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1 Abstract 

Myelination of axons facilitates rapid and precise impulse propagation in the nervous 

system and thus, normal motor, sensory, and cognitive capabilities. In the central nervous 

system (CNS), myelin is formed by oligodendrocytes, which enwrap axons with several 

layers of compacted membrane. The axon/myelin-unit is often impaired in myelin-related 

disorders and upon normal aging. However, only little is known about proteins that maintain 

the structure of mature myelin, many of them localized to its non-compacted sub-

compartments. For example, one of the latest steps of myelin maturation in the CNS is the 

assembly of septin filaments, which prevent the formation of pathological myelin outfoldings. 

This work focusses on the analysis of Anlnfl/fl;CnpCre/Wt (Anln cKO) mice, which lack the 

cytoskeletal adaptor protein anillin (ANLN) in myelinating oligodendrocytes. To assess the 

role of ANLN for myelination, different biochemical and microscopic analyses have been 

performed. By quantitative mass spectrometry (MS) analysis of purified myelin and 

immunoblot validation, a specific reduction of ANLN, SEPT2, SEPT4, SEPT7, and SEPT8 

has been detected in Anln cKO mice compared to controls. Electron micrograph analysis 

revealed the emergence of pathological myelin outfoldings upon conditional ANLN deletion 

and the observed reduction of myelin septins. Interestingly, these myelin outfoldings are a 

very specific neuropathology, as other analyzed neuropathological features were not 

observed in Anln cKO mice. By focused ion beam-scanning electron microscopy (FIB-

SEM), it has been observed that these outfoldings are large sheets of multiple compact 

membrane layers, a plausible explanation for an altered membrane resistance along 

myelinated fiber tracts and thus, the observed reduced nerve conduction velocity. The 

results lead to the assumption that anillin-dependent scaffolding of mature myelin by septin 

filaments is required for its normal function in facilitating rapid nerve conduction in the 

healthy CNS.  
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2 Introduction 

2.1 The central nervous system 

The central nervous system (CNS) is classified into the brain and the spinal cord. It is 

essential for sensory and motor functions, which are rendered possible by signal 

propagation along axons. To allow fast signal propagation, evolution came up with two 

different strategies (Figure 1) (Rushton, 1951). First, increasing axon diameter like giant 

axons in some Bilateria. These giant axons are capturing a lot of space, which compete 

with complexity in a restricted space. To overcome this spatial problem, vertebrates 

secondly have evolved specialized cells that enwrap axons and thereby insulating them. 

The latter form of increasing nerve conduction of action potentials along the axons allows 

faster signal propagation, even though the axon diameter remains small (Alberts, 2002). 

These specialized cells are oligodendrocytes in the CNS, while in the peripheral nervous 

system (PNS) Schwann cells enwrap axons. Beside neurons and oligodendrocytes, the 

CNS consists of astrocytes and microglia, whereby oligodendrocytes, astrocytes and 

microglia are classified into glia cells (Kettenmann and Ransom, 2005).  

 

Figure 1: Theoretical relation between conduction velocity and axon diameter. Dashed line indicates the 

relation between conduction velocity and axon diameter for myelinated axons. The permanent line indicates the 

theoretical relation for non-myelinated axons. The point marks the largest c-fibers (Figure 5 from Rushton, 1951). 

 

2.1.1 Oligodendrocytes 

As described above, oligodendrocytes wrap their membrane around axons and thereby 

enable fast signal propagation. Oligodendrocytes are multipolar and build up multiple 

processes to form several myelin sheaths (Figure 3A). Between myelin sheaths, short non-

myelinated segments are present, the so-called nodes of Ranvier. Myelin restricts action 

potentials to these non-myelinated segments and thereby provides the basis for saltatory 

nerve conduction (Baumann and Pham-Dinh, 2001, Kettenmann and Ransom, 2005). 

Myelinating glia cells constitute different compartments by enwrapping axons. The 
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innermost (adaxonal) and outermost (abaxonal) layer, as well as incisures and paranodal 

loops are classified as non-compact myelin, and are comprised of cytoplasm and 

cytoskeletal filaments (Arroyo and Scherer, 2000). The compact myelin is formed by 

multiple adhesive membrane layers (Figure 2).   

 

Figure 2: Illustration of compact and non-compact myelin in optic nerve cross section. Electron 

micrograph of a high pressure frozen optic nerve cross section, illustrates an axon and the corresponding myelin 

layers. Adaxonal and abaxonal myelin represent non-compact myelin. Densely packed myelin layers represent 

compact myelin. 

The myelin sheath also leads to segmentation along the axon (Figure 3B). Each segment 

has a specific function and molecular composition. The node of Ranvier is a non-myelinated 

segment where voltage-gated sodium channels (Nav1.1, Nav1.2, Nav1.6, Nav1.8, Nav1.9) 

are clustered (Bennett, 2013, Salzer, 2003, Zhou et al., 1998). Furthermore, subtypes of 

potassium channels, axonal transmembrane proteins, and axonal cytoskeletal components 

are found (Bennett, 2013, Berghs et al., 2000, Sherman et al., 2005). The nodes of Ranvier 

are flanked by paranodes. In the paranodal segment, the paranodal loops of the enwrapping 

oligodendrocytes are in close contact to the axon via septate-like junctions (SpJ). These 

junctions are build up by adhesion proteins located in the axon (contactin-associated protein 

(CASPR), contactin (CNTN)) and in the myelin membrane (neurofascin-155 (NFASC155)) 

(Einheber et al., 1997, Salzer et al., 2008). The adhesion complex is anchored to the axonal 

cytoskeleton via the erythrocyte membrane protein band 4.1 like 3 (EPB41L3) (Boyle et al., 

2001, Gollan et al., 2002). Beside the paranode, the juxtaparanode (JXP) is located. Here, 

voltage-gated potassium channel subunits (Kv1.1, Kv1.2) as well as a cytoplasmic subunit 

(Kvβ2) are located (Rasband, 2011). The clustering of these potassium channel subunits is 

regulated by CASPR2 and CNTN2 (Poliak and Peles, 2003). Moreover, the complex 

consists of disintegrin and metalloproteinase 22 (ADAM22) (Ogawa et al., 2010). The last 
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segment is the internode, which is tightly enwrapped with myelin, facing the adaxonal myelin 

membrane.  

 

Figure 3: Structure of CNS myelinated axons. (A) Scheme of myelination in the central nervous system. 

Oligodendrocytes form multiple myelin sheaths and thereby enable salutatory signal propagation. (B) Scheme 

of the segmentation of a heminode. By myelinating an axon, the oligodendrocyte segments the axon into 

different parts. The node is not covered by myelin, whereas at the paranode the paranodal loops (PL) are in 

close contact with the axon via septate-like junctions. The juxtaparanode (JXP) is classified by a high abundance 

of potassium channels, whereas the internode is the largest segment covered by adaxonal myelin (modified 

Figure 1 from Poliak and Peles, 2003).  

For a long time, it was thought that the only role of oligodendrocytes is the insulation of an 

axon and the accompanied saltatory nerve conduction. Nowadays, there is more and more 

evidence that oligodendrocytes are important for the axonal integrity by providing trophic 

support (Nave, 2010, Funfschilling et al., 2012, Lee et al., 2012).  

 

2.1.2 Astrocytes 

Astrocytes are the most abundant cells in the CNS and have several important functions, 

e.g. supplying neurons with oxygen and nutrients, store nutrients (glycogen), transport 

neuronal metabolites, such as CO2, and take up neurotransmitters from the synaptic cleft 

(Fields and Stevens-Graham, 2002). They are indispensable for functional signal 

propagation, as they terminate neurotransmission and contribute to the ion homeostasis. In 

addition, astrocytes are interconnected via gap junctions and can communicate with each 

other over long distances (Kirchhoff et al., 2001). Furthermore, astrocytes are in direct 

contact with axons at the nodes of Ranvier and thought to have a stabilization and supply 

function for the nodes (perinodal astrocyte) (Black and Waxman, 1988). Astrocytes are also 

involved in the formation of the blood-brain barrier (BBB) by contacting blood vessels. Via 

the glucose transporter GLUT1, they are able to take up glucose from capillaries, and 

therefore are able to supply oligodendrocytes and neurons with lactate (via glycolysis) 

(Nave and Werner, 2014).  

After CNS injury, astrocytes react to biochemical changes, leading to astrogliosis around 

the lesion. This defense response has the goal to minimize and repair primary damage. In 
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contrast to the goal of repair, astrocytes often release high levels of molecules that suppress 

neuron outgrowth and thereby inhibit axon regeneration (Sharma, 2015).  

 

2.1.3 Microglia 

Microglia account for ~10% of cells found within the brain. They are the main macrophages 

of the brain and therefore involved in, e.g. phagocytosing cell debris. Furthermore, they 

initiate immune responses upon for example lesions or infections. Microglia are highly 

mobile and scanning the environment constantly for any signs of disturbance. By detecting 

signs of disturbance, like cell debris or cell injury, microglia respond with repair or 

phagocytosis (Hanisch and Kettenmann, 2007, Nimmerjahn et al., 2005, Streit et al., 2005). 

In a disease state, like a lesion or infection, microglia can change into a different state, in 

which they can actively migrate towards the place of disturbance. In close proximity to this 

place, microglia induce specific responses, e.g. phagocytosis or cytokine and chemokine 

secretion upon detection of the relevant molecules with their various receptors (Kettenmann 

et al., 2011, Hanisch, 2002). Microglia support the axonal regeneration by phagocytosing 

cell debris and secondary release of TLR4 or TNF. If cell debris is not removed, which 

possibly leads to a chronic or false activation of microglia, axons get degenerated (Figure 4) 

(Rivest, 2009).  
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Figure 4: Neuroprotection or neurodegeneration induced by microglia. Upon demyelination, microglia are 

in charge of cell debris removal. By removing cell debris and releasing TLR4 or TNF, microglia act in a 
neuroprotective way. More oligodendrocyte precursor cells (OPCs) are recruited, which re-myelinate axons and 
thereby prevent axon degeneration. If microglia fail to phagocytose cell debris, neurons are damaged and further 
degraded, leading to neurodegeneration (Rivest, 2009) (Image taken from Rivest, 2009 (Figure 5)). 

 

2.2 Schwann cells 

Schwann cells are the glia cells of the peripheral nervous system (PNS). They are 

subdivided into myelinating Schwann cells and non-myelinating Schwann cells, which form 

Remak bundles (Figure 5). Schwann cells are important for the maintenance of axons and 

the survival of neurons. 
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Figure 5: Schwann cell types in the PNS. Electron micrograph of a sciatic nerve cross section illustrates both 

types of Schwann cells. Non-myelinating Remak bundle group C fibers together and ensure that the axons are 

in close proximity but do not touch each other. Therefore, the cytoplasm of the non-myelinating Schwann cell 

surrounds the axons. Myelinating Schwann cells form myelin around the axon, exhibiting the same structures 

as oligodendrocytes in the CNS (compact myelin and the non-compact abaxonal and adaxonal layers). 

 

2.2.1 Myelinating Schwann cells 

In the PNS, myelinating Schwann cells form myelin around motor and sensory neurons, 

thereby insulating the axon and enable saltatory nerve conduction, like oligodendrocytes in 

the CNS. Different from oligodendrocytes, Schwann cells just form one myelin sheath 

(Figure 6A). The segmentation in node, paranode, juxtaparanode and internode is the same 

as in the CNS, including the clustering of ion channels. The node is partially in contact with 

microvilli of the Schwann cell and the myelinated fiber is surrounded by a basal lamina 

(Figure 6B). 

 

Figure 6: Structure of PNS myelinated axons. (A) Scheme of myelination in the peripheral nervous system. 

Each Schwann cell forms just one myelin sheath around an axon and thereby enable salutatory signal 

propagation. (B) Scheme of the segmentation of a heminode. By myelinating an axon, the Schwann cell 

segments the axon into different parts, like oligodendrocytes in the CNS. The segments are divided in node, 

paranode with septate-like junctions (SpJ), juxtaparanode (JXP) and the internode (modified Figure 1 from 

(Poliak and Peles, 2003)).  
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2.2.2 Remak bundle 

Non-myelinating Schwann cells form so-called Remak bundles. Within these Remak 

bundles, several small caliber axons are grouped together. These axons are C fibers that 

have a very small axon diameter (<1 µm) and low conduction velocity. In a Remak bundle, 

axons are grouped together but are separated from each other by the cytoplasm of the non-

myelinating Schwann cell. C fibers are sensory fibers and therefore often involved in 

neuropathic pain. 

 

2.3 Myelin integrity and pathological myelin outfoldings 

As described above, oligodendrocytes enwrap axons to form myelin. It is notable, that the 

myelin thickness is dependent on the axon diameter, as the ratio between the axonal 

diameter and the myelin diameter is constantly about 0.7 +/- 0.1 (Hildebrand and Hahn, 

1978, Chomiak and Hu, 2009), suggesting an optimal signal propagation within this given 

ratio. There is a need for several signals that lead to the start of myelination, but also for 

attenuating myelination when the optimal myelin thickness is reached. For the PNS, it is 

known that axonal expressed neuregulin-1 regulates myelin thickness, whereas in the CNS, 

such a regulator has not been identified so far (Michailov et al., 2004, Brinkmann et al., 

2008). However, there are different pathways known, which indeed influence myelin 

thickness and integrity. For example, mice that lack PTEN (phosphate and tensin homolog) 

from oligodendrocytes show increased myelin thickness (Goebbels et al., 2010). PTEN is a 

regulator of the mTOR pathway. By converting PIP3 (Phosphatidylinositol (3,4,5)-

trisphosphate) into PIP2 (Phosphatidylinositol-4,5-bisphosphat), the PI3K induced mTOR 

pathway activation is antagonized (Stiles et al., 2004, Suzuki et al., 2008). Thereby, Akt 

gets over-activated and PIP3 accumulates in the plasma membrane (Cantley and Neel, 

1999). Additionally, in 2016 it was shown that PTEN mutant mice develop pathological 

myelin outfoldings (Patzig et al., 2016). Myelin outfoldings are seen in several mouse 

mutants and are a common neuropathological phenotype. For example, mice that lack 

proteins, which are highly abundant in CNS myelin, Cnpnull/null, Magnull/null and Plp1null/null mice 

(Patzig et al., 2016), as well as Cdc42fl/fl;CnpCre/Wt mice (Thurnherr et al., 2006) show 

pathological myelin outfoldings. In all mutants, compact myelin is formed, whereby only 

Magnull/null and Plp1null/null mice display alterations in myelin thickness (Patzig et al., 2016, 

Thurnherr et al., 2006). Interestingly, these mice show reduced levels of the cytoskeletal 

ANLN/septin filament, indicating the relevance of cytoskeletal stabilization of CNS myelin 

for myelin integrity (Patzig et al., 2016).  
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2.4 Anillin 

Anillin (ANLN) is a conserved protein implicated in several cytoskeletal dynamics and 

cytokinesis. In 1989, ANLN was identified as a protein that binds F-actin in Drosophila 

melanogaster (Miller et al., 1989). It was shown that in the interphase ANLN localizes to the 

nucleus, while during cytokinesis it co-localizes with RhoA at the contractile ring (Field and 

Alberts, 1995, Piekny and Glotzer, 2008). There are further homologues of ANLN, for 

example, the two anillin-like proteins Boi1p and Bio2p in Saccharomyces cerevisiae. These 

proteins localize to the nucleus (Boi1p) and the contractile ring (Boi2p) and thereby are 

essential for cell growth and bud formation (Toya et al., 1999, Bender et al., 1996).  

ANLN has several other cytoskeletal binding partners. Besides the binding of F-actin during 

cell division, anillin directly interacts with e.g. myosin, RhoA, microtubules and septins 

(Piekny and Glotzer, 2008, Straight et al., 2005, Piekny and Maddox, 2010, Versele and 

Thorner, 2005). The interaction with septins has been reported in different studies. In yeast, 

it was shown that ANLN and septins co-localize within the cleavage furrow and thereby 

enable proper cell division (Maddox et al., 2007, Oegema et al., 2000). In vitro studies have 

shown that anillin enhances PIP2-mediated septin filament formation (Kinoshita et al., 2002, 

Liu et al., 2012). The studies indicate that septin filament formation relies on anillin, at least 

in vitro and in yeast. Interestingly, it was shown, that anillin also relies on septins. An in vivo 

study shows that in CNS myelin of mice lacking septin filaments, ANLN is also reduced 

(Patzig et al., 2016). These results indicate that ANLN not only promotes septin filament 

formation but also interacts with the filament to stabilize adaxonal myelin. Brain RNA-Seq 

analysis of mouse cerebral cortex show expression of ANLN in oligodendrocytes (Figure 7) 

(Zhang et al., 2014). 

 

Figure 7: RNA-Seq analysis indicates Anln mRNA expression in oligodendrocytes. RNA-Seq analysis 

of cells immunopanned from mouse cerebral cortex, shows expression of Anln mRNA. Anln mRNA 

is detected in myelinating and newly formed oligodendrocytes. The cell-type specific abundance was 

extracted from Zhang et al., 2014. Mean with SEM; n=2; FPKM = fragments per kilobase of exon per 

million fragments mapped; OPC = oligodendrocyte precursor cell. 
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2.5 Septins 

Septins are a family of highly conserved GTP-binding proteins, containing an N-terminal 

polybasic domain and a septin unique element (SUE) at the C-terminal. The proline-rich 

N-terminus is variable in length and the C-terminal end can contain a coiled-coil region (Cao 

et al., 2007). In mammals, 13 septin genes are known. Most of them encode more than one 

polypeptide by alternative splicing and/or multiple translation start sites (Kinoshita, 2003). 

The mammalian septin gene family can be divided into four subgroups, which are named 

after the representing septins, by sequence comparison and bioinformatic analysis. SEPT1, 

SEPT2, SEPT4 and SEPT5 belong to the SEPT2 group, whereby every member shows two 

C-terminal coiled-coil domains. The SEPT6 group has five members; SEPT6, SEPT8, 

SEPT10, SEPT11 and SEPT14; all of them have one C-terminal coiled-coil domain. SEPT3 

is the third group, consisting of SEPT3, SEPT9 and SEPT12; this group has no coiled-coil 

domain. The last group only consists of SEPT7 (Mostowy and Cossart, 2012, Hall and 

Russell, 2012, Macara et al., 2002). SEPT13 is not classified, as it was identified to be a 

pseudogene of SEPT7 (HGNC: 32339).  

Septin monomers build up hetero-oligomers upon GTP binding and are able to assemble 

even further into higher order structures, like rings, meshwork or filaments (Mendoza et al., 

2002, Oh and Bi, 2011). It was shown by several studies that a hetero-oligomer consists of 

septins out of different subgroups in a 1:1:1 ratio (Kinoshita, 2003). In an in vitro experiment, 

for example, a hetero-oligomer consisting of SEPT2, SEPT6, and SEPT7 assembled into 

filaments (Low and Macara, 2006, Sirajuddin et al., 2007). It was also shown that septins 

have various functions in cytokinesis, ciliogenesis, dendrite maturation, and sperm 

development (Hall and Russell, 2004, Kissel et al., 2005, Kwitny et al., 2010, Tada et al., 

2007, Xie et al., 2007, Mostowy and Cossart, 2012). Septin oligomers polymerize further 

into a meshwork upon interaction with membrane lipids. This meshwork is comparable to 

an actin cytoskeleton, but it is less dynamic (Tooley et al., 2009). It was therefore suggested 

that septins play a role in stabilizing membranes (Tanaka-Takiguchi et al., 2009, Gilden and 

Krummel, 2010). Indeed, it was shown that septins stabilize the adaxonal myelin membrane 

and thereby prevent the formation of pathological myelin outfoldings in the CNS of mice 

(Patzig et al., 2016). The study also shows that SEPT2, SEPT4, SEPT7, and SEPT8 are 

the most abundant septins in CNS myelin. Furthermore, SEPT8 is essential to form a septin 

filament in CNS myelin, as the loss of SEPT8 leads to post-translational reduction of all 

other myelin septins (Patzig et al., 2016).  

 

2.6 Other cytoskeletal filaments 

Actin filaments are composed of globular actin (G-actin) monomers that polymerize into 

filamentous actin (F-actin). Within a filament, all actin monomers are orientated in the same 
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direction, leading to a polar actin filament. This polarization gives raise to the plus and minus 

end, which on the one hand sets the direction of assembly of the filament and on the other 

hand enables a directed movement of myosin along the actin filament (Pollard, 2017, Oda 

et al., 2009). Actin filaments are often found in close proximity to plasma membranes, where 

the build meshwork has functions in mechanical support, cell shape determination, and 

enables movement of the cell surface to allow e.g. cell migration or division (Cooper, 2000). 

Another compartment of the cytoskeleton are intermediate filaments. There are different 

proteins that build up intermediate filaments cell type specific, e.g. lamin (nuclear envelope), 

neurofilaments ((NF) neural cells) or keratin (epithelial cells) (Dechat et al., 2010, Yuan et 

al., 2012, Chou and Buehler, 2012). Similar to actin filaments, intermediate filaments have 

functions in the maintenance of the cell shape. They anchor cell organelles and thereby 

keep up the 3-dimensional cell shape (Herrmann et al., 2007). 

In addition, microtubules are a part of the cytoskeleton. α- and β-tubulin dimers build up 

protofilaments, which associate laterally into a microtubule. Like actin filaments, 

microtubules have a plus and a minus end, arising from the filament formation, as the 

β-subunit of the tubulin dimer always contacts the α-subunit of the next dimer. Therefore, 

at the plus end the β-subunits are exposed, whereas at the minus end the α-subunits are 

exposed. Microtubules can extend at both, plus and minus ends to elongate (Walker et al., 

1988). Microtubules have important functions in e.g. the mitotic spindle or intracellular 

transport. The intracellular transport is associated with the motor proteins kinesin and 

dynein, which transport for example mitochondria along microtubules (Hirokawa and 

Takemura, 2005, Vale, 2003). 

 

2.7 Axon caliber  

Beside myelination, the axon diameter influences the signal propagation along axons, as 

the transverse resistance of an axon decreases with increasing caliber (Hartline and 

Colman, 2007, Seidl, 2014). For the CNS and PNS, different mechanisms, by which the 

axonal diameter is regulated, have been identified. For example, in the PNS it was shown 

that the phosphorylation state of the neurofilaments NF-medium and NF-heavy plays an 

important role in axonal diameter regulation (Garcia et al., 2003). Interestingly, the 

phosphorylation state of neurofilaments is regulated by Schwann cells in an “outside-in” 

fashion via the interaction of myelin associated glycoprotein (MAG) with e.g. the receptor 

p75NTR on the axon (de Waegh et al., 1992, Yin et al., 1998, Garcia et al., 2003, Wang et 

al., 2002). Furthermore, in the CNS the multimeric Nogo receptor 1 (NgR1) was identified 

as an axonal interaction partner of MAG in vitro using a soluble form of MAG (Palandri et 

al., 2015). It has been shown that mice deficient for Nogo1 (Ngr1-/-) showed reduced 
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neuronal somata in vitro as well as decreased axonal diameter in the optic nerve and the 

spinal cord in vivo (Palandri et al., 2015, Lee et al., 2017). 

Furthermore, axonal intrinsic mechanisms regulating the axon diameter include α-adducin 

and PTEN. It has been shown that the loss of α-adducin, an actin binding protein that 

stabilizes actin rings along the axon, show a progressive enlargement of axon diameter 

(Leite et al., 2016). Moreover, mice that conditionally lack PTEN in cerebellar granule cells, 

showed increased neuronal diameter of these specific neuron population in the cortex 

(Goebbels et al., 2017).  

 

2.8 Aim of the study 

Deletion of the Sept8 gene in mature oligodendrocytes prevents the assembly of myelin 

septin filaments; notably, when myelin septin filaments are absent the abundance of ANLN 

in myelin is also diminished (Patzig et al., 2016). This implies that the association with 

myelin septin filaments prevents rapid turnover and degradation of ANLN. Here, the 

hypothesis is to be tested that oligodendroglial ANLN, beyond its mere association with 

myelin septins, may serve a crucial function in myelin septin filament assembly. To do so, 

a novel line of Anlnfl/fl;CnpCre/Wt (Anln cKO) mouse mutants is to be analyzed, in which mature 

oligodendrocytes do not express ANLN. The loss of ANLN and its effect on myelin septin 

assembly, as well as related myelin pathology is to be analyzed. For understanding the 

possible relevance of ANLN for septin filament assembly in CNS myelin, 

immunohistochemistry is to be used to test for co-localization of ANLN and septins in Wt 

mice. Additionally, it is to be tested if a developmental dependence of ANLN and septins 

can be identify. To test the functional relevance of ANLN for myelin septins, ANLN is to be 

deleted in mature oligodendrocytes of mice, using Cre recombinase under control of the 

Cnp promotor (CnpCre/Wt (Lappe-Siefke et al., 2003)). The abundance of ANLN and septins 

is to be analyzed using quantitative mass spectrometry, as well as immunoblot validation. 

Thereby, an unbiased identification of other effected proteins is possible. As the loss of 

septins is directly related to structural changes in myelin, possible myelin abnormalities 

upon the absence of ANLN, are to be analyzed. Furthermore, axonal changes upon ANLN-

absence are to be analyzed. As oligodendrocytes are reported to support axonal integrity 

(Klugmann et al., 1997, Griffiths et al., 1998), secondary pathologies like axonopathy and 

gliosis are to be analyzed in Anlnfl/fl;CnpCre/Wt  mouse brains by immunohistochemistry. It is 

of interest, to 3D reconstruct possible myelin abnormalities, such as myelin outfoldings, 

using focused ion beam scanning electron microscopy (FIB SEM), to get a better 

understanding of the size and dimension of such abnormalities.   
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3 Materials and Methods 

3.1 Materials 

3.1.1 General material 

General laboratory materials were purchased from BD Falcon (Heidelberg, Germany), Bio-

Rad (Munich, Germany), Gilson (Limburg-Offheim, Germany), Brand (Radebeul, 

Germany), Sarstedt (Nümbrecht, Germany) and Eppendorf (Hamburg, Germany). All 

chemicals used, were obtained from Sigma-Aldrich GmbH (Munich, Germany), Merck 

KGaA (Darmstadt, Germany) and SERVA (Heidelberg, Germany). 

 

3.1.2 Kits  

All kits were used according to the manufacturer instructions, unless otherwise stated. 

 

Description Manufacturer 

RNA purification ‘RNeasy mini prep’ Qiagen (Portland, USA) 

DC Protein Assay (Lowry) Bio-Rad (Munich, Germany) 

DAB Zytomed Kit Zytomed Systems GmbH (Berlin, Germany) 

LSAB2 Kit  Dako (Hamburg, Germany) 

Vector Elite ABC Kit Vector Labs (Loerrach, Germany) 

Agilent RNA 6000 Nano KIT Agilent Technologies (Santa Clara, California, 

United States) 

 

3.1.3 Materials for genotyping 

 

Description Content  

Modified Gitschier buffer (MGB) Tris/HCl, pH 8.8 

(NH4)2SO4 

MgCl2 

Triton X-100 

67 mM 

16.6 mM 

6.5 mM 

0.5 % [v/v] 

Tris-borat-EDTA (TBE) buffer  Tris Base 

Boric acid  

EDTA 

40 mM  

20 mM 

1 mM 
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10 mM dNTP (50x stock)  

 

dATP 

dCTP 

cGTP 

cTTP 

2.5 mM 

2.5 mM 

2.5 mM 

2.5 mM 

 

200 μM final concentration in a PCR reaction 

(50 μM each nucleotide) 

 

Description Manufacturer 

Proteinase K Boehringer GmbH (Mannheim, Germany) 

GoTaq DNA polymerase Promega (Mannheim, Germany) 

GoTaq buffer 5x Promega (Mannheim, Germany) 

Superscript III-reverse transcriptase Invitrogen (Karlsruhe, Germany) 

dNTPs Boehringer GmbH (Mannheim, Germany) 

GeneRuler 100 bp DNA ladder Thermo Fisher Scientific (St. Leon-Rot, Germany) 

 

3.1.4 Genotyping primers 

Description Number Sequence 

Anln genotyping 29823 

29824 

32002 

5‘- GACATAGCCCTCAGTGTTCAGG -3‘ 

5‘- GAATCCTGCATGGACAGACAG -3‘ 

5'- GAGCTCAGACCATAACTTCG -3' 

Sept8 genotyping 16458 

16459 

16460 

5’- CAGGCAGATGTATATGCAGCAG -3’ 

5’- GGTGGCTTTGAACTTGCTATCC -3’ 

5’- GAAGCAGCCATAGAGGAGATCC -3’ 

Cre recombinase  

genotyping 

2016 

7315 

4192 

4193 

5'- GCCTTCAAACTGTCCATCTC -3' 

5'- CCCAGCCCTTTTATTACCAC -3' 

5'- CAGGGTGTTATAAGCAATCCC -3' 

5'- CCTGGAAAATGCTTCTGTCCG -3' 

Mbp genotyping 30833 

30834 

30835 

1879 

5'- GAGCTCTGGTCTTTTCTTGCAG -3' 

5'- CCCGTGGTAGGAATATTACATTAC -3' 

5'- CAGGGGATGGGGAGTCAG -3' 

5'- ATGTATGTGTGTGTGTGCTTATCTAGTGTA -3' 
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Sept9 genotyping 23844 

23845 

23846 

5'- GACCATGCATGCACTCAGCCACAG -3' 

5'- CAGAACTGAAATCCCCTACAGTAG -3' 

5'- GCTCAGACAACGATATTTGGG -3' 

Dhh Cre recombinase 

genotyping 

10967 

15793 

5’- CCTGCGGAGATGCCCAATTG -3’ 

5’- CAGCCCGGACCGACGATGAA -3’ 

 

3.1.5 Quantitative real-time PCR primers 

Gene Direction Sequence 

Anln Forward 

Reverse 

5’- ACAATCCAAG GACAAACTTGC -3' 

5’- GCGTTCCAGG AAAGGCTTA -3' 

Cnp Forward 

Reverse 

5‘- CGCTGGGGCAGAAGAATA -3' 

5‘- AAGGCCTTGCCATACGATCT -3' 

Sept2 Forward 

Reverse 

5‘- TCCTGACTGA TCTCTACCCAGAA -3' 

5‘- AAGCCTCTAT CTGGACAGTTCTTT -3' 

Sept4 Forward 

Reverse 

5‘- ACTGACTTGT ACCGGGATCG -3' 

5‘- TCTCCACGGT TTGCATGAT -3' 

Sept7 Forward 

Reverse 

5‘- AGAGGAAGGC AGTATCCTTGG -3' 

5‘- TTTCAAGTCC TGCATATGTGTTC -3' 

Sept8 Forward 

Reverse 

5‘- CTGAGCCCCG GAGCCTGT -3' 

5‘- CAATCCCAGT TTCGCCCACA -3' 

Sept9 Forward 

Reverse 

5'- GACTCCATCCTGGAGCAGAT -3' 

5'- TTTGGACTTGAAGAGGGTATTGA -3' 

Sept11 Forward 

Reverse 

5'- GCTATGAACTCCAGGAAAGCA -3' 

5'- GGGCGTCAATGTATTCCACT -3' 

Cdc42 Forward 

Reverse 

5'- GCTGTCAAGTATGTGGAGTGCT -3' 

5'- GGCTCTTCTTCGGTTCTGG -3' 

RhoB Forward 

Reverse 

5‘- CAGACTGCCTGACATCTGCT -3' 

5‘- GTGCCCACGCTAATTCTCAG -3' 

Ppia Forward 

Reverse 

5‘- CACAAACGGT TCCCAGTTTT -3' 

5‘- TTCCCAAAGA CCACATGCTT -3' 
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3.1.6 Protein biochemistry  

Description Content  

10x Phosphate-buffered saline (PBS) NaCl 

KCl 

Na2HPO4 x 2H2O 

K2HPO4 

1.7 M 

34 mM 

40 mM 

18 mM 

 pH 7.2 with 1N NaOH 

10x Tris-buffered saline (TBS)  

(for myelin purification) 

Tris/HCl, pH 7.4 

NaCl 

200 mM 

1370 M 

Modified RIPA buffer TBS (10x for myelin purification) 

EDTA 

Sodium deoxycholate 

Triton X-100 

Protease inhibitor 

1x 

1 mM 

0.5% [w/v] 

1.0% [v/v] 

1 tablet/10 ml 

 

Description Manufacturer 

Complete Mini protease inhibitor (Roche Diagnostics GmbH, Mannheim, Germany) 

 

 

3.1.7 SDS PAGE and immunoblot 

Description Content  

SDS separating gel Acrylamid/Bisacrylamid 29:1 

Tris/HCl pH 8.8 

SDS 

APS 

TEMED 

15%, 12% or 10% [v/v] 

0.4 M 

0.1% [w/v] 

0.03% [w/v] 

0.08% [v/v] 

SDS stacking gel Acrylamid/Bisacrylamid 29:1 

Tris/HCl pH 8.8 

APS 

TEMED 

4% [v/v] 

125 mM 

0.05% [w/v] 

0.1% [v/v] 

4x SDS sample buffer Glycerol 

Tris/HCl pH 6.8 

SDS 

Bromphenol blue 

40% [v/v] 

240 mM 

8% [w/v] 

0.04% [w/v] 
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10x SDS running buffer 

(Laemmli buffer) 

Tris base 

Glycine 

SDS 

250 mM 

1.92 mM 

1% [w/v] 

Transfer buffer 

(semi-dry blot) 

Tris base 

Glycine 

Methanol 

SDS 

96 mM 

78 mM 

10% [v/v] 

0.03% [w/v] 

Transfer buffer 

(wet-tank blot) 

Tris base 

Glycine 

Methanol 

96 mM 

78 mM 

20% [v/v] 

20x Tris buffered saline (TBS) Tris/HCl, pH 7.4 

NaCl 

1 M 

3 M 

1x TBS with Tween-20 (TBST) Tris/HCl, pH 7.5 

NaCl 

Tween-20 

50 mM 

150 mM 

0.05% [v/v] 

Immunoblot stripping buffer Glycine/HCl, pH 2.5 

Tween-20 

0.2 M 

0.1% [v/v] 

Immunoblot blocking buffer Non-fat dry milk powder 5% [w/v] 

in TBST 

 

Description Manufacturer 

Western Lightning® Plus-ECL Perkin Elmer Life Sciences, Inc. 

(Rodgau, Germany) 

WesternBright Chemiluminescence Substrat Sirius Biozym Scientific GmbH 

(Hess. Oldendorf, Germany) 

PageRulerTM Plus Prestained Protein Ladder  Thermo Fisher Scientific 

(St. Leon-Rot, Germany) 

PVDF Membrane Amersham Hybond P0.45 µm GE Healthcare Life Science 

(Buckinghamshire, UK) 

PVDF Membrane Imobilon®-FL P0.45 µm Merck Millipore Ltd. 

(Darmstadt, Germany) 
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3.1.8 Primary antibodies - Immunoblot 

 

Antibody Dilution Load % Gel Species Source 

ANLN 1:500 30 µg 10% Polyclonal 

goat 

Acris 

SEPT2 1:2000 5 µg 10 or 12% Polyclonal 

rabbit 

PtG 

SEPT4 1:100 30 µg 10 or 12% Polyclonal 

rabbit 

IBL 

SEPT7 1:5000 3 µg 10 or 12% Polyclonal 

rabbit 

IBL 

SEPT8 1:2500 5 µg 10 or 12% Polyclonal 

rabbit 

PtG 

SEPT9 1:1000 30 µg 10 or 12% Polyclonal 

rabbit 

PtG 

SEPT11 1:5000 5 µg 10 or 12% Polyclonal 

rabbit 

W.S.Trimble 

(Tsang et al., 2011)  

L-MAG 1:500 5-10 µg 8% Polyclonal 

rabbit 

N. Schaeren-Wiemers 

(Miescher et al., 1997) 

MOG 1:500 5 µg 12% Monoclonal 

mouse 

C. Linington (Linnington 

et al., 1984) 

TUJ1 1:1000 5-10 µg 10 or 12% Monoclonal 

mouse 

Covance 

ATP1A1 1:2000 5 µg 10 or 12% Monoclonal 

mouse 

Abcam 

ATP1A3 1:1000 5 µg 10 or 12% Monoclonal 

mouse 

Abcam 

CNP 1:500 5 µg 10 or 12% Monoclonal 

mouse 

Sigma 
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PLP/DM20 1:500 0.5 µg 15% Polyclonal 

rabbit 

K.-A. Nave 

(Jung et al., 1996)  

SIRT2 1:500 10 µg 10 or 12% Polyclonal 

rabbit 

Abcam 

CD9 1:250 0.5 µg 15% Monoclonal 

mouse 

BD Biosciences 

MAG (513) 1:1000 0.5 µg 15% Monoclonal 

mouse 

Chemicon 

Actin 1:2000 5 µg 10 or 12% Monoclonal 

mouse 

Millipore 

 

3.1.9 Secondary antibodies - Immunoblot 

 

Antibody Dilution Species Source 

anti-rabbit-HRP  1:10000 Goat Dianova 

anti-mouse-HRP 1:10000 Goat Dianova 

anti-goat-HRP 1:1000 Donkey Dianova 

 

 

3.1.10 Solutions for fixation 

 

Description Content  

Avertin 2,2,2 Tribromethanol 99% 

Amylalcohol 

2% [w/v] 

2% [v/v] 

 Mixed at 40 °C for 30 min while stirring and 

subsequently filtered  

Stored at -20°C 

16% Paraformaldehyde (PFA) PFA 

NaOH 

16% [w/v] 

5 N 

 PFA cooked at 65 °C for 20 min while stirring, NaOH 

droplets until solution was cleared and then filtered 
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0.2 M Phosphate buffer Sodiumdihydrogenphosphate  

di-Sodiumhydrogenphosphate  

NaCl 

0.36% [w/v] 

3.1% [w/v] 

1% [w/v] 

4% Paraformaldehyde (PFA) PFA 

Phosphate buffer 

4% [w/v] 

0.1 M 

Karlsson-Schultz fixative (K&S) PFA 

Glutaraldehyde 

Phosphate buffer 

4% [w/v] 

2.5% [v/v] 

0.1 M 

 

3.1.11 Immunohistochemistry and staining solutions 

Description Content  

Citrate buffer (0.01 M, pH 6.0) Citric acid  

Sodium citrate 

1.8 mM 

8.2 mM 

Tris buffer (0.05 M, pH 7.6) Tris/HCl, pH 7.6 

Sodium chloride 

 

50 mM 

0.9% [w/v] 

Phosphate buffer (0.2 M, pH 7.4) Sodiumdihydrogenphosphate 

di-Sodiumhydrogenphosphate  

 

0.04 M 

0.16 M 

 

PBS/BSA Sodiumdihydrogenphosphate 

di-Sodiumhydrogenphosphate 

NaCl 

Bovine serum albumin (BSA) 

0.04 M 

0.16 M 

1.8% [w/v] 

1.0% [w/v] 

Scott`s solution Potassiumhydrogencarbonate 

Magnesium sulphate 

0.2% [w/v] 

2% [w/v] 

HCl - alcohol HCl 

Ethanol 

0.09% [v/v] 

70% [v/v] 

Mayer’s haematoxylin solution Haematoxylin 

Sodium iodate 

Potassium aluminum sulfate 

0.1% [w/v] 

0.02% [w/v] 

5% [w/v] 

 Added under constant shaking, solution turned violet 

 Chloralhydrate 

Citric acid 

5% [w/v] 

0.1% [w/v] 
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Blocking buffer (cryosections) Goat serum or horse serum 

Triton X-100 

10% [v/v] 

0.5% [v/v] 

 Dissolved in BSA/PBS 

Blocking buffer (teased fibers) Horse serum 

Tween-20 

Dissolved in 1x PBS 

10% [v/v] 

0.1% [v/v] 

Gallyas incubation solution Ammonium nitrate 

Silver nitrate 

Sodium hydroxide (pH 7.5) 

0.1% [w/v] 

0.1% [w/v] 

12‰ [w/v] 

 Brown precipitate dissolved by shaking 

Gallyas physical developer A Sodium carbonate (dehydrated) 5% [w/v] 

Gallyas physical developer B Ammonium nitrate 

Silver nitrate 

Wolframosilicic acid  

(silicotungstic acid) 

0.2% [w/v] 

0.2% [w/v] 

 

1% [w/v] 

Gallyas physical developer C Ammonium nitrate 

Silver nitrate 

Wolframosilicic acid  

(silicotungstic acid) 

PFA 

0.2% [w/v] 

0.2% [w/v] 

 

1% [w/v] 

0.26% [w/v] 

Gallyas fixing solution Sodium thiosulphate 2% [w/v] 

 

Description Manufacturer 

Eukitt Kindler (Freiburg, Germany) 

Aqua-Poly/Mount Polysciences (Eppelheim, Germany) 

Fluoromount-GTM Invitrogen (Karlsruhe, Germany) 

 

 

 



Materials 

41 
 

3.1.12 Primary antibodies - Immunohistochemistry 

 

Antibody Dilution Species Source 

ANLN 1:200 Polyclonal goat Acris 

SEPT7 1:1000 Polyclonal rabbit IBL 

SEPT8 1:500 Polyclonal rabbit PtG 

MAG (513) 1:50 Monoclonal mouse Chemicon 

βIII-Tubulin (TUJ1) 1:1000 Monoclonal mouse Covance 

NF 1:1000 Monoclonal mouse Covance 

CASPR 1:500 Monoclonal mouse Neuromabs 

Nav1.6 1:500 Polyclonal rabbit Almonelabs 

 

3.1.13 Secondary antibodies - Immunohistochemistry 

 

Antibody Dilution Species Source 

anti-mouse-Alexa 488 1:1000 Donkey Dianova 

anti-rabbit-Alexa 488 1:1000 Donkey Dianova 

anti-mouse-Alexa 555 1:1000 Donkey Dianova 

anti-rabbit-Alexa 555 1:1000 Donkey Dianova 

anti-goat-Cy3 1:500 Donkey Dianova 

anti-mouse-Dyelight633  1:500 Donkey Dianova 
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3.1.14 Electron microscopy 

 

Description Content  

Epon Glycidether 100 

Dodecenyl succinic anhydride (DDSA) 

Methyl nadic anhydride (MNA) 

171.3 g 

115 g 

89 g 

 Mixed using magnet stirrer for 10 min 

 DMP-30 6.5 ml 

 Mixed using magnet stirrer for 20 min 

Methylene blue Na-tetraborat (Borax) 

Methylenblau 

1% [w/v] 

1% [w/v] 

Azure II Azure II 1% [w/v] 

Methylene blue - Azure II 

staining solution 

Methylene blue 

Azure II 

50% [v/v] 

50% [v/v] 

 Freshly mixed before use 

 

3.1.15 Solutions for silver impregnation of protein gels 

 

Description Content  

Fixation solution Ethanol 

Acidic acid 

40% [v/v] 

10% [v/v] 

Sensitization solution Na2S2O3 0.8 mM 

Staining solution AgNO3 

HCOH 

0.2% [w/v] 

0.02% [v/v] 

Developing solution Na2CO3 

HCOH 

3% [w/v] 

0.02% [v/v] 

Stop solution Acidic acid 5% [v/v] 
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3.1.16 Mouse lines 

Anlnfl/fl mice   (ES cells from EUCOMM, Erwig et al., unpublished) 

Sept8fl/fl mice   (Patzig et al., 2016) 

Sept8null/null mice  (Patzig et al., 2016) 

CnpCre/Wt mice  (Lappe-Siefke et al., 2003) 

Sept9R88W/Wt mice  (CRISPR, F. Benseler; DNA core facility (MPI EM, Göttingen),  

U. Fünfschilling; transgenic service (MPI EM, Göttingen)) 

Sept2fl/fl mice  (ES cells from EUCOMM, unpublished) 

Sept9fl/fl mice   (Fuchtbauer et al., 2011) 

Dhh Cre+ mice  (Jaegle et al., 2003) 
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3.2 Methods 

3.2.1 Animals 

All animals used in the experiments were bred and kept in the mouse facility of the Max-

Planck-Institute of Experimental Medicine (MPI EM). All mice were sacrificed by cervical 

dislocation or by perfusion using anesthetics. All experiments were performed in 

accordance with the German animal welfare law.  

 

3.2.2 Generation of Anln conditional knockout mice (Anln cKO) 

To generate ANLN conditional knockout mice (Anln cKO), embryonic stem (ES) cells 

harboring a modified allele of the Anln gene were obtained from the European Conditional 

Mouse Mutagenesis Program (EUCOMM). ES cells were injected into FVB blastula derived 

from C57BL/6N mice and implanted into pseudo-pregnant foster mothers (Animal facility, 

MPI EM). Positive chimaeras of the ES cell clone EPD0545_1_F09 were bred to wild type 

C57BL/6N mice gaining F1 offspring. Anln-LacZ animals were identified by genotyping 

polymerase chain reaction (PCR) and further bred to the Flp-recombinase positive mouse 

line to remove the LacZ/neo cassette resulting in floxed mice for conditional gene targeting. 

Homozygous Anln floxed mice (Anlnfl/fl) together with heterozygous Cnp mice (CnpCre/Wt) 

(Lappe-Siefke et al., 2003) were used to delete in vivo exon 4 of the Anln gene in 

oligodendrocytes and Schwann cells specifically. The generation of Anln cKO mice were 

performed by Ramona Jung (MPI EM) and the animal facility around Ursula Fünfschilling 

(MPI EM; transgenic service).  

 

3.2.3 Generation of Sept9R88W/Wt mice 

For the generation of Sept9R88W/Wt mice, the CRISPR/Cas9 system was used. It was decided 

to induce a point mutation at the Arginine 88 into a Tryptophan, thereby mimicking a 

frequent mutation in human hereditary neuralgic amyotrophy (HNA). The implementation of 

the point mutation using the CRISPR/Cas9 system was achieved by F.Benseler and his 

group (MPI EM; DAN core facility) and the animal facility around Ursula Fünfschilling (MPI 

EM; transgenic service).  

 

3.2.4 Genotyping PCR 

For genotyping, small tail tips or ear punches of P21 young mice were used. They were 

digested in 180 µl 1x MGB with 20 µl Proteinase K at 55°C with a agitation of about 

1250 rpm for 2 h. Afterwards, the Proteinase K was inactivated by incubation of the tails at 

95°C for 10 min. Amplification of genotype specific DNA fragments was performed using 

the polymerase chain reaction (PCR) (Mullis et al., 1986, Saiki et al., 1988). For this 

purpose, 20 µl PCR reaction-mix was added to 1 ml DNA. The PCRs were run in a T3 or 
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Gradient Thermocycler (Biometra GmbH, Göttingen, Germany). Primers were selected 

manually using the DNASTAR Lasergene 9 core suite and then synthesized in house by 

the service facility of the MPI EM. To separate the PCR products, gels containing 2% [w/v] 

agarose in TBE buffer, were used. Before loading 20 µl of the PCR samples, 5 µl of Gel 

Red Nucleic Acid Stain (BioTrend (Cologne, Germany); 1:2500 in ddH2O) was added for 

DNA visualization to each sample. The samples were separated at 120 V for 60 min in TBE 

buffer. GeneRuler 100 bp DNA ladder (Thermo Fisher Scientific, St. Leon-Rot, Germany) 

was used as a marker. For documentation pictures were obtained with an Intas UV system 

(Intas Science Imaging, Göttingen, Germany). Genotyping of Sept9R88W/Wt mice, was 

performed by the sequencing facility of F.Benseler (MPI EM; DNA core facility). 

 

PCR reaction Anln gene  

ddH2O 12.2 µl 

GoTaq buffer (5x) 4.2 µl 

dNTP (2 mM) 2.1 µl 

Primer 29823 (10 µM) 0.5 µl 

Primer 29824 (10 µM) 0.5 µl 

Primer 32002 (10 µM) 0.5 µl 

GoTaq DNA polymerase 0.07 µl 

Wt ~ 570 bp; Flox ~ 780 bp; Rec ~ 270 bp 

 

PCR reaction Sept8 gene  

ddH2O 12.4 µl 

GoTaq buffer (5x) 4.2 µl 

dNTP (2 mM) 2.1 µl 

Primer 16458 (10 µM) 0.1 µl 

Primer 16459 (10 µM) 0.6 µl 

Primer 16460 (10 µM) 0.6 µl 

GoTaq DNA polymerase 0.07 µl 

Wt ~ 450 bp; Flox ~ 550 bp; Rec ~ 260 bp) 
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PCR reaction Cnp gene  

ddH2O 11.3 µl 

GoTaq buffer (5x) 4.2 µl 

dNTP (2 mM) 2.1 µl 

Primer 4192 (10 µM) 0.2 µl 

Primer 4193 (10 µM) 0.2 µl 

Primer 2016 (10 µM) 1 µl 

Primer 7315 (10 µM) 1 µl 

GoTaq DNA polymerase 0.07 µl 

Wt ~ 700 bp; Cre+ ~ 450 bp 

 

PCR reaction Sept9 gene  

ddH2O 11.9 µl 

GoTaq buffer (5x) 4.2 µl 

dNTP (2 mM) 2.1 µl 

Primer 23844 (10 µM) 1 µl 

Primer 23845 (10 µM) 0.2 µl 

Primer 23846 (10 µM) 0.6 µl 

GoTaq DNA polymerase 0.07 µl 

Wt ~ 520 bp; Flox ~ 600 bp; Rec ~ 650 bp 

 

PCR reaction Dhh Cre  

ddH2O 12.7 µl 

GoTaq buffer (5x) 4.2 µl 

dNTP (2 mM) 2.1 µl 

Primer 10967 (10 µM) 0.5 µl 

Primer 15793 (10 µM) 0.5 µl 

GoTaq DNA polymerase 0.07 µl 

Dhh Cre+ ~ 300 bp 
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PCR reaction Mbp gene  

ddH2O 12.5 µl 

GoTaq buffer (5x) 4.2 µl 

dNTP (2 mM) 2.1 µl 

Primer 1879 (10 µM) 0.4 µl 

Primer 30833 (10 µM) 0.4 µl 

Primer 30834 (10 µM) 0.2 µl 

Primer 30835 (10 µM) 0.2 µl 

GoTaq DNA polymerase 0.07 µl 

Wt ~ 170 bp; Mbp- ~ 380 bp 

 

3.2.5 RNA isolation and analysis 

For RNA isolation and subsequent analysis the corpus callosum of n=6 mice (male and 

female, 4 mo of age) was collected. The corpus callosum was dissected using a brain slicer. 

From each brain section the corpus callosum was collected manually. The collected tissue 

was directly incubated in RNAlaterTM solution (Ambion®, Thermo Fisher Scientific, St. Leon-

Rot, Germany), at 4°C o/n and then stored at -20°C until usage. RNA isolation, cDNA 

synthesis, and qRT-PCR were done by Ursula Kutzke. 

 

3.2.5.1 RNA isolation 

Small scale RNA isolation from separated corpus callosum of male mice was performed 

using Qiagen’s “RNeasy Mini Prep” kit. The kit is based on a selective binding of RNAs 

bigger than 200 bases to a silica-gel based membrane under high-salt conditions, which 

excludes binding of 5 S, 5.8 S and tRNAs. RNA isolation and purification was carried out 

following the manufacturer’s instructions. The tissue was homogenized in Trizol (Life 

TechnologiesTM, Thermo Fisher Scientific, St. Leon-Rot, Germany), followed by chloroform 

extraction (200 μl chloroform was added to 0.6 ml homogenate). After 15 min of 

centrifugation at 16000 x g (Heraeus Biofuge Pico table centrifuge, 13000 rpm) the upper 

aqueous phase was transferred to a new 2 ml tube. One volume of ethanol was added to 

the samples. Then the samples were mixed and applied to RNeasy columns. After 1 min 

centrifugation at 16000 x g the columns were washed one time with the RW1 buffer and two 

times with the RPE buffer. RNA was eluted with 50 μl of RNase-free ddH2O. The quality of 

RNA was tested using the Agilent RNA 6000 Nano KIT and the Agilent 2100 Bioanalyzer 
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(Agilent Technologies, Santa Clara, California, United States), following the company’s 

instructions. The amount of RNA was measured using the NanoDrop 2000 

Spectrophotometer (Thermo Fisher Scientific, St. Leon-Rot, Germany) and the RNA 

concentration for all samples was adjusted to 100 ng/μl. 

 

3.2.5.2 cDNA synthesis 

As a next step, the isolated RNA was transcribed into a complementary single stranded 

DNA (cDNA) in a reverse transcription reaction catalyzed by RNA dependent DNA 

polymerase SuperScript III (Invitrogen, Karlsruhe, Germany). 

 

cDNA synthesis protocol 

8 µl RNA (800 ng total) 

2 µl dT mix Primer (0.6 pmol/μl) 

2 µl N9 (random nonamers 120 pmol/μl) 

To denaturate RNA and primers, the mixture was incubated 

for 10 min at 70ºC and 1 min on ice. 

Add following premix to the reaction: 

4 µl 5x first strand buffer 

1 µl dNTP (10 mM) 

2 µl DDT (100 mM) 

1 µl SuperScript III reverse transcriptase (200 U/μl) 

Incubation in thermocycler with the following settings: 

25°C 10 min 

50°C 45 min 

55°C 45 min 

Synthesized cDNA was diluted 1:30 with ddH2O and stored 

at -20°C. 
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3.2.5.3 Quantitative real-time PCR (qRT-PCR) 

The pipetting robot epMotion 5075 (Eppendorf, Hamburg, Germany) was used for pipetting. 

qRT-PCR was performed using the Power SYBR Green PCR Master Mix (Promega, 

Fitchburg, Wisconsin, United States) and the Light Cycler 480II (Roche Diagnostics GmbH, 

Mannheim, Germany).  

 

Mixture for gene expression analysis 

2 µl cDNA (2 ng/µl) 

5 µl SYBR Green PCR Master Mix  

0.1 µl Forward primer 

0.1 µl Reverse primer 

2.8 µl ddH2O 

All reactions were performed in quadruplicates. 

 

Program for 50 cycles 

15 sec 95°C 

1 min 60°C 

 

mRNA abundance was analyzed in relation to the mean of the standard peptidylprolyl 

isomerase A (Ppia), which did not differ between genotypes. Statistical analysis was 

performed using GraphPad Prism 6. 

 

3.2.6 Biochemical protein analysis 

3.2.6.1 Sample collection 

Brains of male mice were dissected at P75. The optic nerves were removed at the chiasma, 

as well as the brainstem underneath the cerebellum. The brains were cut in half and directly 

frozen on dry ice and stored at -80°C until usage.  

Sciatic nerves of male mice were dissected at P75. The nerves were collected from the 

distal end without muscle tissue, up to the proximal end where the nerve enters the 

backbone. The sciatic nerves were directly frozen on dry ice and stored at -80°C until usage. 

 

3.2.6.2 Myelin purification 

The myelin purification was adapted from a protocol of Norton and Poduslo (Norton and 

Poduslo, 1973, Larocca and Norton, 2007). Briefly, all supplies were precooled and 
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procedure was performed on ice or at 4°C. n=3 mouse brains per genotype were used. For 

myelin purification, half brains were homogenized in 5 ml 0.32 M sucrose containing 

protease inhibitor (Roche Diagnostics GmbH, Mannheim, Germany) using the IKA T10 

basic Ultra-Turrax (Speed 3). For PIP2 measurements, additionally to the protease inhibitor 

also phosphatase inhibitor (Roche Diagnostics GmbH, Mannheim, Germany) was added. 

From the homogenate, 200 µl were stored at -80°C for further analysis. For density gradient 

centrifugation, the homogenate was carefully overlaid on 6 ml 0.85 M sucrose and 

centrifuged for 30 min at 75000 x g in a swing out rotor TH641 (Thermo Fisher Scientific, 

St. Leon-Rot, Germany) using the Sorvall WX+ Ultra series centrifuge (Thermo Fisher 

Scientific, St. Leon-Rot, Germany). The roughly purified myelin accumulated at the 

interphase and was transferred into a new tube. Water was added to the purified myelin 

and centrifuged again for 15 min at 75000 x g. The pellet was re-suspended in ddH2O, 

incubated for 10 min on ice and then centrifuged at 12000 x g for 15 min. This so-called 

osmotic shock was repeated a second time. Afterwards the pellet was re-suspended in 5 ml 

0.32 M sucrose (containing protease inhibitor (additionally phosphatase inhibitor for PIP2 

measurements)) and carefully overlaid on 6 ml 0.85 M sucrose for a second density 

gradient centrifugation (30 min at 75000 x g). Further purified myelin again accumulated at 

the interphase and was transferred into a new tube. Water was added to the myelin and 

centrifuged again for 15 min at 75000 x g. The pellet containing a myelin enriched fraction 

(further referred as purified myelin) was re-suspended in 200 μl 1xTBS including protease 

inhibitor (additionally phosphatase inhibitor for PIP2 measurements) and was stored 

at -80°C (detailed protocol in Erwig et al., accepted). 

 

3.2.6.3 Lysate preparation (PNS) 

Of n=3 animals per genotype both sciatic nerves were taken from -80°C and then cut on 

dry ice. Homogenization was performed in 400 µl RIPA buffer using Precellys (Peqlab, 

Erlangen, Germany). The nerves got lysed two times with the following adjustments: 

6500 rpm 3x 10 sec + 10 sec break. After each time the developed foam was removed by 

short centrifugation (Heraeus Biofuge Pico table centrifuge, 13000 rpm) and the lysate was 

kept on ice for further 10 min. In the next step the lysate was transferred into a 1.5 ml tube 

and centrifuged at 13000 rpm for 10 min at 4°C. The supernatant was then transferred to a 

new tube and stored at -80°C. 

 

3.2.6.4 Protein concentration determination and sample preparation 

To determine the protein concentration of purified myelin, brain lysate, or sciatic nerve 

lysate, the Lowry assay was performed (Lowry et al., 1951; Peterson, 1979) using the Bio-

Rad DC Protein Assay kit. The kit was used according to the manufacturer’s ‘microplate 
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assay’-protocol. The optical density was measured at 650 nm using the EonTM High 

Performance Microplate Spectrophotometer (BioTek, Vermont, USA). 

The obtained protein concentrations were used to set up samples for SDS PAGE 

separation. The samples were adjusted to 0.1 µg/µl and to 1 µg/µl including 1x SDS sample 

buffer and 5% β-mercaptoethanol [v/v] to denature the proteins. To detect myelin associated 

glycoprotein (MAG) and CD9, non-reduced conditions without β-mercaptoethanol were 

used (protein concentration set to 0.1 µg/µl). The samples were heated for 10 min at 40°C 

and afterwards kept at -20°C. Before usage the samples were always put to 40°C for 10 min. 

 

3.2.6.5 Protein separation using SDS PAGE 

Acrylamid gels (8%, 10%, 12%, or 15% [w/v]) were prepared using the Bio-Rad system. 

The gels were casted between 1.5 mm thick spacer plates and thin coverplates. First the 

SDS separating gel was casted and overlaid with isopropanol to get a smooth border. The 

gel polymerized for 30-60 min, afterwards the isopropanol was rinsed off with ddH2O. The 

remaining water was removed with filter papers and the SDS stacking gel was casted on 

top of the SDS separating gel. A plastic comb (10 well) was used to obtain pockets for 

protein samples. After another 30 min of polymerization, the gels were used immediately or 

stored in wet papers at 4°C, not longer than 5 days. 

Bio-Rad chambers were used to assemble the gels and the plastic combs were removed. 

The pockets were washed with 1x Laemmli running buffer while filling up the chamber. The 

samples were pipetted carefully into the pockets, whereby different amounts of protein were 

loaded to obtain optimal signals for each antibody detection (see 3.1.8 Primary antibodies - 

Immunoblot). Proteins were separated by constant current (200 V) for 1 h (until the blue 1x 

SDS front runs out of the SDS separating gel) using a Bio-Rad power supply. Afterwards 

the gels were removed from the coverplates and incubated in transfer buffer for 15 min 

before transferring the proteins to a polyvinylidene difluoride (PVDF) membrane. 

 

3.2.6.6 Immunoblot - semi-dry 

For immunodetection, proteins were transferred to a PVDF membrane as described by 

Towbin and colleagues (Towbin et al., 1979). The PVDF membrane was activated in 100% 

ethanol [v/v] for 1 min, washed two times shortly with ddH2O and kept in transfer buffer for 

10 min. For the semi-dry blot the Novex® Semi-Dry Blotter (Invitrogen, Karlsruhe, Germany) 

was used. On the anode plate four WhatmanTM papers (GE Healthcare Life Science, 

Buckinghamshire, UK) soaked in ice cold transfer buffer were placed. To avoid air bubbles 

in the stack, the WhatmanTM papers were rolled with a blotting roller. Afterwards the 

activated PVDF membrane was placed on top, followed by the gel and four more 

WhatmanTM paper (soaked with ice cold transfer buffer). Proteins were transferred at 20 V 
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for 45 min using a Bio-Rad power supply. Up to four gels could be transferred 

simultaneously. 

 

3.2.6.7 Immunoblot - wet tank 

To transfer big proteins (>100 kDa) a wet tank blot was performed. The PVDF membrane 

was activated as described for the semi-dry immunoblot. The membrane was incubated in 

wet-tank transfer buffer (methanol 20% [v/v]) for 10 min. For blotting the Bio-Rad system 

was used. Between the brace, a stack of 3 thick WhatmanTM paper, the activated 

membrane, the SDS separating gel, and further 3 thick WhatmanTM paper was build. The 

WhatmanTM paper were sucked with ice cold transfer buffer and the whole stack was built 

together in the buffer. After removing air bubbles with a blotting roller, the brace was clapped 

together and put in the chamber. The chamber was placed in an ice bucked and filled with 

pre-cooled transfer buffer. Proteins were transferred by constant current at 100 V for 1.5 h 

using a Bio-Rad power supply.  

 

3.2.6.8 Immunodetection of blotted proteins 

After blotting, the PVDF membrane was incubated in blocking buffer (5% [w/v] non-fat dry 

milk in TBST) at RT°C for 30-60 min. The primary antibodies were diluted in 5 ml blocking 

buffer in a 50 ml Falcon® tube (see 3.1.8 Primary antibodies - Immunoblot). The membrane 

was incubated in these tubes on a rotor at 4°C o/n or over two nights. To increase the 

binding of some antibodies (e.g. Anillin), the membrane was incubated for further 2 h at 

RT°C. Afterwards, the membranes were washed in TBST 3x 5 min and then incubated in 

diluted HRP coupled secondary antibodies (in blocking buffer) for 1-2 h on a rotor at RT°C. 

The membranes were than washed 3x 5 min in TBST. Membranes were carefully picked 

up with forceps and placed onto a glass plate. Enhanced chemiluminescence detection 

(ECL) solution was added according to the manufacturer’s recommendations (Western 

Lightning® Plus-ECL or WesternBright Chemiluminescence Substrat Sirius). After 1 min of 

incubation, membranes were placed between two plastic foils and chemiluminescence was 

scanned for one time 1 min and afterwards for 15 min using the Intas ChemoCam system 

(Intas Science Imaging, Göttingen, Germany). 

 

3.2.6.9 Quantitative Mass Spectrometry 

For quantitative mass spectrometry (MS), samples with a protein content of at least 100 μg 

of purified myelin in 1xTBS (3x Anlnfl/fl and 3x Anlnfl/fl;CnpCre/Wt) were given to Dr. Olaf Jahn 

(MPI EM; proteomics unit). Probes were analyzed using DRE-HD-MSE, as described in 

(Erwig et al., accepted). Experiments were performed using three biological replicates each 



Methods 

53 
 

in two technical replicates. Final quantifications, statistical analysis, and diagrams were 

prepared with Microsoft Excel 2013 and GraphPad Prism 6. 

 

3.2.7 Histological analysis 

3.2.7.1 Perfusion fixation of mouse tissue 

Mice were anesthetized by injection of avertin (0.2 ml per 10 g of body weight) 

interperitoneally (i.p.). The successful anesthesia was confirmed by testing reflexes using a 

pinch in the hind paws. Afterwards the mice were stabilized with the ventral side up and the 

abdomen was opened. To expose the heart the diaphragm was removed, so a butterfly 

cannula (27G, Venofix), connected to a peristaltic pump, could be injected in the left 

ventricle, while the right atrium was cut. The blood was flushed out with 37°C warm Hank’s 

Balanced Salt Solution (HBSS) (Invitrogen, Karlsruhe, Germany) for 5 min. Afterwards the 

HBSS was replaced by 4% PFA fixative. To fix the tissue, the fixation run for 10 min (40-

50 ml 4% PFA). 

 

3.2.7.2 Embedding for cryosections 

Either freshly dissected optic nerves or perfused brains and spinal cords were embedded. 

Therefore, the tissue was incubated in 4% PFA for 1 h at 4°C and then transferred to 10% 

[w/v] sucrose in 0.1 M phosphate buffer for 1 h at 4°C. Afterwards, the tissue was kept in 

20% [w/v] sucrose in 0.1 M phosphate buffer at 4°C o/n. After further o/n incubation in 30% 

[w/v] sucrose in 0.1 M phosphate buffer at 4°C the tissue was embedded in Tissue-Tek® 

O.C.T.™ Compound (Sakura, Staufen, Germany) and afterwards stored at -20°C. For 

sectioning, the Reichert Jung® Cryocut 1800 Cryostat (Leica, Wetzlar, Germany) was used. 

10 µm thick sections were collected on Superfrost® Plus microscope slides (Thermo Fisher 

Scientific, St. Leon-Rot, Germany) and dried at RT°C. For storage, the slides were kept at 

-20°C. 

 

3.2.7.3 Immunohistochemistry - cryosections 

The following protocol was used for immunohistochemistry of cryosections: 

 

Purpose Reagent Conditions 

Permeabilization Methanol 3 min at RT°C 

Washing 1x PBS 3x 5 min at RT°C 

Blocking Blocking buffer (3.1.11) 1 h at RT°C 
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1. Antibody Diluted in blocking buffer o/n at 4°C 

Washing 1x PBS 3x 5 min 

2. Antibody Diluted in blocking buffer 1-2 h at RT°C 
K

e
p
t d

a
rk

 

Washing 1x PBS 2x 10 min at RT°C 

DAPI DAPI 1:50000 in 1x PBS 10 min at RT°C 

Washing 1x PBS 2x 10 min at RT°C 

Washing ddH2O 2x 2 min at RT°C 

Mounting Aqua-Poly/Mount or 

Fluoromount-GTM 

at RT°C 

Storage  4°C 

 

 

3.2.7.4 Imaging and analysis of fluorescent staining 

Slides were imaged with the confocal microscope Leica SP5. Signal was collected 

sequentially with the objective HCX PL APO CS 63.0 × 1.30 GLYC 21°C UV. An argon laser 

with the excitation of 488 nm was used to excite the Alexa 488 fluorophore and the emission 

was set to 500-560 nm. Cy3 was excited with the DPSS 561 laser at an excitation of 561 nm 

and the emission was set to 573-630 nm. Also the Alexa 555 fluorophore was excited with 

the DPSS 561 laser, and the emission was set to 575-630 nm. The HeNe laser was used 

to excite Dyelight633 with 633 nm and emission was detected between 645-738 nm. DAPI 

was excited with 405 nm and collected between 417-480 nm. The LAS AF lite software was 

used to export the images as TIF files. The original pictures of images in Figure 8A and B, 

were partially provided by Julia Patzig. The Imaris software was used for 3D-

reconstructions. 

For the quantifications of nodal density, the frequency of occurrence of two CASPR-

immunopositive paranodes was analyzed using the ImageJ software. CASPR-

immunopositivity was converted using a threshold and counted using ITNC plugin (n=4 

animals per genotype, 1 section each, 1 micrograph analyzed (size 16000 µm²). Statistical 

analysis was performed using GraphPad Prism 6.0.  

The node and paranode length (indicated in Figure 16) was assessed using the ImageJ 

software. For paranode length the mean of both paranodes beside an axon were calculated. 
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n=4 animals per genotype, 1 section each, 5 random micrographs of spinal cord white 

matter. Statistical analysis was performed using GraphPad Prism 6.0.  

 

3.2.7.5 Embedding for paraffin sections 

Mice were perfused with 4% PFA and post-fixed o/n at 4°C. Before embedding, brains were 

divided coronal into 3 parts using a brain slicer. For thin sectioning, the tissue was 

embedded in paraffin (Paraplast, Leica, Wetzlar, Germany) using the automated system 

HMP 110 ((Microm, Walldorf, Germany) with the following program: 

Procedure Time 

50% [v/v] Ethanol 1 hour 

70% [v/v] Ethanol 2x 2 hours 

96% [v/v] Ethanol 2x 2 hours 

100% [v/v] Ethanol 2x 2 hours 

Isopropanol 1 hour 

Xylol 2x 2 hours 

Paraffin 2x 2 hours 

 

Afterwards, the tissue was placed into metal forms with the sectioning side facing the 

ground. The tissue was then casted with 60°C warm paraffin and put on a pre-cooled plate 

for hardening (Paraffin embedding station: MICROM AP280 (Microm, Walldorf, Germany). 

The blocks were removed and stored at RT°C. The tissue was cut in 5 µm thick sections 

using a microtome (HM 400, MICROM (Microm; Walldorf, Germany) and dried o/n at 37°C. 

The sections were stored at RT°C until further usage. The sectioning was partially done by 

Annette Fahrenholz. 

 

3.2.7.6 Immunohistochemistry - paraffin sections 

Before usage, the sections were deparaffinized by the following steps: 

Procedure Time 

60°C 10 min 

Xylol 2x 10 min 

Xylol/Isopropanol (1:1) 10 min 

100% [v/v] Ethanol 5 min 

90% [v/v] Ethanol 5 min 

70% [v/v] Ethanol 5 min 

50% [v/v] Ethanol 5 min 

ddH2O 5 min 
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For permeabilization of the 5 µm thick sections, the slides were incubated in citrate buffer 

for 5 min and then cooked for 10 min in boiling citrate buffer (650 Watts in microwave oven). 

After cooling for 20 min, the sections were placed in Tris buffer containing 2% [w/v] non-fat 

dry milk. Afterwards the slides were placed into Shandon CoverplatesTM (Thermo Fisher 

Scientific, St. Leon-Rot, Germany). These coverplates ensure an even distribution of small 

volume amounts of antibody-dilutions. The slides were again rinsed with Tris buffer 

containing 2% [w/v] non-fat dry milk. Afterwards, as horse radish peroxidase (HRP) coupled 

secondary antibodies were used, the endogenous peroxidase activity was inhibited by 

applying 3% [v/v] hydrogen peroxide for 5 min. After washing with Tris buffer containing 

2% [w/v] non-fat dry milk, the slides were incubated in blocking solution (20% [v/v] goat 

serum in BSA/PBS) for 30 min at RT°C. Primary antibodies were diluted in BSA/PBS and 

incubated o/n at 4°C. On the next day, the slides were washed with Tris buffer containing 

2% [w/v] non-fat dry milk. For staining of amyloid beta precursor protein (APP), ionized 

calcium-binding adapter molecule 1 (IBA1), and glial fibrillary acidic protein (GFAP) the 

LSAB2 kit (Dako, Hamburg, Germany) was used. The sections were incubated with 100 μl 

of bridging antibody i.e. a biotinylated secondary antibody for 10 min at RT°C and rinsed 

with Tris buffer containing 2% [w/v] non-fat dry milk. The HRP complex bound antibody was 

incubated for 10 min at RT°C. For staining of macrophages/activated microglia (MAC3), 

sections were incubated with an α-rat-biotinylated antibody (Vector Labs, Burlingame, 

California, United States) for 30 min. The two components of the Vector Elite ABC kit 

(Vector Labs) were mixed and the slides incubated for 30 min. The coverplates were 

removed and all sections were rinsed with Tris buffer without non-fat dry milk. The HRP 

substrate 3,3'-Diaminobenzidine (DAB) was applied by using the DAB Zytomed Kit 

(Zytomed Systems GmbH, Berlin, Germany) and incubated for 10 min. Brown labeling 

appeared where antibodies recognized their targets. After additional washing with ddH2O, 

sections were incubated in 0.1% [w/v] Haematoxylin for 5 min to label nuclei. Blue coloration 

appears due to the interaction with the basic nuclear compartment. Sections were rinsed 

with ddH2O, incubated with HCl-Alcohol for 5-10 sec and with Scott’s solution for 5 min. This 

was followed by additional rinse with ddH2O. The tissue was dehydrated by the following 

steps: 

Procedure Time 

50% [v/v] Ethanol 5 min 

70% [v/v] Ethanol 5 min 

90% [v/v] Ethanol 5 min 

100% [v/v] Ethanol 5 min 

Xylol/Isopropanol (1:1) 5 min 

Xylol 2x 5 min 
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 In the end, slides were mounted using Eukitt (Kindler, Freiburg, Germany). The stainings 

were partially done by Annette Fahrenholz. 

 

3.2.7.7 Imaging and quantification of DAB developed stainings 

The DAB stained sections were imaged using the Zeiss Axio Z1 with the Zen 2011 software 

(Zeiss, Oberkochern, Germany). The quantification of GFAP, IBA1, and MAC3 signal was 

done using an ImageJ plugin for semi-automated analysis. First, the color threshold was 

used to transform the colored picture to a black and white picture; brown signal represented 

by positive black signal. Second, the area of the positive black signal was measured and 

related to the size of the analyzed area. Diagrams, quantification and Student’s t-test (p-

value) were prepared with GraphPad Prism 6. 

The APP positive spheroids were counted manually, using the ImageJ software. Diagrams, 

quantification and statistical analysis were prepared with GraphPad Prism 6.  

For all quantifications, the hippocampal fimbria was selected. For each animal, the average 

of both fimbriae was calculated. Data were normalized to wild type levels. All quantifications 

were performed blinded to the genotype. The quantifications were performed at P75 with 

an n=5 per genotype. 

 

3.2.7.8 Gallyas silver impregnation 

Deparaffinized 10 µm brain sections (coronal) and cerebellum sections (sagital) were used. 

The technique developed by Gallyas is based on binding of colloidal silver particles to 

myelinated fibers (Gallyas, 1979). The silver impregnation has been done by Annette 

Fahrenholz. To visualize myelin, the following protocol has been used: 

 

 

 

Purpose Reagent Incubation time 

Blocking of non-

myelin tissue 

Pyridine/acetic acid (2:1) 30 min 

Washing ddH2O 3x 10 min 

Incubation Incubation solution 1 min 100 Watts 

microwave 

10 min RT°C 

Washing 0.5% [v/v] Acetic acid 3x 5 min 
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Developing Physical developer: 

100 ml Solution A 

70 ml Solution B 

30 ml Solution C 

3-15 min 

Stop reaction 1.0% [v/v] Acetic acid 3x 5 min 

Washing ddH2O 2x 3 min 

Stabilization 2% [v/v] Sodium thiosulfate 5 min 

Dehydartion 50% [v/v] Ethanol 

70% [v/v] Ethanol 

90% [v/v] Ethanol 

100% [v/v] Ethanol 

Xylol/Isopropanol (1:1) 

Xylol 

5 min 

5 min 

5 min 

5 min 

5 min 

2x 5 min 

 

The slides were in the end mounted using Eukitt (Kindler, Freiburg, Germany). Images were 

captured at 10x magnification (Zeiss AxioImager Z1) and stitched using Zeiss Zen2011. 

Images in Figure 18A and A’ are representative for n=3 mice per genotypes at P75. 

 

3.2.8 Electron microscopy (EM) 

3.2.8.1 Tissue preparation - Electron microscopy 

Animals were sacrificed by cervical dislocation and optic nerves were carefully removed at 

the chiasm. Sciatic nerves were dissected, whereby at the distal side a piece of muscle was 

kept attached for future identification of the distal end. The freshly dissected nerves were 

directly incubated in Karlsson-Schultz fixative (K&S) and stored at 4°C until further 

processing. 

 

3.2.8.2 Epon embedding 

For EM imaging, the fixed nerves were embedded using an automated system (EMPT, 

Leica, Wetzlar, Germany). Before embedding the nerves were washed with 0.1 M 

phosphate buffer and placed into plastic chambers. The tissue was processed using the 

following protocol: 
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Solution Incubation time Temperature 

Phosphate buffer 3x 10 min 4°C 

2% [w/v] OsO4 4 h 4°C 

ddH2O 3x 10 min 4°C 

30% [v/v] Ethanol 20 min 4°C 

50% [v/v] Ethanol 20 min 4°C 

70% [v/v] Ethanol 20 min 4°C 

90% [v/v] Ethanol 20 min 4°C 

100% [v/v] Ethanol 4x 10 min 4°C 

Propylenoxid 3x 10 min RT°C 

Propylenoxid/Epon 2:1 2 h RT°C 

Propylenoxid/Epon 1:1 2 h RT°C 

Propylenoxid/Epon 1:2 4 h RT°C 

Epon 4 h RT°C 

 

The tissue was then placed into molds filled with Epon. A label was put within the Epon for 

identification of the probe and left o/n at 60°C for Epon polymerization. 

 

3.2.8.3 Sectioning of Epon embedded tissue 

For semi-thin sectioning the embedded sciatic nerves were cut into 500 nm thin sections. 

This was done with a microtome (Ultracut S, Leica, Wetzlar, Germany) and a diamond knife 

(Diatome Ultra 45º). The sections were collected on water and then transferred onto an 

object slide (Marienfeld with help of a Pasteur pipette. The object slide was then put on a 

60 °C hot plate to dry the sections. 

To analyze the embedded optic and sciatic nerves on electron microscope level, 50 nm thin 

sections were cut using the same equipment as for the semi-thin sections. The sections 

were collected on formvar polyvinyl coated double sized slot grids (2 mm-1 mm, AGAR 

scientific, Essex, UK). 
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3.2.8.4 Staining of semi-thin sections 

500 nm thin sections of sciatic nerves were stained with Methylene blue-Azure II solution 

(Richardson et al., 1960). On a 60°C hot plate, sections were incubated for 1 min in the 

staining solution and then extensively rinsed with ddH2O. After drying, the tissue was 

mounted using Eukitt and imaged with a 100x oil objective of the Zeiss Axio Imager Z1 

(Zeiss, Oberkochern, Germany).  

 

3.2.8.5 Contrasting of ultra-thin sections 

For proper contrasting of ultra-thin sections, the formvar polyvinyl coated double sized slot 

grids were placed upside-down on drops of the following solutions: 

 

Solution Incubation time 

Uranyl acetate 30 min (kept dark) 

ddH2O 3x 1 min 

Reynolds lead citrate 6 min 

ddH2O 6x 1 min 

 

Alternatively, the sections carrying grids were placed upside-down on a drop of UranyLess 

(Electron Microscopy Science, Hatfield, Panama) for 30 min and then washed 6 times with 

ddH2O. 

 

3.2.8.6 Analysis of EM pictures 

Ultra-thin sections were analyzed with the Zeiss EM900 (Zeiss, Oberkochen, Germany) and 

digital pictures were obtained using the wide-angle dual speed 2K-CCD-Camera (TRS, 

Moorenweis, Germany). g-ratio measurements and quantifications of myelin abnormalities 

were performed using the ImageJ software. Microsoft Excel 2013 was used for calculations 

of the g-ratio. Diagrams, quantification and statistical analysis were prepared with 

GraphPad Prism 6. All quantifications were performed blinded to the genotype. Presentation 

of pictures was prepared using Adobe Photoshop CS6 and Adobe Illustrator CS6.  

The g-ratio was calculated as the ratio between the axonal Feret diameter and the Feret 

diameter of the corresponding myelin sheath (Figure 19A). To determine g-ratios, one 

quarter (55 µm²) of at least 15 images was quantified, yielding a minimum of 200 myelinated 

axons per animal. n=5 per genotype at 6 mo of age. The g-ratio was assessed using 

GraphPad Prism 6.0. For calculation, only normal appearing myelinated axons were 
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analyzed (Figure 8), to ensure that possible changes in myelin thickness could be related 

to the loss of ANLN and are not cause of other pathological effects.  

For assessment of % of myelinated axons and % of degenerating/degenerated profiles, 

mice were analyzed at an age of 6 mo. 4-5 male mice were used per genotype. 15 randomly 

selected, non-overlapping images were taken per optic nerve at 7000× magnification (1 field 

= 220 µm²). Electron micrographs were analyzed using ImageJ. A minimum of 1600 axons 

per animal were assigned to one of three categories: healthy-appearing myelinated axons, 

healthy-appearing non-myelinated axons, and degenerating/degenerated axons (partially 

shown in Figure 8). Axons were counted as myelinated if ensheathed by at least one 

complete layer of compacted myelin. Degenerating/degenerated axons were identified by 

tubovesicular structures, amorphous cytoplasm, axonal spheroids or absence of an 

identifiable axon within a myelin sheath, respectively. 

The area occupied by myelin outfoldings was quantified by a point counting method (Edgar 

et al., 2009) at different time points (P14, P75, 6 mo; n=4-6 per genotype). Briefly, a regular 

grid of 0.25 µm2 was placed on the images. The number of intercepts coinciding with myelin 

outfoldings was related to the evaluated area. Significance was determined using GraphPad 

Prism 6.0. 

To identify the axon diameter frequency distribution, one quarter (55 µm²) of at least 15 

images was quantified, yielding the axon diameter of at least 200 up to 650 myelinated 

axons per animal. The images for Cnp heterozygous and SEPT8 deficient mice and their 

corresponding controls were kindly provided by Ulrike Gerwig (CNP) and Julia Patzig 

(SEPT8). n=5 for all genotypes and all time points. The diameter was calculated using 

ImageJ, therefore the axon was encircled and the Feret diameter was calculated by the 

software. The frequency distribution was visualized using GraphPad Prism 6.0, the bin size 

was set to 0.2 and each replicate was binned. Significance was determined using GraphPad 

Prism 6.0 (Kolmogorov-Smirnov Test). All quantifications were performed blinded to the 

genotype.  
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Figure 8: Overview of profiles found in electron micrographs. Electron micrograph of an Anln cKO optic 

nerve cross section at 6 mo of age. The image exemplifies different kinds of detected profiles within an optic 
nerve. The profile marked in red is showing an axonal spheroid, whereby the light line surrounds the axon and 
the bold line is marking the corresponding compact myelin. The blue marked profile surrounds redundant myelin, 
where no axon was identifiable within myelin sheaths. Green marks an axon with an outfolding, whereby the 
light line surrounds the axon and the bold line surrounds the outfolding. Axons marked with a yellow asterisk 
show axons that are likely at a node of Ranvier or paranodal region, as they are surrounded by a thin layer of 
compact myelin and in addition the axons are surrounded by a thicker layer of cytoplasm (King, 2013).  Axons 
marked with a light red asterisk are classified as normal appearing myelinated axons, as they show no signs of 
pathology. Scale bare: 1 µm 
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3.2.9 Focused ion beam scanning electron microscopy (FIB SEM) 

The following steps were done by the EM facility of the MPI EM. Anna Steyer prepared the 

samples and processed all steps to obtain images. Christos Nardis segmented the images 

for the 3D reconstruction. 

 

3.2.9.1 Sample preparation 

Mouse optic nerves were fixed in 4 % formaldehyde and 2.5 % glutaraldehyde (Science 

Services) in 0.1 M PB for at least 24 h. The samples were processed following a modified 

OTO (Deerinck et al., 2010) protocol. The samples were washed in 0.1 M PB (3 x 15 min) 

and then incubated for 3 h at 4 °C in 2 % OsO4 (Electron Microscopy Sciences) and 0.25 % 

K4[Fe(CN)6] (Electron Microscopy Sciences). The nerves were washed with H2O (3 x 15 

min) and were incubated with 0.1 % thiocarbohydrazide (Sigma-Aldrich) for 1 h at room 

temperature. To enhance the contrast further the tissue was treated with 2 % OsO4 for 

90 min at room temperature. The samples were washed with H2O (3 x 15 min) and 

contrasted overnight with 2 % uranyl acetate (SPI-Chem) at 4 °C. The samples were 

washed again with H2O (3 x 15 min), followed by dehydration in an increasing acetone 

series (30 %, 50 %, 75 %, 90 %, 3 x 100%). The tissue was infiltrated with increasing 

concentrations of Durcupan (Sigma-Aldrich, components A, B, C) 2 h each (25 %, 50 %, 

75 % Durcupan in acetone) and then incubated in 100 % Durcupan o/n. Fresh Durcupan 

with accelerator (component D) was added to the samples for 5 h, before embedding the 

samples in resin blocks. The blocks were polymerized for 48 h at 60 °C. 

 

3.2.9.2 FIB SEM procedure  

Samples were trimmed with a 90° diamond trimming knife (Diatome AG, Biel, Switzerland). 

The blocks were attached to the SEM stub (Science Services GmbH, Pin 

12.7 mm x 3.1 mm) by a silver filled epoxy (Epoxy Conductive Adhesive, EPO-TEK EE 129-

4; EMS) and polymerized at 60° overnight. The samples were coated with a 10 nm platinum 

layer using the sputter coating machine EM ACE600 (Leica) at 35 mA current. Samples 

were placed into the Crossbeam 540 focused ion beam scanning electron microscope (Carl 

Zeiss Microscopy GmbH). To ensure even milling and to protect the surface, a 400 nm 

platinum layer was deposited on top of the region of interest. Atlas 3D (Atlas 5.1, Fibics, 

Canada) software was used to collect the 3D data. Samples were exposed with a 15 nA 

current and a 7 nA current was used to polish the surface. The images were acquired at 

1.5 kV with the ESB detector (450 V ESB grid, pixel size x/y 2 nm) in a continuous mill and 

acquire mode using 700 pA for the milling aperture (z-step 50 nm).  
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3.2.9.3 Image analysis 

Image alignments were done with TrakEM2 (Cardona et al., 2012), a plugin of Fiji 

(Schindelin et al., 2012). The following post-processing steps were performed in Fiji. The 

dataset was cropped, inverted and a local contrast enhancement (CLAHE) was applied. 

The images were manually segmented using IMOD (Kremer et al., 1996). 

 

3.2.10 Electrophysiology 

Nerve conduction velocity in the CNS was measured in vivo on 6 month old male mice (2 

Anlnfl/fl, 9 controls (WT from (Patzig et al., 2016)), 7 Anln cKO). Anlnfl/fl mice and controls 

were pooled after testing significance (not significant; two-tailed unpaired t-test; p= 0.8399). 

Measurements were performed by Dr. Payam Dibaj (MPI EM) essentially as described 

(Dibaj et al., 2012, Patzig et al., 2016). 

 

3.2.11 PIP2 measurement 

Purified myelin of n=6 male mice at P75 were sent to Prof. Dr. Ingo Heilmann (Halle, 

Germany). Lipid extraction followed by combined thin layer chromatography and gas 

chromatography was used to measure PIP2 levels (Goebbels et al., 2010, Konig et al., 

2008).  

 

 

 

 

 

 



Results 

65 
 

4 Results 

4.1 The ANLN/septin filament in CNS myelin 

4.1.1 Anillin and septins co-localize in CNS white matter 

To identify the localization of ANLN in relation to myelin septins, immunohistochemical 

triple-stainings were performed on cryosections of mouse optic nerves (longitudinal) and 

mouse brains (coronal). As reference, different known markers of myelin or axons were 

used. MAG (Cyan) is a known marker of the adaxonal myelin membrane (Trapp and 

Quarles, 1982, Trapp et al., 1989), where the septin filament is localized as well (Patzig et 

al., 2016). The markers NF (neurofilament) and TUJ1 (βIII-Tubulin) were used to visualize 

axons (Cyan). ANLN (red) was found to co-localize to SEPT8 (green) in longitudinal 

cryosections of optic nerves (Figure 9A), showing a similar filament-like labeling as SEPT8 

(arrowheads). The same co-localization was detected in white matter tracts of coronal 

cryosections of mouse brains (Figure 9B). Filaments (arrowheads) along axons were found 

in the fimbria (b-b’) as well as in the corpus callosum (b’’). Images in A and B were obtained 

together with Dr. Julia Patzig. 

For 3-dimensional (3D) reconstruction, z-stacks of fluorescent immunohistochemical 

stainings of longitudinal spinal cord cryosections were generated via confocal laser 

scanning microscopy (Figure 9C and D). To reconstruct the confocal z-stacks into 3D, the 

Imaris software was used. Figure 9C shows maximal projections of confocal z-stacks and 

a 3D reconstruction of SEPT7 (green) and an axonal marker (NF; red). The images display 

the known filament-like assembly of SEPT7 along the axon, as seen in Patzig et al. (2016). 

Figure 9D shows maximal projections of confocal z-stacks and a 3D reconstruction of ANLN 

and the axonal marker NF. The images illustrate a filament-like structure of ANLN along the 

axon, as well as a patchy pattern all over the axon. 

Figure 9E shows the protein abundance of ANLN and SEPT8 in brain lysate and purified 

myelin. A myelin marker (MOG) and an axonal marker (TUJ1) were loaded as controls for 

the responsive fraction. The abundance of MOG is strongly enriched in purified myelin, 

whereas the abundance of TUJ1 is decreased. ANLN was only detectable in purified myelin, 

supporting the localization in mouse brain white matter. 

Taken together, the results suggest a similar distribution of ANLN along the axon, as 

previously found for septins. Additionally, ANLN localizes to parts of the axon without 

SEPT8 co-localization. 
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Figure 9: Localization of the ANLN/septin filaments in mouse CNS. (A) Immunolabeling validates close 

proximity (arrowheads) of ANLN (red) with SEPT8 (green) in myelinated fiber tracts of wild type (Wt) mice. 

Immunolabeling of Sept8null/null mice indicates diminishment of ANLN similar to SEPT8. Longitudinally sectioned 

optic nerves of P75 mice are shown. TUJ1 (white) was labeled as an axonal control. Images are representative 

of three independent experiments. (B) Immunolabeling of coronal brain sections of P75 Wt mice detects ANLN 

(red) and SEPT8 (green) filaments (arrowheads) in white matter tracts. b-b’ shows labeling in the fimbria. In b’ 

a blow up of the dashed square in b is shown. b’’ shows labeling in the corpus callosum. MAG/NF were labeled 

as control. (C) Immunofluorescent signal of SEPT7 (green) extends longitudinally along axons (neurofilament-

labeling (red)). Images display maximal projections of confocal z-stacks and a 3-dimensional reconstruction of 

longitudinally sectioned spinal cord of P75 Wt mice. Images are representative of three animals. (D) 

Immunofluorescent signal of ANLN (green) partially extends longitudinally and partially patchy along axons 

(neurofilament-labeling (red)). Images display maximal projections of confocal z-stacks and a 3-dimensional 

reconstruction of longitudinally sectioned spinal cord of P75 control mice (Anlnfl/fl). Images are representative of 

three animals. (E) Immunoblot analysis of brain lysates and myelin purified from P75 control mice (Anlnfl/fl). It is 

of note that ANLN is only detectable in purified myelin. MOG and TUJ1 were detected as controls. Images in A 

and B were obtained together with Dr. Julia Patzig. 
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4.1.2 ANLN and septins appear similar in development 

To possibly discover the chronology of appearance of ANLN and septins, the abundances 

of these proteins were analyzed in mice at different developmental states. 

Immunohistochemical triple-stainings were performed on longitudinal cryosections of 

mouse optic nerves at P15, P21, and P28 (Figure 10A, Images were obtained together with 

Dr. Julia Patzig). ANLN and SEPT8 were found to appear around P21. Each filament-like 

labeling was positive for both, ANLN and SEPT8. At P28 the filament-like labeling was seen 

more often compared to P21. In Figure 10B, immunoblots on mouse brain myelin illustrate 

the abundance of ANLN and CNS myelin septins at P15, P18, P21, and P24. ANLN appears 

in the same pattern as septins, showing an increasing abundance up to P21. 

Taken together, every filament-like labeling shows both, ANLN and septin labeling. Further, 

the abundance of ANLN and septins increases in the same pattern, suggesting that both, 

ANLN and septins are needed to form a cytoskeletal structure.  

 

Figure 10: ANLN and septins in development. (A) Immunolabeling of wild type optic nerves detects ANLN 

(red) partially at P21 and at P28 but not at P15. Note that every filamentous ANLN labeling is in close proximity 

to SEPT8 (green) labeling, indicated by arrowheads. TUJ1 was labeled as an axonal marker. Images are 

representative of three experiments. Images were obtained together with Dr. Julia Patzig (B) Immunoblotting 

indicates that the abundance of ANLN and septins (SEPT2, SEPT4, SEPT7, SEPT8) increases with age in 

myelin purified from wild type brains at P15, P18, P21, and P24, reflecting the maturation of myelin. L-MAG was 

detected as control. 

 

 

4.2 Characterization of Anlnfl/fl;CnpCre/Wt mice 

4.2.1 Generation of mice lacking ANLN from myelinating glia cells 

As described in 3.2.2, Anln cKO mice were generated (Ramona Jung (MPI EM) and Ursula 

Fünfschilling (MPI EM, transgenic service)). The scheme in Figure 11A depicts the ordered 

construct (ES cells ordered from EUCOMM) and the conditional deletion of the Anln gene. 

Figure 11B illustrates the results of the genotyping PCR (described in 3.2.4). The upper row 

depicts that only in presence of the Cre recombinase a product of about 350 bp is present. 

In the middle row, it is depicted that the loxP sites increase the PCR product arising from 
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primer 1 (P1) and primer 2 (P2). In the lower row, a product from P1 and primer 4 (P4) 

arises solely in the Anln cKO mice. The binding site of each primer is depicted in Figure 

11A. 

 

Figure 11: Generation of Anlnfl/fl;CnpCre/Wt mice. (A) Scheme for conditional inactivation of the Anln gene. 

Exon 4 of the Anln allele is flanked by loxP-sites for Cre-mediated recombination. Positions of PCR primers (P1, 

P2, P4) are indicated. (B) Genotyping PCR of DNA isolated from mouse tail tips at P21. Upper row depicts Cre-

specific PCR product in Anln cKO mice. Middle row depicts PCR product of primer P1 and P2 in controls (Wt 

and Anlnfl/fl) and Anln cKO mice. Note that the loxP-sites increase the PCR product as expected. Lower row 

depicts PCR product of primer P1 and P4 after recombination. Note that the recombination band is specific for 

Anln cKO mice.  

 

4.2.2 Mass spectrometric comparison of Anln cKO mice and controls 

For quantitative analysis of protein abundances, myelin of controls and Anln cKO mice were 

compared using mass spectrometry (MS) (Olaf Jahn, MPI EM; proteomics unit). In total, 

446 proteins were identified using a HD-MSE approach. In Figure 12A, the data for all 

identified proteins are plotted as log2 fold change (log2 FC) versus the −log10 of the modified 

p-value (q-value) in a Volcano plot. The dashed lines indicate the applied threshold of +1 

and -1 log2 FC, indicative of a halved or doubled abundance of a protein in myelin, 

respectively. Only CNS myelin septins are reduced below the applied threshold. CDC42 

and RHOB are also significantly reduced regarding the q-value, but not below the fold 

change threshold. These proteins are also known to be involved in ANLN/septin filament 

formation (light red dots, Figure 12A). As ANLN is not detected by MS in myelin of Anln cKO 

mice (Figure 12B) it is not included in the Volcano plot (Figure 12A). However, the genotype 

dependent reduction of CNP is detected by MS (Figure 12B). Figure 12C displays the 

comparison between myelin of controls and Anln cKO mice of ANLN/septin filament 

formation related proteins (SEPT4, SEPT2, SEPT8, SEPT7, RHOB, CDC42) (Joberty et al., 

2001, Renshaw et al., 2014, Mendoza et al., 2002). The proteins are sorted from highest 

decrease in Anln cKO mice to lowest decrease in abundance of the 6 selected proteins. All 

CNS myelin septins are reduced more than 50% (p-value <0.0001), RHOB and CDC42 are 

also significantly reduced (ROHB p=0.0022; CDC42 p=0.0368). Within the 446 identified 
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proteins, classical myelin markers were selected and compared between genotypes 

(Figure 12D). Throughout all identified myelin marker proteins (except CNP; see above), no 

significant change was detectable. Since anillin is known to interact with other cytoskeletal 

components (Piekny and Glotzer, 2008, Straight et al., 2005, Piekny and Maddox, 2010, 

Versele and Thorner, 2005), all cytoskeleton related proteins within the dataset were 

identified and compared between the genotypes. There was no significant change in 

abundance throughout all identified cytoskeletal markers. 

To summarize, the results support the efficient depletion of ANLN from oligodendrocytes in 

Anln cKO mice. Further, the loss of ANLN in myelinating glia cells leads to a strong reduction 

of CNS myelin septins but has no effect on other detected proteins. These results further 

strengthen the expected interaction of anillin and septins in CNS myelin.  
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Figure 12: Mass spectrometric analysis of purified myelin. (A) Volcano plot of proteome data comparing 

proteins of purified myelin of Anln cKO to Anlnfl/fl. The data for all identified proteins are plotted as log2 fold 

change (log2 FC) versus the −log10 of the modified p-value (q-value). Black dashed lines indicate the applied 

threshold of +/- 1 log2 FC. Red dashed line indicates a q-value of 0.05. Proteins with relation to septin/anillin 

filament formation are highlighted as light red dots and labeled with protein names. It is of note that all myelin 

septins (SEPT2, SEPT4, SEPT7, SEPT8) are reduced in myelin of Anln cKO mice compared to Anlnfl/fl mice. 

ANLN is not depicted, as it is not detected in myelin of Anln cKO mice. (B) Differential myelin proteome analysis 

confirms genotype dependent expression of ANLN and CNP in myelin purified from Anlnfl/fl;CnpCre/Wt-mice (Anln 

cKO) at P75. Note that ANLN was not detectable. Mean +/ SEM. n=3 animals per genotype; two-tailed unpaired 

t-test CNP p <0.0001. (C) Differential myelin proteome analysis reveals that septins (SEPT2, SEPT4, SEPT7, 

SEPT8) are more than 50% diminished in myelin purified from Anln cKO mice at P75 compared to Anlnfl/fl mice. 

Further, RHOB and CDC42 are significantly reduced in myelin purified from Anln cKO-mice at P75. Mean 

+/ SEM. n=3 animals per genotype; two-tailed unpaired t-test SEPT4 p<0.0001; SEPT2 p<0.0001; SEPT8 

p<0.0001; SEPT7 p<0.0001; ROHB p=0.0022; CDC42 p=0.0368. (D) Differential myelin proteome analysis 

reveals that classical myelin proteins are not affected. Mean +/ SEM. n=3 animals per genotype; two-tailed 

unpaired t-test. (E) Differential myelin proteome analysis reveals that all identified cytoskeletal proteins are not 

affected. Mean +/ SEM. n=3 animals per genotype; two-tailed unpaired t-test. Mass spectrometry was performed 

by Dr. Olaf Jahn and the proteomics unit of the MPI EM. 

 

4.2.3 Loss of myelin septins upon conditional depletion of ANLN 

To validate the results of the MS analysis, immunoblots were performed. Comparing lysate 

and purified myelin (Figure 13A), ANLN was only detectable in myelin and absent in 

Anln cKO mice. The smaller isoforms of SEPT8 are enriched in the myelin fraction and 

reduced in abundance in myelin of Anln cKO mice. MOG is loaded as a control for the 

myelin fraction and therefore, shows an increase in abundance in the myelin fraction. TUJ1, 

as an axonal marker, is strongly reduced in the myelin fraction. The abundance of CNS 

myelin septins was then further analyzed on purified myelin (Figure 13B). As expected, 

ANLN was not detectable in Anln cKO mice. Furthermore, all CNS myelin septins (SEPT2, 

SEPT4, SEPT7, SEPT8) were strongly reduced in abundance. ATP1A3 was loaded as 

control and exhibited no difference in abundance between controls (Anlnfl/fl) and Anln cKO 

mice. In a next step, classical myelin proteins were analyzed (Figure 13C). Anln cKO mice 

display a genotype dependent reduction of CNP of about 50%. All other tested myelin 

proteins (PLP, SIRT2, CD9, CA2) were unchanged. ATP1A1 was loaded as control and 

displayed no difference in abundance between controls (Anlnfl/fl) and Anln cKO mice.  

Taken together, the results validate the data of the MS analysis. The genotype dependent 

depletion of ANLN is functional and results in a strong reduction of septins within the myelin 

fraction, whereas the abundance of myelin proteins is not affected.  
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Figure 13: Abundance of ANLN, septins, and classical myelin proteins. (A) Immunoblot analysis of brain 

lysates and myelin purified from P75 control mice (Anlnfl/fl). ANLN is just detectable in purified myelin. MOG and 

TUJ1 were detected as controls. (B) Immunoblotting validates the lack of anillin (ANLN) and the strong reduction 

of myelin septins (SEPT2, SEPT4, SEPT7, SEPT8) in myelin purified from brains of Anln cKO mice. ATPase 

Na+/K+ transporting subunit alpha 3 (ATP1A3) was detected as a control. (C) Immunoblotting validates that 

classical myelin proteins are not affected in myelin purified from brains of Anln cKO mice. Of note is that CNP 

is reduced, genotype dependent, about 50%. ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1) was 

detected as a control. 

 

4.2.4 mRNA abundance of regulated proteins 

To analyze whether proteins that were found to be downregulated on immunoblot level 

and/or downregulated within the MS data are also regulated on gene level or post-

transcriptional, mRNA abundances were quantified using qRT-PCR (Figure 14). To do so, 

corpus callosi of control and Anln cKO (male and female) mice were dissected (n=6 per 

genotype) and analyzed. The quantification shows that the mRNAs of Anln (>98%) and Cnp 

(~50%) are downregulated depending on the genotype. Other quantified mRNAs (Sept2, 

Sept4, Sept7, Sept8, RhoB, Cdc42) were not altered, indicating that the reduction on protein 

level of these genes was due to post-transcriptional modifications. qRT PCRs were 

performed by Ursula Kutzke (MPI EM). 
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Figure 14: qRT-PCR analysis of regulated proteins. qRT-PCR to determine the abundance of Anln, myelin 
septins, RhoB, and Cdc42 mRNAs in white matter (corpus callosum) of control (Anlnfl/fl) and Anln cKO mice. 
Anln and Cnp mRNA is significantly downregulated as expected due to the genotype. Note that myelin septins 
and Cdc42 mRNAs were unaltered in abundance in Anln cKO mice compared to control mice (Anlnfl/fl). Mean +/ 
SEM. n=6 animals per genotype; two-way ANOVA; Anln p<0.0001; Cnp p<0.0001. qRT PCRs performed by 
Ursula Kutzke (MPI EM). 

 

4.2.5 Myelin abnormalities  

As it was previously shown that lack of the septin cytoskeleton in oligodendrocytes cause 

myelin outfoldings (Patzig et al., 2016), it was analyzed whether the detected reduction of 

ANLN and septins in Anln cKO mice lead to pathological myelin outfoldings. For analysis, 

electron micrographs of optic nerve cross sections at different time points (P14, P75, 6 mo, 

8 mo) were analyzed. Figure 15A illustrates examples of myelin outfoldings in both, controls 

and Anln cKO mice, highlighted by dashed lines. The images already indicate that 

outfoldings in Anln cKO mice are more severe than in controls. The quantification (Figure 

15B) reveals, that from P75 on, the % of area covered by myelin outfoldings is significantly 

higher in Anln cKO mice compared to controls. The area increases with age, suggesting a 

worsening of the phenotype.  

To summarize, the results indicate that the loss of ANLN/septin filaments lead to the 

formation of myelin outfoldings. 
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Figure 15: Lack of ANLN/septin filament causes myelin outfoldings. (A) Electron micrographs of optic 

nerves exemplify myelin outfoldings at P75. Dashed lines highlight myelin outfoldings; associated axons are 

marked with asterisks. (B) Quantitative evaluation of optic nerve electron micrographs reveals progressive 

myelin outfoldings in adult Anlnfl/fl;CnpCre/Wt mice (Anln cKO). Mean +/ SEM. n=4–6 animals per condition; two-

tailed unpaired t-test P14 p=0.0076; P75 p=0.0009; 6mo p=0.0007. 

 

4.2.6 Structure of myelin outfoldings 

To get an overview of the structure and the size of myelin outfoldings, a 3D reconstruction 

of this pathological phenotype was generated from optic nerves of Anln cKO mice and 

respective controls at 5.5 mo of age by using FIB SEM (see also materials and methods 

section 3.2.9, performed by Dr. Anna Steyer (EM facility; MPI EM)). Figure 16A and 16A’ 

illustrate 3D reconstructions of an Anlnfl/fl optic nerve. Figure 16A depicts the reconstruction 

of one axon (blue), whereas A’ also depicts the myelin (yellow) surrounding the axon. Figure 

16B and 16C illustrate reconstructions of Anln cKO optic nerves. In the column B only one 

axon, which exhibits an outfolding is depicted, whereas in column C all axons exhibiting 

outfoldings are shown. In B’ the length of the reconstructed outfolding was exemplary 

calculated, revealing a length of ~12 µm. In C’ it can be seen that several axons exhibit 

myelin outfoldings and that these outfoldings occupy a considerable space.  

The 3D reconstructions exhibit that the quantified outfoldings are neither hairpins, nor are 

they present along the whole internode. Furthermore, the reconstructions illustrate that 

myelin outfoldings occupy a considerable space, and therefore may have further impact on 

the functionality of axons. 
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Figure 16: 3D reconstruction of myelin outfoldings. (A-C) 3D reconstructions of focused ion beam-scanning 

electron microscopy (FIB-SEM) micrographs displaying the plasma membrane of myelinated axonal segments 

(blue) and respective myelin sheaths (yellow) in the optic nerve of control (Anlnfl/fl) (A, A‘) and Anln cKO (B, B‘, 

C, C’) mice at ~5.5 mo. The myelin sheath reconstructed in A‘ is tightly associated with the corresponding axon 

(A, A‘) in the control nerve. An individual myelin outfolding (B‘) and the corresponding axon are reconstructed 

in B,B‘. All myelin outfoldings in that same block (as in B, B‘) were reconstructed in C with their corresponding 

axons (in C, C‘). It is of note that myelin outfoldings represent large sheets of compacted multilayered membrane 

stacks that extend considerably away from their respective myelinated axon, displaying longitudinal dimension 

of about 12 µm (indicated in B’). n=1 for each genotype. FIB SEM reconstructions were performed by Dr. Anna 

Steyer. 

 

4.2.7 Decelerated nerve conduction velocity in Anln cKO mice 

As described above, myelin outfoldings occupy a considerable space, which might result in 

a disrupted insulation of axons and thereby influencing nerve conduction velocity. To 

analyze, whether outfoldings might have an effect on the insulation and therefore on signal 

propagation, in vivo nerve conduction velocity measurements at the spinal cord were 

performed (Dr. Payam Dibaj, MPI EM). The measurements show a significantly decelerated 

nerve conduction velocity of about 15% in Anln cKO mice compared to controls (Figure 

17A). As changes in nerve conduction velocity can also arise due to changes in the nodal 

structure (Arancibia-Carcamo et al., 2017), the nodal and paranodal organization was 

visualized by immunohistochemistry on longitudinal sectioned spinal cord cryosections and 

quantified using ImageJ (Figure 17B-G). The nodal density was quantified in Figure 17B, 

displaying equal amounts of nodes per µm² in controls and Anln cKO mice. In Figure 17C, 

an example of a node is depicted for each genotype. CASPR (green) is labeled to visualize 

the paranodes, whereas Nav1.6 (red) is labeled to visualize the node. The images of the 

nodes display no structural changes in the nodal and paranodal organization in Anln cKO 

mice compared to controls. In the merge of the control, the measured parameters for the 

quantification are indicated. To quantify possible nodal changes, the nodal length was 

measured using ImageJ (Figure 17D). The quantification shows no difference between 

controls and Anln cKO mice in node length. For the paranode length quantification, both 

paranodes contacting a node were measured and the average was calculated for 

comparison of controls and Anln cKO mice. The quantification shows no difference between 

controls and Anln cKO mice (Figure 17E). Additionally, the ratio of node length to diameter 

(Figure 17F) and the ratio of paranode length to diameter (Figure 17G) were calculated and 

not found significantly altered between genotypes. 

Accordingly, these results indicate a healthy and normal organization of the nodes, 

supporting the possible direct impact of myelin outfoldings on the nerve conduction velocity.  
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Figure 17: Nerve conduction velocity and node structure. (A) Electrophysiological measurement reveals 

decelerated nerve conduction in spinal cords of Anln cKO mice compared to controls (Anlnfl/fl) at 6 month of age. 

Mean +/ SEM. n=7-11 animals per genotype; two-tailed unpaired t-test (p= 0.0149). Nerve conduction velocity 

measurements were performed by Dr. Payam Dibaj (MPI EM). (B) Quantitative analysis of node density on 

longitudinal spinal cord sections of control (Anlnfl/fl) and Anln cKO mice at P75. Density of nodes is unchanged; 

not significant (n.s.) according to unpaired two-tailed t-test; n=4 animals per genotype; p= 0.1985. (C) 

Immunohistochemical detection of a marker of the nodes of Ranvier (Nav1.6; sodium channels, red) and a 

paranodal marker (CASPR, green) on longitudinal spinal cord sections of control (Anlnfl/fl) and Anln cKO mice 

at P75. Merge of control depicts measured parameters for D-G. Note that the node organization is well 

preserved. p1 = paranode length1; p2 = paranode length2; d = diameter; n = node length. (D) Quantitative 

analysis of node length indicates a normal node structure control (Anlnfl/fl) and Anln cKO mice at P75. Not 

significant (n.s.) according to unpaired two-tailed t-test; n=4-5 animals per genotype; p= 0.6324. (E) Quantitative 

analysis of paranode length indicates a normal paranode structure in control (Anlnfl/fl) and Anln cKO mice at 

P75. Not significant (n.s.) according to unpaired two-tailed t-test; n=4-5 animals per genotype; p= 0.1927. (F) 

Quantitative analysis of the ratio of node length and diameter shows no difference between control (Anlnfl/fl) and 

Anln cKO mice at P75. Not significant (n.s.) according to unpaired two-tailed t-test; n=4-5 animals per genotype; 

p= 0.5966. (G) Quantitative analysis of the ratio of paranode length and diameter shows no difference between 

control (Anlnfl/fl) and Anln cKO mice at P75. Not significant (n.s.) according to unpaired two-tailed t-test; n=4-5 

animals per genotype; p= 0.4603.  

 

4.2.8 Unaltered brain structure and myelination in Anln cKO mice 

Since myelin proteins within the MS data remained unchanged, the brain structure and 

overall myelination were analyzed. On paraffin embedded coronal brain sections 

(Figure 18A) and sagittal cerebellum sections (Figure 18A’), the overall myelination was 

visualized using Gallyas silver impregnation (performed by Annette Fahrenholz). In 

Figure 18A and A’ it can be seen that the brain structure is unchanged between controls 

and Anln cKO mice. Furthermore, there are no changes in the overall myelination. To closer 

analyze the myelin ultrastructure, electron micrographs of control and Anln cKO optic nerve 

cross sections were compared (Figure 18B). Each image illustrates an axon and the 

corresponding compact myelin layers. The black lines indicate no difference in myelin 

periodicity between genotypes. 
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Taken together, the results indicate that oligodendrocytes, which lack ANLN, are capable 

of forming functional myelin. 

 

 

Figure 18: CNS myelination and myelin periodicity. (A-A’) Silver impregnation visualizes myelinated fiber 

tracts in mice lacking ANLN from myelinating cells (Anlnfl/fl;CnpCre/Wt(Anln cKO)). In A, coronal sections are 

shown, whereas A’ illustrates sagittal sections through the cerebellum. There are no changes in myelination in 

Anln cKO mice at P75 compared to control mice (Anlnfl/fl). Images are representative of three animals per 

genotype. (B) Electron micrographs of 8 month optic nerves display normal myelin periodicity and compaction 

in Anlnfl/fl and Anln cKO mice. The two respective axons are indicated (Axon). Images are representative of 

three animals per genotype. 

 

4.2.9 The loss of ANLN has no impact on myelin thickness 

To further assess the ultrastructure of myelin in Anln cKO mice, the g-ratio was calculated. 

In this calculation, the Feret axonal diameter is divided by the Feret myelin diameter to 

assess the ratio of axon to myelin (Figure 19A; see also 3.2.8.6). The g-ratio analysis of 

axons in 6 mo optic nerve cross sections shows normal values in optic nerves of control 

animals as well as in Anln cKO mice (Figure 19A’), revealing normal myelin thickness 

throughout all axon diameters. In Figure 19A’’ every single g-ratio of each measured axon 

is depicted. It can be seen that there is no difference between genotypes.  

To quantify the number of myelinated axons and percentage of degenerated/degenerating 

axons, electron micrographs of 6 mo optic nerve cross sections were analyzed. Figure 19B 

displays the mean number of myelinated axons per field (field = 220 µm²). The analysis 

depicts, that there is no difference in the number of myelinated axons between genotypes. 

The percentage of degenerated/degenerating profiles (Figure 19C) also exhibits no 

difference between genotypes. 
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The results indicate that oligodendrocytes lacking ANLN are able to myelinate axons in a 

normal state and that the lack of ANLN in oligodendrocytes has no effect on the integrity of 

axons.  

 

Figure 19: g-ratio and axon integrity. (A) Electron micrograph with schematic lines indicating the 

circumference (dashed line) and diameter (continuous line). Scheme illustrates the diameter of the axon (blue 

continuous line) and the diameter of the corresponding myelin (red continuous line), which are taken to calculate 

the g-ratio. (A’-A’’) g-ratio analysis of electron micrographs of optic nerves at 6 mo indicates normal myelin 

sheath thickness in Anln cKO mice. Mean +/ SEM. Not significant according to two-way ANOVA (p= 0.9279). 

(B) Quantitative evaluation of electron micrographs of optic nerves at 6 mo reveals a normal frequency of 

myelinated axons in Anln cKO mice. Mean +/ SEM. n=4-5 animals per genotype; not significant (n.s.) according 

to two-tailed unpaired t-test (p= 0.1827). (C) Quantitative evaluation of electron micrographs of optic nerves at 

6 mo indicates the absence in Anln cKO mice of other myelin-related pathology such as degenerated axons. 

Mean +/ SEM. n=4-5 animals per genotype; not significant (n.s.) according to two-tailed unpaired t-test (p= 

0.8664). 

 

4.2.10 No signs of secondary neuropathology in CNS white matter 

As mice, which lack ANLN from oligodendrocytes, develop myelin outfoldings and display 

decelerated nerve conduction velocity, it was analyzed if these alterations also affect the 

health of axons and other brain tissue. For this purpose, mice were perfused at P75 and 

coronal brain sections were labeled with neuropathological markers (labeling performed by 

Annette Fahrenholz). The analysis was performed in the fimbria, as described in the 

materials and methods section 3.2.7.7. In healthy conditions, amyloid beta precursor protein 
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(APP) is expressed in neurons and then further transported along the axon (Zheng and Koo, 

2006). In pathological conditions of the axon, APP can accumulate and thereby indicates 

axonal degeneration (Coleman, 2005; Saxena and Caroni, 2007). In Figure 20A, the 

quantification of APP positive spheroids is shown as well as example images depicting a 

close up of the fimbria. Arrowheads indicate APP positive spheroids. There was no 

difference detectable between controls and Anln cKO mice. In pathological conditions of 

brains, it is also seen that astrocytes get activated microglia-dependent, as well as the other 

way around (Liddelow, 2017; Jo, 2017; Skripuletz, 2013). To test for possible astrogliosis, 

coronal brain sections were labeled with a glial fibrillary acidic protein (GFAP) antibody and 

the positive area was analyzed (Figure 20B). Figure 20B depicts respective images of the 

staining (GFAP) in the fimbria. It can be seen that there is no difference between control 

and Anln cKO mice at P75. Additional to astrogliosis, microgliosis is a commonly seen 

phenotype in pathological brains. Microglia react to changes in brain tissue and are able to 

phagocytose myelin debris (Cuzner, 1988; Mosley and Cuzner, 1996). Activated microglia 

that changed their morphology into amoeboid cells express the surface antigen MAC3 (Ho 

and Springer, 1983; Giulian and Baker, 1986). To assess the area covered by activated 

microglia, coronal brain sections were labeled with a MAC3 antibody (Figure 20C). There 

were no signs of increased numbers of activated microglia in Anln cKO mice compared to 

controls. Further, all microglia were labeled with an antibody against IBA1 (Figure 20D). 

Although the area positive for IBA1 was slightly increased in Anln cKO mice, the difference 

was not significant.  

To sum up, the results show no signs for axonopathy, astrogliosis, and microgliosis, when 

oligodendrocytes lack ANLN. These observations indicate, that the loss of the ANLN/septin 

filament, coinciding with myelin outfoldings and decelerated nerve conduction velocity, do 

not cause further neuropathological abnormalities.  
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Figure 20: Lack of ANLN in oligodendrocytes does not lead to secondary neuropathology. (A) 

Immunohistochemical analysis of APP positive spheroids in the white matter (hippocampal fimbria) of control 

(Anlnfl/fl) and Anlnfl/fl;CnpCre/Wt mice (Anln cKO) at P75. The labeling is similar in control and Anln cKO mice. Not 

significant (n.s.) according to unpaired two-tailed t-test; n=5 animals per genotype; p= 0.2418. (B) 

Immunohistochemical analysis of GFAP-immunopositivity in the white matter (hippocampal fimbria) of control 
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(Anlnfl/fl) and Anln cKO mice at P75. The labeling is similar in control and Anln cKO mice. Not significant (n.s.) 

according to unpaired two-tailed t-test; n=5 animals per genotype; p= 0.4704. (C) Immunohistochemical analysis 

of MAC3-immunopositivity in the white matter (hippocampal fimbria) of control (Anlnfl/fl) and Anln cKO mice at 

P75. The labeling is similar in control and Anln cKO mice. Not significant (n.s.) according to unpaired two-tailed 

t-test; n=5 animals per genotype; p= 0.7047. (D) Immunohistochemical analysis of IBA1-immunopositivity in the 

white matter (hippocampal fimbria) of control (Anlnfl/fl) and Anln cKO mice at P75. The labeling is similar in 

control and Anln cKO mice. Not significant (n.s.) according to unpaired two-tailed t-test; n=5 animals per 

genotype; p= 0.0593. 

 

4.2.11 Anln cKO mice display reduced PIP2 levels 

It is known that ANLN is able to bind PIP2 via a PH (pleckstrin homology) domain at the C-

terminal. Furthermore, it was shown that binding of ANLN to PIP2 promotes septin filament 

assembly in vitro (Kinoshita et al., 2002, Liu et al., 2012). To see, if the loss of ANLN in 

oligodendrocytes also affects the PIP2 levels, purified myelin was analyzed in collaboration 

with Prof. Dr. Ingo Heilmann (Halle, Germany). The gas chromatographic analysis reveals 

a significant reduction of about 50% in purified myelin of Anln cKO mice compared to 

controls at P75. The result suggests that ANLN may also has a stabilizing effect on PIP2. 

 

Figure 21: PIP2 analysis in Anln cKO and control mice. Quantification of PIP2 in purified myelin. The analysis 

indicates decreased levels of PIP2 in Anln cKO mice compared to controls (Anlnfl/fl) at P75. Mean +/ SEM. n=6 
animals per genotype; two-tailed unpaired t-test; p=0.0435. Gas chromatography was performed by 
Prof. Dr. Ingo Heilmann (Halle, Germany). 

 

4.2.12 Axon diameter frequency distribution 

The loss of the ANLN/septin filament leads to an instability of myelin sheaths in the CNS, 

resulting in myelin outfoldings. To see whether the loss of myelin stability and the altered 

PIP2 levels lead to axonal changes, axon diameters were analyzed at P75 and 6 mo of age 

in control and Anln cKO optic nerves (Figure 22). Quantification was done on EM images 

using ImageJ as described in the materials and methods section 3.2.8.6. Figure 22A depicts 

the relative frequency of indicated axon diameter at P75 in optic nerves of controls and 

Anln cKO mice. The bar graph indicates a trend towards larger axon diameters, but 
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statistical comparison of all axon diameters with the Kolmogorov Smirnov test shows no 

significant difference. Since the myelin outfolding phenotype is aggravated by aging, the 

axon diameter frequency distribution was also analyzed at 6 mo of age (Figure 22B). The 

relative frequency of indicated axon diameters, again, depicts larger axon diameters in 

Anln cKO mice. By comparing all axon diameters, the Kolmogorov Smirnov test shows a 

highly significant shift towards larger axon diameters.  

This result raises the possibility that the loss of the ANLN/septin filament in CNS myelin has 

an effect on axon diameters, suggesting that the stability of intact myelin restricts axon 

diameters.  

For further analysis, axon diameters were also quantified in Sept8null/null and 

Sept8fl/fl;CnpCre/Wt mice at 6 mo of age (Figure 23A and B). As these mice also lack the 

ANLN/septin filament, the same phenotype should be present. Figure 23A displays the 

relative frequency of indicated axon diameters for Sept8null/null mice. In these mice, no 

difference between controls and Sept8null/null mice was observed. By statistical evaluation of 

all axon diameters using the Kolmogorov Smirnov test, the whole distribution exhibits no 

significant difference. Moreover, in Sept8fl/fl;CnpCre/Wt mice the axon diameter frequency 

distribution was analyzed (Figure 23B). The bar graph illustrates the relative frequency of 

indicated axon diameters. Similar to Anln cKO mice, a shift towards larger axon diameters 

can be seen. Using the Kolmogorov Smirnov test, the axon diameters distribution exhibits 

a highly significant shift towards larger axon diameters. 
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Figure 22: Axon diameter frequency distribution in Anln cKO mice. (A) Frequency distribution analysis of 

optic nerve myelinated axons of electron micrographs at P75 indicates a slight trend towards larger axon 
diameter in Anln cKO mice. n=5 animals per genotype. Not significant according to Kolmogorov Smirnov test 
(p= 0.0623). (B) Frequency distribution analysis of optic nerve myelinated axons of electron micrographs at 
6 mo of age indicates a shift towards larger axon diameter in Anln cKO mice. n=5 animals per genotype. 

Significant according to Kolmogorov Smirnov test (p= 0.0008). 

 

The results depict only a shift towards larger axon diameters in conditional mutants, which 

harbor half of the CNP dosage. To clarify if the observed phenotype is due to CNP 

heterozygosity, CnpCre/Wt mice were analyzed at 6 mo of age (Figure 23C). The axon 

diameter distribution shows no difference between controls and CnpCre/Wt mice, also 

indicated by the analysis of all axon diameters with the Kolmogorov Smirnov test.  

The results presented in Figure 23C indicate that the lack of the ANLN/septin filament from 

CNS myelin possibly results in larger axon diameters, and not the CNP heterozygosity 

alone. Furthermore, the results display a possible new role of myelin in axon diameter 

restriction.  
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Figure 23: Axon diameter frequency distribution in SEPT8 deficient and CnpCre/Wt mice. (A) Frequency 

distribution analysis of optic nerve myelinated axons of electron micrographs at 6 mo of age indicate a slight 
trend towards larger axon diameter in Sept8null/null mice. n=5 animals per genotype. Not significant according to 
Kolmogorov Smirnov test (p= 0.06254). (B) Frequency distribution analysis of optic nerve myelinated axons of 

electron micrographs at 6 mo of age indicate a shift towards larger axon diameter in Sept8fl/fl;CnpCre/Wt mice. 
n=5 animals per genotype. Significant according to Kolmogorov Smirnov test (p= <0.0001). (C) Frequency 

distribution analysis of optic nerve myelinated axons of electron micrographs at 6 mo of age indicate no shift 
towards larger axon diameter in CnpCre/Wt mice. n=5 animals per genotype. Not significant according to 

Kolmogorov Smirnov test (p= 0.1756). 
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5 Discussion 

5.1 Is ANLN influencing septin filament assembly? 

In previous studies, septin filaments and anillin were shown to be associated with each 

other. For example, studies in yeast have shown that ANLN and septins co-localize within 

the cleavage furrow and thereby, enable proper cell division (Maddox et al., 2007, Oegema 

et al., 2000, Renshaw et al., 2014). Furthermore, in vitro studies have shown that ANLN 

acts as an adaptor to recruit septins onto membranes and that ANLN enhances PIP2-

mediated septin filament formation (Kinoshita et al., 2002, Liu et al., 2012), suggesting that 

septin filament formation relies on anillin. In vivo, it was shown that anillin also relies on 

septins, as the loss of septin filaments in CNS myelin led to a reduction of ANLN on protein 

level (Patzig et al., 2016). The reduction of ANLN was also seen in other tested mutants, 

which show reduced levels of myelin septins (Patzig et al., 2016). These results indicate 

that ANLN not only promotes septin filament formation, but also interacts with the filament 

to stabilize adaxonal myelin. To test whether ANLN serves a crucial function in myelin septin 

filament assembly in vivo, beyond its mere association with myelin septins, a novel line of 

mouse mutants (Anlnflox/flox;CnpCre/Wt mice) was generated and analyzed. The presented 

results illustrate that the loss of ANLN from mature oligodendrocytes leads to a strong 

reduction of septins on protein level (Figure 12C and 13B). Moreover, as the mRNA 

abundance of septins is unaltered in Anln cKO mice (Figure 14), it is unlikely that the 

reduction is due to transcriptional regulation. It was shown that ANLN has a stabilizing 

function during cytogenesis (Liu et al., 2012), suggesting that ANLN could also stabilize the 

septin filament, thereby probably preventing its degradation. Another possibility is that 

ANLN facilitates septin filament formation, as it was shown that anillin enhances PIP2-

mediated septin filament formation in vitro (Kinoshita et al., 2002, Liu et al., 2012). Septin 

monomers and ANLN likely get degraded, if they are not incorporated into a filament (Patzig 

et al., 2016). The presented results suggest that the reduced septin abundance is caused 

by degradation of septin monomers. This could be either due to a loss of stability of the 

filament, or due to a hindered filament assembly. 

To further test the influence of ANLN on septin filaments, it would be interesting to 

immunohistochemically visualize septin filaments in Anln cKO mice. By this, it could be 

analyzed if the septin filaments are altered in abundance or length due to the lack of ANLN. 

Based on the assumption that ANLN stabilizes the septin filament or facilitates septin 

filament assembly, it is likely that the abundance and length of the septin filaments are 

altered. The effect of ANLN on septin filament assembly could also be investigated by 

generating an ANLN overexpressing mouse line. It would be also interesting to analyze if 

ANLN would further enhance/stabilize the septin filament assembly, possibly leading to 

more abundant and longer filaments, which might further stabilize the myelin.  
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It was reported that the loss of CNS myelin septin filaments lead to myelin outfoldings 

(Patzig et al., 2016). This could be confirmed in the presented study, as it is illustrated in 

Figure 15. As septins are also less abundant upon aging (Patzig et al., 2016), it would be 

interesting to test in ANLN overexpressing mice if the overexpression of ANLN could rescue 

the loss of the ANLN/septin filament in old mice. As the loss of the ANLN/septin filament 

coincides with myelin outfoldings and reduced nerve conduction velocity (Patzig et al., 

2016) (Figure 17A), a rescue of the ANLN/septin filament might prevent these pathological 

phenotypes in aging.  

 

5.2 ANLN/septin filaments in development - who comes first? 

In several studies, it was shown that ANLN interacts with septins (Patzig et al., 2016, Liu et 

al., 2012, Renshaw et al., 2014, Kinoshita, 2003), but so far there is less known about the 

(developmental) expression chronology of these proteins. In Candida albicans, it was 

shown that the anillin-related Int1 and the Sep7 septin interact with each other during 

cytokinesis (Orellana-Munoz et al., 2018). Interestingly, the authors have presented, that 

the septin ring assembly occurred before the incorporation of Int1, suggesting that possibly 

the septin filament is build first and then stabilized by ANLN. In the presented data, it could 

be shown in immunoblots of P15, P18, P21, and P24 purified myelin that the abundance of 

ANLN and myelin septins have a similar chronology (Figure 10B). These results are in 

accordance with the immunoblot analysis in Patzig et al. (2016), where similar increasing 

abundances of septins were detected. Furthermore, in the results regarding the 

immunohistochemical analysis of P15, P21, and P28 optic nerves, it was shown that ANLN 

and SEPT8 are similar distributed and show a similar protein expression chronology 

(Figure 10A). It was seen that each filament-like labeling was positive for ANLN and SEPT8, 

and that the number of labeled filament-like structures increased from P21 to P28. 

Interestingly, filament-like labeling was detectable at P21, whereas in Patzig et al. (2016) 

no labeling was detectable at this time point. This result suggests, that the protein 

expression of septins is probably adjusted to the local needs of the axon and that there is a 

longer time frame of ANLN/septin arising. Unfortunately, the results did not shed light on 

the question whether ANLN or septins evolve first. To further analyze this question, it would 

be necessary to look at smaller time intervals like P19, P20, P21, and P22 in optic nerve 

longitudinal sections. Also, the immunoblot analysis of purified myelin could be adjusted, 

and earlier time points could be analyzed. Another possibility would be the usage of 

microfluidic chambers to model CNS myelination (Vaquie et al., 2018). In this system, the 

protein expression chronology of ANLN and septins could be analyzed in more detail using 

live-cell imaging techniques. In this experiment, it has to be considered that in 

oligodendroglial cultures, it was not possible to detect the formation of filament-like 
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structures of septins (unpublished data). This could be due to too short incubation time, but 

also due to using an in vitro system, as it was detected that the adaxonal myelin layer, to 

which septins localize, is not modeled in oligodendroglial cultures. Furthermore, it was 

shown that septin filament formation arises in late stages of myelination. This mature state 

of an oligodendrocyte might not be reached in an in vitro system.  

 

5.3 Do myelin outfoldings decrease nerve conduction velocity? 

Myelin is known to increase nerve conduction velocity by blocking internodal current 

leakage and decreasing the transverse capacitance between the inside and outside of a 

nerve fiber (Hartline and Colman, 2007). The increased membrane resistance enables an 

increased velocity of signal propagation. With the so-called saltatory signal propagation, the 

NCV is increased from 10 m/sec up to 150 m/sec. It is proposed that electrical sealing 

through two opposed membranes is playing a crucial role in decreasing the transverse 

capacitance and proportionately speeds impulse propagation along it. It is suggested that 

the sealing can be achieved by narrowing the conductive space between adjacent axonal 

and glial membranes, which means the cytoplasmic or extracytoplasmic space (Hartline 

and Colman, 2007). As depicted in Figure 17A, Anln cKO mice exhibit a decelerated nerve 

conduction velocity of about 15% in spinal cord compared to controls. Moreover, these 

mutants display specifically myelin outfoldings due to the lack of the ANLN/septin filament. 

3D reconstruction of Anln cKO optic nerves illustrated that several axons exhibit myelin 

outfoldings (Figure 16C’). Another study estimates that if 6.5% of myelinated axons display 

myelin outfoldings of an average 10 µm length, at least half of the myelinated segments 

probably have myelin outfoldings (Snaidero et al., 2014). Other studies showed similar 

results of reduced NCV in other mouse mutants, which exhibit myelin outfoldings and lack 

the ANLN/septin filament. For example, Sept8fl/fl;CnpCre/Wt mice showed a decelerated nerve 

conduction velocity of about 20% in the spinal cord and depicted specifically myelin 

outfoldings (Patzig et al., 2016). Further, NCV measurements in mice showing more 

complex pathology (Cnpnull/null, Magnull/null, and Plpnull/null), including reduced ANLN/septin 

filament abundance and therefore also myelin outfoldings, indicated decelerated NCV in the 

spinal cord (unpublished data). In Patzig et al. (2016), it was suggested that myelin 

outfoldings impede the current flow along myelinated fibers and thereby, leading to the 

identified deceleration, keeping in mind that other unidentified secondary effects could also 

contribute to the deceleration. Moreover, it was shown that in optic nerves of PLP mutants 

the NCV is also reduced (Gutierrez et al., 1995). There it was suggested that the loosely 

packed myelin sheaths of PLP mutants lead to a functional deficit in conduction velocities 

of central fibers. The authors have shown that the measured NCV in developmental nerves 

is also reduced. This leads to the assumption that only complete myelination gives the basis 
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for normal NCV (Gutierrez et al., 1995). Keeping in mind that also other factors could have 

an influence on NCV (Wu et al., 2012, Arancibia-Carcamo et al., 2017), the nodal structure 

and density was analyzed in the presented study (Figure 17B-G). The results display no 

alterations in the nodal structure, as well as in the node density, which is associated with 

the internode length (Ford et al., 2015). Thus, according to the presented data, decelerated 

NCV may be caused by myelin outfoldings, as the nodal and internodal structure is normal. 

Hypothetically, myelin outfoldings could provoke the lack of proper insulation and reduced 

membrane resistance along the axon, due to more cytoplasm along the space where the 

myelin folds out. This would lead to a partially lower membrane resistance where an 

increased transmembrane current could take place. That would result in a regional cation 

leak out, so that less cations would be available to depolarize other parts of the membrane. 

This would mean a slowdown of signal propagation. Considering the estimation that half of 

the myelinated segments display myelin outfoldings, the presented results strengthen the 

possibility of myelin outfoldings impeding signal propagation, even though other unidentified 

secondary effects could possibly contribute to the decelerated NCV. To directly test whether 

outfoldings reduce NCV, it would be necessary to patch an axon with an outfolding and 

record NCV. It is possible to measure NCV ex vivo in optic nerves, but it would be necessary 

to identify a single axon with a myelin outfolding and directly measure its NCV. Although it 

is possible to patch single axons, the identification of a myelin outfolding is not feasible, as 

in light microscopic applications, it was not possible to identify myelin outfoldings by labeling 

myelin. Up until now, the available techniques are not feasible to record NCV from single 

axons with previously identified myelin outfoldings.  

 

5.4 Does loss of ANLN lead to altered PIP2 levels in CNS myelin? 

Several studies report that ANLN, PIP2, and septins are associated with each other (Liu et 

al., 2012, Zhang et al., 1999, Bertin et al., 2010, Joberty et al., 2001, Patzig et al., 2016). It 

was shown that PIP2 head groups bind ANLN to recruit it to the cleavage furrow in vitro (Liu 

et al., 2012). Another in vitro study reported that PIP2 recruits mammalian SEPT4 onto the 

plasma membrane (Zhang et al., 1999). Furthermore, it was shown that PIP2 mediates 

submembranous septin filament polymerization in yeast (Bertin et al., 2010). In an in vivo 

model, it was shown that lack of PTEN in oligodendrocytes results in reduced PIP2 levels. 

This leads to reduced protein abundance of septins and ANLN, including increased myelin 

outfoldings besides other pathologies (Patzig et al., 2016, Goebbels et al., 2010). So far, 

PIP2 seems to affect myelin septin assembly via ANLN. The results illustrated in Figure 21 

show reduced PIP2 levels in purified myelin of Anln cKO mice compared to controls. This 

leads to the assumption that ANLN also has a role in PIP2 stabilization, possibly by binding 

to the head groups and thereby hindering modifications of PIP2. A possible modification is 
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the conversion of PIP2 to PIP3 via PI3K. Thus, it would be interesting to analyze PIP3 levels 

in Anln cKO mice. As high levels of PIP3 induce active net growth of myelin sheaths via the 

Akt/mTOR pathway, it would be of further interest to analyze the pathway in more detail. 

One possibility would be an immunoblot analysis of purified myelin, testing the 

phosphorylation state of Akt and Erk, which are downstream effectors of PI3K.  

 

5.5 Myelin stability; a novel effector of axon diameter restriction? 

It is known that the axon diameter is influenced by several factors, e.g. radial growth of 

axons is promoted by myelination due to modulation of the phosphorylation of 

neurofilaments (NF) at internodes (Hsieh et al., 1994). The modulation leads to larger 

interfilament spacing, which coincides with an increased number of neurofilaments, 

resulting in larger axon diameters. The phosphorylation of NF-medium and NF-heavy, was 

also shown to play an important role in axonal diameter regulation (Garcia et al., 2003). 

Furthermore, it was shown that MBPnull/null (shiverer) mice, in which oligodendrocytes only 

wrap loose layers around axons, resulting in little or no compact myelin (Readhead et al., 

1987), exhibit smaller axon diameters. This reduction in axon diameters is caused by 

changes in microtubule stability and density (Kirkpatrick et al., 2001). In the illustrated 

results, it was shown that Anln cKO and Sept8fl/fl;CnpCre/Wt mice display increased axon 

diameter at 6 mo of age (Figure 22B and 23B). Interestingly, this phenotype was only 

present in combination with CNP heterozygosity. CNP was reported to prevent premature 

closure of cytoplasmic channels in CNS myelin (Snaidero et al., 2014). These channels 

could provide transport routes, for example, for metabolites into the adaxonal myelin layer 

(Nave and Werner, 2014). The result leads to the suggestion that impairment of the 

ANLN/septin filament in CNS myelin together with premature closure of cytoplasmic 

channels leads to altered axon diameters. So far, the mechanism behind the increase is 

unclear. One speculative suggestion would be that oligodendrocytes form compact myelin, 

which is stabilized by the ANLN/septin filament, around axons and thereby give a spatial 

limitation due to the stable and robust ensheathment. To test if the CNP heterozygosity 

plays a role in this hypothesis, it would be needed to analyze Sept8null/null;CnpCre/Wt mice, as 

Sept8null/null mice did not display enlarged axon diameters (Figure 23A and C). This indicates 

that the loss of the ANLN/septin filament and consequently also the loss of myelin stability 

alone does not lead to increased diameter. Further taking into account that mice lacking 

compact myelin (shiverer) show a decrease in axon diameter, although they face no spatial 

limitation through compact myelin, indicates that the regulation is much more complex. This 

coincides with the finding that the maturation of the axonal cytoskeleton is not functional in 

shiverer mice as compact myelin plays a crucial role in this maturation (Brady et al., 1999). 

Additionally, it was shown that phosphatidylinositol phosphates, including PIP2, interact with 
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neurofilaments (Kim et al., 2011), which are known to regulate axon diameter (Garcia et al., 

2003). This suggests that the identified altered PIP2 levels in Anln cKO mice (Figure 21) 

could also contribute to the observed increase in axonal diameter. To further analyze this, 

it would be interesting to analyze PIP2 levels in Sept8null/null, Sept8fl/fl;CnpCre/Wt, and CnpCre/Wt 

mice, to see if there is a correlation between enlarged axon diameters and altered PIP2 

levels. Another important analysis would include an assessment of neurofilaments in 

mutants, which display altered axon diameter, as neurofilaments are involved in axon 

diameter regulation. Taken together, the Anln cKO mouse might not be the perfect model 

to study axon diameter regulations, but may provide a new possible functionality of 

oligodendrocyte compact myelin for axons. To see whether stability provided by the 

ANLN/septin filament contributes to the axon growth via a spatial limitation, it would be 

interesting to analyze axon diameter in mice which express ANLN and septins earlier in 

development, to see if an earlier gained stability would restrict axonal growth to a certain 

extend. 
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7 Addendum 

7.1 Abstract 

Septins are a family of highly conserved filament-forming GTP-binding proteins. Some 

members of this protein family were identified to be abundant in myelin (e.g. SEPT2, 

SEPT7, SEPT8, SEPT9), in which they support long-term stability, at least in the CNS. In 

humans, mutations of the SEPT9 gene cause hereditary neuralgic amyotrophy (HNA), an 

autosomal dominant disorder, which predominantly affects the peripheral brachial plexus. 

Mice carrying a point mutation in the Sept9 gene, which is often seen in human HNA, and 

mice conditionally lacking SEPT9 or SEPT2 in Schwann cells were analyzed to possibly 

generate the first mouse model of HNA and to further investigate the biology of septins in 

vivo. Sequencing of the mutated gene region confirmed the point mutation in experimental 

animals. Immunoblots, and immunohistochemical labeling of teased fibers were used to 

analyze possible alterations in SEPT9 abundance and localization. By 

immunohistochemical labeling, septins were found to localize to paranodal segments 

adjacent to the nodes of Ranvier, the outer rim of Schmidt-Lanterman incisures, and the 

bands of Cajal. In all analyzed regions, no alterations of septin localization or abundance 

were detectable. Furthermore, Sept9R88W/Wt mice showed unaltered numbers of myelinated 

axons, as well as unaltered myelin ultrastructure in sciatic nerves at P75. Mice lacking 

SEPT2 or SEPT9 from Schwann cells were analyzed on electron microscopic level at P4, 

P14, and 6 mo of age. No signs of impaired developmental myelination or pathology were 

identifiable. According to the analyses, Sept9 or Sept2 mutant mice, as well as mice carrying 

the point mutation showed no HNA-related abnormalities. This may reflect that a second 

impact, such as nerve constriction or inflammation might be necessary to trigger the onset 

of pathology. Taken together, the investigation of mice lacking SEPT2 or SEPT9 from 

Schwann cells or carrying a point mutation provide a valuable basis for further analysis 

aiming to understand the pathology of HNA. 

 

7.2 Introduction 

7.2.1 Septins in the peripheral nervous system 

Mass spectrometry of purified myelin of sciatic nerves showed that in the peripheral nervous 

system (PNS), SEPT2, SEPT7, and SEPT11 are the most abundant septins. SEPT9 was 

found in a comparatively low abundance (Patzig et al., 2011). With immunohistochemical 

analysis of sciatic nerve teased fibers, SEPT2, SEPT7, SEPT8, SEPT9, and SEPT11 were 

detected. All of them localized to the paranodal myelin compartment (flanking the nodes of 

Ranvier) and also abaxonally in the outermost rim of Schmidt-Lanterman incisures and the 

bands of Cajal (Buser et al., 2009; Ogawa and Rasband, 2009; Patzig et al., 2011). Previous 

experiments showed that in PNS myelin SEPT2 is essential for the presence of other PNS 
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myelin septins, as mice lacking SEPT2 from Schwann cells have strongly reduced protein 

abundances of all other PNS myelin septins (unpublished data). 

 

7.2.2 Hereditary neuralgic amyotrophy 

Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder characterized 

by recurrent episodes of focal neuropathy of the brachial plexus (Meuleman et al., 2001). 

The majority of HNA cases are caused by mutations affecting the SEPT9 gene on 

chromosome 17q25, thereby a point mutation of Arginine 88 to Tryptophan (R88W) is often 

seen (Kuhlenbäumer, et al., 2005; PMID 16186812; Meulemann et al., 2001; PMID 

10602368). Owing to the lack of biopsy material and a rodent model, the pathobiology of 

HNA caused by SEPT9 mutations, has remained largely unknown at the molecular, cellular, 

and histological level. 

The onset of the disease occurs usually in the 2nd to 3rd decade, whereby a single episode 

typically starts with pain in the affected arm. Weakness and sensory disturbances, which 

develop within days after onset of the pain, are also characteristic for this phenotype. Often, 

early in an episode, prominent atrophy of the affected muscles develops. The recover 

begins weeks to month after onset and can take months to years. There are different 

degrees of recovery, which vary from moderate to excellent. The next episode then can 

affect the same limb as well as the opposite one. Recurrent episodes in the same limb can 

lead to incomplete recovery. In HNA, any part of the brachial plexus can be affected, with a 

predilection for the upper trunk which enervates the proximal upper limb muscle. All in all, 

the classical course of the disease can be described as relapsing-remitting (Chance, 2006; 

van Alfen, 2011). 

 

7.3 Results 

7.3.1 Analysis of Sept9R88W/Wt mice 

7.3.1.1 Point mutation has no effect on septin protein abundances 

As SEPT9 mutations are often seen in HNA patients, especially the R88W point mutation, 

Sept9R88W/Wt mice were analyzed at P75. When breeding heterozygous with heterozygous 

mice, it was noticed that no homozygous mice were born (Addendum Figure 1A) indicating 

that carrying the point mutation on both Sept9 alleles is embryonic lethal. Consequently, 

only Sept9R88W/Wt mice could have been analyzed. In a next step, the abundance of SEPT9 

in sciatic nerve lysates at P75 was analyzed on immunoblot level. In Addendum Figure 1B 

it is displayed, that the point mutation has no effect on the abundance of SEPT9. In the PNS 

the essential septin to form a filament is SEPT2. Accordingly, the abundance of SEPT2 was 

analyzed and revealed no difference between controls (Sept9Wt/Wt) and Sept9R88W/Wt mice. 
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Taken together, the results suggest that the point mutation does not interfere with the 

presence of septins in PNS myelin. 

 

Addendum Figure 1: Offspring analysis and abundance of SEPT9 and SEPT2 in Sept9R88W/Wt mice. (A) 

Offspring analysis of breedings with Sept9R88W/Wt males and Sept9R88W/Wt females, depicts that no homozygous 

animals were born (Statistical expectation: 25% WT; 50% heterozygous; 25% homozygous). In total, 121 pups 

were analyzed. (B) Immunoblot analysis of sciatic nerve lysates at P75 from control (Sept9Wt/Wt) and 

Sept9R88W/Wt mice. SEPT9 and SEPT2 are not altered in Sept9R88W/Wt mice. 

 

7.3.1.2 No changes in localization of SEPT9 

To assess whether the R88W point mutation has an effect on the localization of SEPT9, 

immunohistochemical stainings were performed on teased fibers of sciatic nerves at P75. 

There was no difference in SEPT9 localization detectable between Sept9Wt/Wt and 

Sept9R88W/Wt mice (Addendum Figure 2). In both genotypes, SEPT9 is located at nodes of 

Ranvier, bands of Cajal, and Schmidt-Lanterman incisures (SLI).  

The results suggest that the point mutation has no effect on the localization of SEPT9 in 

sciatic nerves. 

 

Addendum Figure 2: Localization of SEPT9 in sciatic nerves. Immunolabeling validates normal distribution 

and localization of SEPT9 (red) in teased fibers of sciatic nerves at P75. MAG (green) is stained as control, 

labeling the abaxonal and adaxonal myelin and SLIs. Labeling of SEPT9 reveals localization to nodes of 
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Ranvier, abaxonal myelin, bands of Cajal, and SLIs. Images are representative of three independent 

experiments. 

 

7.3.1.3 Unaltered nerve structure 

To analyze the effect of the point mutation on the PNS, sciatic nerves were analyzed on 

semi-thin sections. Images were taken with a 100x oil objective of the Zeiss Axio Imager Z1 

and stitched using the ZEN 2011 software (Addendum Figure 3A). Reconstruction reveals 

normal sciatic nerve structure at P75. Squares highlight respective regions within the sciatic 

nerves and indicate normal myelination. To further analyze whether the point mutation has 

an impact on myelination, myelinated axons were quantified and normalized to the nerve 

area (Addendum Figure 3B). The evaluation reveals normal numbers of myelinated axons 

within sciatic nerves of Sept9R88W/Wt mice compared to controls at P75.  

The results indicate that the point mutation has no impact on the ability of Schwann cells to 

myelinate axons and therefore is also not altering the overall nerve structure. 

 

Addendum Figure 3: Nerve structure and myelinated axons. (A) Light microscopic images of Sept9Wt/Wt and 

Sept9R88W/Wt sciatic nerves at P75. Squares highlight respective region. Images depict no sign of structural 

alterations in Sept9R88W/Wt mice. Images are representative for n=4 animals per genotype. (B) Quantitative 

evaluation of all myelinated axons of light microscopic images of sciatic nerves at P75. Quantification reveals 

normal numbers of myelinated axons normalized to nerve area in Sept9R88W/Wt mice compared to controls. Mean 

+/ SEM. n=4 animals per genotype; not significant according to two-tailed unpaired t-test (p= 0.3311). 
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7.3.1.4 Normal myelin ultrastructure 

Sciatic nerves were also analyzed on electron microscopic level, to identify possible effects 

of the R88W point mutation on myelin ultrastructure or Remak bundle appearance. Electron 

micrographs (Addendum Figure 4) reveal normal myelinated axons and no alterations in 

myelin ultrastructure at P75 in Sept9R88W/Wt sciatic nerves. Additionally, the axons show no 

signs of pathology. Moreover, the images illustrate a normal size of Remak bundles. Within 

the Remak bundles, no alterations in axon numbers and axon size were found.  

To sum these findings up, Sept9R88W/Wt mice are able to form myelin in a normal state as 

control animals. There were no obvious ultrastructural changes detectable in Schwann cells 

of mice carrying the point mutation. Neither in myelinating Schwann cells, nor in Remak 

bundles. 

 

Addendum Figure 4: Myelin ultrastructure. Electron micrographs of control and Sept9R88W/Wt sciatic nerves 

at P75. Images illustrate normal myelination and healthy axons for both, controls (Sept9Wt/Wt) and Sept9R88W/Wt 

mice. Remak bundles appear normal in axon numbers and axon size. Images are representative for n=4 animals 

per genotype. 

 

7.3.2 Analysis of Sept9fl/fl*Dhhc+ and Sept2fl/fl*Dhhc+ mice 

7.3.2.1 No alterations in axon sorting at P4 

To analyze the role of SEPT9 specifically for Schwann cells, Sept9fl/fl*Dhhc+ mice were 

analyzed. Additionally, Sept2fl/fl*Dhhc+ mice were analyzed to identify the effect of the septin 

filament for Schwann cells. In Addendum Figure 5A, myelinated axons were analyzed at P4 

in both, Sept9fl/fl*Dhhc+ and Sept2fl/fl*Dhhc+ sciatic nerves. The electron micrograph 

illustrates exemplary myelinated axons, which were considered for quantification. Axons 

that were enwrapped by at least one complete layer of compact myelin were considered 

myelinated. The quantification shows no difference in number of myelinated axons 



Addendum 

107 
 

normalized to the analyzed area, neither by comparing Sept9fl/fl*Dhhc+ sciatic nerves to 

controls, nor comparing Sept2fl/fl*Dhhc+ sciatic nerves to controls. As also non-myelinating 

Schwann cells lose the targeted gene upon recombination with Dhh-Cre, the impact on axon 

sorting out of Remak bundles was analyzed in Sept9fl/fl*Dhhc+ and Sept2fl/fl*Dhhc+ sciatic 

nerves (Addendum Figure 5B). The electron micrograph illustrates exemplary out-sorted 

axons, which were considered for quantification. Axons that were enwrapped by a Schwann 

cell in a one to one ratio, and axons that were partially enwrapped by compact myelin, were 

considered out-sorted. The quantification reveals no difference in number of out-sorted 

axons normalized to the analyzed area, between mutants and their respective controls. 

The results indicate that both, SEPT9 and the presence of all septins, are not required to 

properly myelinate and out-sort axons in young mice.  

 

 

Addendum Figure 5: Sorting and myelination in Sept9fl/fl*Dhhc+ and Sept2fl/fl*Dhhc+ mice at P4. (A) 

Quantitative evaluation of myelinated axons of Sept9fl/fl*Dhhc+ and Sept2fl/fl*Dhhc+ sciatic nerves at P4. Electron 

micrograph illustrates examples of quantified myelinated axons. Mean +/ SEM. n= 3-4 animals per genotype; 

not significant according to two-tailed unpaired t-test. (B) Quantitative evaluation of out-sorted axons of 

Sept9fl/fl*Dhhc+ and Sept2fl/fl*Dhhc+ sciatic nerves at P4. Electron micrograph illustrates examples of quantified 

out-sorted axons. Mean +/ SEM. n= 3-4 animals per genotype; not significant according to two-tailed unpaired 

t-test. 
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7.3.2.2 Number of myelinated axons are unchanged at P14 

The myelination status at P14 was analyzed in Sept9fl/fl*Dhhc+ and Sept2fl/fl*Dhhc+ sciatic 

nerves (Addendum Figure 6) to see whether the loss of SEPT9 or all septins lead to any 

impairments. All myelinated axons in sciatic nerves were analyzed and normalized to the 

respective nerve size. The upper row of Addendum Figure 6 depicts the quantification for 

SEPT9 conditional mutants and a light microscopic image of a mutant nerve. The 

highlighted square indicates an area of higher magnification of the sciatic nerve semi-thin 

section, which reveals normal appearing myelinated axons. The quantification of myelinated 

axons per µm² shows no difference between Sept9fl/fl*Dhhc+ mice and their respective 

controls. The lower row reveals the quantification for SEPT2 conditional mutants and a light 

microscopic image of a mutant nerve. The highlighted square indicates an area of higher 

magnification of the sciatic nerve semi-thin section, depicting normal appearing myelinated 

axons. The quantification of myelinated axons per µm² displays no difference between 

Sept2fl/fl*Dhhc+ mice and their respective controls. 

The results suggest that neither the loss of SEPT9, nor the loss of all Schwann cell septins 

lead to impaired myelination at P14. Moreover, it is indicated that septins in the PNS have 

no effect on the developmental myelination. 

 

 

Addendum Figure 6: Myelinated axons at P14. Quantitative evaluation of myelinated axons of Sept9fl/fl*Dhhc+ 
and Sept2fl/fl*Dhhc+ sciatic nerves at P14. Light micrograph illustrates example of a mutant sciatic nerve 
(Sept9fl/fl*Dhhc+ upper row; Sept2fl/fl*Dhhc+ lower row) and a magnified image. Mean +/ SEM. n= 2-3 animals 

per genotype; not significant according to two-tailed unpaired t-test. 
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7.3.2.3 Normal myelination state at 6 mo of age 

To assess the myelination status in adult Sept9fl/fl*Dhhc+ and Sept2fl/fl*Dhhc+ mice, the g-

ratio was analyzed at 6 mo of age in sciatic nerves (Addendum Figure 7). The quantitative 

analysis reveals no differences in g-ratio between Sept9fl/fl*Dhhc+, Sept2fl/fl*Dhhc+, and 

their respective controls, suggesting that the loss of SEPT9 or PNS myelin septins have no 

effect on the maintenance of myelin. 

 

 

Addendum Figure 7: g-ratio in Sept9fl/fl*Dhhc+ and Sept2fl/fl*Dhhc+ mice. g-ratio analysis of electron 
micrographs of sciatic nerves at 6 mo of age indicates normal myelin sheath thickness in Sept9fl/fl*Dhhc+ and 
Sept2fl/fl*Dhhc+ mice. n=4 animals per genotype. 

 

7.3.2.4 No changes in axon diameters Sept9fl/fl*Dhhc+ mice 

As it was shown that septin deficient mice depict increased axon diameters in the CNS, the 

axon diameter frequency distribution in Sept9fl/fl*Dhhc+ mice was analyzed (Addendum 

Figure 8). For the analysis, the brachial plexus was chosen, because this nerve is mostly 

affected in human patients. No difference in the axon diameter distribution were found 

between controls and Sept9fl/fl*Dhhc+ mice. This was also indicated by the analysis of all 

axon diameters with the Kolmogorov Smirnov test. 

To summarize these results, loss of SEPT9 in Schwann cells does not lead to alterations of 

axon diameters, which suggests that the loss of SEPT9 does not lead to alterations in axon 

diameter in the PNS. 
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Addendum Figure 8: Axon diameter frequency distribution in Sept9fl/fl*Dhhc+ mice. Frequency distribution 

analysis of myelinated axons in the brachial plexus of electron micrographs at 6 mo of age indicate no shift in 
axon diameter in Sept9fl/fl*Dhhc+ mice. n=4 animals per genotype. Not significant according to Kolmogorov 
Smirnov test (p= 0.1746).  

 

7.4 Perspective 

The results of the performed experiment identified no significant difference between control 

and the different mutant mice. In previous studies, Sept2 and Sept9 cKO mice were 

analyzed more broadly (unpublished data). This analysis showed no difference in both 

mutants compared to controls in several different analysis including immunohistochemical 

labeling, behavioral tasks measuring motor and sensory capabilities, and assessment of 

myelin ultrastructure (unpublished data). If the emergence of HNA is related to external 

stress is not known. Thus, it would be interesting to challenge the three different mutants 

for instance by nerve compression. Similar aspects were described for other neuropathies, 

where conduction blocks led to the formation of outfoldings (Bai et al., 2010). It is still under 

debate whether inflammation leads to the observed phenotype in HNA patients. To analyze 

this aspect, it would be interesting to induce inflammation in the PNS to activate the immune 

system (Wang Ip et al., 2006). So far, it is known that also partial gene duplications lead to 

HNA (Kuhlenbaumer et al., 2005). Therefore, mice overexpressing SEPT9, wild type or 

mutated, might be necessary to gain a genuine model for the disease.  

Although lacking deeper knowledge on the disease HNA, it appears that septins seem to 

have different roles in CNS and PNS myelin. Although oligodendrocytes and Schwann cells 

form compact myelin, it seems that the mechanisms of maintaining functional compact 

myelin are different. It is known that the protein composition is different in oligodendrocytes 

and Schwann cells (Nave and Werner, 2014), as these are obviously different cell types. 

Nevertheless, it is remarkable that septins have a similar distribution in both cell types, but 

seem to have different functions. 
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