependent; they change if one rescales µ. The explicit

scale dependence signals a type B conformal anomaly: the two-point function transforms

inhomogeneously under dilatations, i.e. rescaling of the coordinates xµ → eλxµ or, under

rescaling the momenta pµ → e−λpµ. Equivalently

µ
d

dµ
〈O(p)O(−p)〉 = (−1)n

Nπd/2

22n−1Γ(n+ 1)Γ(n+ d
2
)
p2n (2.3)

In position space this translates into

µ
d

dµ
〈O(x)O(0)〉 ∝ �

nδ(x) (2.4)

Another way to express the anomaly, which was already used in the Introduction, is

based on the fact that Weyl invariance in curved space-time implies conformal invariance

in Minkowski space. One introduces space-time dependent sources for O and the energy-

momentum tensor, J(x) and gµν(x). The correlation function (2.2) then translates into a

term in the generating functional W proportional to
∫

ddx
√

g(x)J(x)�n log(�/µ2)J(x) (2.5)

and the anomaly as the non-invariance of W under Weyl rescaling the sources, i.e.

δσW =

∫

ddxσ J �
nJ (2.6)

We have dropped terms which vanish in flat space-time. In this basic form the anomaly

expresses a violation of the Ward identity which relates the correlator 〈TµνOO〉 to the

two point function 〈OO〉.
Due to the nonabelian nature of the diffeomorphism group the Ward identity is extended

to correlators with any number of energy-momentum tensors and the anomaly expression

contains metric dependent terms constrained by diffeomorphism invariance. In the general

framework of the Osborn Equation this corresponds to the term in the expansion of the

effective action which is quadratic in the sources. To this quadratic order the non-trivial

part of the beta-function of the sources cannot contribute. The construction of these

terms, which depend on the space-time curvature, is well known in the case of relevant

and marginal operators, i.e. for ∆ ≤ d. Of course we assume ∆ − d
2
= 0, 1, 2 . . . as

otherwise there is no anomaly. We will now review this case. We start with a marginal

operator and its source J . J is invariant under Weyl rescaling and the anomaly is

δσW =

∫

ddx
√
g σ J∆cJ (2.7)
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where in d = 2, ∆c = �, and in d = 4,

∆c = �
2 + 2∇µ

(

Rµν − 1
3
gµνR

)

∇ν (2.8)

Here � is the covariant Laplacian and R the curvature. They transform as ∆c → e−dσ∆c.

In d = 4, ∆c is known as the Fradkin-Tseytlin-Riegert operator in the physics literature

and as the (critical) Paneitz operator in the mathematics literature. Higher dimensional

generalizations have been constructed; see [8] for a review. The above can be generalized

to an arbitrary number of marginal operators and their sources JI in such a way that

the anomaly is invariant under reparametrizations of the conformal manifold whose local

coordinates are JI . For explicit results in d = 2 and d = 4, see e.g. [9].

Relevant operators are also easily incorporated. For instance, the source of a dimension

two operator in d = 4 transforms as J → e−2σJ and one has ∆c = 1, while the source

of a dimension three operator in d = 4 transforms as J → e−σJ . In this case one finds

∆c = �− 1
6
R which transforms as ∆c → e−3σ∆ce

σ under Weyl rescaling of the metric.

We now turn to irrelevant operators, i.e. ∆ > d. From the structure of (2.5) we

conclude that the Weyl variation of the generating functional should contain a term (2.6)

with n > d/2 and the full expression in curved space-time should be Weyl invariant.

Assuming that the sources transform homogeneously according to their dimension, i.e.

δσgµν = 2 σ gµν , and δσJ = (∆− d) σ J , (2.9)

this would require the existence of an operator

∆c = �
n + curvature terms (2.10)

such that

∆c(e
2σg) = e−∆σ∆c(g)e

−(∆−d)σ (2.11)

where, as before, n = ∆− d/2.

The construction of Weyl anomalies for irrelevant vs. relevant and marginal operators

is, however, quite different. This is made evident by a theorem of Gover and Hirachi

which excludes the existence of local operators with the simple transformation (2.11).

More explicitly, it states (see e.g. [8] for background, review and references to the original

literature):

On any (pseudo-)Riemannian manifold (M, g) of dimension d there exists a differential

operator of the form

∆c = �
n + lower order terms (2.12)

such that

∆c(e
2σg) = e−(d

2
+n)σ∆c(g)e

+(d
2
−n)σ (2.13)

with the restriction 1 ≤ n ≤ d
2
for even d and no restriction for odd d.

This operator is natural in the sense that it is constructed from the metric and the

lower order terms vanish in flat backgrounds. Its construction is essentially holographic.
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In general the operator is not unique. For instance, for n = d/2 = 3 there is a two-

parameter family [10]. As there is no issue in odd dimensions, we will restrict to even d

in the following and, more specifically, to d = 2 and d = 4 and to integer ∆ ≥ d.

The theorem explicitly excludes the existence of such an operator for n > d/2. Since

a diffeomorphism invariant generating functional, whose anomaly reduces to J�nJ in a

flat metric should exist, and the analytic structure underlying the Osborn Equation is

valid for any finite number of terms in an expansion in the sources of irrelevant operators,

there has to be a way to avoid the conclusions of the theorem. This obviously requires a

modification in the structure of the equation. In view of the above theorem, the existence

of beta-functions for the sources J i, including those induced by the irrelevant operators,

is not sufficient to lead to a consistent equation. The novel feature, which is only possible

in the presence of sources for irrelevant operators3, is that the Weyl-transformation of

the metric also receives corrections. This is a consequence of logarithms in correlation

functions of the energy momentum tensor with irrelevant operators, in much the same way

as the beta-functions for the scalar sources arise from logarithms in correlation functions

of scalar operators.

We will now present the detailed argument for the existence of a beta-function for

the metric in the presence of sources of integer dimension irrelevant operators. To this

end we analyze the general form of the 〈Tµν OO〉 three-point function.4 It is fixed by

the symmetries, i.e. conservation and tracelessness of Tµν , and the normalizations of

the 〈OO〉 and 〈Tµν Tρσ〉 two-point functions. Comparing it to the latter, which is also

completely fixed by the symmetries except for its normalization cT , one can extract the

following terms in the OO OPE

O(x)O(0) ∼ N

x2∆
+ · · ·+ a

cT

1

x2∆+2−d
Tαβ(0) x

αxβ +
a

2cT

1

x2∆+2−d
∂γTαβ(0) x

αxβxγ

+
a

8(d+ 3)cT

1

x2∆+2−d

(

(d+ 4) ∂γ∂δTαβ(0) x
γxδxαxβ −�Tαβ(0) x

2xαxβ
)

+ . . .

+
1

x2∆−∆̃+n
Õα1...αn

xα1 · · ·xαn(0) + . . .

(2.14)

Here

a = − d∆N

Sd (d− 1)
〈O(x)O(0)〉 = N

x2∆
Sd = Vol(Sd−1) =

2πd/2

Γ(d/2)
(2.15)

In d = 4, in the normalization of the type B Weyl anomaly as gµν〈Tµν〉 = c C2 (Cµνρσ

3Simple dimensional arguments and locality immediately imply that a non-trivial beta-function for

the metric can only occur in the presence of sources for irrelevant operators. For marginal operators with

sources J the only possible modification is δgµν = 2 σ f(J) gµν .
4A comprehensive analysis of this and other CFT three-point functions in momentum space was

performed in [11]. The singularity structure, which contains all the information relevant for us, can,

however, be easily extracted without knowing the full correlation function. We use the results of [12],

whose notation we also adopt.
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being the Weyl tensor) one finds [13]

cT = −640

π2
c (2.16)

The terms in the last line of (2.14) are generic representatives of other primaries (and their

descendants). They will contribute to correlation functions such as 〈TµνTρσOO〉. This

will play a role in d = 2 which we discuss in Section 4. Quite generally, if, suppressing

possible tensor structures of the operators,

Oj(x)Ok(0) =
cjk

l

|x|∆j+∆k−∆l
Ol(0) + . . . with ∆j +∆k −∆l = d+ 2n (2.17)

then there is a beta function for the source of Ol, β
l(x) ∼ cjk

lK(n)(J j Jk)(x) where K(n)

is an n-th order differential operator which acts on the sources, therefore it vanishes for

constant sources if n > 0. The above discussion does not yet take into account special

properties such as conservation and tracelessness of e.g. Ol = Tαβ . They imply that terms

in the beta-function for the metric proportional to the metric itself cannot be obtained in

this way.

Using the OPE (2.14) one finds (the derivatives act on T (0))

〈Tµν(x)O(y)O(0)〉 = a

cT

yαyβ

y2∆+2−d
〈Tµν(x)Tαβ(0) +

a

2cT

yαyβyγ

y2∆+2−d
∂γ〈Tµν(x)Tαβ(0)〉

+
a

8(d+ 3)cT

1

y2∆+2−d

(

(d+ 4)yαyβyγyδ∂γ∂δ − y2yαyβ�
)

〈Tµν(x)Tαβ(0)〉+ . . .

(2.18)

The first few terms on the r.h.s., their number depending on d and ∆, need regularization.

This introduces a scale µ and renders µ d
dµ

of this correlator non-zero. If one takes into

account tracelessness and conservation of Tαβ , one finds that the terms with up to n

derivatives contribute, where 2∆+ 2− 2d = 2(n+2). This is easily shown in momentum

space. E.g. for d = 4 and ∆ = 5, which will be analyzed in detail below, only the

first term needs to be considered. This leads to a beta-function for the source of Tαβ if

∆ > d, as can also be seen by simple dimensional analysis. This also reveals that the

beta-function for the metric vanishes for constant sources.

For ∆ > d, the three-point function 〈TµνOO〉 has a double log in even dimensions

> 2. This follows from the second term in (2.14). For ∆ = d the coefficient of Tαβ is

singular and regularization introduces a scale µ. The derivative w.r.t. this scale vanishes

because of tracelessness on T . For ∆ > d it is proportional to ∂α∂β�∆−d−1δ(d)(y). In

even d > 2 the two-point function 〈TµνTαβ〉 provides an additional log. In d = 2 this

two-point function does not have a log but a 1/p2 singularity in momentum space. One

can explicitly verify the appearance of (log Λ2)2 terms in 〈Tµν φn φn〉 for the free scalar in
d = 4 if n ≥ 5.

On the l.h.s. of the Osborn Equation the logarithms will be cancelled exactly due

to the presence of the metric beta-function. The general structure is therefore that in

9



correlators of irrelevant operators with energy-momentum tensors, multiple logarithms

appear and this necessitates the existence of a metric beta-function such that the l.h.s.

of the equation is a local expression, the Weyl anomaly. We propose therefore that in the

presence of irrelevant operators with sources J̄ the operator of (1.1) is modified to:

δσW =

∫

ddx
{

βg
µν(J̄ , gµν ; σ)

δ

δgµν(x)
+
∑

i

βi
(

{Jj}, gµν ; σ
) δ

δJi(x)

}

W (2.19)

where βg
µν is the metric beta-function. It contains, in addition to the dimensional term

2 σ(x)gµν(x), contributions which involve the sources for the irrelevant operators. The

second sum is over all scalar sources.

We may also consider 〈Tµν(x1)Tρσ(x2)O(x3)〉. Again, tracelessness and conservation

fixes it up to one overall constant [12]. In d = 2 these conditions imply that it vanishes

except if ∆ = 0 which, in a unitary theory, means O = 1 or if ∆ = 4, which means

O = T µνTµν . Expressed in a chiral basis this can be recognized as Zamolodchikov’s

T T̄ [14]. For general d, the singularity at x1 → x2 is x∆−2d
12 , which requires regularization

for even ∆ > d. On the other hand, when in addition also x2 → x3, the singularity is x−2∆
23 .

This leads to an anomaly linear in the source and quadratic in hµν , where gµν = ηµν+hµν .

The question of energy-momentum correlators which contain multiple logarithms is a

very interesting one and in general depends on the specific structure of the CFT. In the

present paper we will mainly discuss the multiple logarithms generated by the interplay

of the 〈OO〉, 〈TOO〉 and 〈TT 〉 correlators. They exist in any CFT once the integer

dimensional irrelevant operator O is present.

3 d = 4

In this section we make the above discussion concrete and derive a non-zero beta function

for the metric by combining the regularized correlation function 〈TµνOO〉 with the Osborn

Equation.5 A concrete realization, on which the general arguments can be explicitly

checked, is a free scalar field φ with φn being an operator of dimension ∆ = n.

We start by including the lowest integer dimension irrelevant operator, which has di-

mension ∆ = 5. We denote its source by ρ. Some terms in the generating functional,

which will play a role in the following discussion, are

W [ρ, h] =
1

2

∫

d4x d4y〈O(x)O(y)〉ρ(x) ρ(y) + 1

2

∫

d4x d4y〈Tµν(x) Tαβ(y)〉 hµν(x) hαβ(y)

+
1

2

∫

d4x d4y d4z〈Tµν(x)O(y)O(z)〉 hµν(x) ρ(y) ρ(z) + . . .

(3.1)

5This extends the analysis of [15] where only scalar operators were considered and the extension to a

curved background metric was not addressed.
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All correlation functions are computed in the original CFT. These terms are present in

any CFT which has a dimension five operator. The first and third terms in (3.1) should

be considered together since they are related by the diffeomorphism Ward identity which

we will always implement.

For d = 4 and ∆ = 5 (2.18) becomes (the derivatives are w.r.t. the argument of Tαβ)

〈Tµν(x)O(y)O(0)〉 = a

cT

yαyβ

y8
〈Tµν(x)Tαβ(0) +

a

2cT

yαyβyγ

y8
∂γ〈Tµν(x)Tαβ(0)〉

+
a

56 cT

(

8
yαyβyγyδ

y8
∂γ∂δ −

yαyβ

y6
�

)

〈Tµν(x)Tαβ(0)〉+ . . .

(3.2)

We have only displayed those terms which require regularization, which introduces a

renormalization scale and hence type B anomalies and beta-functions. Due to tracelessness

and conservation of Tαβ only the first term contributes and one finds

µ
d

dµ
〈Tµν(x)O(y)O(0)〉 = a π2

24 cT
∂α∂βδ(4)(y)〈Tµν(x)Tαβ(0)〉 (3.3)

This can be derived either in position space using differential regularization [16] or, more

straightforwardly, in momentum space. Therefore

µ
d

dµ
W =

a π2

24 cT

∫

d4xd4z 〈Tµν(x) Tαβ(z)〉hµυ(x) ρ(z)∂α∂βρ(z) + . . .

=
a π2

24 cT

∫

d4z ρ(z) ∂α∂βρ(z)
δ

δhαβ(z)
W + . . .

(3.4)

We require that W satisfies the Osborn Equation (1.2), i.e. after acting with the Weyl

variation operator the terms with single logarithms are cancelled. This cancellation is

between a contribution of the third term (a variation of a double logarithm) and a con-

tribution of the second term which needs a O(ρ2) contribution to the Weyl variation of

the metric

δσgµν = 2 σ gµν +
a π2

24 cT
σ ρ ∂µ∂νρ+ . . . (3.5)

Here . . . are possible terms contributing to βg
µν that cannot be derived by the above

analysis, which is based on the two- and three-point functions. These are terms which

either vanish in flat space or for constant σ, terms which are proportional to gµν and, of

course, terms of higher order in ρ. Once the logarithms in the variation are cancelled,

there is a local anomaly which to this order – second order in ρ and zeroth order in the

metric – comes from the first term in (3.1) and it is ∼ ρ✷3ρ.

We will now determine all terms to O(ρ2), but to all orders in the metric, seeded by

the lowest terms (3.1) by performing a cohomological analysis. Once this is achieved, we

determine the anomaly by imposing WZ consistency.

To find the complete beta-function for the metric to O(ρ2) or, equivalently, to second

order in derivatives, we start with the most general Ansatz for δσgµν to this order, which

11



is consistent with dimensional analysis. We then extend and perform the cohomological

analysis outlined in the Introduction for βg
µν(ρ, g, σ), i.e. we impose [δσ1

, δσ2
]gµν = 0 which

leads to (1.5) for βg
µν . This is solved modulo trivial solutions, i.e. local expressions γµν

s.t. such that δσ(gµν + γµν) = 2 σ (gµν + γµν).

For the transformation of ρ we have to this order

δσρ = σ ρ (3.6)

For the metric the general Ansatz is

δσgµν = 2 σ gµν + c1 σ∇µρ∇νρ+ c2 ρ
2∇µ∇νσ + c3 σ ρ∇µ∇νρ+ c4 ρ(∇µρ∇νσ +∇νρ∇µσ)

+ c5 σ gµν ρ�ρ+ c6 σ gµν ∇αρ∇αρ+ c7 σ gµν ρ
2R + c8 gµν ρ

2
�σ

+ c9 gµν ρ∇αρ∇ασ + c10 σ Rµν ρ
2

(3.7)

Imposing consistency (1.5) leaves, in general dimension, six solutions: the ones parametrized

by c2, c4, c8 and c9, which can be shown to be cohomologically trivial in the sense described

above;

σ
(

Rµν ρ
2 + (d− 2)ρ∇µ∇νρ− (d− 1)gµν(∇ρ)2 + gµν ρ�ρ

)

≡ σ ρ2 R̂µν (3.8)

and

gµν σ
(

Rρ2 + 2(d− 1)ρ�ρ− d(d− 1)(∇ρ)2
)

≡ σ ρ2 ĝµν R̂ (3.9)

Here R̂ is the curvature computed with the Weyl-invariant metric ĝµν = 1
ρ2
gµν . We choose

the first solution in (3.8). It contains the “seed” (3.5) and extends it to all orders in gµν .

Adding (3.9) would not modify the result which we are going to find for the anomaly. A

general discussion of beta-functions with the structure of the second solution, i.e. non-

trivial consistent solution proportional to gµν , multiplied by a Weyl invariant structure,

will be given later.

We now make the general Ansatz for the anomaly A(ρ, gµν) to O(ρ2) or, equivalently,

to sixth order in derivatives, and require that it satisfies the WZ consistency condition

(1.8). We use the normalization

δσgµν = 2 σ gµν + ασ ρ2 R̂µν (3.10)

where α is related to a in (2.18), i.e. to the normalization of 〈Tµν OO〉, as will be made

explicit below. One then finds the following solution of the WZ consistency condition

A =c CµνρσC
µνρσ + α c

{

�ρ�2ρ− 13

8
RRµνRµν ρ

2 +
53

162
R3 ρ2 +

4

3
RµνRρσRµρνσ ρ

2

− 1

8
RRµνρσR

µνρσρ2 +
43

72
RµνρσR

µναβRαβ
ρσ ρ2 − 35

72
R2 ρ�ρ+

25

24
RµνρσR

µνρσρ�ρ

− 1

36
∇µR∇µRρ

2 +
167

12
RµνRµν ∇αρ∇αρ−

101

24
R2∇αρ∇αρ

12



− 79

24
RµνρσRµνρσ ∇αρ∇αρ−

1

3
R�∇µρ∇µρ−

10

9
Rµν ∇µ∇νRρ

2 +
7

9
Rµν Rρ∇µ∇νρ

+
1

36
�R ρ�ρ− 16

9
R (�ρ)2 +∇µR∇µρ�ρ+

1

6
Rρ�2ρ− 4Rµν ∇µρ�∇νρ (3.11)

− 37

18
Rµν∇µRρ∇νρ− 22Rµ

αRνα∇µρ∇νρ+
116

9
Rµν R∇µρ∇νρ

− 13RαβRµανβ ∇µρ∇νρ− 5

18
∇µ∇νRρ∇µ∇νρ−

5

9
R∇µ∇νρ∇µ∇νρ

− 5Rβγ ∇γRαβ ρ∇αρ− 8

3
Rα

γRαβ ρ∇β∇γρ+
10

3
Rβγ ∇αρ∇γ∇β∇αρ

+
5

6
�Rµν ρ∇µ∇νρ+

22

3
Rµν ∇µ∇νρ�ρ−

5

3
∇µRαβ ∇µRαβ ρ

2

}

+O(ρ4)

This anomaly is entirely type B, as it does not vanish for constant Weyl parameter σ,

i.e. neither the O(ρ0) nor the O(ρ2) parts of A are total derivatives. The second term

is what we obtained before to lowest order. The remaining terms are higher order in

the metric and they vanish in flat space. They implement diffeomorphism invariance.

Note the interplay between the ρ-independent ordinary type B Weyl anomaly and the

ρ-dependent terms, which is possible due to the ρ-dependence of δσgµν , which is in turn

required to avoid the conclusions from the theorem of Gover and Hirachi.

Comparing (3.10) with (3.5) we identify

2α =
a π2

24 cT
=

N π2

32 · 29 c (3.12)

The anomaly in the two-point function 〈OO〉 derived from the above anomaly polynomial

is

2 c α�3δ(4)(x) =
N π2

29 · 32�
3δ(4)(x) (3.13)

which agrees with the (anomalous) change of (2.2) under scale transformation.

By adding a cohomologically trivial term

∆W =
α c

24

∫

d4x
√
g
(

6�ρ�2ρ− 2Rρ�2ρ− R (�ρ)2
)

(3.14)

one can eliminate the second term in (3.11) in favour of ρ�3ρ; of course the curvature

dependent terms will also change.

The anomaly (3.11) can be understood as “seeded” by the correlator of two irrelevant

operators. Once the metric beta-function is turned on, the usual forms of the Weyl

anomalies (type A and B) are no longer valid since the Weyl variation of the metric has

changed. As a consequence the corresponding expressions will be deformed by the metric

beta-function. In this sense (3.11) can be understood also as the appropriate deformation

of the ”c” Weyl anomaly, as the presence of the first term shows. The information
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contained in (3.11) is universal, i.e. independent on the regularization scheme. It is theory

dependent through the two parameters which give the coefficients of single logarithms in

the correlator of two energy-momentum tensors and two irrelevant operators, respectively.

A similar deformation occurs for the type A Euler anomaly in d = 4. The cohomo-

logically nontrivial anomaly starting with the Euler density, when the metric variation

contains the deformation (3.10), is

A =aE4 + α a

{

28

135
R3 ρ2 − 6

5
Rµν Rρσ Rµρνσ ρ

2 − 7

10
RRµνρσ Rµνρσ ρ

2

+
14

15
RµνρσR

ρσαβRαβ
µνρ2 − 1

15
R�Rρ2 +

2

3
R2 ρ�ρ+

58

5
RµνRµν(∇ρ)2

− 64

15
R2 (∇ρ)2 + 1

5
RµνρσRµνρσ (∇ρ)2 − 12RµρRν

ρ ∇µρ∇νρ+ 8RRµν ∇µρ∇νρ

− 8RρσRµρνσ ∇µρ∇νρ+
2

5
Rµν

�Rµν ρ
2 − 2RµνRµν ρ�ρ+

7

5
∇µRνρ ∇νRµρ ρ

2

− 7

10
∇ρRµν ∇ρRµν ρ

2 − 4

5
∇σ∇ρRµν Rµρνσ ρ

2 − 7

20
∇αRµνρσ ∇αRµνρσ ρ

2

}

(3.15)

Here

E4 = R2 − 4RµνRµν +RµνρσRµνρσ (3.16)

is the Euler density normalized s.t.
∫

S4

√
g E4 = 64 π2. This deformed anomaly does not

introduce any new universal parameter.

The terms in the Osborn Equation, whose variation is given by (3.15), have joint (single)

logarithmic and powerlike (”type A”) singularities. They can be understood as originat-

ing in a decomposition of correlators of two O operators with three energy-momentum

tensors, where the two irrelevant operators connect through the energy-momentum tensor

conformal block.

It might be interesting to note that while (3.11) vanishes in a maximally symmetric

space, e.g. S4, for constant source ρ, this is not the case for (3.15). On the other hand

(3.15) vanishes in flat space while (3.11) does not (for non-constant sources).

The deformation of the cohomologically trivial solution
∫

d4x
√
g σ✷R of the Wess-

Zumino condition continues to be trivial, being the variation of the local term
∫

d4x
√
g R2

under the deformed operator.

To the anomalies determined above, related to the order ρ2 contribution in the metric

beta-function, we can add “ordinary” anomalies, i.e. type B anomalies with quadratic

ρ dependence. If the new structures lead to Weyl invariant anomaly integrands when

gµν transforms naively, these anomalies are also consistent to order ρ2 when the metric

beta-function is taken into account. There are eight such structures. Two of them are
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simple as they are constructed from the Weyl invariants 6

I1 = CµνρσC
ρσαβCαβ

µν

I2 = −∇αRµνρσ ∇αRµνρσ − 16Rµρνσ ∇σ∇ρRµν − 10∇µRνρ ∇µRνρ + 12∇µRρσ ∇ρRµσ

+ 8Rµν
�Rµν +

2

3
∇µR∇µR− 4

3
R�R − 2

3
RRµνρσRµνρσ + 8RµνRρσRµρνσ

− 8Rµ
νRν

ρRρ
µ +

4

3
RRµνRµν −

2

9
R3

(3.17)

There is a third simple solution which involves derivatives of ρ:

I3 = R̂ CµναβC
µναβ (3.18)

We will not write down the other five solutions which, as I3, also contain terms which

vanish for constant source ρ. Ii, i = 1, 2, transform under Weyl rescaling of the metric as

δσIi = −6 σ Ii while Ii, i = 3, . . . , 8, transform under a joint rescaling of the metric and ρ

as δσIi = −4 σ Ii. They do not exist in the absence of ρ.

The type B anomalies constructed from these structures are
∫

d4xσ
√
g ρ2Ii for i = 1, 2

and
∫

d4xσ
√
g Ii, i = 3, . . . , 8, respectively. They correspond to variations of single loga-

rithms in the generating functional. As we will see in the continuation, their appearance

could also be related to sources for higher dimension operators. Their coefficients are

theory dependent and in particular can vanish in counterdistinction from the anomaly

(3.11).

We remark that the anomaly based on I3 above can be understood as a deformation

of the “c” trace anomaly by (3.9). It is then natural to conjecture that contributions of

the type (3.9) to the metric beta-function proportional to gµν do not represent genuine

modifications required by the appearance of multiple logarithms, but simply reproduce

ordinary higher order type B anomalies.

We should discuss the stability of these structures when beta-functions for other opera-

tors induced by the dimension five operator are also included. If we include only terms up

to quadratic order in ρ, the only other operators which have to be considered are relevant,

marginal and dimension six irrelevant operators. In order that the induced beta-functions

contribute in the Osborn Equation we should limit the new couplings to first order. We

can then invert the logic and start with contributions of the new operators at linear order

in their sources and subsequently study the deformations to order ρ2.

We begin by including the source τ for an operator Õ of dimension six. Generically

〈OOÕ〉 6= 0, e.g. for a free scalar field with O = φ5 and Õ = φ6. As a consequence there

is a beta-function for τ given by

δστ = 2 σ τ + β σ ρ2 (3.19)

6There is a second contraction of three Weyl tensors, but in dimensions < 6 it is not independent of

I1.
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Here β is proportional to the OPE coefficient c
OOÕ

. Therefore the dimension six operator

can indeed give contributions to the Osborn Equation to order ρ2 and we should study

its influence to linear order in τ .

Repeating the cohomological analysis for possible metric beta-functions, one finds that

there is no cohomologically nontrivial solution to order τ . As a consequence when the

deformation (3.19) is included there will be no modification of (3.8) due to the presence

of τ . We can analyze now the Weyl anomalies to order τ . The correlator 〈TT Õ〉 has

a logarithmic singularity and we expect therefore that type B anomalies linear in τ will

exist which are at least quadratic in the curvature. Indeed there are four such solutions

of the WZ-condition. Clearly τ Ii for i = 1, 2 are solutions. The other two can e.g. be

obtained if one replaces ρ =
√
τ and requires regularity in τ . This is satisfied by two of

the Ii, i = 4, . . . , 8, say I4 and I5:

δσW =

∫

d4x
√
g σ

{

τ
(

c1 I1(g) + c2 I2(g)
)

+ c4 I4(g,
√
τ ) + c5 I5(g,

√
τ )
}

(3.20)

with I1,2 as in (3.17). In the presence of the ρ-dependent terms in (3.19), the anomaly

(3.20) is no longer a consistent solution of the Osborn Equation. The deformation of the

anomaly to O(ρ2), ignoring terms of order τρ2, are precisely the
∫

d4x
√
g σρ2Ii(g), i = 1, 2

and
∫

d4x
√
g σIi(g, ρ), i = 4, 5 discussed before. These anomalies do not mix with (3.11)

and now they acquire a natural interpretation: they originate in the coupling of two

irrelevant dimension five operators to the dimension six operator conformal block in the

correlator with energy-momentum tensors. Therefore the dimension six operator, even

though it has an induced beta-function to order ρ2, does not change the structure of the

metric beta-function and Weyl anomaly produced by the dimension five operator alone.

We can perform a similar analysis for a marginal (but not necessarily exactly marginal)

operatorM coupled to a source J . We analyze the cohomology problems linear in J . The

induced beta-function for J is

δσJ = γ σ R̂ (3.21)

The coefficient γ is proportional to the cMOO OPE coefficient. This obviously satisfies

the consistency condition and is non-trivial. The appearance of R̂, or rather its flat space

limit, can be verified by studying the 〈MOO〉 correlation functions. As follows from our

general analysis, a marginal operator can generate in the metric beta-function only a term

proportional to the metric itself with a J-dependent coefficient function. As argued before

such a term cannot contribute to the genuinely new anomaly structure related to multiple

logarithms and therefore will not interfere with (3.8). There is a type B anomaly linear

in J related to the standard “c” Weyl anomaly
∫

d4x
√
g σ J Cµναβ C

µναβ (3.22)

After having understood the structure at linear order in J , we can deform it using (3.21).

The metric beta-function (3.8) will not be changed while the deformation of (3.22) leads

to the anomaly based on the I3-structure above. We have again a new interpretation of
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this order ρ2 anomaly as resulting from a decomposition of the correlator of two irrelevant

operators and energy-momentum tensors, where the irrelevant operators couple through

the marginal (J) conformal block. We therefore conclude that at O(ρ2) there is no change

in the metric beta-function (3.8) or the Weyl anomaly (3.11). We do not include a similar

analysis for relevant operators. They also receive an induced beta-function at order ρ2,

the conclusion being the same, i.e. stability of genuine ρ2 contribution.

In d = 4 we have therefore a clear distinction between contributions to the beta-function

and anomalies related to multiple logarithms and usual type B contributions in correlators

with energy-momentum tensors. We can even characterize the difference by singling out

the conformal block through which the irrelevant operators are connected to the energy-

momentum tensors in a given decomposition scheme. It is an interesting question how

this information constraints decompositions related by crossing.

In d = 2 the stability analysis of the metric beta-function related to induced couplings

is much more subtle. This will be discussed in detail the next section.

Let us also stress once more that throughout we worked to order six in derivatives or,

equivalently, to order two in ρ. There will be contributions at all higher higher orders

in ρ, but they will only start contributing in correlation functions with more than two

insertions of O. At higher orders we will also have to take into account the mixing with

operators of dimension ∆ > 5, namely of those operators which appear in the OO OPE.

We treated in detail above the structure induced in second order by the minimal integer

dimension irrelevant operator. This generalizes to higher dimensional operators but with

increasingly complex expressions. We limit ourselves to a discussion of the salient features

of the generalization. We consider the anomaly seeded by the quadratic correlator of a

dimension six operator whose coupling we continue to denote by τ , but working now to

O(τ 2). We check first whether there is a non-trivial beta function for the metric. Making

the general Ansatz for δgµν at O(τ 2,∇6), imposing non-triviality and the WZ condition,

one finds a five-parameter family of solutions. None of the solutions contains derivatives

of σ. This means that there is no interference between the O(τ 0) and the O(τ 2) terms

and they satisfy the WZ condition independently. Two of the solutions are proportional

to gµν and, as argued above, will not represent “genuine” contributions related to multiple

logarithms.

Among the three remaining solutions only one survives in the flat limit and can in

principle be extracted from 〈TOO〉. In contrast to ∆ = 5, for ∆ = 6 more than just the

first term on the r.h.s. of (2.2) which contributes to 〈TOO〉 needs to be considered. More

precisely, as follows from the discussion below eq.(2.18), the second term on the r.h.s. of

this equation now also contributes.

One wonders whether these solutions can be constructed, as in case ∆ = 5 above, from

expression constructed from the invariant metric ĝµν = 1
τ
gµν . For instance σ τ R̂ R̂µν

transforms homogeneously with weight two, but it is singular in the limit τ → 0. There

are nine such terms with four derivatives of which five are regular as τ → 0. They agree
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with the non-trivial solutions of the WZ condition.

4 d = 2

The basic structure in d = 2 is the same as in higher even dimensional theories, i.e. there

is a beta-function originating in a logarithmically singular coefficient in front of T in the

OPE of two irrelevant operators O. But there are specific d = 2 features which change

the analysis. In particular, in d = 2 the energy-momentum tensor two-point function

has a ”type A” anomaly, i.e. the logarithmic dependence is replaced by a singular 1/✷

dependence. This will be a general feature, i.e. the multiple logarithms in the various

correlators studied will change into one logarithm multiplied by integer power singulari-

ties. More generally, even though in the diffeomorphism preserving scheme we are using

only the SO(2, 2) symmetry is explicit, there is the underlying Virasoro symmetry which

implies additional restrictions. We will study again the minimal dimension irrelevant

operator which in d = 2 is ∆ = 3, its source ρ having the Weyl transformation (3.6).

A concrete realization of such a CFT is a theory of three free Majorana fermions. The

dimension three irrelevant operator is

O ≡ ψ̄1ψ̄2ψ̄3ψ1ψ2ψ3 (4.1)

where ψ̄, ψ are the left and right Majorana fields, respectively .

We will start by solving the cohomological problems in the most general setup to

quadratic order in ρ. At this order there is an additional “induced” source τ coupled

to a dimension 4 operator Õ. One can then check that the following transformations are

non-trivial solutions of the WZ condition:

δσρ = σ ρ

δστ = 2 σ τ + α σ ρ2

δσgµν = 2 σ gµν + τ ∇µ∇νσ + α σ
(

ρ∇µ∇νρ−
1

2
gµν(∇ρ)2

)

(4.2)

The second term in δστ is the “induced” coupling whose normalization α reflects the c
OOÕ

structure constant. The coefficient of the second term in δσgµν has been set to one by a

suitable rescaling of τ , but it cannot be set to zero. Indeed, in contrast to d = 4, the metric

beta-function now depends on τ and therefore the mixing between the dimension three

and four operators cannot be neglected in the anomaly analysis. The peculiar features of

these solutions will be discussed later.

There are contributions to order ρ2 also to the marginal and relevant operators but

they do not contribute to the anomaly: we will analyse later in this Section their detailed

structure and especially the differences compared with the role of τ .

The presence of the metric beta-function once again means that there is an interplay

between the purely gravitational part of the Type A anomaly, the Polyakov term cR,
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and the part which depends on the sources ρ and τ . The most general Ansatz for the

anomaly, after subtracting variations of local terms, can be reduced to

δσW =

∫ √
g σ

(

cR + a1R
2 ρ2 + a2 ρ

2
�R + a3Rρ�ρ+ a4R (∇ρ)2

+ a5 ρ�
2ρ+ a6R

2 τ + a7 τ �R + a8R�τ
)

(4.3)

Imposing WZ on the anomaly leads to the following unique solution

δσW =

∫ √
g σ c

(

R +
1

16
αR2 ρ2 +

1

4
αR ρ�ρ− 1

2
αR (∇ρ)2 + 1

4
α ρ�2ρ

)

(4.4)

Adding the variation of a local term proportional to (�ρ)2, this becomes

δσW =

∫ √
g σ c

(

R +
1

16
αR2 ρ2 +

1

4
αR ρ�ρ− 1

2
αR (∇ρ)2 + 1

4
α�ρ�ρ

)

(4.5)

It does not contain τ at all. Nevertheless, the presence of τ was essential to have a solution

to the consistency condition for the Weyl-variation of the metric, which did contain τ . If,

on the other hand, we had started with only Õ, which corresponds to setting α = 0, we

would not have have found any non-trivial consistent anomaly to O(τ).

We now discuss the special role of τ . To begin with, a dimension four operator Õ in

d = 2 with a linear coupling to energy-momentum tensors is very special: obviously the

coupling should start with two energy-momentum tensors. Writing Õ as the product of

its left ÕL and right ÕR components, we need a non-zero correlator of ÕL with two left

components of the energy-momentum tensor TL. In d = 2, due to the infinite dimensional

Virasoro symmetry, the correlator is nonzero only if ÕL itself is proportional to TL. A

similar argument holds for the right component and we conclude that Õ has to be identified

with the famous TLTR [14].

We can see this happen quite generally. In d = 2 the contribution to the OO OPE

from the vacuum representation, to which the energy-momentum tensor belongs, is fixed

by the Virasoro symmetry to

O(z, z̄)O(w, w̄) =

(

1

(z − w)3
+

3

c

1

z − w
TL(w) + . . .

)(

1

(z̄ − w̄)3
+

3

c

1

z̄ − w̄
TR(w̄) + . . .

)

= · · ·+ 9

c2
1

|z − w|2TL(z)T̄R(z̄) + . . .

(4.6)

as one can explicitly verify for the free fermion model with c = 3
2
. The operator Õ = TLTR

indeed appears in the OPE of two O operators with a logarithmic coefficient. The operator

O has all its couplings determined by being a nonsingular product of energy-momentum

tensors. In our scheme, which preserves diffeoinvariance, it can be given an explicit

diffeoinvariant definition as

Õ = TµνT
µν (4.7)
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which differs from the original expressions by terms involving the trace T µ
µ , which vanishes

as an operator. In correlators the two definitions differ therefore by local terms. It

is obvious that all the couplings of Õ are determined by the couplings of the energy-

momentum tensors and therefore it cannot generate anomalies with independent universal

coefficients. We can analyze this further by studying the terms involving Õ to linear order

in its coupling in the Osborn Equation. To order ρ2 there is a term in the equation which

in leading order has the form:

ρ log
✷

µ2
ρ 〈Tµν〉1〈T µν〉1 (4.8)

originating in the product of the chirally factored correlators 〈OLOLTL〉〈ORORTR〉. Here
〈Tµν〉1 is the expansion of the nonlocal energy-momentum tensor defined from the non-

local Polyakov action, to first order around the flat metric, i.e.

〈Tµν〉1 ∝
(

ηµν −
∂µ∂ν
�

)

(

∂α∂β − ηαβ�
)

hαβ (4.9)

The term in (4.8) has an explicit logarithmic singularity and when in higher order more

energy-momentum tensors are correlated, i.e. (4.9) is evaluated in the background of a

generic metric gµν . When acted upon by the standard metric variation the logarithmic

singularity is eliminated but the powerlike singularities remain. In order to cancel them

an explicit (non-local) term linear in τ should be introduced

∫

d2x
√
g τ(x)〈TµνT µν〉g (4.10)

where the matrix element of the energy-momentum tensors has to be evaluated in a generic

background gµν . This shows that without the explicit coupling linear in τ , the Osborn

Equation is not consistent to order ρ2 and therefore we should expect that this is reflected

on the metric beta-function. Indeed we found that consistency requires that it contains

both ρ and τ . Now we discuss the second puzzle raised before, i.e. why the Weyl anomaly

does not contain τ -dependent terms. After the addition of (4.10) we should consider it

together with the pure gµν dependent (Polyakov) term, i.e.

W̃ = − c
4

∫

d2x
√
g R

1

✷
R +

∫

d2x
√
g τ(x)〈Tµν〉g〈T µν〉g (4.11)

For the evaluation of the energy-momentum matrix element we used the fact that in a

chiral scheme the correlator is factored into a “left” and “right” part, and therefore in a

general background in the diff-invariant scheme it can be also evaluated in a factorized

form. The result is valid modulo local terms. It is clear that the second term does not

contain new universal information. More explicitly we can show to order τ that (4.11)

obeys a homogenous Osborn Equation. The Weyl variation of W̃ at order τ is

δσW̃ =

∫

d2x
√
g T µν

(

βg
µν + 2 τ δσTµν

)

(4.12)
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where βg is to be determined and the energy-momentum tensor are determined from the

Polyakov action. Using

δσTµν =
c

4

(

∇µ∇νσ − gµν �σ
)

(4.13)

the second term leads in (4.12) to the term
∫ √

g τ R�σ, which is cohomologically trivial,

being the Weyl variation of
∫ √

g τ R2. The first term is cohomologically non-trivial and

would lead to a non-local expression for δσW . Requiring this to vanish determines βg

βg
µν = − c

2
τ ∇µ∇νσ (4.14)

in agreement with (4.2), after rescaling τ appropriately.

We see that the τ -dependent part of the metric beta-function is entirely determined by

the Polyakov action and does not reflect any new universal coefficient of a logarithm. As

a consequence there is no contribution to the anomaly. This is a very special feature of

d = 2 related to the fact that the ∆ = 4 operator is the ubiquitous T T̄ [14]. There is of

course an ambiguity of local terms which could be added to the generating functional.

5 Conclusions

The main result of this paper is that integer dimension irrelevant operators change in a

significant fashion the structure of the Osborn Equation. The presence of their sources

in the generating functional requires a non-trivial beta-function for the metric, i.e. an

addition to its classical transformation rule under Weyl rescaling which depends on the

irrelevant sources. To any given finite order in the number of irrelevant sources the

equation stays consistent and a local Weyl anomaly can be defined. It contains the

information about the normalization of universal single logarithms in various correlators.

We now summarize the pattern for beta-functions and Weyl anomalies which we find

in any even dimension d (d = 2 having the special features discussed in Section 4):

a. Starting with an integer dimension ∆ > d operator O with source ρ, there is a

logarithmic singularity in the two-point funtion 〈OO〉 and a double logarithm in

the correlator 〈TOO〉.

b. As a consequence there is a metric beta function to order ρ2.

c. The metric beta-function implies a deformation of the Weyl anomaly generated

by the correlator of two energy-momentum tensors. The same anomaly contains

the information about the two point function of O, thus generalizing the type B

anomalies of marginal and relevant operators.

d. The other Weyl anomalies involving energy-momentum tensors are deformed to

order ρ2 by the presence of the metric beta-function. They are related to decompo-

sitions of the two 〈TOO〉 energy-momentum correlators, where the two O’s couple

through the energy-momentum tensor conformal block.
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e. To order ρ2 there are beta-functions generated for any integer dimensional Õ oper-

ator with dimension ∆̃ ≤ (2∆ − d) and coupling τ . These beta-functions deform

the type B anomalies which are linear in τ . To O(ρ2) the deformed Weyl anomalies

are related to correlators of two O’s and energy-momentum tensors, where the two

O’s couple to the energy-momentum tensors through the Õ conformal block.

An application of the formalism discussed in this paper is the study of correlators of

elements of the chiral ring in N = 2 superconformal theories in four dimensions [17, 18].

The chiral ring contains irrelevant operators and their correlators can be studied using

the methods of this paper and the anomaly equations generalized to a supersymmetric

set up. The powers of curvatures present in the anomaly formulae define the operator

mixings involved. Moreover the anomaly coefficients can depend on constant moduli. We

are currently studying this generalization in more detail.

A natural question is the physical meaning of the metric beta-function. In a CFT the

metric acts as a source for the energy-momentum tensor and the beta-function is just

a convenient way to organize the recursion relations connecting the various powers of

the logarithms. When however the irrelevant couplings are turned on as true massive

deformations of the CFT, the metric beta-function indicates that the metric considered

as a coupling also starts running. A natural interpretation of the metric as a coupling

is when the theory is formulated on a curved manifold: the parameters characterizing

the geometry of the manifold can be considered to be coupling constants which multiply

the terms in the Lagrangian involving energy-momentum tensors. In particular when the

theory is formulated on Sd the radius becomes a coupling constant in the above sense.

We reach the strange conclusion that the radius of the sphere on which the theory is

formulated has a nontrivial renormalization group transformation. The scale dependent

contribution to the partition function following from the transformation of the radius

enters through the anomaly: for the ∆ = 5 theory in d = 4 the “c” anomaly for constant

ρ vanishes on the sphere but not the “a” anomaly, such that such a new type of dependence

is possible in principle. The strange feature mentioned above depends of course on turning

on the irrelevant perturbation which is not consistent outside a finite order of perturbation

theory.

The structure of the anomalies corresponding to terms with multiple logarithms in the

generating functional can be understood by choosing a decomposition of the correlators in

conformal blocks where the two irrelevant operators couple first to an integer dimensional

block. It is an interesting question how the logarithmic structures are reproduced by other

decompositions related by crossing.
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