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ABSTRACT
We develop a dynamical theory for the origin of nuclear rings in barred galaxies. In analogy
with the standard theory of accretion discs, our theory is based on shear viscous forces among
nested annuli of gas. However, the fact that gas follows non-circular orbits in an external
barred potential has profound consequences: it creates a region of reverse shear in which
it is energetically favourable to form a stable ring that does not spread despite dissipation.
Our theory allows us to approximately predict the size of the ring given the underlying
gravitational potential. The size of the ring is loosely related to the location of the Inner
Lindblad Resonance in the epicyclic approximation, but the predicted location is more accurate
and is also valid for strongly barred potentials. By comparing analytical predictions with the
results of hydrodynamical simulations, we find that our theory provides a viable mechanism
for ring formation if the effective sound speed of the gas is low (cs � 1 km s−1), but that
nuclear spirals/shocks created by pressure destroy the ring when the sound speed is high
(cs � 10 km s−1). We conclude that whether this mechanism for ring formation is relevant for
real galaxies ultimately depends on the effective equation of state of the interstellar medium
(ISM). Promising confirmation comes from simulations in which the ISM is modelled using
state-of-the-art cooling functions coupled to live chemical networks, but more tests are needed
regarding the role of turbulence driven by stellar feedback. If the mechanism is relevant in real
galaxies, it could provide a powerful tool to constrain the gravitational potential, in particular
the bar pattern speed.

Key words: ISM: kinematics and dynamics – galaxies: kinematics and dynamics – galaxies:
nuclei.

1 IN T RO D U C T I O N

Rings of gas and stars are a common morphological feature of
galaxies (e.g. Buta & Combes 1996; Knapen 2005; Comerón et al.
2010; Comerón 2013; Buta 2017a,b). They are most often associated
with a stellar bar and in the parlance of galaxy morphology are
classified into three main types, primarily according to their size:
nuclear rings, inner rings, and outer rings.

Nuclear rings are the smallest type of ring and are commonly
found at the centre of barred galaxies. They are usually sites of
intense star formation. The radii of nuclear rings range from a few

� E-mail: mattia.sormani@alumni.sns.it

tens of parsec to ∼3 kpc (e.g. Knapen 2005; Comerón et al. 2010;
Comerón 2013). Our Galaxy is likely to have such a ring with
radius �150 pc, which corresponds to the Central Molecular Zone
(e.g. Liszt 2009; Molinari et al. 2011; Kruijssen, Dale & Longmore
2015; Henshaw et al. 2016; Sormani et al. 2018). Nuclear rings are a
gas reservoir for the accretion disc that surrounds the supermassive
black hole that is present at the centre of most galaxies, although it
is not clear how the gas migrates from the nuclear ring (r ∼ 100 pc)
down to the accretion discs at much smaller radii (r ∼ 10−3pc; see
e.g. Phinney 1994; Combes 2001 and also Li, Sellwood & Shen
2017).

It is currently unclear what exactly determines the size of nuclear
rings (e.g. van de Ven & Chang 2009; Comerón et al. 2010). It is
clear that there must be some connection between the size of the ring
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and the Inner Lindblad Resonance (ILR) of the underlying potential
(e.g. Buta & Combes 1996), and that gas in the ring must flow on a
family of non-circular orbits mildly elongated perpendicular to the
bar called x2 orbits (e.g. Regan & Teuben 2003; Maciejewski 2004;
Kim et al. 2012; Sormani, Binney & Magorrian 2015a). These two
facts are not contradictory, since the size and extent of the x2 orbital
family is correlated to the location of the ILR(s) (e.g. Contopoulos
& Grosbol 1989; Athanassoula 1992a). Virtually all modern ex-
planations for the formation of rings broadly agree with these two
statements, but they differ in the details of how the associations are
made.

The most widely accepted theory, which we shall call resonant
theory, suggests that the reason why nuclear rings are associated
with the ILR is that a spiral pattern is induced by the bar such that it
experiences net torques from the barred potential that change sign
at each resonance (e.g. Combes 1988, 1996; Buta & Combes 1996).
Thus, as Buta & Combes (1996) describe it, ‘rings are formed by
gas accumulation at the Lindblad resonances, under the continuous
action of gravity torques from the bar pattern’. However, the concept
of the ILR is well defined only for a weak bar. One may extend it
to the case of a strong bar based on the x2 orbital family (see for
example the discussion in section 3.2 of Athanassoula 1992a), but
then the x2 orbits are in a sense all ‘resonant’, and the resonant
theory is unable to predict which orbits will be populated by gas.

The sound speed of the gas cs is an important parameter of
the flow. By running 2D hydrodynamical simulations in an ex-
ternally imposed barred potential, Kim et al. (2012; see also Patsis
& Athanassoula 2000) find that the size and morphology of the
nuclear region depends on cs, even if the underlying gravitational
potential and therefore the ILR position stays exactly the same. It
is not clear how this finding can be reconciled with the resonant
theory.

There is also evidence that viscosity plays a key role in the for-
mation of rings. This is indicated by the fact that simulations using
grid codes, which model the gas as a continuous isothermal fluid
and typically do not include explicit viscous terms, can produce
a variety of morphologies ranging from nuclear rings to nuclear
spirals (e.g. Maciejewski 2004; Kim et al. 2012; Li, Shen & Kim
2015; Sormani et al. 2015a; Sormani, Binney & Magorrian 2015b;
Fragkoudi, Athanassoula & Bosma 2017), while simulations that
use the sticky-particle technique, which models the gas as inelas-
tically colliding test particles and therefore contain some explicit
amount of dissipation, almost invariably produce nuclear rings, and
almost never nuclear spirals (e.g. Schwarz 1981; Combes & Gerin
1985; Byrd et al. 1994; Jenkins & Binney 1994; Rautiainen & Salo
2000; Rautiainen, Salo & Laurikainen 2002; Rautiainen, Salo &
Buta 2004; Rodriguez-Fernandez & Combes 2008). Thus viscos-
ity seems to favour the development of rings, and how this can be
reconciled with the resonant theory is also unclear.1

1According to the resonant theory, the key to ring formation is the generation
of a spiral pattern on which gravity torques can act. Since as we discuss below
in Section 4.2 (see also Sormani et al. 2015b) viscosity does not play a major
role in the generation of the spiral pattern, according to the resonant theory
viscosity should play little role in the formation of rings. Indeed, the spiral
pattern is generated by pressure, not viscosity. This poses another puzzling
question: if the idea underlying the resonant theory is correct, we would
expect spirals created by pressure to always eventually develop into rings
because of gravity torques. Yet, simulations show that this often does not
happen, with the gas maintaining a quasi-steady nuclear spiral pattern that
does not develop into rings (e.g. Kim et al. 2012; Li et al. 2015).

Hence, two key parameters are the sound speed of the gas and the
amount of viscosity. In order to understand the formation of rings
we need to understand exactly what role they play. Unfortunately,
to the best of our knowledge there are no studies that explore the
effects of viscosity on gas flowing on non-circular orbits in a non-
axisymmetric galactic potential,2 with the exception of the sticky-
particles simulations that, however, are difficult to analyse because
the viscosity they include is not the same as the classic Navier–
Stokes viscosity.

In this paper, we aim to study the effects of viscosity and pressure
on a disc of gas flowing on non-circular orbits in an externally im-
posed barred potential. We find that viscosity has consequences that
can be significantly different from the circular case, which may be
related to the origin of nuclear rings. We also aim to understand the
interplay between viscosity and pressure, the latter being the other
key parameter of the flow. Finally, we want to investigate whether
the ring size can be predicted more precisely, i.e. beyond establish-
ing a loose connection between the ring size and the location of the
ILR.

The paper is structured as follows. In Section 2 we discuss a
simple effect based on the viscous theory of accretion discs that is
apparently only of academic interest, but will turn out to be a useful
toy model to understand the mechanism discussed in Section 3. In
Section 3 we discuss the key mechanism that forms the basis of our
picture for the formation of nuclear rings. We show that viscosity
can create a trapping region where it is energetically favourable to
form a ring. However, in common with viscous accretion disc theory
in its simplest form, throughout this section we make one critical
assumption: we neglect pressure. Hence in Sections 4.1 and 4.2
we compare the analytical predictions of Section 3 with the results
of idealized isothermal simulations of a disc of gas flowing in an
externally imposed barred potential that include various amounts
of explicit viscosity and pressure. In Section 4.3 we compare with
a much more realistic simulation of the entire bar region of the
Milky Way that models the interstellar medium (ISM) using state-
of-the-art cooling functions and chemical networks rather than a
simple isothermal approximation. In Section 5 we discuss (i) our
results and approximations, (ii) what have we learned about the
effects of viscosity and pressure, (iii) relation to other works, and
(iv) relevance for real galaxies and possible applications. Section 6
sums up.

2 A C O N S I D E R AT I O N FRO M TH E
E L E M E N TA RY T H E O RY O F AC C R E T I O N
DI SCS

In the elementary theory of accretion discs we learn that, as a
consequence of viscous torques between adjacent annuli of gas,
mass flows inwards and angular momentum flows outwards (e.g.
Shakura & Sunyaev 1973; Lynden-Bell & Pringle 1974; Pringle
1981). This situation is schematically depicted in the top panel of
Fig. 1: the inner ring rotates faster than the outer ring, thus friction
between the two will try to slow down the inner ring and speed up
the outer ring. Angular momentum is transferred from the inner ring
to the outer ring. So, if the inner ring loses angular momentum, but
is forced to remain on a circular orbit, it must move inwards to the
radius corresponding to its new angular momentum, which increases

2A similar problem has been studied extensively in the context of planetary
ring dynamics (see Section 5.5.2).
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4 M. C. Sormani et al.

Figure 1. When d�/dR < 0, as in a Kepler potential, the elementary theory
of viscous accretion discs tells us that a ring of gas spreads in time. In a
hypothetical situation where d�/dR > 0, the ring would tighten in time.
There is no accretion in this case and one gets a ring-forming disc.

its circular velocity.3 The outer ring moves outwards, decreasing
its circular velocity. The net result is that the ring spreads. The
equations for the time evolution of the surface density �(R, t) have
much in common with the heat (diffusion) equation.

The previous result relies on the fundamental assumption that
d�/dR < 0, i.e. that the angular velocity �(R) is a decreasing
function of radius. This is true for the Kepler potential and in all
practical cases in galaxies. However, let us ignore this for a moment
and suppose that d�/dR > 0. What would happen in this case? The
situation is depicted in the lower panel of Fig. 1. The inner ring
rotates slower than the outer ring, thus friction between the two will
try to speed up the inner ring and slow down the outer ring. Angular
momentum is transferred from the outer ring to the inner ring. So,
if everything is forced to remain on a circular orbit, the inner ring
must move outwards, and the outer ring moves inwards. Therefore,
we reach the conclusion that if d�/dR > 0, a ring of finite width
becomes tighter and tighter. There is no accretion in this case –
instead, a disc with some density fluctuations in the initial surface
density will break up into rings. The equations for the time evolution
of the surface density �(R, t) would look like the heat equation, but
with heat flowing from cold to hot!4

These considerations seem only of academic interest, since
d�/dR > 0 never actually happens in the rotation curves of real
galaxies. However, we will see that this ‘reversed shear’ disc serves
as a useful toy model to understand what actually happens when
gas follows non-circular orbits in a barred potential. The same idea
has also been successfully applied to explain the confinement and

3This is the ‘donkey effect’, see Lynden-Bell & Kalnajs (1972) or Box 3.3
in Binney & Tremaine (2008).
4Indeed, the analysis of Lynden-Bell & Pringle (1974) – that shows that the
most energetically favourable situation is reached when most of the gas is
driven to the centre while all angular momentum has been transported to
infinity by an infinitesimal amount of mass – is not valid in the case d�/dR
> 0 (see their last equation on page 606 and related remarks).

Figure 2. Top panel: the circular velocity curve vcirc(R) = √
Rd�0/dR

(full black line) and the quadrupole �2(R) (dashed line) of the potential
described in Section 3. Bottom panel: the curves � and � ± k0/2, where
k2

0 = (2�/R)d(�R2)/dR is the epicyclic frequency. The red dashed line
indicates the value of the bar pattern speed. The ILR is located at the
intersection between the horizontal �p line and the � − k0/2 curve.

narrow edges of rings in the context of planetary ring dynamics (see
Section 5.5.2).

3 A M E C H A N I S M F O R TH E F O R M AT I O N O F
N U C L E A R R I N G S

Our starting point is the well known fact that gas flowing in the
central regions of a barred potential does not follow circular orbits,
but a family of closed orbits elongated perpendicular to the bar
called x2 orbits (e.g. Contopoulos & Grosbol 1989; Sormani et al.
2015a).

As a concrete example, let us consider a simple analytical barred
potential of the following form:

�(R, θ) = �0(R) + �2(R) cos(2θ ), (1)

where R, θ are standard polar coordinates. For the axisymmetric
part we take a simple logarithmic potential:

�0(R) = v2
0

2
log(R2 + R2

c ), (2)

where v0 = 220 km s−1 and Rc = 0.05 kpc. For the quadrupole �2

we adopt the same function that Sormani, Binney & Magorrian
(2015c) used to simulate the gas flow in model Milky Way galaxies,
which is described in detail in Appendix A. The potential rigidly ro-
tates with a constant pattern speed of �p = 40 km s−1 kpc−1. Fig. 2
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A mechanism for the origin of nuclear rings 5

plots the circular velocity curve, the quadrupole, and the resonance
diagram in the epicyclic approximation.

The left-hand panel of Fig. 3 shows x2 orbits for this potential.
These illustrate some fairly general characteristics of the x2 orbital
family. Orbits become more and more elongated as we move to
larger values of the semimajor axis a. The x2 family has a finite radial
extent, and there are no x2 orbits beyond a maximum value of the
semimajor axis. This puts an obvious upper limit on the maximum
size of the ring, i.e. it must be less than or equal to the size of the
largest x2 orbit, which for this particular potential is amax � 1.5 kpc.
Note that the ILR is at RILR � 1.6 kpc (see intersection of � − k0/2
curve and �p in Fig. 2).

Imagine constructing a steady state configuration of gas flowing
on such orbits. To do that, consider a disc of gas comprised by nested
annuli, each annulus covering the region between an x2 orbit and an
adjacent one. Ignoring pressure and viscous forces, a steady state
can be constructed by taking the surface density in each annulus
to be inversely proportional to the speed along the orbit v and the
width of the annulus db, that is

ρannulus = α

vdb
, (3)

where α is a constant that can be chosen independently for each
annulus, and determines the mass of the annulus.

Note that this construction is possible only for orbits with semi-
major axis a � 1.35 kpc (green and orange in Fig. 3): orbits with
semimajor axis greater than this value (shown in grey) cross adja-
cent orbits, so nested annuli cannot be constructed. Therefore, gas
on these orbits would shock and plunge onto inner orbits. We shall
call orbits in the grey area the ‘forbidden orbits’.

In the absence of pressure and viscous forces, steady states con-
structed this way will survive forever. What happens if we introduce
some small viscosity, so that adjacent annuli can exert torques on
each other, like they do in accretion discs? Let us calculate the
torque that an annulus exerts on an adjacent one. Viscosity creates
forces between layers of fluid that move relative to each other. The
viscous force per unit length and unit surface density acting on an
orbit contour can be written as

fi = njσij , (4)

where n̂ is the normal to the contour (see Fig. 4) and

σij = ν

(
∂ivj + ∂j vi − 2

3
δij (∇ · v)

)
(5)

is the viscous stress tensor, where ν is the coefficient of kinematic
viscosity with dimensions [ν] = length2 × time−1. The torque is
the cross-product of the radius and the force. Therefore, the torque
per unit length and unit surface density applied to the contour is

k = r × f, (6)

where r is the radial vector from the centre, and since our problem
is 2D we can write k = k ẑ. Equation (6) gives the torque on a
contour. It can be seen as the flux of angular momentum through
the contour. To find the net torque acting over a region bounded by
a closed contour we need to integrate equation (6) over the contour.

For circular orbits equation (6) reduces to

kcirc = −νR2

(
d�

dR

)
. (7)

Thus we see that regions of ‘normal shear’ (d�/dR < 0), in which
angular momentum is flowing outwards, correspond to kcirc > 0,
while regions of ‘reversed shear’ (d�/dR > 0), in which angular

momentum is flowing inwards, correspond to kcirc < 0. This corre-
spondence between the sign of k and the direction of the angular
momentum flux remains true also in the non-circular case. Thus,
regions of k < 0 are regions of ‘reversed shear’.

The top right-hand panel in Fig. 3 plots the quantity k along the
x2 orbits as a function of the polar angle θ . For orbits in the green
region, k > 0 everywhere. This region behaves like a ‘normal’
accretion disc with d�/dR < 0. Orange orbits instead have portions
around θ = 0 and θ = π (which correspond to the x axis) where k
< 0. These are portions of reversed shear where an inner orbit tries
to slow down an outer orbit, as in the circular case with d�/dR >

0. The reversed shear portions become larger as we move to outer
orbits, and eventually the value of k diverges on the x axis as we
enter the ‘forbidden region’ (grey orbits). This suggests that some
orbits within the orange region will be unstable for the formation of
rings, in analogy with the considerations in Section 2. A ring of gas
flowing on these orbits would survive without spreading in time.

Intuitively, the reversal as we go from the y to the x axis happens
for the following reason. Consider two adjacent orbits in the orange
region. At the point where they intercept the y axis, the angular
velocity of the outer one is smaller than the angular velocity of
the inner one, as in a normal accretion disc. However, because the
elongation of the orbits increases as we move outwards, the outer
orbit reduces its distance to the centre more than the inner orbit
does as they approach the x axis. The greater loss of gravitational
potential energy of the outer orbit boosts its angular velocity and
makes it greater than the angular velocity of the inner orbit as they
cross the x axis, thus effectively producing a viscous force that tries
to increase the velocity of the inner orbit, mimicking what would
happen in the circular case for d�/dR > 0.

The above considerations lead to the following conclusions:

(i) The fact that x2 orbits are non-circular implies that there are
regions of ‘reversed shear’ (orange in Fig. 3).

(ii) It is likely that this leads to the existence of regions that are
unstable for the formation of rings and where a ring could survive
without spreading in time despite dissipation.

3.1 Predicting the size of the ring

In the last section we have argued that regions which are unstable
for the formation of rings must be contained within the ‘reversed
shear’ region (orange in Fig. 3), which is defined as the region where
some reverse shear is present along x2 orbits. This gives a possible
range where a ring may form. However, it is unlikely that rings
can form throughout the whole orange region, because the ‘reverse
shear’ needs not only to be present, but also to be dominant. Thus,
it is more likely that rings will form only in a subregion within
the orange region. Can we be more precise and narrow down this
subregion, so as to predict more precisely where a ring should form?

The considerations of the previous section only apply locally
along an orbit. But along the same x2 orbit, there can be both portions
of normal and reversed shear. To determine the average behaviour
of the gas and whether the net transport of angular momentum is
directed outwards or inwards, one needs to integrate k along a full
orbit contour, i.e. to calculate

K =
∫

ρk dl , (8)

where dl is the length of the element of the contour (see Fig. 4).
Since we are in two dimensions we can write K = K ẑ. The quantity
K can be thought of as the flux of angular momentum through the
contour defined by an entire orbit. We use the convention that K > 0
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6 M. C. Sormani et al.

Figure 3. Left-hand panel: x2 orbits calculated in the barred potential described in Section 3. The bar major axis is horizontal. Green indicates orbits in which
shear is always as in a ‘normal’ accretion disc, while orange indicates orbits in which portions of ‘reversed shear’ are present. Grey indicates ‘forbidden’ orbits
(see text). Top-middle panel: modulus of the velocity calculated in a frame rotating at �p for the same orbits shown in the left-hand panel. Bottom-middle
panel: gravitational potential along the orbits. Top right-hand panel: the value of k along orbits, i.e. the torque per unit length and per unit surface density that
is exerted on orbit contours (see equation 6). Units are normalized so that ν = 1, and are [k] = 100 km s−1. Bottom right-hand panel: values of k along the
minor and major axis as a function of the semimajor axis of the orbits. When the full line is negative, a portion of the orbit with reversed shear exists.

Figure 4. Schematic diagram showing a portion of two adjacent orbits.

means angular momentum flux is directed outwards. Therefore, the
difference δK = K(a) − K(a + da) gives the net angular momentum
gained by the annulus comprised by the orbits with semimajor axis
a and a + da. When K is increasing (decreasing), the annulus loses
(gains) angular momentum. Therefore, where K is increasing (de-
creasing) matter moves inwards (outwards). Hence, the curve K(a)
potentially contains interesting information about locations where
a ring could form. However, as we shall now see, to complicate
things is the fact that K depends on ρ, as well on the velocity field
v.

The solid line in Fig. 5 plots the curve K(a) calculated under the
following assumptions:

(i) The velocity field is exactly that of x2 orbits.
(ii) ν = constant.

Figure 5. Full black line: the flux of angular momentum through orbit
contours as a function of the semimajor axis (see equation 8). Black dashed
line: the flux of angular momentum calculated taking into account only the
force tangential to x2 orbits and neglecting the component perpendicular to
them (see equation 9). Both K curves are calculated under the assumption
that ν = constant and ρ = constant along the y axis. Units are normalized
such that ρ = ν = 1 and are [K] = 100 km s−1 kpc. Blue dashed line: the
angular momentum per unit mass of an infinitely thin annulus comprised
between two x2 orbits, defined as L = ∫

(v × r)dm/
∫

dm where dm is a
mass element along the annulus and v is the velocity in an inertial frame, as
a function of its semimajor axis. Units are [L] = 100 km s−1 kpc.

(iii) The density distribution is of the type described by equa-
tion (3) with the mass scaling (i.e. the values of α) chosen such that
ρ = constant along the y axis.
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A mechanism for the origin of nuclear rings 7

From this figure we infer that if a disc is set up with this initial
configuration, material in the region where dK/da > 0 will move in-
wards, while material where dK/da < 0 will move outwards. Hence,
we expect a gap to open approximately between the green and or-
ange region, and a ring to form somewhere in the orange region.
However, these considerations only apply at the initial instant. It
is not easy to determine the subsequent development of the K(a)
curve in detail because (i) the density distribution will change, (ii)
viscous (and pressure, if present) forces will deform the orbits, so
that the velocity field will deviate from that of x2 orbits. Both these
facts will affect the curve K(a).

While a redistribution of ρ changes the shape of the curve K(a),
the point K = 0 seems of particular significance. It is clear from
the definition (8) that this point must remain fixed if the density is
redistributed while being forced to remain a steady state of the type
described by (3). Under this assumption, also the regions where the
curve K(a) is positive (negative) do not change. Hence, we must
always have dK/da < 0 at the point where K = 0 and we expect
an accumulation of mass just outside the K = 0 orbit. Thus we
might expect that a ring should form with approximately the size
and shape of the orbit with semimajor axis aring such that K(aring) =
0.

However, the numerical experiments that we have performed
show that this usually overestimates the size of the ring. The dis-
crepancy is due to the fact that in the presence of viscous and
pressure forces, even in the most controlled and idealized situations
it is not exactly true that the density remains exactly of the type
described by (3) and that the velocity remains exactly that of x2

orbits.
Numerical simulations suggest that a related quantity that seems

to do a better job in predicting the size of the ring is

K‖ =
∫

ρk‖ dl , (9)

where k‖ = r × f‖ is the torque calculated using only the component
of the viscous force that is parallel to the x2 orbits and neglecting
the component perpendicular to the orbit, i.e.

f‖ = (
f · t̂

)
t̂. (10)

See Fig. 4 for the definition of t̂. The dashed black line in Fig. 5
shows K� for comparison with K. Numerical simulations suggest
that a ring forms where K� = 0. Note that in the circular case
k = k‖, since the force perpendicular to orbits is directed radially
and produces no torque. Note also that in the non-circular case, f
depends on the factor 2/3 on the right side of (5), which is related
to the ratio of shear to bulk viscosity, while f‖ is independent of this
value.

What is the justification for neglecting the component of the force
perpendicular to the orbits? This component acts in the direction
perpendicular to the orbits, so it works by pushing the contours of the
orbits to deform them. This force does not try to ‘speed up’ or ‘slow
down’ orbits, and does not correspond to our intuitive intuition of a
viscous force that is related to layers of fluid sliding relative to each
other. Thus it may be that this component acts, in essence, as some
sort of pressure, and only causes a slight readjustment in the shape
of the orbit until it becomes unimportant. This is speculative and
ultimately based on the empirical fact that based on our numerical
experiments the location K� = 0 seems to be a good predictor in
predicting where a ring forms (see Section 4.3). More tests with
different potentials are needed to verify whether this is really true,
and if so why.

3.2 Viscous versus gravitational torques

It is instructive to compare gravitational and viscous torques. The
right-hand panel in Fig. 6 shows what is sometimes referred to as
the ‘butterfly diagram’, i.e. it shows the gravitational torque per unit
mass, given by

τg = ∂�

∂θ
. (11)

The left-hand panel shows the analogous quantity related to viscous
forces, i.e. it shows the viscous torques per unit mass:

τν = 1

ρ

{
∂x

[
ρ
(
xσyx − yσxx

)] + ∂y

[
ρ
(
xσyy − yσxy

)]}
. (12)

A derivation of equation (12) is given in Appendix B. The quantity
τ ν differs from k (see equation 6) in that the latter is the torque
exerted on contours, while the former is the net angular momentum
acting on fluid elements and corresponds to k integrated over an in-
finitesimally small closed contour. Unlike the gravitational torques,
the viscous torques depend on the density and velocity distributions.
The left-hand panel in Fig. 6 is constructed under the same assump-
tions used to construct the K curves in Fig. 5, namely ρ = constant
along the y axis and ν = constant. The numbers in the colour bar are
calculated assuming a value of ν = 10−4 × 100 km s−1 kpc, which
is the same used for simulations in Section 4.1. This is a fairly low
value which is a factor of 30 below estimates of turbulent viscosity
in the nuclear regions of real galaxies (see Section 5.1).

Blue regions in the left-hand panel correspond to ‘normal shear’,
while the red sides in the left-hand panel are regions of ‘reversed
shear’. Gas orbiting in the blue region of the left-hand panel looses
angular momentum due to viscous torques, while gas in the red
regions gains angular momentum. While the instantaneous value of
gravitational torques is usually much larger than the instantaneous
value of viscous torques, the time average of the former over an
x2 orbit is always zero, while the average of the latter is usually
non-zero.

4 NUMERI CAL EXPERI MENTS

4.1 Isothermal viscous rings

The first test that we perform is the analogue of the standard viscous
ring spreading problem (e.g. fig. 1 of Pringle 1981) but instead of
the Kepler potential we use our barred gravitational potential. The
simulations are 2D, isothermal, and include an explicit viscosity
term. The gas moves in a rigidly rotating externally imposed barred
potential and self-gravity of the gas is neglected. Thus, the equations
of motion in an inertial frame are the continuity equation and the
Navier–Stokes equation

∂tρ + ∂i (ρvi) = 0, (13)

∂tvi + (vj ∂j )vi = − 1
ρ
∂iP − 1

ρ
∂j (ρσij ) − ∂i�, (14)

where σ ij is given by equation (5), � is the external gravitational
potential, and P = c2

s ρ where cs is a constant.

4.1.1 Numerical code

We use the public code PLUTO (Mignone et al. 2007). This is a free
software for the numerical solution of systems of conservation laws
targeting high Mach number flows in astrophysical fluid dynamics.
We use a 2D static polar grid in the region R × θ = [0.1, 2.0] kpc ×
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8 M. C. Sormani et al.

Figure 6. Comparison of viscous and gravitational torques. Left-hand panel: viscous torques calculated using equation (12) assuming that ν = 10−4 ×
100 km s−1 kpc and that ρ is of the type given by equation (3) with mass normalization such that ρ = constant along the y axis. Right-hand panel: gravitational
torques per unit mass, see equation (11). Dots delineate the x2 orbits (left-hand panel of Fig. 3). Units are [τ ] = (100 km s−1)2.

[0, 2π ]. The grid is uniformly spaced in both R and θ with 950 ×
1440 points, which corresponds to a resolution of 2 pc in radius
and 0.25 deg in polar angle. We use the following parameters: RK2
time-stepping, no dimensional splitting, HLL Riemann solver, and
the VAN ALBADA flux limiter. Boundary conditions are reflective
on the inner boundary at R = 0.1 kpc and outflow on the outer
boundary at R = 2.0 kpc. Viscosity is treated with the EXPLICIT

scheme.

4.1.2 Initial conditions

The initial density distribution is taken to be of the type described by
equation (3). The function α is chosen so that the density distribution
along the y axis is the sum of one or more gaussians of the following
type:

ρ0(a) = exp

[
−
(

a − a0

�a

)2
]

, (15)

where �a = 50 pc and a0 is a parameter that controls where the
ring is centred. The initial velocity distribution is taken to be that
of x2 orbits in runs with non-axisymmetric potentials, or the cir-
cular velocity vcirc(R) = √

Rd�0/dR in runs with axisymmetric
potentials. In regions where x2 orbits do not exist, we have used a
nearest-neighbour interpolation to assign the velocity of the closest
x2 orbit. This makes no difference in practice because those regions
were always initially void of gas, and the density was set to a negli-
gibly small value of ρ = 10−12. The density units are arbitrary since
the equations of motions (13) and (14) are invariant under density
rescaling.

4.1.3 Results

Fig. 7 shows the time evolution of the 2D surface density for four
different simulations with different potentials (barred or axisym-
metric) and different values of ν and cs. Fig. 8 shows cuts of the
surface density along the x axis for the same snapshots.

The first row shows the evolution of a ring in an axisymmetric
potential when ν = 0. The ring is centred on a0 = 1 kpc and the
potential is given by equation (2) (see the circular velocity curve
in Fig. 2). The sound speed is cs = 1 km s−1. As expected, in the
absence of viscosity the ring does not spread. Not much happens.
This also shows that the numerical viscosity is negligibly small.

The second row shows what happens when we turn on the
viscosity in the axisymmetric case. Everything is the same as
in the first row except that viscosity now has a value ν =
10−4 × 100 km s−1 kpc � 3 × 1024cm2 s−1. Viscosity makes the
ring spread, exactly as we would expect in analogy to the standard
viscous ring spreading problem (compare for example the second
row in Fig. 8 with fig. 1 of Pringle 1981). The value of viscosity
used here is fairly low, roughly a factor of 30 lower than estimates
for real galaxies based on turbulent viscosity (see Section 5.1). As
we will discuss in Section 5.1, this shows that a relatively low value
of ν can already produce significant effects over a time-scale of
1 Gyr.

The third row shows the evolution of two rings in the same
barred potential used to construct Fig. 3. The axisymmetric part
�0 of this potential is exactly the same as in the first two rows,
but in addition now also the quadrupole �2 is present (see the blue
dashed line in Fig. 2 and equation 1). The two rings are initially
centred on a0 = 0.4 kpc and a0 = 1.2 kpc, respectively, i.e. the inner
one is in the middle of the green region in Fig. 3 while the outer
one is in the middle of the orange region. The inner ring spreads,
similar to the circular case (second row). The outer ring instead,
after an initial adjustment, does not spread and at t = 979 Myr
still has the same width it had at t = 50 Myr (see third row in
Fig. 8). This is in remarkable agreement with the idea described in
Section 3.

The fourth row shows a simulation that is identical to that of the
third row except that the sound speed is increased to cs = 10 km s−1.
This time, the outer ring does not survive. Pressure forces quickly
create spiral shocks, which destroy the outer ring and make material
on the outer ring plunge inwards and merge with the inner ring. Thus
whether the mechanism discussed in Section 3 can work depends
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A mechanism for the origin of nuclear rings 9

Figure 7. Simulations of gaseous rings for different potentials and values of cs and ν. Each panel shows the gas surface density and time increases from left
to right as indicated at the top of the figure. First row: one ring is placed in a purely axisymmetric potential (equation 2) and viscosity is turned off, ν = 0. The
ring does not spread. Second row: same as the first row, but viscosity is set to a value ν = 10−4 × 100 km s−1 kpc � 3 × 1024cm2 s−1. The ring spreads due
to viscous torques. Third row: two rings are placed in a barred potential given by (1) in the presence of viscosity. The inner ring (placed in the green region
in Fig. 3) spreads, similar to the axisymmetric case in the second row, while the outer ring (placed in the orange region in Fig. 3) does not spread despite the
presence of viscosity. Fourth row: same as third row, but for a higher value of the sound speed cs. The ring is destroyed by spirals created by pressure. In all
simulations the initial conditions are given such that in the absence of pressure and viscous forces it would be a steady state. Gas circulates clockwise and the
bar major axis is horizontal.

on the relative importance of pressure forces. In order to understand
the effects of pressure we have run a further isothermal simulation
that is described in the next section. The effects of pressure will be
discussed in Section 5.2.

4.2 Isothermal disc

In order to better understand the effects of pressure, we have run
a further isothermal simulation in which we have set up a filled
disc of gas on x2 orbits. The numerical set-up is identical to that of
Section 4.1, except for the initial conditions. The sound speed of
this simulation is cs = 10 km s−1 while the viscosity is turned off,
ν = 0.

4.2.1 Initial conditions

The initial density distribution is such that in the absence of pressure
and viscous forces, it would be a steady state of the type described
by equation (3). The normalization α is chosen so that the density
distribution along the y axis is

ρ0(a) =
{

1 if a ≤ 1.35 kpc,
0 if a > 1.35 kpc.

(16)

The value a = 1.35 kpc corresponds to the orbit at which the for-
bidden region starts (cf. the grey area in Fig. 3).

4.2.2 Results

Fig. 9 shows the time evolution of the surface density, while Fig. 10
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10 M. C. Sormani et al.

Figure 8. Density cuts along the x axis for the same simulations shown in
Fig. 7.

shows in more detail the snapshot at t = 50 Myr. Pressure forces
cause the shape of the gas streamlines to deviate from x2 orbits
almost immediately, creating spiral shocks shortly after the start of
the simulation. That these are really shocks as opposed to generic
density waves can be seen from Fig. 11, which shows cuts of the
density and the velocity along the red dashed orbit shown in Figs 9
and 10. These cuts show that density and velocity have discontin-
uous jumps, which is the defining characteristics of shocks. They
also show that the shock front moves upstream with respect to the
overall flow (i.e. it moves to the left in Fig. 11). At the resolution of
the simulation shown in Fig. 9 the spiral shocks appear smooth, but
we have verified that at higher resolution the shock fronts develop
wiggles and break up as a consequence of the wiggle instability
(Wada & Koda 2004; Kim, Kim & Kim 2014; Sormani et al. 2017).
This instability is not important for the discussion in this paper.

A notable feature of the simulation that is clearly visible in Fig. 9
is that the disc shrinks with time. This happens because for an
extended period of time, which lasts approximately for 0 � t �
800 Myr, the overall surface density distribution is not symmetric
with respect to the y axis but is tilted so that much more material
lies in the two quadrants (x < 0, y > 0) and (x > 0, y < 0) than in the
other two quadrants (e.g. it is clear that at t = 50 Myr the major axis
of the gas disc makes an angle with the y axis and points towards
negative x). Since gravitational torques from the bar potential act
in such a way as to remove angular momentum from material in
these two quadrants, the total angular momentum steadily decreases
during the tilted phase and the disc shrinks. After this phase the disc
returns to a more symmetric configuration (see the final panel at
t = 979 Myr in Fig. 9) and the angular momentum stabilizes to a
value approximately 60 per cent of the initial value. Now the bar
is unable to remove further angular momentum, and the final state

has a fat ring with R ∼ 0.4 kpc, but this ring has nothing to do with
the mechanism described in Section 3.5 The physical reasons that
cause the tilt and hence the removal of angular momentum can be
traced back to the spiral shocks (see Section 5.2).

Note that based on the resonant theory, we might have naively
expected exactly the opposite, i.e. that the gas gains angular mo-
mentum, because the spiral pattern is mostly in the quadrants (x >

0, y > 0) and (x < 0, y < 0), where the torque is positive. This
shows that expectations based on the naive interpretation of the
torques acting on the spiral pattern should be taken with great cau-
tion, and explains why predictions of the resonant theory are often
not verified in actual simulations (Kim et al. 2012).

We have repeated this simulation using a value of the viscos-
ity ν = 10−4 × 100 km s−1 kpc, but the results are almost indistin-
guishable. The effects of pressure in this case completely over-
whelm the effects of viscosity, which is negligible. This also shows
that what creates the spirals is pressure, not viscosity. We continue
the discussion of the effects of pressure in Section 5.2.

4.3 Non-isothermal simulation

The simulations discussed in the previous two sections are ideal-
ized numerical experiments and are far from realistic. As a more
realistic example let us consider here the simulations of Sormani
et al. (2018). These authors used high resolution, 3D hydrodynam-
ical simulations performed using the moving-mesh code AREPO

(Springel 2010) to simulate the central regions of the Milky Way.
In these simulations gas moves in a multicomponent externally
imposed rotating barred gravitational potential which is tuned to
reproduce the characteristics of our Galaxy. The simulation box in-
cludes the whole region R ≤ 10 kpc and thus the entire bar region,
not just the nuclear region.

A key feature of the simulations of Sormani et al. (2018) is that
they include a time-dependent chemical network that keeps track of
the chemical composition of the gas (essentially hydrogen, carbon,
and oxygen chemistry). The chemical network is deeply coupled
to the heating and cooling processes of the ISM. Thus, instead of
assuming a simple equation of state, the temperature of the gas
is calculated using a cooling function that takes into account sev-
eral sources of heating and cooling, which include contributions
that depend on the chemical composition of the gas and the in-
stantaneous rate of chemical reactions (e.g. H collisional excitation
and ionization, H+ recombination, H2 formation, etc), and exter-
nal contributions (e.g. heating from the average UV interstellar
radiation field, cosmic rays).6 The net result is a two-phase ISM
made of a cold component with T � 100K (which corresponds
to cs � 1 km s−1) and a warm component with T � 104K (which
corresponds to cs � 10 km s−1).

The large-scale dynamics in these simulations follows the typi-
cal dynamics of gas flowing in a barred potential (e.g. Sellwood &
Wilkinson 1993). They are set up as follows.7 To avoid transients,

5The final state will slowly shrink over time due to viscous torques acting
as in a standard accretion disc, but this shrinking is extremely slow because
numerical viscosity is extremely small (first row of Fig. 7).
6See tables 1 and 2 in Sormani et al. (2018) for the full list of reactions
included in the chemical model and processes included in the cooling func-
tion.
7Movies are available at http://www.ita.uni-heidelberg.de/∼mattia/vi
deos/asymmetry/high/rhoproj barframe.mp4 (whole bar region) and
http://www.ita.uni-heidelberg.de/∼mattia/videos/asymmetry/high/rhoprojz
oom barframe.mp4 (zoom on the nuclear region).
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A mechanism for the origin of nuclear rings 11

Figure 9. Evolution of the surface density for an idealized isothermal simulation with cs = 10 km s−1, ν = 0. Initial conditions are given such that ρ = 1
along the y axis and that in the absence of pressure and viscous forces it would be a steady state. The dashed red line shows the orbit examined in more detail
in Fig. 11.

Figure 10. Velocity field superimposed on the surface density for the snap-
shot at t = 50 Myr of the simulation shown in Fig. 9.

the gas is initially on circular orbits and the bar is introduced gradu-
ally during the first 150 Myr. As the bar grows, material in the outer
parts (R � 3 kpc) deviates from circular orbits and starts following
x1 orbits, which is a family of orbits elongated parallel to the bar.
Two narrow large-scale shocks are formed along which gas plunges
in a dynamical time from R ∼ 3 kpc down to the nuclear region,
where it settles on x2 orbits.

A nuclear ring forms in these simulations with semimajor axis
∼400 pc. This is shown in Fig. 12 (see also last panel in fig. 7 of
Sormani et al. 2018). It has the following striking characteristics:

(i) The ring is extremely dense and thin.
(ii) The ring does not spread over time.
(iii) The ring is extremely long lived and its radius does not

change in time even if the simulation is continued to t � 1 Gyr.

Thus the ring seems to have all the characteristics expected from
the mechanism described in Section 3. Indeed this is not a coinci-
dence, since the study in this paper was inspired by the simulations
of Sormani et al. (2018). Note also that in the simulations of Sor-
mani et al. (2018) self-gravity of the gas is ignored, so the ring
self-gravity cannot play a role in determining its thinness.

Figs 13, 14 and 15 show the x2 orbits, the curve K and the torques

Figure 11. Velocity and density along the dashed x2 orbit in Figs 9 and 10.
In the top panel, the full lines are the component of the velocity parallel to the
orbit, the dot-dashed lines are the components of the velocity perpendicular
to the orbit, and the black dashed line indicates the value of the sound speed.

for the potential used in Sormani et al. (2018). In accordance with the
discussion in Section 3, the ring forms in the middle of the reversed
shear region (orange in Fig. 13 and delimited by two orange orbits in
Fig. 12). Fig. 12 shows that the K� = 0 orbit fits very well with both
the size and the shape of the ring. This is a promising confirmation
of the considerations in Section 3.1, but more tests with different
potentials are needed to be certain that this is not a coincidence.

5 D ISCUSSION

5.1 Viscosity

We have assumed that viscosity is present in our theory, but so far
we have said nothing about the source of this viscosity. Let us first
give a rough estimate of the minimum amount of viscosity needed to
produce significant effects. Viscous stresses can significantly affect
the dynamics of the system if the viscous time-scale, tν ≈ R2/ν
(where R is the typical dimension of the ring), is shorter than the
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12 M. C. Sormani et al.

Figure 12. Total surface density at t = 294 Myr of the ‘high’ simulation of
Sormani et al. (2018). The dashed line corresponds to the K� = 0 orbit. The
two orange orbits are the orbits that delimit the orange region in Fig. 13.
Gas rotates clockwise.

Hubble time, tH = 14 Gyr. This gives a minimum coefficient of

νmin ≈ R2

TH
= 2 × 1025

(
R

1 kpc

)2 (
tH

14 Gyr

)−1

cm2 s−1. (17)

What is the viscosity of the real ISM? The molecular viscosity
is negligible. But there are random turbulent motions of interstellar
clouds, maintained by stellar feedback and MHD instabilities (e.g.
Sellwood & Balbus 1999; Mac Low & Klessen 2004). These give
rise to turbulent viscosity. Using the following typical parameters,
namely (i) a cloud size a ∼ 10 pc, (ii) a velocity dispersion c ∼
8 kms−1, (iii) a fraction f ∼ 0.1 of the volume filled by clouds,
Lynden-Bell & Pringle (1974) estimated the turbulent viscosity
coefficient as

ν ≈ 1

3
c

a

f
= 8 × 1025 cm2 s−1. (18)

Since ν > νmin, we conclude that viscous stresses play an important
role in shaping the gas distribution in the central ∼1 kpc of the
Galaxy.

Note that the value given by (17) is roughly a factor of 10 greater
than the value ν � 3 × 1024 cm2 s−1 assumed for the simulations
in Section 4.1, which was already sufficient to cause a significant
spreading of an axisymmetric ring over a time-scale of 1 Gyr (see
Fig. 7). This suggests viscosity may in general be more effective
than naive estimates such as the one indicated above. This fact
is also implicitly contained in the definition of the dimensionless
parameter τ = 12νtR−2

0 of Pringle (1981; see his equation 2.13),
which plays the role of time in the analytical solution of the viscous
spreading problem.8 The numerical factor 12 means that viscosity
acts 12 times faster in that problem than the estimate tν ∼ R2

0/ν

would suggest.
Two more facts corroborate the conclusion that viscosity must be

dynamically significant in the nuclear regions of galaxies. First, as
already noted by Lynden-Bell & Pringle, the turbulent viscosity in
galactic centres is likely to be even higher than their estimate due to
the higher velocity dispersion of molecular clouds there (e.g. Heyer

8The solution given by Pringle (1981) is the Green function of the problem.

& Dame 2015). Secondly, the above discussion neglects another
source of dissipation, namely shocks. At the locations of ‘reversed
shear’ along x2 orbits, gas streamlines converge, creating a zone of
enhanced interaction where material is compressed and shocked.
Shocks are a natural way of producing dissipation, and it may be
that this contributes in driving the gas towards the local minimum
of the energy represented by the ring configuration.

5.2 Understanding the effects of pressure

The results of Sections 4.1 and 4.2 suggest that at low sound speed
(cs = 1 km s−1) a ring created by the mechanism described in Sec-
tion 3 can survive, while at high sound speed (cs = 10 km s−1) the
ring cannot survive because it is destroyed by spiral shocks. What
is the origin of these spiral shocks?

To understand this, it is useful to consider a very simplified toy
problem. Gas on an x2 orbit revolves periodically around the galactic
centre and feels a periodic potential that is an oscillating function of
θ (see the middle-bottom panel of Fig. 3). The gas is faster (slower)
where the potential is low (high) (see the middle-top panel of Fig. 3).
Very crudely, we may model this gas as a 1D isothermal fluid that
moves in a periodic potential given by

�(x) = −2 cos(2πx). (19)

The equations of motion are then the 1D continuity and Euler equa-
tions:

∂tρ + ∂x (ρv) = 0 (20)

∂tv + v ∂xv = − ∂xP

ρ
− ∂x�, (21)

where P = c2
s ρ. In the absence of the pressure term (cs = 0), it is

easy to check that the following is a steady state of the system:

v(x) = √
2(B − �(x)) (22)

ρ(x) = 1/v(x), (23)

where B is a constant. This corresponds to a purely ballistic state,
i.e. it is the toy problem version of gas on an x2 orbit.

What happens when we introduce pressure? Suppose we release
the system from an initial state given by equations (22) and (23).
If cs = 0 nothing happens because the initial state is a steady state.
But if cs > 0, the system is out of equilibrium and not exactly in a
steady state. Fig. 16 shows the subsequent evolution of the system
if the initial state is the one with B = 2.1 and the sound speed is cs

= 0.02. In this case, pressure forces are negligible and the system
remains approximately in the initial state. Fig. 17 repeats the same
experiment with a value of the sound speed cs = 0.2. Now, pressure
forces are significant and quickly lead to the development of a shock
(see Fig. 17). The shock initially develops close to the point where
v is minimum (� is maximum) and subsequently moves upstream.
The reason why the shock develops is that as the gas tries to ‘climb
up’ from the potential well, pressure pushes backwards and slows
it down, making the gas ‘stall’ (Prendergast 1983). The condition
for the shock to develop is that the sound speed (black dashed line
in Figs 16 and 17) is close enough to the minimum of v. Thus,
the shocks occur if the sound speed is high enough (but also low
enough that the gas is supersonic) to get close to the minimum of
v. In a system with fixed cs, a shock occurs if the oscillations of �

are large enough.
Now we can understand what happens in the case of Fig. 11. The

value cs = 10 km s−1 is close enough to the minimum value of v
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A mechanism for the origin of nuclear rings 13

Figure 13. Same as Fig. 3 but for the gravitational potential of Sormani et al. (2018).

Figure 14. Same as Fig. 5 but for the gravitational potential of Sormani
et al. (2018).

along the x2 orbit that a shock is triggered. Shocked gas is slowed
down, and starts falling to the centre. This is why material in the
spiral pattern moves inwards, despite the fact that the gravitational
torques from the bar potential may suggest the opposite.9 After
reaching its closest approach to the centre during its first infall, gas
gains speed (the green curve in Fig. 11 has a lower minimum and
a higher maximum velocity than the x2 orbit velocity given by the
blue curve). Thus while close to the shock gas is falling in, it is
actually moving out far from the shock (dashed lines in Fig. 11).
Meanwhile, the shock moves upstream, as in the toy model. This
causes the overall gas distribution to tilt, causing the removal of
angular momentum discussed in Section 4.2.

The shock in the simulations of Fig. 9 first appears in the outer
parts, and then quickly propagates inwards. This happens because
oscillations of � are stronger in the outer parts (see bottom-middle

9Indeed, it is known that spiral shocks can drive disc accretion (e.g. Arza-
masskiy & Rafikov 2018).

panel of Fig. 3). As we move inwards, at some point the oscillations
of � are not strong enough to trigger a shock, but merely a density
wave. Thus, there is a critical radius Rc above which oscillations
of � are strong enough to trigger a shock (Roberts 1969). The
conclusion is that the disc in Fig. 9 shrinks until it is small enough
that shocks cannot be triggered anymore because the oscillations of
� are small.

This also explains why if one increases the sound speed the
nuclear disc shrinks, a trend which has been observed by many
authors (e.g. Englmaier & Gerhard 1997; Patsis & Athanassoula
2000; Kim et al. 2012; Sormani et al. 2015a). When the sound speed
is increased, smaller � oscillations are sufficient to trigger a shock
(raising the black dashed in Figs 16 and 17 favours the triggering
of shocks). Hence, as the sound speed increases the value of Rc

decreases, shocks can be produced further in and the disc shrinks
further according to the considerations in the last paragraph. Other
explanations of why the x2 disc is smaller at higher sound speed
also rely on shocks and the loss of angular momentum (Kim et al.
2012; Sormani et al. 2015a). However, these explanation focus on
the loss of angular momentum at the tips of the bar, far from the
nuclear region. What is different and interesting in the explanation
proposed here is that the part of the shock that matters in setting the
size of the nuclear disc is that already within the x2 region. Indeed,
the simulation in Fig. 9 does not contain the full larger-scale off-set
shock that typically develops in a gas flow in a barred potential,
but just its last portion. We have confirmed this interpretation by
repeating the simulation shown in Fig. 9 with different values of
the sound speed. These show the same trend observed by other
authors, i.e. the final size of the disc is smaller at higher sound
speeds, but they do not contain the larger scale flow, only the x2

disc. For example, when cs = 5 km s−1, spirals develop but the final
disc is bigger than in the last panel of Fig. 9. When cs = 1 km s−1,
the pressure is too low to generate spiral shocks – instead, a gap
is created approximately between the green and orange region in
Fig. 3 as expected based on the considerations in Section 3, and a
ring is formed.
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Figure 15. Same as Fig. 6 but for the gravitational potential of Sormani et al. (2018).

Figure 16. Evolution of density and velocity in the 1D toy problem de-
scribed in Section 5.2 for a low value of the sound speed, cs = 0.02. No
shocks are formed.

5.3 Gravitational torques versus viscous torques

In the description of the mechanism of Section 3 we have assumed
that the time average of the net gravitational torque on the disc,

〈
Tg

〉 =
∫

〈ρ〉
(

∂�

∂θ

)
dx dy, (24)

can be considered small. This assumption is correct for a collection
of ballistic particles on x2 orbits, for which Tg oscillates periodi-
cally in time, and for a set-up such as the one described in Section 3
and used as initial condition in the idealized simulations of Sec-
tion 4.1, because the density distribution is symmetric with respect
to the axis. However, is this assumption justified in a more realistic
situation such as the one described in Section 4.3?

Figure 17. Evolution of density and velocity in the 1D toy problem de-
scribed in Section 5.2 for a high value of the sound speed, cs = 0.2. A shock
is formed that moves upstream.

The black solid curve in Fig. 18 shows the total angular momen-
tum LR possessed by gas in the simulations of Sormani et al. (2018)
in the region defined as

R :=
{

0.22 <

(
x

0.4 kpc

)2

+
(

y

0.5 kpc

)2

< 1

}
(25)

i.e. a region comprised by two ellipses of semimajor axis of 0.1
and 0.5 kpc. This region roughly includes the ring shown in Fig. 12,
while excluding outer material flowing on x1 orbits and the inner-
most material. The blue solid line is the total gravitational torque
Tg,R acting on gas inside this region, and the dotted black curve
mR is the total gas mass.
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Figure 18. Full black line: total angular momentum contained in the region
R (defined by equation 25) of the ‘high’ simulation of Sormani et al. (2018),
as a function of time. Full blue line: total gravitational torque exerted on
material in the region R. Dotted line: total mass contained in the region R
(values should be read on the left-hand side axis). The vertical red dashed line
indicates the time at which the bar is fully grown. Units are as follows: [L] =
108 M� 100 km s−1 kpc, [T] = 108 M� (100 km s−1)2, [m] = 3 × 108 M�.

In the initial phase (t � 180 Myr), the angular momentum in the
region R increases steadily.10 This is mainly due to the fact that
the nuclear region is accreting gas brought to R by the large-scale
bar shocks (see the dotted line in Fig. 18), and not to the fact that
the angular momentum per unit mass increases. After the initial
phase, accretion almost stops, the mass in this region stays ap-
proximately constant, and the angular momentum oscillates quasi-
periodically. The gravitational torques oscillate and their time aver-
age is clearly much lower than the amplitude of the oscillations.11

An estimate obtained by averaging the data in Fig. 18 over a pe-
riod t = [200, 320] Myr, corresponding to approximately two of the
longer oscillations, gives 〈LR〉/〈Tg,R〉 � 3 Gyr. This is an estimate
of the time-scale over which gravitational torques have net effects in
this region, and it is much longer than the duration of the simulation.

In the phase t > 180 Myr, as can be seen from the movies linked
above, the gas distribution is made of molecular clouds that approx-
imately follow x2 orbits (which act as guiding centres) on top of
which there are significant excursions. A lot of turbulent motions
are taking place, but over time these turbulent motions are dissi-
pated, eventually leading to the narrow ring shown in Fig. 12. Thus,
the gas does not really move in annuli smoothly exerting torques
on each other as assumed in Section 3. However, it is likely that the
formation of the ring does not depend too much on the details of
the dissipation process (in this case, turbulent dissipation). The ring
configuration is a local minimum of the energy, and the system can
be driven to it regardless of the details of the dissipation process.

It is clearly seen by looking at the LR curve in Fig. 18 for
t > 180 Myr that there are two main time-scales of the oscillations,
a short one with period T1 � 7 Myr and a longer one with period
T2 � 60 Myr. The smaller time-scale T1 corresponds to half a period
of an x2 orbit. Thus, these oscillations resemble those that we would
obtain if we had a bunch of particles flowing on x2 orbits. The longer
time-scale T2 corresponds to a very interesting phenomenon, that is

10Recall that the bar is introduced gradually during the first 150 Myr in the
simulations of Sormani et al. (2018) in order to avoid transients.
11The instantaneous gravitational torques are not zero because the gas dis-
tribution is not symmetric about the Galactic centre (showing this was one
of the main goals of Sormani et al. 2018). Instead, the gas distribution is
made up of a few giant molecular clouds that revolve around the centre
approximately following x2 orbits.

the major axis of the x2 disc/ring oscillates so that its angle with the
y axis changes periodically.

The picture that emerges from the above considerations is one in
which the gravitational torques are important in bringing down gas
from the outer parts down to the nuclear region (with the mediation
of shocks). Once material is in the nuclear region, it settles on x2

orbits and from that point viscosity becomes important and a ring
of the type described in Section 3 is developed.

5.4 Relevance for real galaxies

5.4.1 Effective equation of state of the ISM

The results of Sections 4.1 and 4.2 (see also the discussions of
Sections 5.2 and 5.3) suggest that the mechanism described in Sec-
tion 3 is a viable way of ring formation if the gas sound speed
is low (cs � 1 km s−1), but not if the gas sound speed is high
(cs � 10 km s−1). In the chemistry simulations of Section 4.3 the
mechanism is able to work because the cold phase of the two-
phase medium effectively behaves as a low sound speed gas. Thus,
whether our theory can be applied to real galaxies depends on the
‘effective’ equation of state of the ISM.

What is the equation of state of the ISM? This is a very difficult
question because the ISM is a complex dynamical entity and it is
not easy to justify a set of equations that captures its dynamics. It is
made of several components that are tightly coupled together. The
four most important of these, in terms of their impact on the overall
dynamical evolution, are gas, dust, cosmic rays, and magnetic fields.
In addition, the ISM is highly inhomogeneous and shows structure
on all observable scales, with star formation occurring in dense
molecular clouds, and it is subject to several complex feedback
loops driven by the energy and momentum input from stars in the
form of radiation, winds, and supernovae.

There are two very different approaches to this complexity in
the literature. The first one is to simply ignore it. If one looks at
the properties of the atomic component of the ISM, as revealed by
its 21 cm emission, then one finds a remarkably constant velocity
dispersion in the range 5–20 km s−1 quite independent of galactic
radius and galaxy type (e.g. Walter et al. 2008). This has lead many
studies of ISM dynamics on galactic scales to adopt an ‘isother-
mal prescription’ and to take the gas to be isothermal with a sound
speed of cs � 10 km s−1, where the sound speed is not related to
the actual kinetic temperature of the gas, but corresponds to an
‘effective’ temperature that is supposed to account for the turbu-
lent motions in the ISM on unresolved scales (e.g. Roberts 1969;
Cowie 1980; Athanassoula 1992b; Englmaier & Gerhard 1997; Re-
gan & Teuben 2003; Maciejewski 2004; Li, Mac Low & Klessen
2005, 2006; Kim et al. 2012; Sormani et al. 2015a; Fragkoudi
et al. 2017). The mechanism of ring formation presented in this
paper generally does not apply if the ISM is modelled using this
isothermal prescription, because the sound speed typically assumed
(cs � 5–20 km s−1) is too high.12 However, as discussed above this
treatment of the ISM is very crude. A similar simplification comes
from the use of sticky-particle techniques, which model the gas as
an ensemble of inelastically colliding particles (e.g. Schwarz 1981;
Combes & Gerin 1985; Byrd et al. 1994; Jenkins & Binney 1994;
Rautiainen & Salo 2000; Rautiainen et al. 2002, 2004; Rodriguez-

12Although it may apply to some simulations which assumed low sound
speeds, e.g. the lowest sound speed simulations of Patsis & Athanassoula
(2000) and Kim et al. (2012) which form a ring.
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Fernandez & Combes 2008). The underlying assumption is that the
ISM is mostly composed of long-lived dense molecular clouds, that
are essentially described as ‘bricks’, that only interact collisionally
(e.g. Tan 2000). Clearly this approach does not do justice to the
multiphase nature and chemical complexity of the observed ISM
(Klessen & Glover 2016).

The second approach is to face the observed complexity and con-
struct a model that takes into account as many physical and chemical
processes as possible and also includes a realistic treatment of stellar
feedback. With the advent of new numerical modelling techniques
and the continuously increasing capabilities provided by modern
supercomputing centres this approach has become very popular in
recent years. This has started with detailed modelling of a small
portion of the galaxy or an individual molecular cloud, and we have
now reached the point where it is feasible to apply this detailed
modelling to simulations of an entire galaxy (see e.g. Smith et al.
2014; Bournaud et al. 2015; Iffrig & Hennebelle 2015; Walch et al.
2015; Geen et al. 2016; Girichidis et al. 2016; Hu et al. 2017; Kim
& Ostriker 2017; Peters et al. 2017; Safranek-Shrader et al. 2017;
Seifried et al. 2017; Hennebelle 2018; Hopkins et al. 2018; Pillepich
et al. 2018). The simulations of Sormani et al. (2018) follow this
tradition and arguably provide a more realistic treatment of the ISM
than the isothermal prescription, and the mechanism presented in
this paper seems to work in this case. This is probably due to the
fact that indeed a large fraction of the mass in the nuclear region
(called the Central Molecular Zone or CMZ in the Milky Way) is
relatively cold with a sound speed smaller than 1 km s−1.

This is a reassuring confirmation, but the approach of Sormani
et al. (2018) still lacks several important ingredients. Most im-
portantly, it lacks the small scale turbulence of the ISM, which
is believed to be driven by supernova explosions and other stellar
feedback mechanisms (e.g. Klessen & Glover 2016). This is evident
in the fact that the ring in Fig. 12 is too thin compared to real rings.
It also does not include magnetic fields, which may also affect the
dynamics significantly. A useful test would be to run simulations
similar to those of Sormani et al. (2018) but including the effects of
stellar feedback, to see whether the size of the ring is affected or not.
If the results of the chemistry simulations are confirmed, it would
support the idea that the mechanism is relevant to real galaxies.

We conclude that whether or not the mechanism presented in
this paper is relevant for real galaxies depends on the nature of the
effective equation of state of the ISM. The question is complex and
not settled yet, but future simulations may provide answers.

5.4.2 Morphology of nuclear regions

The discussion of Section 5.2 suggests that the morphology of the
nuclear region depends on the effective sound speed of the gas, i.e.
that it depends on the importance of pressure forces. Lower pres-
sure leads to more ring-like morphologies, while higher pressure
leads to more spiral-like morphologies. The effective pressure of
the ISM in real galaxies might be related to different temperature
regimes of a multiphase medium, but may also contain contributions
from turbulent pressure (hence related to the velocity dispersion of
clouds) and magnetic pressure. This may provide insight into ob-
servations of external galaxies where the nuclear region displays
different morphologies in different tracers (Izumi et al. 2013; Fathi
et al. 2013; Izumi et al. 2015; Espada et al. 2017, see also Garcı́a-
Burillo et al. 2005). Different morphologies may reflect different
temperature regimes of a multiphase medium, or different magnetic
field strengths.

5.4.3 Constraining the pattern speed

The pattern speed �p is the single most important parameter of a bar,
but is notoriously difficult to measure (e.g. Tremaine & Weinberg
1984; Rautiainen, Salo & Laurikainen 2008; Aguerri et al. 2015).
Thus methods that allow to constrain it are very valuable. The size
of the ring in our theory is sensitive to the underlying gravitational
potential. In particular, it is sensitive to the pattern speed of the bar: a
higher pattern speed produces a smaller ring as it shrinks the extent
of the x2 family of periodic orbits. Hence if the mass distribution of
a barred potential is known but the pattern speed is not, our theory
can be used to constrain �p by adjusting its value until the reversed
shear region matches the observed size of the ring. The size of the
ring predicted by our theory also depends on other properties of
the potentials (e.g. a stronger bar generally produces smaller rings),
which could therefore also be constrained.

5.4.4 Accretion onto the central black hole

The ring configuration is a configuration of ‘local minimum’ of the
energy. Hence, to get out of this ring and reach the global minimum
of the energy (which corresponds to most of the mass in the centre)
gas needs to overcome an ‘energy barrier’. The question of how the
gas may overcome this energy barrier might be related to how the
gas migrates from the nuclear ring (r ∼ 100 pc) down to an accre-
tion disc that fuels a supermassive black hole (r ∼ 10−3 pc). Since
nuclear rings are sites of intense star formation, we might speculate
that stellar feedback ‘launches’ parcels of gas that overcome the
barrier and can then plunge towards the black hole (Davies et al.
2007).

5.5 Relation to other works

5.5.1 Galactic dynamics

As we mentioned in the introduction the main theory for the forma-
tion of nuclear rings is the resonant theory, which suggests that they
are related to the ILR of the underlying gravitational potential (e.g.
Combes 1988, 1996; Buta & Combes 1996). In our model the size of
the ring is also indirectly related to the ILR, as it is well known that
the radius of the ILR correlates with the radial extent of the x2 orbit
family (Contopoulos & Grosbol 1989; Athanassoula 1992a), and
therefore with the size of the reversed shear region (see Section 3).
The main difference between our model and the resonant theory is
that the latter relies only on gravitational torques, while our model
also relies on viscous torques (see the discussion in Section 5.3).
In Sections 4.2 and 5.2 we have also argued that, when examined
in more detail, the predictions of the resonant theory seem not to
be verified in simulations because naive application of the idea that
torques act on the spiral pattern may lead to incorrect conclusions.

An alternative theory based on viscous torques was proposed
by Icke (1979) and Lesch et al. (1990) and recently revisited by
Krumholz & Kruijssen (2015). This theory is based on the idea that
in a circular accretion disc (with d�/dR < 0) gas accumulates at the
point where �(R) becomes flat (as in solid body rotation) because
this reduces the shear responsible for the inward mass transfer. The
predictions from this theory are different from the predictions of
the mechanism proposed in Section 3. First, the location where
the rotation curve turns solid body is, in general, very different
from the location of the reversed shear region: as can be seen from
equation (2) the rotation curve in Fig. 2 only turns to solid body
around Rc = 0.05 kpc, while the reversed shear region is at R ∼
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1.2 kpc. Secondly, according to such theories the size of the ring
does not depend on the pattern speed of the bar, in contrast to what
is predicted by the mechanism of Section 3 and what is observed in
simulations (e.g. Athanassoula 1992b; Li et al. 2015; Sormani et al.
2015c). For similar reasons, this theory cannot be the explanation
for the ring that forms in the simulations of Sormani et al. (2018):
the ring does not form near the point at which the rotation curve
turns solid body.

Li et al. (2015; see also Kim et al. 2012) ran various 2D isother-
mal simulations of gas flow in barred potentials with varying bar
strengths and pattern speeds. These authors use the ‘isothermal pre-
scription’ (see Section 5.4), hence they are in the high sound speed
regime in which our mechanism does not apply (see Section 5.2).
However, they argue that the size of the ring is determined by the
amount of angular momentum lost as the gas enters and travels
along the bar shocks, which is different from the interpretation we
have given in Section 5.2. They also argue that a stronger bar re-
moves more angular momentum, leading to smaller rings. The same
correlation between bar strength and size of the ring is expected in
our theory, but for a different reason: a stronger bar changes the
orbital structure of the potential, which results in smaller x2 or-
bits (e.g. Contopoulos & Grosbol 1989; Athanassoula 1992a). This
correlation was also observed in the sticky-particle simulations of
Salo et al. (1999) and is consistent with the observational result that
‘stronger bars host smaller rings’ (Comerón et al. 2010).

Binney et al. (1991; see also Sormani et al. 2015a) predicts that the
major axis of the ring should be equal to the minor axis of the cusped
x1 orbit. This predicts a ring whose size is generally significantly
smaller than that of Section 3, although the details depend on the
gravitational potential. Indeed, it would predict a ring whose size is
much smaller than the one developed in the simulations of Sormani
et al. (2018). Note also that Fig. 12 suggests that the bar shocks touch
the ring near the point of its maximum extension in the y direction,
but tests we have performed with different potentials suggest that
this is not generally the case: sometimes the shock can intersect the
ring at lower or values of y, and sometimes it can intersect the y axis
further out, flying by the ring without touching it. This suggests that
the point where the shock touches the ring is not what determines
the size of the ring.

5.5.2 Planetary ring dynamics

The problem studied in this paper has many analogies with the
confinement of narrow rings in the context of planetary ring dy-
namics (see e.g. Longaretti 2018 for a recent review). In particular,
the idea of reverse shear discussed in Section 3 is equivalent to the
idea of angular momentum flux reversal that has been developed by
Borderies–Goldreich–Tremaine in a series of papers (e.g. Borderies,
Goldreich & Tremaine 1982, 1983a,b, 1989; Borderies 1989) to ex-
plain the confinement and the sharp edges of planetary rings. These
authors showed that under the influence of a perturbing potential,
created, e.g. by a satellite, the particle streamlines can be sufficiently
distorted so that the angular momentum flux is directed inwards,
which is very similar to the picture we described in Section 3 (in
our notation, the angular momentum flux is directed inwards when
k < 0). In the context of planetary rings this idea has been explored
also using N-body simulations, both global (Hänninen & Salo 1994,
1995; see also Goldreich, Rappaport & Sicardy 1995 for a theoret-
ical discussion of their results) and limited to a local comoving
region (Mosqueira 1996).

An obvious difference between the galactic and the planetary
problems is the order of magnitude of the perturbations. While for
a strong barred potential such as the one considered in Section 3
particle orbits deviate strongly from circular motions (see Fig. 3), in
the case of planetary ring dynamics the deviations from circularity
are typically very small, with eccentricities of the order of 10−5

(e.g. Borderies 1989). This reflects the fact that the resonance zone,
i.e. the region where the effect of the resonances is non-negligible,
is much narrower in the planet–satellite case. Another major dif-
ference between the two problems is the mechanism that generates
viscosity, namely collisions between particles in the planetary case
and turbulent viscosity in the galactic case.

6 SU M M A RY

We have developed a dynamical theory to explain why nuclear rings
arise and to predict their location given the underlying gravitational
potential. The main conclusions of this paper are as follows:

(i) When the gas follows non-circular orbits such as x2 orbits,
viscous torques between adjacent annuli of gas can drive the gas
towards a ring configuration (see Section 3), in contrast to what is
found in the elementary theory of circular viscous accretion discs
in which all the gas is driven to the centre. The ring configuration
is a local minimum of the energy.

(ii) The sound speed and the amount of viscosity are two key
parameters of the gas flow in the nuclear regions of galaxies.

(iii) When the sound speed is low (cs � 1 km s−1), a ring may be
formed according to the mechanism of item (i). The location of this
ring correlates with the ILR and can be approximately predicted
based on the underlying gravitational potential: it must be within
the reversed shear region (orange in Fig. 3). We have speculated that
the ring size might be predicted even more precisely as the orbit
where K� = 0, but this requires further verification (see Section 3.1).

(iv) When the sound speed is high (cs � 10 km s−1), such a ring
cannot survive because spiral shocks are developed, regardless of
the presence of viscosity. In this case, the size of the nuclear region
is determined by the critical radius Rc at which the oscillations of
the gravitational potential become strong enough to induce a shock.
The value of Rc decreases at higher sound speeds, leading to smaller
nuclear regions, according to the discussion in Section 5.2.

(v) Whether the mechanism described in Section 3 is relevant
for the formation of nuclear rings in real galaxies depends on the
‘effective’ equation of state of the ISM. This is a complex question
that is not settled yet, but simulations will provide great help in the
near future.

Putting everything together, we argued that a plausible scenario of
ring formation (see Section 5.3) in a real galaxy involves two phases:
in the first phase gravitational torques bring the gas from outside
the bar region down to the nuclear region. Then, once gas is within
the nuclear region, gravitational torques become less important and
turbulent dissipation, while it settles on x2 orbits, will drive the gas
towards the stable ring configuration described in Section 3.
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APPENDIX A : A NA LY TIC EXPRESSION FOR
T H E QUA D RU P O L E POT E N T I A L

The quadrupole �2 used in Section 3 is generated by the following
density distribution:

ρ2(r,φ, θ ) = A

4πG

(
v0e

rq

)2

exp

(
−2r

rq

)
sin2 φ cos(2θ ) , (A1)

where A is a dimensionless parameter, G is the gravitational con-
stant, v0 and rq are parameters, and (r, θ , φ) are spherical coordinates
where r is the radial distance, φ is the polar angle, and θ is the az-
imuthal angle. The plane φ = π /2 coincides with the plane of the
galaxy. In the main text we always assume φ = π /2 since everything
is 2D. The values of the parameters used in the main text are A =
0.4, v0 = 220 km s−1, and rq = 1.5 kpc.

The potential corresponding to this density distribution can be
found analytically. Since the density ρ2 is proportional to the real
part of the spherical harmonic Y 2

2 , which is an eigenfunction of the
Laplacian operator, the potential must be of the following form:

�2(r, θ, φ) = �2(r) sin2 φ cos(2θ ). (A2)

Taking the Laplacian of this equation and using the Poisson equation
we find

∇2�2(r, θ, φ) = [
�′′

2 + 2
r
�′

2 − 6
r2 �2

]
sin2 φ cos(2θ ) (A3)

= 4πGρ2. (A4)

Hence �2(r) must satisfy

�′′
2 + 2

r
�′

2 − 6

r2
�2 = A

(
v0e

rq

)2

exp

(
−2r

rq

)
. (A5)

We can reduce this to a dimensionless equation by defining the
following dimensionless variables:

x = r
rq

, (A6)

F = − �2
A(v0e)2 . (A7)

Equation (A5) becomes

F ′′(x) + 2F ′(x)

x
− 6F (x)

x2
= −e−2x . (A8)

To find the potential corresponding to the density distribution (A1),
we need to solve this equation with boundary conditions

F (0) = F (∞) = 0. (A9)

The solution is

F (x) = 3 − e−2x
(
2x4 + 4x3 + 6x2 + 6x + 3

) + 4x5 E1(2x)

20x3
,

(A10)
where E1(x) is the exponential integral function, a special function
defined as

E1(x) ≡
∫ ∞

x

e−t

t
dt . (A11)

A P P E N D I X B: C O N S E RVAT I O N O F A N G U L A R
M O M E N T U M F O R A F L U I D

Consider a fluid governed by the continuity equation and the com-
pressible Navier–Stokes equation, which in conservative form are

∂tρ + ∂j

(
ρvj

) = 0 (B1)

∂t (ρvi) + ∂j

(
ρvivj + δijP

) = −∂j

(
ρσij

) − ρ∂i�, (B2)

where � is the external gravitational potential, the viscous tensor
is given by (5), and we use the convention that repeated indices
means summation. From (B1) and (B2) one can prove the following
statement for the conservation of angular momentum:

∂t (ρLi) + ∂j (ρLivj + εipmxpδmjP )

= ∂j

(
ρεipmxpσmj

) − ρεipmxp∂m�,

(B3)

where Li is the angular momentum per unit mass,

Li = εijkxj vk. (B4)

The first term on the right-hand side of (B3) represent the flux of
angular momentum due to viscous forces, while the second repre-
sents the change in angular momentum due to gravitational forces.
After some manipulation and using equation (B1), equation (B3)
can be recast in the following form:

DL
Dt

= τP + τ ν + τ g, (B5)

where D is the convective derivative

D

Dt
= ∂t + v · ∇ (B6)

and the torques per unit mass due to pressure, viscous, and gravita-
tional forces are given by

[τP ]i = − 1
ρ
∂j

(
ρεipmxpδmjP

)
, (B7)

[τν]i = 1
ρ
∂j

(
ρεipmxpσmj

)
, (B8)

[τg]i = −εipmxp∂m�. (B9)

The physical meaning of equation (B6) is that if we follow a fluid
element, its angular momentum changes due to three contributions:
pressure, viscous, and gravitational torques. In two dimensions,
equation (B8) reduces to equation (12).
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