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Abstract: Photon-number squeezing and correlations enable measurement of absorption with
an accuracy exceeding that of the shot-noise limit. However, sub-shot noise imaging and sensing
based on these methods require high detection efficiency, which can be a serious obstacle if
measurements are carried out in “difficult” spectral ranges. We show that this problem can
be overcome through the phase-sensitive amplification before detection. Here we propose an
experimental scheme of sub-shot-noise imaging with tolerance to detection losses.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantummetrology, one of the rapidly developing quantum technologies, uses quantum resources
for overcoming the limits set by classical measurement methods [1, 2]. Phase sensitivity is one
example [3], measurement of absorption [4] is another one. Together with the spatial resolution,
these two types of measurement form the basis for quantum imaging [5]. With spectral resolution,
quantum-enhanced measurements of both types can be used for spectroscopy.

In this work we will focus on the measurement of absorption, especially for the case of weakly
absorbing objects. In classical optics, in order to measure a weak absorption A � 1, the object
under test is placed into one of the output beams of a 50% beamsplitter, see Fig. 1(a). The second
beam is used as a reference, for suppressing the effect of the amplitude fluctuations present in the
incident beam. The absorption of the object is found by subtracting the output signals of the
detectors placed into both channels.

On the fundamental level, the sensitivity of absorption measurements is limited by the quantum
fluctuations of the light intensity. In the simplest case of a coherent quantum state at the input,
the sensitivity scales as ∆A ∼ 1/

√
N , see Eq. (11), where N is the number of photons used [6,7].

This characteristic dependence, which originates from the Poissonian distribution of the photon
number in the coherent state, is known as the shot noise limit (SNL). Although it can be improved
by simply increasing the number of photons, this may not be an option in environmental or
biological measurements where the use of high intensity should be avoided.

More advanced quantum states of light could provide better sensitivity for weak illumination.
The ideal case evidently corresponds to the Fock quantum states |N〉. In this case, ∆A is
considerably reduced as it gets multiplied by a factor

√
A, see Eq. (14) [8]. The practical

implementation of this idea uses twin beams produced by a non-degenerate parametric amplifier
(NOPA) and relies on their high degree of photon-number correlation [9–11]. In this scheme, see
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Fig. 1. Schemes of quantum imaging and sensing. (a) Classical differential scheme. The
object with absorption A is placed into one of the outputs of a 50% beamsplitter, and
the absorption is retrieved through intensity subtraction measurement. (b) Conventional
scheme of sub-shot-noise quantum imaging. The object is placed into one of the twin beams,
emerging from a NOPA with the parametric gain r . Two photodetectors with equal quantum
efficiencies η measure the numbers of photons in signal and idler beams, and the difference
is calculated. (c) An alternative scheme, where only one beam is squeezed by a DOPA
before probing the object, the other (much stronger) one being coherent. In schemes (b) and
(c), additional DOPAs with gain R (shown by dashed lines) can be placed into both arms (b)
or into the signal arm (c) to overcome the detrimental effect of the detection loss.

Fig. 1(b), the absorbing object is placed into one of the beams (the signal one), with the second
one serving as a reference. The photon-number measurement in the reference beam projects
the signal one into the quantum state with a well-defined N (in the ideal case — into the Fock
state |N〉), enabling thus the sub-shot-noise sensitivity [4,6,12–14]. It is worth noting that in this
case, the sub-shot-noise sensitivity is achieved not by improving the scaling with the number of
photons used for the measurement, but due to the reduction of uncertainty by a factor of

√
A.

A similar scheme was proposed in Ref. [15] for improving the signal-to-noise ratio (SNR) in
imaging. In this scheme, the object to be imaged is placed into one of multimode twin beams.
The image is retrieved by subtracting the outputs of spatially resolving detectors placed into
both beams. The SNR is then improved compared to the case of classical differential imaging
due to the noise suppression below the SNL. This technique of sub-shot-noise imaging was
demonstrated experimentally in works [16–18].

Closely related to abovementioned technique is the recently proposed "quantum illumination"
protocol [19, 20], where the introduced entanglement between the signal and ancilla qubits
could help to detect a presence of the target object, which was demonstrated in optical [21], and
microwave domains [22].
Instead of twin beams, one can use a single sub-Poissonian squeezed beam, produced in a

degenerate optical parametric amplifier (DOPA), as a probe [23]. A coherent beam fed from the
same laser source can be used in this case as a reference, see Fig. 1(c). Although not suitable
for imaging in the case of a single-mode beam, this scheme is convenient for spectroscopy. It
was indeed used to enhance the sensitivity of spectroscopic measurements, with squeezed light
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from a parametric amplifier [24] and from an amplitude-squeezed semiconductor laser [25].
This method can be very useful for sensing through absorption measurement, for instance, for
monitoring the concentration of various gases [26].
For both these versions of sub-shot-noise quantum sensing, the increase in SNR strongly

depends on the detection efficiency of the optical setup. In the experiments [4, 14, 16, 17]
performed in the visible range, the total detection efficiency of the setup exceeded 90%. However,
in some cases, the absorption should be measured in other spectral ranges, where detection
is inefficient. Moreover, as we show further, in order to reveal the full potential of quantum
sensing, the detectors inefficiency should not exceed the measured absorption. In the case of
weak absorption measurements,A . 10−2, this requirement can not be fulfilled with the existing
photodetectors.
Here we show that sub-shot-noise quantum imaging can work in the presence of any loss

provided that the beams carrying the information about the absorption are amplified before
the detection using phase-sensitive parametric amplifiers (DOPAs), shown by dashed lines
in Figs. 1(b) and 1(c). This approach is similar to the strategy of overcoming loss in high-
precision interferometry, first proposed in Ref. [27], elaborated theoretically in Refs. [28–31], and
demonstrated experimentally in Refs. [32–35]. It was also proposed as a method of “quantum
phase magnification” [36], and for “enhanced quantum tomography” [37, 38].
In all these cases, the quadrature containing the signal is amplified and this way protected

against loss. In the twin beam case which we explore here, the amplification is also phase-sensitive,
but it does not matter which phase is amplified as long as it is the same for both twin beams. It is
important that an ideal phase-sensitive amplifier does not introduce additional noise, and for this
reason, it can be used for the noiseless amplification of images [39].

The present work considers the case where the image to be amplified is a sub-shot-noise one.
In order to emphasize the effect, in our numerical estimates we will target very weak absorption
A ≈ 10−5, typical, in particular, for gas absorption measurements.
The paper is organized as follows. Section 2 considers the fundamental bounds for the

absorption measurement. In Section 3 we discuss sub-shot-noise quantum imaging using twin
beams and the tolerance to inefficient detection provided by phase-sensitive amplification, see
Fig. 1(b). Section 4 describes an alternative method, using a single squeezed coherent beam, also
followed by phase-sensitive amplification for overcoming the detection loss, see Fig. 1(c). In
Section 5 we outline possible experiments, and Section 6 is the conclusion.

2. Cramer-Rao bounds

Statistics of the number of photons n after an absorbing object are described by a conditional
probability distribution W(n/A) parameterized by the power absorption factor A. The ultimate
accuracy of estimating this parameter of the probability distribution is given by the Cramer-Rao
bound [40],

∆ACR =

{ ∞∑
n=0

1
W(n/A)

[
∂W(n/A)

∂A

]2
}−1/2

. (1)

This equation describes the ideal case of a precise measurement of n (that is, photon counting with
100% efficiency) as well as an ideal (lossless) preparation of the incident quantum state of light.
However, it is easy to modify it to take into account the non-ideal detection efficiency and the
non-ideal preparation. We model them by imaginary gray filters with the power transmissivities
ηd and ηp , located, respectively, after and before the object. In this case, the object transmissivity

T = 1 − A (2)

in Eq. (1) has to be replaced by the corresponding combined one,

1 − Aη = ηT , (3)
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where
η = ηpηd (4)

is the total quantum efficiency. This gives

∆ACR =

{ ∞∑
n=0

1
W(n/Aη)

[
∂W(n/Aη)

∂A

]2
}−1/2

. (5)

Combining Eqs. (5) and (3), we obtain

∆ACR =
1
η

{ ∞∑
n=0

1
W(n/Aη)

[
∂W(n/Aη)

∂Aη

]2
}−1/2

. (6)

Here we calculate this bound for two most important particular cases.
We start with a coherent state, which describes the laser radiation in the idealized case where

the excess (technical) noise is absent. This “classical” light is characterized by the Poissonian
photon-number distribution with some mean value N0. After passing through the absorbing object
and the imaginary filter, which models the detector inefficiency, the photon-number distribution
still remains Poissonian, but with a reduced mean photon number (1 − Aη)N0:

W(n/A) =
e−(1−Aη )N0 [(1 − Aη)N0]n

n!
. (7)

Substituting this distribution into Eq. (6), we obtain the Cramer-Rao bound for coherent light:

∆ACR coh =

√
T
ηdN

, (8)

where
N = ηpN0 (9)

is the mean photon number at the object. Equation (8) takes into account the object transmissivity
and the detector inefficiency in the known expression for the shot-noise limit [6, 7].

From a practical viewpoint, most important is the case of a highly transparent object and good
preparation and detection efficiencies,

A � 1 , 1 − ηp,d � 1 . (10)

In this case, the sensitivity is virtually not affected by the object absorption and by the preparation
inefficiency,

∆ACR coh =
1
√

N
. (11)

Consider now a photon-number (Fock) state |N0〉. Taking into account that in the absorption
measurements the information is encoded into the probe light intensity, this state should provide
the best possible sensitivity. Indeed, for this state, the probability distribution for the number of
detected photons is the binomial one,

W(n/A) = N0!
n!(N0 − n)!A

N0−n
η (1 − Aη)n , (12)

and the corresponding Cramer-Rao bound is

∆ACR Fock =

√
[A + (1 − η)T]T

ηdN
. (13)
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In the particular case of (10),

∆ACR Fock =

√
A + ε2

N
, (14)

where
ε2 = ε2

p + ε
2
d (15)

is the total inefficiency of the scheme and

ε2
p,d =

1 − ηp,d
ηp,d

. (16)

It is interesting that opposite to the phase measurements (see e.g. [31] and the references therein),
Eqs. (13) and ( 14) still scale with the number of quanta as 1/

√
N [8], because the absorption,

opposite to the phase shift, is a stochastic process which introduces an additional uncertainty,
scaling as

√
N , into the number of photons. However, the additional factor in the numerator could

provide a significant sensitivity gain in the case of the weak (A � 1) absorption measurements
with efficient preparation and detection (1 − η � 1).

Given the same photon number N of the beam hitting the object and the same values of ηp , ηd ,
the quantum advantage can be described by the ratio Q of the uncertainties for the shot-noise
measurement ∆ACR coh and the one using some nonclassical state of light,

Q =
∆ACR coh
∆A . (17)

In the Fock state case (∆A = ∆ACR Fock), it follows from Eqs. (11) and (14) that this quantum
advantage is

Q =
1

√
A + ε2

. (18)

Clearly, the asymptotic value of this gain 1/
√
A can be reached only if ε2 � A. In the opposite

case, the gain is limited by the scheme inefficiency ε2.

3. Twin-beams absorption measurement and its enhancement through phase-
sensitive amplification

Consider now the “twin beams” scheme shown in Fig. 1(b). Let the twin beams be produced by a
NOPA with the parametric gain r . The object, with the absorptionA, is placed into beam 1. Then
both beams pass through DOPAs, which stretch some arbitrary but synchronized quadratures of
these beams by eR. After that, the beams are detected by two photodetectors.
There are various strategies of processing the output data. Here we consider two linear ones

used, respectively, in [16] and [4].
The first and simpler procedure is based on the estimator

Ã = nd1 − nd2
G

, (19)

where nd1 and nd2 are the photon numbers registered by the first and the second photodetectors
and

G =
∂〈nd1〉
∂A (20)

is the transfer function. The measurement error for this procedure is calculated in Appendix B,
see Eq. (55). This general equation is quite cumbersome. In order to reveal its structure, we
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consider here the case [Eq. (10)] of a small absorption and good efficiency of the setup, assuming
in addition for simplicity that the photon number is large,

N � 1 . (21)

Also for simplicity, we present here the equations for only two most interesting cases: either the
output DOPAs are not used at all (R = 0), or they provide strong amplification,

e2R � 1 . (22)

In the case of no amplification, R = 0, Eq. (55) simplifies to

(∆A)2 = A2 +
A + 2ε2

N
. (23a)

This limit differs from the Cramer-Rao bound [Eq. (14)] in two aspects. The first one is the
additional term A2, which stems from the asymmetry introduced into the twin beams by the
absorption and, as we will show below, can be removed by using an estimator more advanced
than (19). Second, the terms imposed by the preparation and detector inefficiency are twice as
large due to the two beams used in this protocol.
In the case [Eq. (22)] of strong amplification,

(∆A)2 = 2

[
A2 +

A + 2(ε2
p + ε

2
d

e−2R)
N

]
+

1
N2 . (23b)

One can see that in this case the detection inefficiency is suppressed by the factor e−2R. The
origin for this is evident, namely amplification of the signal (that is, amplitude) quadrature of the
light before the detection, which suppresses the influence of the noise introduced by the detectors’
inefficiency. At the same time, the additional photon-number fluctuations originating from the
imbalance due to object are enhanced by the DOPAs, thus adding: (i) yet another factor 2, and
(ii) the additional term 1/N2.

In Ref. [4], a more sophisticated but still linear estimator was proposed:

Ã = nd1 − knd2
G

, (24)

where the factor k should be optimized to provide the minimum of ∆A. The corresponding
minimized∆A is also calculated in Appendix B, see Eq. (59). The resulting asymptotic equations
for the absorption uncertainty and the quantum advantage for the same “no amplification” and
“strong amplification” cases as above are, respectively,

(∆A)2 = A + 2ε2

N
, Q =

1
√
A + 2ε2

, (25a)

and

(∆A)2 = 2

[
A + 2(ε2

p + ε
2
d

e−2R)
N

]
+

1
N2 , Q =

1√
2[A + 2(ε2

p + ε
2
d

e−2R)] + 1/N
. (25b)

Equations (25a) and (25b) differ from the previous ones [Eqs. (23a) and (23b)] by the absence of
the additional term A2. The price for this is that this procedure requires a priori information on
A. In this article we assume that the value of A could always be estimated using for example
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Fig. 2. The quantum advantage Q of the ‘twin beams’ scheme, see Eqs. (17) and (59), for
the case of no parametric amplification (R = 0) as a function of detection efficiency ηd
for ε2

p = 0 (black, maximum efficiency), 10−5 (red), 10−4 (green), 10−3 (blue), and 10−2

(magenta). The object absorption is A = 10−5 and the mean photon number is N = 107.

the conventional approach of classical differential scheme, and then a series of consecutive
measurements could be performed in order for A to converge towards the true value.
The quantum advantage Q achieved using the estimator (24) in the case of R = 0 is shown

in Fig. 2 as a function of the detection inefficiency ε2
d
for various values of the preparation

inefficiency [note that the plots in Fig. 2, as well as in Fig. 3 below are drawn using the exact
Eqs. (59) and (69), respectively]. Among them, ε2

p = 10−3 can be considered as a realistic one.
It corresponds to absorption inside the nonlinear crystal on the order of 10−4mm−1 [41] and
reflection at each surface of the crystal of about 10−4 [42]. Clearly, Q is above unity only for
sufficiently high detection efficiency. Similarly to the Fock state case (see Sec. 2), the quantum
advantage reaches its maximal value 1/

√
A only if ε2

d,p
� A. In the opposite case, the quantum

advantage is limited by the scheme inefficiency:

Q ≤ 1
√

2 ε
. (26)

However, as one can see from Eqs. (23b) and (25b), by increasing the amplification R the
effect of the inefficient detection can be made arbitrarily small. In the practical case of A � ε2,
the corresponding sensitivity gain can more than compensate for the above-mentioned additional
factor 2 before A and the additional term 1/N2 in the equation for ∆A. This is demonstrated by
Fig. 3, where the quantum advantage achieved with the estimator (24) is plotted as a function
of the parametric gain R for several values of the detector’s efficiency, from the very optimistic
to the very low ones. One can see that for any quantum efficiency the asymptotic value of the
quantum advantage,

Q =
1√

2(A + 2ε2
p) + 1/N

, (27)

can be reached, provided there is sufficiently strong parametric amplification.
It is interesting to note that in the case of a low quantum efficiency, this value can be even

exceeded, see the blue and magenta curves in Fig. 3. This is because the baseline value ∆ACR coh
is also affected by the detectors inefficiency, and this effect becomes significant if ε2

d
& 1, see

Eq. (8).
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Fig. 3. The quantum advantage Q of the ‘twin beams’ scheme in the presence of additional
parametric amplification, see Eqs. (17) and (59), as a function of the gain R for different
values of the detection efficiency: η = 0.99 (red), 0.9 (green), 0.5 (blue), and 0.1 (magenta).
The mean photon number is N = 107 and the absorption is A = 10−5.

4. Sub-shot-noise sensing with squeezed light

An alternative way to overcome the shot noise limit is to use another quantum state with reduced
photon-number fluctuations, namely the squeezed coherent state. Consider the scheme shown in
Fig. 1(c). Here a coherent beam is split on a beamsplitter, so that part (top) is amplitude squeezed
in a degenerate parametric amplifier (DOPA) with the parametric gain r and used as a probe
beam with the photon number N , and another one (bottom) is used as a reference. Then the
probe beam passes through another DOPA, which has the parametric gain R.
Note that while the optical power in the probe beam could be limited by the probed object

fragility, there is no such limitation for the reference beam. Therefore, it is reasonable to have the
reference beam much stronger than the signal one, in order to suppress the reference beam shot
noise. In this case, an asymmetric beamsplitter has to be used, and the reference photodetector
output has to be proportionally scaled down. We assume this case here, taking into account the
quantum noise of the signal beam only.
The measurement uncertainty for this scheme is calculated in Appendix C, see Eq. (69).

Similarly to the previous section, we consider several characteristic asymptotic cases.
We start with the baseline case of R = 0. If the input squeezing is absent as well, then Eq. (69)

reduces to the shot-noise limit [Eq. (8)]. Suppose that the input optical field is strongly squeezed,

e−2r � 1, (28)

and assume also conditions [Eqs. (10) and (21)]. In this case it follows from Eq. (69) that

(∆A)2 = e−2 |r | +A + ε2

N
+

e4 |r |

8N2 (29a)

and
Q =

1√
e−2 |r | +A + ε2 +

e4 |r |

8N

. (29b)

One can see that the optimal value of the input squeezing exists which provides the minimum of
the initial uncertainty of the number of quanta and therefore the minimum of ∆A. This optimal
squeezing corresponds to

e2 |r | = (4N)1/3, (30)
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Fig. 4. The quantum advantage Q of the “squeezed coherent” scheme, see Eqs. (17) and
(69), for the case of no parametric amplification (R = 0) as a function of detection efficiency
ηd for ε2

p = 0 (black), 10−3 (blue), and 10−2 (magenta). The object absorption is A = 10−5

and the mean photon number is N = 107.

which gives

(∆A)2 = A + ε
2

N
+

3
25/3N4/3 , (31a)

Q =
1√

A + ε2 +
3

25/3N1/3

. (31b)

Note that the first two terms in Eq. (31a) coincide with the Cramer-Rao bound for a Fock state
(14). The third term originates from the photon-number fluctuations in the incident light, which
can not be made arbitrary small within the constraints of Gaussian (displacement and squeezing)
transformations. Note that for the values of A and N that we use in this paper, it is this term that
dominates if the losses are small, ε2

p,d
. 10−3. At the same time, in the more realistic case of

stronger losses, the quantum advantage for the squeezed coherent state case can be
√

2 higher
than in the twin-beam case, compare Eqs. (25a) and (31). The reason for this is evident: the
former scheme requires only one noisy channel while the latter, two of them.
The quantum advantage for the squeezed coherent input state in the case of R = 0 is shown

in Fig. 4 as a function of the detection inefficiency factor ε2
d
for various values of preparation

inefficiency, and can be compared with the corresponding plots for the twin-beam scheme shown
in Fig. 2.
In the “strong amplification” case of Eq. (22), assuming also the asymptotic conditions [Eqs.

(10), (21), and (28)], Eq. (69) can be reduced to

(∆A)2 =
e−2 |r | +A + ε2

p + ε
2
d

e−2R

N − e2 |r |

4

+
e4 |r |−8R

8
(
N − e2 |r |

4

)2 . (32)

This equation shows once again that the detector inefficiency can be overcome by the amplification.
Dependence of ∆A on the input squeeze factor r is non-trivial. However, in all reasonable

practical cases, one can assume that
e2 |r | � 4N , (33)
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which gives

(∆A)2 =
e−2 |r | +A + ε2

p + ε
2
d

e−2R

N
+

e4 |r |−8R

8N2 . (34)

The minimum of this equation in |r | is provided by

e2 |r | = (4N)1/3e8R/3 , (35)

which gives the following simple equations:

(∆A)2 =
A + ε2

p + ε
2
d

e−2R

N
+

3e−8R/3

25/3N4/3 , (36a)

Q =
1√

A + ε2
p + ε

2
d

e−2R +
3e−8R/3

25/3N1/3

. (36b)

Then it follows from Eqs. (33) and (35) that in this case

e4R � 4N . (37)

Comparison of Eq. (36) with Eq. (31) shows that not only the detection inefficiency term, but
also the one which stems from the Gaussianity of the input quantum state [the last one in Eq.
(36a)] is suppressed by the amplification.

In comparison with the twin-beam scheme of Sec. 3, the effect of the object absorption on the
quantum advantage is reduced by a factor of

√
2, and the effect of the preparation and detection

losses, by a factor of 2, compare Eqs. (25b) and (36b). On the other hand, the last term in
Eq. (36b) is always larger than its counterpart in Eq. (25b) due to the condition Eq. (37). However,
for the realistic parameters that we use in this paper, this term is smaller than the previous ones,
making the “squeezed coherent” scheme more sensitive.

Figure 5 shows the quantum advantageQ and the corresponding numerically optimized squeeze
factor r for the ‘squeezed coherent’ scheme as a function of amplification R for the same values
of the detection efficiency and the other parameters as in Fig. 3.

5. Experimental implementation

From the above analysis, it follows that the scheme with a squeezed coherent beam provides a
better sensitivity in the absorption measurement than the twin-beams one. This scheme can be
relatively easily implemented using a cavity-based DOPA, where the state-of-the-art squeezing
reaches 15 dB [43]. The same device can serve for the amplification of the beam after the object
to overcome the detection losses. This single-mode scheme will be suitable for sub-shot-noise
spectroscopy or sensing without spatial resolution.
More challenging is to overcome detection loss in sub-shot-noise imaging, where spatially

multimode beams are involved. A sub-Poissonian multimode beam can be produced from
multimode twin beams through heralding [44] but the resulting amount of photon-number
squeezing is not high because of the inefficiency of the detector used in this method. Much more
promising is to utilize the twin-beam squeezing available in spatially multimode traveling-wave
NOPAs [16, 17, 44] where the noise reduction down to 7.8 dB has been reported [44].
The principal scheme of a possible experiment is shown in Fig. 6. Multimode twin beams

are produced by a phase-insensitive traveling-wave NOPA. A certain technical difficulty arises
from the necessity to provide phase-sensitive amplification with the same phase in each beam.
To avoid matching the mode structure of phase sensitive amplifiers in both beams, one can take
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Fig. 5. The quantum advantage Q (top) and the corresponding numerically optimized
squeeze factor r (bottom) for the “squeezed coherent” scheme, see Eqs. (17) and (69), as a
function of the gain R for different values of the detection efficiency: η = 0.99 (red), 0.9
(green), 0.5 (blue), and 0.1 (magenta). The straight black line in the bottom plot shows the
asymptotic (35). The mean photon number is N = 107 and the absorption is A = 10−5.

Fig. 6. Scheme of a possible experiment. NOPA1 generates beams in modes â1 and
â2, and a weakly absorbing object is placed into mode â1. After the beam in mode â2
acquires a π/2 phase shift, both beams are overlapped on a 50% beamsplitter to form modes
â± = (â1 ± iâ2)/

√
2 at the output. These two modes are amplified by NOPA2, which is

equivalent to the phase-sensitive amplification of modes â1 and â2. In the end, photon
numbers in modes â1 and â2 should be measured, which requires overlapping the modes on
another 50% beamsplitter.
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Fig. 7. Polarization implementation of the experiment on sub-shot-noise imaging.

advantage of the transformation between phase sensitive and phase-insensitive amplification
through mode conversion [39].
The operation of the NOPA producing the twin beams is described by the Hamiltonian

Ĥ = i~γâ†1â†2 + h.c., (38)

where γ quantifies the interaction strength.
Phase sensitive amplification with the same phase and the same parametric gain in modes

â1, â2 after the absorbing object is described by the Hamiltonian

Ĥ = i~Γ
[
(â†1)

2 + (â†2)
2
]
+ h.c., (39)

with the interaction strength characterized by Γ. This Hamiltonian can be represented as one of a
phase-insensitive amplifier,

Ĥ = i~Γâ†+â†− + h.c., (40)

for the modes
â± =

â1 ± iâ2√
2

. (41)

The modes â1,2 can be transformed into â± by using a 50% beamsplitter, with the π/2 phase shift
introduced into â2. After the second NOPA, a second beamsplitter should be used to convert the
“±” modes back into the “1, 2” ones.

Although Fig. 6 looks very complicated, the same idea can be implemented much more simply
using polarization optics, see Fig. 7. The vertically and horizontally polarized twin beams are
produced through type-II parametric down-conversion, and the object is absorbing just one
polarization. As phase sensitive amplifiers, one can use type-I parametric amplifiers placed
into both beams. The first one is then acting just on the vertically polarized beam, mode v, and
the second one, just on the horizontally polarized beam, mode h (panel a). In the end, both
beams are detected separately, for instance, by different sensitive areas of the same camera after
a birefringent beamsplitter. To retrieve the image, the intensity distributions obtained by the
camera should be subtracted pixel-by-pixel.
However, it is experimentally challenging to provide amplification with the same phase for

both polarizations. A solution is to use, as in Fig. 6, instead of phase-sensitive amplification of
vertical and horizontal polarizations (type-I OPA), a phase-insensitive two-mode amplification
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(type-II OPA), shown in panel b. This NOPA should amplify modes (h ± iv)/
√

2, i.e., right-
and left-circularly polarized modes. Because a type-II OPA can only amplify linearly polarized
beams, it has to be preceded by a quarter wave plate placed into both beams. Note that the type-II
OPA should have the polarization direction tilted by 45◦.

6. Conclusion

We have considered two methods of sub-shot-noise measurement of weak absorption, one using
twin beams and the other one, squeezed coherent light. Both are “substitutes” for the ideal
case where an absorptive object is probed by a Fock state, which has zero uncertainty in the
photon number. The “squeezed coherent” scheme is easier to implement, with a single-mode
coherent beam and a single-mode squeezer. However, while it is suitable for sensing or absorption
measurement, for instance, in spectroscopy, it cannot be used for imaging, where the object
should be illuminated by a spatially multimode beam. In this case, the ‘twin-beams’ scheme is
more convenient: a traveling-wave NOPA is always strongly multimode, unless special measures
are taken. Both methods give advantage over the classical differential method, the “squeezed
coherent” one providing a factor of

√
2 better performance than the other one and reaching the

Cramer-Rao bound for Fock states in the ideal case of infinite squeezing and no loss.
Meanwhile, both schemes turn out to be useless whenever the detection efficiency is low.

This will be the case if imaging, sensing, or absorption spectroscopy is carried out in the
mid-infrared or even terahertz spectral range. As we show, a way around it is to apply phase
sensitive amplification before detection. We show that at any value of the detection efficiency, by
sufficiently amplifying the beams after the absorbing object one can reach the same quantum
advantage as in the case of high efficiency.

The experimental implementation of this technique is most simple in sensing or spectroscopy,
where no spatial resolution is required. Single-mode cavity-based OPAs can be used in this case,
both for generating a squeezed coherent beam and for amplifying it after the object under study.
For imaging, we consider a polarization setup with a traveling-wave type-II OPA producing
orthogonally polarized twin beams. Another type-II OPA preceded by a quarter-wave plate can
then be used for the amplification before detection.

A. Detection inefficiency

We model the detectors’ inefficiency by imaginary beamsplitters with the power transmissivity
ηd:

d̂1,2 =
√
ηd ĉ1,2 +

√
1 − ηd û1,2 =

√
ηd(ĉ1,2 + εd û1,2) , (42)

where ĉ1,2 are the fields at the input of the detectors, d̂1,2 are the effective input fields of the
corresponding imaginary lossless detectors, and û1,2 are vacuum fields.
It is easy to show that the statistics of the effective input fields depend on the statistics of the

real ones as

〈n̂d1,2〉 = ηd 〈n̂c1,2〉 , (43a)

〈(δn̂d1,2)2〉 = η2
d[〈(δn̂c1,2)2〉 + ε2

d 〈n̂c1,2〉] , (43b)

〈δn̂d1 · δn̂d2〉 = η2
d 〈δn̂c1 · δn̂c2〉 , (43c)

where

n̂c1,2 = ĉ†1,2ĉ1,2 , (44a)

n̂d1,2 = d̂†1,2d̂1,2 , (44b)

δn̂c1,2 = n̂c1,2 − 〈n̂c1,2〉 , (44c)
δn̂d1,2 = n̂d1,2 − 〈n̂d1,2〉 . (44d)
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Fig. 8. Measurement of absorption using twin-beams scheme with amplification before
detection. The object under study is placed into the first beam, and both beams are
simultaneously amplified before the direct detection. The state preparation loss is modeled
by means of two identical beamsplitters with power transmissivity ηp , and the detection
loss, by a similar beamsplitter ηd . The pump of the non-linear crystals is not depicted.

B. Twin beams

The annihilation operators for two vacuum input fields, see Fig. 8, are ẑ1,2 . The non-ideal NOPA
transforms them into

â1,2 =
√
ηp(ẑ1,2 cosh r + ẑ†2,1 sinh r) +

√
1 − ηp v̂1p,2p , (45)

where v̂1p , v̂2p are two independent vacuum fields.
The object partly absorbs the first beam, leaving the second one unchanged:

b̂1 =
√
Tâ1 +

√
Av̂obj =

√
Tp(ẑ1 cosh r + ẑ†2 sinh r) +

√
Ap v̂1 , (46a)

b̂2 = â2 =
√
ηp(ẑ2 cosh r + ẑ†1 sinh r) +

√
1 − ηp v̂2 , (46b)

where

T = 1 − A , (47)
Tp = ηpT , Ap = 1 − ηpT , (48)

v̂1 =

√
(1 − ηp)T v̂1p +

√
A v̂obj√

Ap

, (49a)

v̂2 = v̂2p , (49b)

and v̂obj is the vacuum noise introduced by the object. Note that v̂1,2 again are two independent
vacuum fields.

Finally, the DOPAs give

ĉ1 = b̂1 cosh R + b̂†1 sinh R =
√
Tp(Ĉ1 + Ŝ†1 ) +

√
Ap(v̂1 cosh R + v̂†1 sinh R) , (50)

ĉ2 = b̂2 cosh R + b̂†2 sinh R =
√
ηp(Ĉ2 + Ŝ†2 ) +

√
1 − ηp(v̂2 cosh R + v̂†2 sinh R) , (51)

where

Ĉ1,2 = ẑ1,2 cosh r cosh R + ẑ2,1 sinh r sinh R , (52a)
Ŝ1,2 = ẑ1,2 cosh r sinh R + ẑ2,1 sinh r cosh R . (52b)
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It follows from these equations that the mean values and the second moments of the photon
numbers in the output beams are

〈n̂c1〉 =
(
TN +

1
2

)
cosh 2R − 1

2
, (53a)

〈n̂c2〉 =
(
N +

1
2

)
cosh 2R − 1

2
, (53b)

〈(δn̂c1)2〉 =
(
TN +

1
2

)2
cosh 4R − 1

4
, (53c)

〈(δn̂c2)2〉 =
(
N +

1
2

)2
cosh 4R − 1

4
, (53d)

〈δn̂c1 · δn̂c2〉 = TN(N + ηp) cosh 4R , (53e)

where
N = ηp sinh2 r (54)

is the mean photon number at the object.
In the case of estimator Eq. (19), the absorption can be measured with the uncertainty [see

Eqs. (43a)-(43c)]

(∆A)2 = 〈(δn̂d1 − δn̂d2)2〉
G2 =

1
(G/ηd)2

[
〈(δn̂c1)2〉 + 〈(δn̂c2)2〉 − 2〈δn̂c1 · δn̂c2〉 + ε2(〈n̂c1〉 + 〈n̂c2〉)

]
. (55)

where
G =

∂〈n̂d1〉
∂A = −ηdN cosh 2R (56)

is the transfer function.
In the case of estimator (24), the uncertainty is

(∆A)2 = 〈(δn̂d1 − kδn̂d2)2〉
G2 =

〈(δn̂d1)2〉 − 2k 〈δn̂d1 · δn̂d2〉 + k2〈(δn̂d2)2〉
G2 . (57)

where k is the factor which has to be optimized. It is easy to see that the minimum of Eq. (57)
occurs at

k =
〈δn̂d1 · δn̂d2〉
〈(δn̂d2)2〉

, (58)

and is [see Eqs. (43a)-(43c)]

(∆A)2 = 1
G2

[
〈(δn̂d1)2〉 −

〈δn̂d1 · δn̂d2〉2
〈(δn̂d2)2〉

]
=

1
(G/ηd)2

[
〈(δn̂c1)2〉 + ε2〈nc1〉 −

〈δn̂c1 · δn̂c2〉2
〈(δn̂c2)2〉 + ε2〈nc1〉

]
. (59)

In the case of R = 0 and Eqs. (10) and (21), Eqs. (55) and (59) simplify, respectively, to
Eqs. (23a) and (25a).
In the case of eR � 1 and Eq. (21)), Eqs. (55) and (59) give, respectively,

(∆A)2 = 2
{
A2 +

1
N

[
A + 2(1 − ηp)T + ε2(1 + T)e−2R]}

+
1

N2 , (60)

(∆A)2 = 2T
N

[
A + 2(1 − ηp)T + ε2(1 + T)e−2R]

+
1

N2

[
1 + T2

2
+ 2T(1 − Tη2

p)
]
. (61)
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Fig. 9. Measurement of absorption using a squeezed coherent state and amplification before
detection. Since the reference beam is considered to have a very large amplitude in order to
suppress the shot-noise in the corresponding channel, one can take into account only the
noise of the signal channel. Here α is rescaled, see Eq. (63).

If, in addition, assumptions Eq. (10) are fulfilled, then these equations simplify, respectively, to
Eqs. (23b) and (25b).

C. Squeezed coherent state

With an account for the preparation imperfection, the annihilation operator for the field incident
at the object, see Fig. 9, is

â = α + √ηp(ẑ cosh r + ẑ† sinh r) +
√

1 − ηp v̂p , (62)

where ẑ, v̂p are vacuum fields and

α =

√
N − ηp sinh2 r (63)

(we assume that α is real). The object modifies this field as follows:

b̂ =
√
Tâ +

√
Av̂obj =

√
Tα +

√
Tp(ẑ cosh r + ẑ† sinh r) +

√
Ap v̂ , (64)

where

v̂ =
√
(1 − ηp)T v̂p +

√
A v̂obj√

Ap

(65)

and v̂obj is the vacuum noise introduced by the object. Note that v̂ again is a vacuum noise.
Finally, the DOPA gives

ĉ = b̂ cosh R + b̂† sinh R

=
√
TαeR +

√
Tp

[
ẑ cosh(r + R) + ẑ† sinh(r + R)

]
+

√
Ap(v̂ cosh R + v̂† sinh R) . (66)

It follows from Eq. (66) that the mean value and the variance of the photon number in the output
beam are

〈n̂c〉 = Tα2e2R + Tp sinh2(r + R) +Ap sinh2 R , (67)

〈(δn̂c)2〉 =TTpα2e2r+4R +
T2
p

2
sinh2 2(r + R)+

TApα
2e4R + TpAp sinh2(r + 2R) +

A2
p

2
sinh2 2R .

(68)

With an account for Eqs. (43a)-(43c), the absorption measurement error is

(∆A)2 = 〈(δn̂d)2〉
G2 =

〈(δn̂c)2〉 + ε2〈n̂c〉
(G/ηd)2

, (69)
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where
G =

∂〈n̂d〉
∂A = ηd

[
−α2e2R − ηp sinh2(r + R) + ηp sinh2 R

]
(70)

is the transfer function.
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