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Summary 
 

For fertilization, sperm have to penetrate the oocyte’s vestment, the zona pellucida (ZP). In 

mouse and human, the ZP consists of three or four different ZP glycoproteins, respectively. 

Binding of sperm to ZP glycoproteins evokes sperm hyperactivation and acrosome reaction, 

which enables sperm to penetrate the ZP. However, the ZP-induced signaling pathways 

underlying these behavioral responses are ill-defined. Therefore, in my thesis I investigated ZP 

signaling in mouse and human sperm. In both species, mixing with ZP glycoproteins evoked 

rapid changes in intracellular pH (pHi) and intracellular Ca2+ concentration ([Ca2+]i). I was able to 

confirm that the sperm‐specific Ca2+ channel CatSper mediates the ZP-evoked Ca2+ influx in 

mouse and human sperm. However, my experiments demonstrate that the molecular 

mechanism underlying CatSper activation by ZPs are distinctively different in mouse and human. 

In human sperm, CatSper activation does not require pHi alkalization. Here, human ZP 

glycoproteins directly activate CatSper. However, in mouse sperm, the alkalization is essential 

for the ZP-evoked Ca2+ influx via CatSper. Moreover, my experiments reveal that ZP-induced 

alkalization is mediated by different proteins in mouse and human. In mouse sperm, ZP-evoked 

alkalization requires extracellular Na+; however, the prominent candidate to control ZP-evoked 

alkalization, the sperm-specific Na+/H+ exchanger, is not fulfilling this function. My results rather 

demonstrate that another protein of the Na+/H+ exchanger family, the sodium-proton 

antiporter 1 (NHA1), controls ZP-evoked alkalization. In NHA1 KO mice, the ZP-evoked increase 

in pHi and [Ca2+]i was strongly attenuated. The mechanism underlying NHA1 activation remains, 

however, elusive. ZP-evoked alkalization was suppressed under depolarized membrane 

potentials, indicating that a polarized membrane potential is crucial for NHA1 activation. In 

human sperm, a polarized membrane potential was also required for ZP-evoked pHi signaling, 

however, ZP-evoked alkalization is, in contrast to mouse sperm, not mediated by a Na+/H+ 

exchange. My work provides important new insights into the molecular mechanism underlying 

the action of ZP glycoproteins in mouse and human sperm and reveals fundamental differences 

between the two species, questioning the mouse as appropriate model system to study 

fertilization in human.              
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Zusammenfassung 

Für die Befruchtung ist entscheidend, dass das Spermium die äußere Eihülle, die Zona pellucida 

(ZP) penetriert. In der Maus besteht die ZP aus jeweils drei, im Menschen aus vier 

verschiedenen ZP Glykoproteinen. Bindet ein Spermium an die ZP Glykoproteine, wird im 

Spermium eine Hyperaktivierung und die Akrosomreaktion ausgelöst. Das ermöglicht dem 

Spermium die ZP zu penetrieren. Der ZP-induzierte Signalweg, der diesen 

Verhaltensänderungen zu Grunde liegt, ist jedoch weitgehend unbekannt. In meiner 

Doktorarbeit habe ich die ZP-abhängigen Signalwege in humanen und murinen Spermien 

analysiert. In beiden Spezies induzieren ZP Glykoproteinen schnelle Änderungen des 

intrazellulären pH-Werts (pHi) und der intrazellulären Calciumkonzentration ([Ca2+]i). Ich konnte 

zeigen, dass der spermienspezifische Calciumkanal CatSper für den ZP-induzierten 

Calciumanstieg in humanen und murinen Spermien verantwortlich ist, der molekulare 

Mechanismus der CatSper Aktivierung unterscheidet sich jedoch grundlegend zwischen Mensch 

und Maus. In humanen Spermien wird CatSper direkt durch ZP Glykoproteine aktiviert. In 

Mäusespermien ist dagegen eine Alkalisierung des pHi essentiell für den CatSper vermittelten, 

ZP-induzierten Calciumanstieg. Darüber hinaus zeigen meine Experimente, dass die ZP- 

induzierte Alkalisierung in Mensch und Maus durch verschiedene Proteine vermittelt wird. In 

Mäusespermien ist die ZP-induzierte Alkalisierung abhängig von der extrazellulärem Na+-

Konzentration. Der Spermien-spezifische Na+/H+ Austauscher war der naheliegendste Kandidat, 

spielt jedoch für die Regulation der ZP-induzierten Alkalisierung keine Rolle. Verantwortlich 

hierfür ist ein anderes Mitglied aus der Na+/H+ Austauscher-Familie, der Natrium/Protonen-

Antiporter 1 (NHA1). In NHA1 KO Mäusen ist der ZP-induzierte Anstieg in pHi und [Ca2+]i deutlich 

reduziert. Es ist jedoch unklar wie NHA1 aktiviert wird. Die ZP-induzierte Alkalisierung ist unter 

depolarisiertem Membranpotential unterdrückt, was darauf hindeutet dass die Aktivierung von 

NHA1 ein polarisiertes Membranpotential erfordert. Auch in humanen Spermien ist ein 

polarisiertes Membranpotential entscheidend für die ZP-induzierte Alkalisierung. Im Gegensatz 

zu Mäusespermien wird die ZP-induzierte Alkalisierung jedoch nicht über einen Na+/H+ 

Austauscher vermittelt. Meine Arbeit bietet wichtige neue Einblicke in den molekularen 

Mechanismus des ZP-induzierten Signalwegs in Spermien aus Maus und Mensch und enthüllt 

entscheidende Unterschiede im molekularen Mechanismus zwischen den beiden Spezies. 
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BAPTA  1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid  

BCECF 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein 

BSA bovine serum albumin 

°C degree celicus 

[Ca2+]i intracellular Ca2+ concentration 

cAMP cyclic adenosine monophosphate 

CatSper cation channel of sperm 

CFCS conserved furin cleavage site 

[Cl-]o extracellular chloride concentration 

DMEM Dulbecco’s Minimal Essential Media 
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EC50 half-maximal effective concentration 
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1 Introduction 

1.1 Fertilization in mammals 
 

In sexual reproduction, fusion of a male and a female gamete is the beginning of new life. The 

immotile oocyte provides the maternal genome and contains the inventory required to initiate 

and maintain embryo development. In mouse and human, the oocyte has a diameter of about 

70 µm and 120 µm, respectively (Griffin et al., 2006; van den Hurk & Zhao, 2005). The 

mammalian oocyte is surrounded by two vestments: the zona pellucida (ZP), a matrix of 

glycoproteins, and the cumulus oophorus (fig. 1.1a). The ZP protects the oocyte and the 

developing embryo against the environment (Yanagimachi, 1994), mediates the first interaction 

between gametes during fertilization, and prevents polyspermy (Wassarman, 2008). The 

cumulus oophorus, a multilayered mass of cumulus cells embedded in a hyaluronic acid-rich 

matrix, supports oocyte development and maturation (Huang & Wells, 2010; Van Soom et al., 

2002).                                         

The motile sperm harbor the paternal genome and deliver this good to the oocyte. Human and 

mouse sperm differ considerably in size: human sperm are about 55 µm long, while mouse 

sperm are about 125 µm in length. Sperm can be divided structurally into the head containing 

the tightly packed DNA, and the flagellum, conveying sperm motility. The flagellum is subdivided 

into midpiece, principal piece, and endpiece. Typical for rodents, mouse sperm have a sickle-

shaped head with a small apical hook (fig. 1.1b), whereas the head of human sperm is spatual-

shaped (fig. 1.1c). The acrosome, a Golgi-derived vesicle, occupies the anterior region of  

 

 

Fig. 1.1: Male and female gamete 

(a) Murine oocyte; scale bar: 20 µm. (b) Murine sperm; scale bar: 20 µm. (c) Human sperm; scale bar: 

10 µm.  
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the mammalian sperm head and is surrounded by the outer and inner acrosomal membrane, 

respectively.  

Sperm acquire the ability to swim during their passage across the epididymis (Dacheux & 

Dacheux, 2013; Soler et al., 1994; Yeung et al., 1993). Upon ejaculation, mammals release 

millions of sperm into the vagina. Freshly ejaculated sperm are unable to fertilize the oocyte. 

The fertilization competence is acquired inside the female genital tract, a process termed 

capacitation. In vitro, bicarbonate (HCO3
-), albumin, and Ca2+ (Visconti et al., 1995) are required 

for capacitation, which involves an ill-defined signaling cascade, resulting in complex changes in 

the biochemical, physiological, and cellular properties of sperm. A Na+/HCO3
− cotransporter 

transports HCO3
-  across the plasma membrane (Demarco et al., 2003), where it activates the 

atypical soluble adenylate cyclase (SACY), which synthesizes cyclic adenosine monophosphate 

(cAMP) (Buck et al., 1999; Okamura et al., 1985; Wandernoth et al., 2010). cAMP drives a 

signaling cascade mediated by protein kinase A (Nolan et al., 2004; Visconti et al., 1995), which 

in turn activates tyrosine kinases (Alvau et al., 2016; Baker et al., 2006; Battistone et al., 2014; 

Varano et al., 2009), resulting in tyrosine phosphorylation of ion channels, metabolic enzymes, 

and structural proteins (Chung et al., 2014; Ficarro et al., 2003; Visconti et al., 1995). 

Concurrently, plasma membrane phospholipids are redistributed (Boerke et al., 2008; Flesch et 

al., 2001; Gadella & Harrison, 2000) and cholesterol and glycoproteins are removed (Osheroff et 

al., 1999; Visconti et al., 1999), which in turn alters the physiochemical properties of the plasma 

membrane. Moreover, capacitation increases the intracellular pH (pHi), (Vredenburgh-Wilberg 

& Parrish, 1995; Zeng et al., 1996), the intracellular Ca2+ concentration ([Ca2+]i) (Baldi et al., 

1991; Ruknudin & Silver, 1990), and hyperpolarizes the sperm membrane potential (VM) 

(Arnoult et al., 1999; Zeng et al., 1995).  

During the transit trough the female reproductive tract, sperm undergo a vigorous selection 

process and only about 10-20 sperm arrive at the oocyte in the distal part of the oviduct (Chang 

& Suarez, 2012; Ishikawa et al., 2016). How mammalian sperm navigate inside the female 

genital tract is a matter of debate. Sperm guidance is presumably regulated by thermotaxis and 

rheotaxis, which refers to a directed movement up a temperature gradient and swimming 

against a fluid flow, respectively  (Bahat et al., 2003; Kantsler et al., 2014; Miki & Clapham, 

2013; Oliveira et al., 1999). Additionally, sperm chemotaxis in response to a gradient of 

chemoattractants released by the oocyte and the cumulus oophorus was proposed as guiding 

mechanism (Kaupp et al., 2008; Oliveira et al., 1999; Ralt et al., 1994).  

 

After reaching the oocyte, sperm have to penetrate trough the cumulus oophorus and the ZP. 

This is facilitated by sperm hyperactivation and the acrosome reaction. Hyperactivated sperm 

display a high-amplitude, asymmetrical flagellar beat with increased flagellar force (Bastiaan & 

Franken, 2007; Chiu et al., 2008b; Morales et al., 1988). Where exactly hyperactivated motility 
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is evoked during the transit trough the female genital tract is a matter of debate. It has been 

suggested that sperm undergo hyperactivation to detach from the oviductal epithelium (Chang 

& Suarez, 2012; Demott & Suarez, 1992; Pacey et al., 1995). Moreover, in human sperm, ZP 

glycoproteins and follicular fluid induce hyperactivated motility (Bastiaan & Franken, 2007; Chiu 

et al., 2008b; Mbizvo et al., 1990).  

The acrosome reaction is triggered by a sustained Ca2+ increase evoked by oocyte-associated 

factors. These factors seem to activate phospholipase C (PLC) (Fukami et al., 2003), which 

hydrolyses PIP2 resulting in IP3 and diacylglycerol. Reportedly, IP3 mobilizes Ca2+ from the 

acrosome (Rossato et al., 2001), which further increases [Ca2+]i  through store-operated Ca2+ 

entry (Florman, 1994; Jungnickel et al., 2001; O'Toole et al., 2000), resulting in fusion and 

vesiculation of the outer acrosomal membrane and the sperm plasma membrane. Thereby, 

proteolytic enzymes such as acrosin and hyaluronidase are released (Bleil & Wassarman, 1983; 

Fig. 1.2: Mammalian fertilization 

Freshly ejaculated sperm are not able to fertilize. Sperm develop fertilization competence during 

transit trough the female reproductive tract. This maturation process is termed capacitation. Sperm 

localize the oocyte in the oviduct presumably by rheotaxis, thermotaxis, and chemotaxis. After 

entering the oviduct, sperm are trapped in a sperm storage reservoir by binding to the oviductal 

epithelium. Sperm are hyperactivated while releasing themselves from this reservoir now displaying 

more vigorous, assymetric flagellar beating. The site of the acrosome reaction has been located to 

the cumulus oophorus and the ZP. During acrosomal exocytosis hydrolytic enzymes are released, 

which loosen the cumulus oophorus and the ZP. In parallel, fusogens on the inner acrosomal 

membrane are exposed, which enables sperm to fuse with the oocyte`s plasma membrane. 
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Chiu et al., 2010; Florman et al., 1999; Liu et al., 2007b), which loosen the cumulus oophorus 

and digest the ZP (Adham et al., 1997; Kawano et al., 2010; Kimura et al., 2009). In parallel, 

sperm fusogens on the inner acrosomal membrane are exposed or activated, converting the 

sperm into a fusion-competent state (Saling et al., 1979; Yanagimachi, 1994). One example for 

these fusogens in mouse and human sperm is Izumo1, a sperm-specific protein of the 

immunoglobulin family (Inoue et al., 2005). Izumo1 interacts with its oocyte surface receptor 

Juno, a member of the folate receptor family (Bianchi et al., 2014). After fusion of sperm and 

oocyte, the paternal DNA is released into the oocyte and forms the male pronucleus. With the 

fusion of male and female pronuclei, fertilization is complete.                   

 

1.2 Zona pellucida glycoproteins 
 

The ZP surrounds the oocyte and the embryo up to the early blastocyst stage of development. 

Composed of a meshwork of long, interconnected filaments, the ZP has a porous, elastic 

structure (Fig. 1.3a) (Wassarman, 2008). In mouse and human, the ZP is ∼6 µm and ∼19 µm 

thick, respectively (Bertrand et al., 1995; Wassarman et al., 1998) and consists of heavily 

glycosylated ZP glycoproteins (Jiménez-Movilla et al., 2004; Wassarman, 2008). In mouse, there 

are three different ZP glycoproteins: ZP1 (∼200 kDa), ZP2 (∼120 kDa), and ZP3 (∼83 kDa) 

(Wassarman, 1988), whereas in humans, there are four ZP glycoproteins: ZP1 (∼100 kDa), ZP2 

(∼120 kDa), ZP3 (∼58 kDa), and ZP4 (∼65 kDa) (Bauskin et al., 1999; Chiu et al., 2008b; Lefievre 

et al., 2004). In mouse, ZP4 is a pseudogene (Goudet et al., 2008). Ultrastructural analysis of 

mouse oocytes has demonstrated that ZP2 and ZP3 polymerize into 2-3 µm long filaments, 

which are crosslinked by ZP1 dimers (Fig. 1.3b) (Green, 1997; Wassarman & Mortillo, 1991). 

Thereby, ZP2 and ZP3 are equally abundant, but four-times more frequently present than ZP1 

(Epifano et al., 1995). In mice lacking ZP1, the ZP is more loosely organized, considerably 

thinner, and less well associated with oocytes (Rankin et al., 1999). In ZP2-deficient mice, a thin 

ZP, consisting of ZP1 and ZP3, was detected in early follicles, which is not sustained in pre-

ovulatory oocytes (Rankin et al., 2001). Follicles of ZP3-deficient mice do, however, not develop 

a ZP at all (Liu et al., 1996). These data suggest that two ZP glycoproteins are sufficient for ZP 

formation in mouse. One must be ZP3, the other one can be either ZP1 or ZP2. The 

ultrastructure of human ZP is unknown. An infertile female patient, carrying a homozygous 

deletion of ZP1, did not form of a ZP (Huang et al., 2014), suggesting a difference in the ZP 

structure of mouse and human oocytes.                                         

The ZP in mouse and human is required for oocyte and early embryo development. ZP1-

deficient females are subfertile because the structure of the ZP is compromised causing 

precocious hatching of oocytes and early embryos (Rankin et al., 1999). The loss of ZP2 or ZP3 

results in a considerable decrease in the amount of oocytes after ovulation and impaired early 

embryo development resulting in female infertility (Liu et al., 1996; Rankin et al., 1996; Rankin 

et al., 2001). In humans, ZP dysmorphology could be correlated with compromised oocyte 
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development, impaired embryo implantation and subsequent reduction in pregnancy rates 

(Huang et al., 2014; Sauerbrun-Cutler et al., 2015). 

 

 

Fig. 1.3: Structure and assembly of the zona pellucida  

(a) Mouse sperm penetrating the filamentous zona pellucida (from Michelmann et al., 2006). (b) In 

mouse, ZP2 and ZP3 form long filaments that are interconnected by ZP1 dimers (adapted from 

Wasserman, 1988). (c) The polypeptide chains of ZP glycoproteins in mouse and human include an 

amino-terminal secretory signal peptide (red), a ZP-domain (blue), a consensus furin cleavage site 

(CFCS; yellow), and a transmembrane domain (light blue); adapted from Wassarman et al., 2004. (d) 

Posttranscriptional processing of ZP glycoproteins comprises cleavage of the secretory signal peptide, 

glycosylation and removal of the transmembrane domain prior to secretion and assembly into ZP; 

modified from Kiefer et al., 2002. 
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ZP glycoproteins are generated as precursor polypeptides, possessing an amino-terminal 

secretory signal peptide, a ZP domain, and a consensus furin cleavage site upstream of the 

carboxy-terminal transmembrane domain (Fig. 1.3c) (Callebaut et al., 2007; Jovine et al., 2005; 

Jovine et al., 2002). Following cleavage of the secretory signal peptide, ZP precursors are heavily 

glycosylated in the endoplasmic reticulum and the Golgi (Fig. 1.3d). The membrane-anchored ZP 

precursors are then packaged into vesicles, which fuse with the plasma membrane of the 

oocyte. At the oocyte plasma membrane, ZP precursors are proteolytically cleaved, removing 

the transmembrane domain, allowing secretion of ZP glycoproteins and assembly into the ZP 

(Kiefer & Saling, 2002; Qi et al., 2002). It is still a matter of debate, whether ZP glycoprotein 

secretion is facilitated by cleavage at the consensus furin cleavage site (Litscher et al., 1999; 

Williams & Wassarman, 2001) or by a different mechanism (Zhao et al., 2002).  

The ZP plays a pivotal role during critical steps of fertilization by facilitating 1) species-specific 

gamete recognition, 2) primary sperm-oocyte interaction, 3) induction of the acrosome 

reaction, and 4) post-fertilization block to avoid polyspermy (Fig. 1.4).  

 

To prevent cross-species fertilization, a species-specific interaction between sperm and oocyte 

is required. Removal of the ZP allows for fertilization by foreign sperm (Hanada & Chang, 1978; 

Yanagimachi et al., 1976), demonstrating that the ZP acts as barrier for cross-species sperm-

oocyte fusion. Mouse sperm are able to bind to the human oocyte, but cannot penetrate it, 

whereas human sperm are not able to bind to mouse oocytes and fail to penetrate the ZP 

(Bedford, 1977).  

After sperm overcome the cumulus oophorus, the ZP mediates the primary interaction between 

sperm and oocyte. This initial adhesion is a high-affinity event, involving about 30.000 binding 

sites within the ZP (Thaler & Cardullo, 1996), tethering sperm to the surface of the oocyte. 

However, it is still a matter of debate, which ZP glycoprotein serves as the oocyte`s sperm 

receptor. When mouse sperm were pre-incubated with purified ZP glycoproteins in vitro, only 

ZP3 inhibited binding between sperm and the ZP. Therefore, it has been proposed that ZP3 

serves as the primary sperm binding protein (Beebe et al., 1992; Bleil & Wassarman, 1980, 

1983; Gupta & Bhandari, 2011). ZP2 was suggested to be involved in secondary binding of 

acrosome-reacted sperm (Bleil et al., 1988; Tsubamoto et al., 1999). However, human sperm 

bind to the ZP of humanized transgenic mouse oocytes only when expressing human ZP2, but 

not human ZP1, ZP3, or ZP4 (Baibakov et al., 2012). Moreover, when mouse ZP2 was substituted 

by human ZP4, ZP binding was abolished and mice were infertile (Avella et al., 2014). The sperm 

binding region in mouse and human ZP2 could be narrowed down to a species-specific domain 

near the N-terminus (Avella et al., 2014). Altogether, these results suggest that ZP2 rather than 

ZP3 serves as the primary sperm binding protein in both species.  
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Moreover, the ZP plays a role in the postfertilization block of polyspermy, avoiding the 

formation of non-viable, polyploid embryos. In mouse, fertilization triggers the release of 

proteases and glycosidases from membrane-bound, secretory organelles termed cortical 

granules. Cortical granule exocytosis causes mechanical hardening of the ZP (Wolf & Hamada, 

1977), which renders the ZP impassable for sperm (Braden et al., 1954). ZP hardening is caused 

by proteolytic cleavage of ZP2 (120 kDa) into its “fertilized” form ZP2f (90 kDa), mediated by the 

metalloproteinase ovastacin (Burkart et al., 2012; Moller & Wassarman, 1989). Human ZP2 is 

also cleaved into ZP2f after fertilization, presumably also due to the release of cortical granules 

(Bauskin et al., 1999).  

 

 

 

 

Fig. 1.4: The zona pellucida plays a pivotal role during fertilization 

Species-specific interaction between sperm and oocyte is mediated by the zona pellucida (ZP). Sperm 

have been proposed to bind to an N-terminal domain of ZP2. Sperm undergo the acrosome reaction, 

penetrate the ZP, and fuse with the oocyte`s plasma membrane. Fertilization triggers cortical granule 

exocytosis, which leads to cleavage of ZP2 and ZP hardening. This postfertilization block to 

polyspermy prevents additional sperm from penetrating trough the ZP matrix. 
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1.3 Ion channels and transporters required for sperm fertility 
 

In mouse and human sperm, navigation and fertilization of the oocyte are triggered and 

coordinated by changes in pHi, VM, and [Ca2+]i, mediated by a unique interplay of ion channels 

and transporters.  

1.3.1 CatSper, the principal sperm Ca2+ channel  

CatSper (cation channel of sperm) is the principal Ca2+ channel in human and mouse sperm 

(Lishko & Kirichok, 2010; Quill et al., 2001; Ren et al., 2001). CatSper is localized in the principal 

piece of the flagellum in mouse and human sperm (Ren et al., 2001; Tamburrino et al., 2015). 

The heteromeric CatSper channel complex is made up of at least nine different subunits. The 

four homologous α subunits (CatSper 1-4) (Navarro et al., 2008; Qi et al., 2007) form the 

channel pore, whereas CatSper β, γ, δ, Ԑ, and ζ represent auxiliary subunits that associate with 

the pore-forming complex (Chung et al., 2017; Chung et al., 2011; Liu et al., 2007a; Wang et al., 

2009). Characteristic for voltage-gated ion channels, each pore-forming subunit harbors six 

transmembrane repeats (S1 - S6) with positively charged amino acid residues in S4. The pore 

motif is located between S5 and S6 and carries the signature sequence of Ca2+-selective 

channels, TxWxD. The flagella of CatSper ζ-deficient sperm are inflexible from the midpiece 

midway down the principal piece and male are subfertile (Chung et al., 2017). Male mice 

deficient for CatSper 1-4 or CatSper δ display normal sperm morphology and basal motility but 

are infertile (Carlson et al., 2005; Chung et al., 2011; Jin et al., 2007; Ren et al., 2001). In 

humans, mutations in CatSper 1 and CatSper 2 are associated with male infertility (Avenarius et 

al., 2009; Avidan et al., 2003). The CatSper channel complex forms a quadrilateral arrangement 

along the sperm flagellum, which serves as a platform to organize Ca2+ signaling domains (Chung 

et al., 2014). Knocking out any of the CatSper subunits destroys the organization of these Ca2+ 

signaling domains and impairs hyperactivated motility (Carlson et al., 2003; Chung et al., 2017; 

Chung et al., 2014; Quill et al., 2003). Sperm lacking these Ca2+ signaling domains are, therefore, 

unable to penetrate and fertilize the oocyte, unless the ZP is manually removed (Quill et al., 

2001; Ren et al., 2001). Moreover, rheotaxis is abolished in CatSper1 and CatSper ζ knockout 

sperm (Chung et al., 2017; Miki & Clapham, 2013).  

The monovalent CatSper current ICatSper is controlled by the VM and by pHi  (Carlson et al., 2003; 

Kirichok et al., 2006; Lishko et al., 2011; Lishko & Kirichok, 2010; Strünker et al., 2011; Xia et al., 

2007). Increasing pHi shifts the voltage-dependence of CatSper activation to more negative, 

physiological membrane potentials (Fig. 1.5) (Kirichok et al., 2006). Therefore, stimulation of 

sperm with an alkaline-depolarizing medium (K8.6) serves as a faithful trigger of CatSper-

mediated Ca2+ influx (Carlson et al., 2003).  

In addition, CatSper is also a ligand-gated channel. Nanomolar concentration of the female sex 

hormones progesterone and prostaglandins activate human, but not mouse CatSper channels 

(Brenker et al., 2012; Lishko et al., 2011; Strünker et al., 2011). Recently, the orphan enzyme 
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α/β hydrolase domain-containing protein 2 (ABHD2) has been identified as the progesterone 

receptor in human sperm (Miller et al., 2016). Upon activation by progesterone, the lipid 

hydrolase ABHD2 cleaves the endocannabinoid 2-arachidonoylglycerol (2-AG) into free glycerol 

and arachidonic acid. 2-AG inhibits CatSper; 2-AG depletion by ABHD2 relieves the inhibition 

and activates CatSper. In human, ABHD2 and CatSper are both localized in the principal piece, 

whereas in mouse, ABHD2 is located in the acrosome and not in the principal piece, which might 

explain why progesterone does not evoke a Ca2+ influx in mouse sperm. The activation of 

CatSper by prostaglandin is, however, not mediated by ABHD2 and still elusive (Miller et al., 

2016).  

The human CatSper channel is rather promiscuous and can be activated by a number of non-

physiological ligands, for example endocrine disrupting chemicals (EDCs). EDCs mimic the action 

of progesterone and prostaglandins and, thereby, stimulate a Ca2+ influx in human sperm 

(Schiffer et al., 2014). In mouse and human sperm, CatSper-mediated Ca2+ influx is also evoked 

by cyclic nucleotides. Brenker et al. demonstrated that cyclic nucleotide analogs activate human 

CatSper directly by binding to an extracellular site (Brenker et al., 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.5: Activation curves of CatSper at pHi 7.5 and pHi 6.0 

Little ICatSper current is active at pH 6.0 in the physiological range of the membrane potential. Upon 

alkalization to pH 7.5, the activation curve is shifted to more permissive potentials. From Kirichok et 

al., 2006. 
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1.3.2 Slo3 potassium channel 

The membrane potential in mouse and human sperm is set by the K+-selective ion channel Slo3, 

which is exclusively expressed in the principal piece of the flagellum (Brenker et al., 2014; Santi 

et al., 2010; Schreiber et al., 1998; Zeng et al., 2011). In human, the K+ current is weakly pHi- but 

strongly Ca2+-dependent and inhibited by progesterone (Brenker et al., 2014; Mannowetz et al., 

2013). In contrast, mouse Slo3 is activated at pHi > 6.0 and depolarized membrane potentials > 0 

mV, but not regulated by Ca2+ (Brenker et al., 2014; Navarro et al., 2007; Schreiber et al., 1998; 

Zeng et al., 2011). In Slo3-deficient sperm, the capacitation-induced hyperpolarization is 

abolished and the membrane potential is depolarized (Zeng et al., 2001). The loss of Slo3 causes  

defects in sperm motility, osmoregulation, and acrosome reaction, resulting in male infertility 

(Santi et al., 2010; Zeng et al., 2011). In humans, a depolarized VM is also associated with lower 

fertilization success (Brown et al., 2016).                                                               

In mouse and human, the Slo3 channel complex contains the auxiliary subunit leucine-rich 

repeat-containing 52 (LRRC52) (Brenker et al., 2014; Yang et al., 2011). Knocking out Slo3 results 

in the concomitant loss of LRRC52, indicating that LRRC52 expression is critically dependent on 

the presence of Slo3 (Yang et al., 2011). LRRC52 regulates the gating behavior of Slo3, allowing 

the activation of the channel at physiological pHi and VM (Zeng et al., 2015). In LRRC52-deficient 

sperm, Slo3 activation requires more positive voltages and higher pH (Zeng et al., 2015), 

resulting in infertility.   

In mouse sperm, Slo3 together with CatSper regulate VM and Ca2+ influx in response to 

alkalization (Zeng et al., 2013). It has been suggested that Slo3 and CatSper work in concert 

during mouse sperm capacitation. The increase in pHi during capacitation shifts the 

conductance-voltage relationship of CatSper and Slo3 to more hyperpolarized VM (Kirichok et al., 

2006; Santi et al., 2010; Zeng et al., 2011). Thereby, Slo3 maintains a hyperpolarized VM to 

promote a Ca2+ influx via CatSper (Navarro et al., 2007). In human sperm, the activation of Slo3 

by Ca2+ suggests that Slo3 might act downstream of CatSper. Slo3-mediated hyperpolarization 

might serve as negative feedback-loop, reducing the open probability of CatSper, which curtails 

rather than enhances the CatSper-mediated Ca2+ influx (Brenker et al., 2014). 

1.3.3 The proton channel Hv1 

In human sperm, the voltage-gated proton channel Hv1 mediates proton (H+) export, leading to 

intracellular alkalization. (Lishko et al., 2010). Hv1 is confined to the principal piece of the 

human flagellum and appears as a homodimer with a H+-selective pore formed by the four 

transmembrane segments of the protein (Lee et al., 2008; Ramsey et al., 2010; Tombola et al., 

2008). Hv1 is activated by depolarization, regulated by pH, and inhibited by Zn2+ (Ramsey et al., 

2010; Sasaki et al., 2006). Sperm harbor an N-terminally cleaved Hv1 isoform, termed Hv1Sper, 

which not only carries outward but also inward H+ currents (Berger et al., 2016). Because mouse 

sperm do not express a functional Hv1 channel (Lishko et al., 2010; Ramsey et al., 2009) and 
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infertile patient with mutations in Hv1 have so far not been identified, the role of Hv1 for sperm 

function is ill-defined. Capacitation is accompanied by intracellular alkalization and suppressed 

by Zn2+; thus Hv1 could play a role in sperm maturation during the transit trough the female 

genital tract (Lishko et al., 2010).  

1.3.4 Sodium-proton exchanger family 

Proteins of the sodium proton exchanger (NHE) family have been proposed to set the pHi in 

mouse and human sperm (Garcia & Meizel, 1999).  

2.3.4.1 The sperm-specific sodium proton exchanger 

One member of the NHE family is the atypical, sperm-specific sodium proton exchanger (sNHE), 

encoded by Slc9c1. The sNHE is expressed in the principal piece of mouse sperm (Wang et al., 

2003). The protein harbors 14 transmembrane segments with a cyclic nucleotide-binding 

domain close to its intracellular C-terminus. The sNHE also harbors a putative voltage-sensor 

motif, similar to that of voltage-gated ion channels (Catterall, 2000). The unique characteristics 

of the sNHE suggest that it may be regulated by cyclic nucleotides and changes in VM (Wang et 

al., 2003).                                 

However, the physiological function of the sNHE in sperm is enigmatic. It has been suggested 

that the sNHE extrudes protons upon hyperpolarization of the membrane potential during 

capacitation (Chávez et al., 2014). Knocking out sNHE in mice renders male mice infertile due to 

a defect in sperm motility (Wang et al., 2003). However, this phenotype is not caused by the 

loss of sNHE, but rather to the concomitant loss of SACY (Jansen et al., 2015; Wang et al., 2003), 

which is found in a signaling complex with the sNHE and whose function is essential for sperm 

motility (Wang et al., 2007). SACY is the predominant source for cAMP production in sperm 

(Harrison, 2003; Hess et al., 2005; Wuttke et al., 2001) and loss of cAMP synthesis in SACY-

deficient mice results in immotile sperm, which are not able to fertilize the oocyte (Esposito et 

al., 2004; Xie et al., 2006). Thus, it is difficult to determine the physiological function of sNHE in 

sNHE-deficient mice. 

2.3.4.2 Sodium-proton antiporter 1 and 2 

Two proteins of the sodium/proton antiporter (NHA) subfamily, NHA1 and NHA2, encoded by 

Slc9b1 and Slc9b2, respectively, were shown to be expressed in the principal piece of mouse 

sperm (Chen et al., 2016; Liu et al., 2010). The expression of a human orthologue in male testis 

was also reported (Ye et al., 2006). The NHAs feature 12 transmembrane segments, but no 

voltage-sensor domain or CNBD (Liu et al., 2010). The mRNA level of NHA1 was significantly 

increased in NHA2-deficient sperm and vice versa, indicating that the two Slc9b genes are 

functionally redundant (Chen et al., 2016). NHA1- and NHA2-deficient mice are subfertile, 

whereas elimination of both proteins caused infertility. Reportedly, in NHA1- and NHA2-

knockout sperm, cAMP signaling and sperm motility is impaired, which can be rescued by 
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incubating sperm with cAMP analogs (Chen et al., 2016; Liu et al., 2010). Although the proteins 

seem to be important for sperm function, a functional role in pH regulation still has to be 

revealed. 

 

 

 
 

1.4 ZP signaling 
 

Although binding of sperm to the ZP has been studied for decades, very little is known about the 

signaling pathways underlying the action of ZP glycoproteins in sperm. Stimulation of mouse 

sperm with isolated ZP glycoproteins depolarizes the membrane potential, alkalizes pHi, and 

Fig. 1.6: Ion channels and exchanger in mouse and human sperm 

The principal Ca2+ channel in mouse and human sperm is CatSper, which is regulated by changes in 

intracellular pH (ΔpHi) and changes in membrane potential (ΔVM). In human sperm, CatSper is 

activated by binding of progesterone (P) to the lipid hydrolase ABHD2. ABHD2 hydrolyses the 

endocannabinoid 2-AG, which relieves CatSper from inhibition by 2-AG. pHi regulation is presumably 

mediated by sNHE and NHA1 in mouse sperm, and Hv1 and a protein of the NHE family in human 

sperm. The pH-dependent mouse and Ca2+-dependent human Slo3 K+ channel with its accessory 

subunit LRRC52 controls the membrane potential. Dotted lines present signaling pathways with weak 

experimental evidence; question marks indicate hypothetical signaling pathways that have not been 

confirmed experimentally. Modified after Wachten et al., 2017. 
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increases [Ca2+]i (Arnoult et al., 1996a). Following ZP binding, two phases of ZP-evoked 

intracellular Ca2+ responses were observed. A rapid, transient Ca2+ response (Arnoult et al., 

1999; Wassarman et al., 2001) and a second, slow, and rather sustained elevation of [Ca2+]i 

(Arnoult et al., 1996c; Brewis et al., 1996b; Florman et al., 1989). In mice, the first, rapid Ca2+ 

response is mediated by CatSper (Xia & Ren, 2009). The ZP-evoked Ca2+ response originates 

from the principal piece and progresses towards the sperm head in ∼3 s. It is not known how ZP 

binding induces the second sustained Ca2+ increase, which does not depend on CatSper. It was 

reported that the sustained Ca2+ increase is facilitated by an IP3-induced Ca2+ release from 

intracellular stores (Jungnickel et al., 2007; O'Toole et al., 2000).                     

The molecular mechanism underlying CatSper activation by ZPs in mouse sperm is ill-defined. In 

patch-clamp recordings from mouse sperm, ZPs did not enhance CatSper currents (Xia & Ren, 

2009), arguing against a direct activation of the channel by ZPs. Furthermore, it is unknown, 

which proteins underlie the ZP-evoked alkalization and depolarization and how these proteins 

are activated. Based on the data published so far, the following model was developed for mouse 

sperm (Fig. 1.7): Upon interaction with the ZP, the unknown ZP-binding protein leads to 

depolarization of the membrane potential. This activates Slo3, whereby the membrane 

potential hyperpolarizes. In turn, the sNHE is activated, resulting in proton export and an 

increase in sperm pHi. The alkalization activates CatSper, resulting in a Ca2+ influx. 

 

 

Fig. 1.7: Model of the ZP-induced signalling pathway  

Interaction of an unknown ZP-binding protein in sperm with the oocyte`s zona pellucida depolarizes 
VM which activates Slo3. Slo3 hyperpolarizes VM and, thereby, activates the sperm-specific Na+/H+ 
exchanger (sNHE). The sNHE alkalises sperm pHi, which ultimately triggers a Ca2+ influx via CatSper. 
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For human sperm, much less is understood about the action of ZP. Here, ZPs also evoke an 

increase in [Ca2+]i (Bray et al., 2002; Brewis et al., 1996b; Patrat et al., 2006). Whether the Ca2+ 

increase is mediated by CatSper is unknown. Moreover, it is unknown whether ZPs evoke 

changes of pHi and/or VM in human sperm. In mouse and human sperm, the inventory and 

control of ion channels is considerably different (see 1.3). Thus, the molecular mechanism 

underlying ZP signaling in sperm has to be unraveled in a species-specific manner. 

                                                         

1.5 Aim of this PhD thesis 
 

In my PhD thesis, I aimed to: 

 

 Unravel the molecular mechanism underlying ZP-induced pHi signaling and CatSper 

activation in mouse sperm 

 

 Investigate ZP-induced pHi and Ca2+ signaling in human sperm and elucidate the 

mechanism of ZP action  

 

 Determine the role of different ZP glycoproteins in ZP signaling in mouse and human 

sperm 
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2 Materials and methods 

2.1 Materials 
 

2.1.1 Chemicals 

All chemicals were obtained in pro analysis grade from the companies AAT Bioquest (Sunnyvale, 

USA), Applichem (Darmstadt), BioRad (Munich), Biozym (Hess. Oldendorf), Fluka (Steinheim), 

Eppendorf (Hamburg), GE Healthcare (Solingen), Intervet GmbH (Unterschleißheim), Merck 

Millipore (Darmstadt), Qiagen (Hilden), Roth (Karlsruhe), Serva (Heidelberg), Sigma-Aldrich (St. 

Louis, USA), Semrock (Rochester, USA) and Thermo Fisher Scientific (Waltham, USA). Enzymes 

and corresponding buffers were purchased from Novagen (Darmstadt), Ambion (Austin, USA), 

MBI Fermentas (Vilnius, Lithuania), New England Biolabs (Frankfurt) and Roche (Mannheim). 

Oligonucleotides were purchased from Eurofins MWG Operon (Ebersberg). For the cultivation of 

bacterial cultures, media purchased from Roth (Karlsruhe) were used. Chemicals for use in cell 

culture were purchased from Thermo Fisher Scientific (Waltham, USA). Primary and secondary 

antibodies were purchased from abcam (Cambridge, UK), Biorbyt (Cambridge, UK), Dianova 

(Hamburg), LI-COR Biosciences (Bad Homburg), SantaCruz Biotechnology (Heidelberg), and 

Thermo Fisher Scientific (Waltham, USA). Cell lines were purchased from ATCC, Eucomm and GE 

Healthcare (Little Chalfont, UK). RNA was obtained from Zyagen (San Diego, USA). Proteins were 

blotted on Immobilon-P and Immobilon-FL PVDF‐membranes from Merck Millipore (Darmstadt). 

Microscope slides were purchased from Menzel (Braunschweig).  

All solutions were prepared with double-distilled water. If necessary, solutions were sterilized 

by autoclavation (20 min, 121 °C). 

2.1.2 Antibodies 

All monoclonal and polyclonal primary antibodies were commercially acquired or produced in 

collaboration with Dr. Kremmer (Institute for Molecular Immunology, Helmholtz-Zentrum 

München) by immunizing animals with peptides. ZP-antibodies were additionally purified by Dr. 

Kremmer after collecting the cell supernatant from hybridoma cells. All applied primary 

antibodies are listed in Table 1, secondary antibodies are summarized in Table 2. The species 

and manufacturers are indicated and it is noted in which dilutions the antibodies were used in 

Western blot (WB) or immunocytochemistry (ICC). 
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Table 1: Primary antibodies 

Antibody Species 
Dilution 

Manufacturer 
ICC WB 

HA rat            1:500  1:100 E. Kremmer (HZ München) 

HIS mouse            1:100  1:1000 Millipore 

hZP2 mouse     1:1000 ATCC/Kremmer 

hZP2 mouse   1:1000 ATCC/Kremmer 

mCatSper goat   1:100   Santa Cruz 

mZP1 rat   1:100  1:1000 ATCC/Kremmer 

mZP2 rat   1:100  1:1000 ATCC/Kremmer 

mZP3 rat   1:100  1:1000 ATCC/Kremmer 

NHA1 rabbit   1:100  1:1000 Biorbyt 

tubulin mouse   1:500  1:5000 Sigma 

 
 

Table 2: Secondary antibodies 

Antibody  Species Conjugate 
Dilution 

Manufacturer 
ICC WB 

anti-goat  donkey A647 1:500  Life technologies 

anti-mouse  donkey Cy3 1:1000  Dianova 

anti-mouse  donkey Cy5 1:500  Dianova 

anti-mouse  sheep HRP    1:5000 Dianova 

anti-mouse  donkey RDye680    1:10000 Li-Cor Biosciences 

anti-mouse  donkey RDye800    1:10000 Li-Cor Biosciences 

anti-rabbit  goat A488 1:500  Life technologies 

anti-rabbit   RDye800    1:10000 Li-Cor Biosciences 

anti-rat  donkey Cy3 1:500  abcam 

anti-rat  donkey A488 1:500  Dianova 

anti-rat  goat HRP    1:5000 Dianova 

anti-rat  goat RDye680    1:10000 Li-Cor Biosciences 

anti-rat  goat RDye800    1:10000 Li-Cor Biosciences 
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2.2 Escherichia coli culture  
 

2.2.1 Bacterial strains and vectors 

For the amplification of plasmid‐DNA, the E. coli strain K12 with the following genotype was 
used: 
XL1‐Blue (Bullock et al., 1987; Stratagene, La Jolla, USA), genotype: recA1, endA1,gyrA96, thi‐1, 
hsdR17 (rK‐, mK+), supE44, relA1, lac [F' proAB, lacIqZΔM15,Tn10 (Tetr)]. 

 
The plasmid vectors used for recloning as well as transient gene expression are listed in Table 3:  
 
Table 3:  Plasmid vectors  

Plasmid (Reference)  Applied for 

pcDNA3.1(+) / pcDNA3.1Zeo(+) 
(Life Technologies) 

 
 

Transient gene expression in cell line HEK293 

pHLsec (Jones et al., 2006)  Transient gene expression in cell line HEK293T 

Mouse ZP1 (Epifano et al., 1995)  Recloning of pHLsec-mZP1intHis 

Mouse ZP2 (Liang et al., 1990)  Recloning of pHLsec-mZP2intHis 

Mouse ZP3 (Ringuette et al., 1988)  Recloning of pHLsec-mZP3intHis 

 
 

2.2.2 Composition and preparation of E. coli culture media 

E. coli bacteria cultures were amplified in in LB-medium (10 g/l tryptone, 5 g/l yeast extract, 5 

g/l NaCl, pH 7.0), single clones were multiplied on LB-agar dishes. For the preparation of LB‐agar 

dishes, 15 g/l agar was added to the LB-medium. Both medium and the medium‐agar 

suspension were autoclaved for 20 min at 212 °C and stored at RT. The medium‐agar suspension 

was cooled down to about 50 °C and poured into sterile agar dished. If needed, antibiotics were 

added to the medium to a final concentration of 100 μg/ml (ampicillin) or 30 μg/ml 

(kanamycin). Until used, agar plates were stored at 4 °C. 

2.2.3 Amplification of E. coli cultures for plasmid preparation 

E. coli bacteria in single colony were incubated for at least 8 h in LB-medium at 30 °C in a 

rotation incubator or warm air shaker. For selection of transformed plasmids, media were 

supplemented with a suitable antibiotic. 
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2.2.4 Generation of competent E. coli cells 

Competent E. coli cells were generated according to a modified protocol based on the CaCl2 

method (Mandel and Higa, 1970). 0.5 ml of an E. coli overnight culture were cultured in 50 ml LB 

medium at 37 °C until an optical density (OD) of 0.4 was reached, representing a cell number of 

approximately 2 x 108 cells/ml. The OD was measured at 600 nm. The culture was chilled on ice 

for 30 min. During subsequent working steps, cells were kept constantly in ice. Cells were 

centrifuged (10 min, 5.000 x g, 4 °C), the pellet was resuspended in 1 ml cold 0.1 M CaCl2 

solution and brought to a final volume of 25 ml. After incubation on ice for 20 min, the cells 

were pelleted again (10 min, 5.000 x g, 4 °C), resuspended in 1 ml cold 0.1 M CaCl2 solution 

containing 25 % glycerin and brought to a final volume of 5 ml. After two more hours on ice, 

aliquots were prepared and stored at ‐ 80 °C until further use. 

 

2.3 Preparation of nucleic acids 
 

DNA was solubilized in TE or TERNase 

TE: 10 mM Tris/HCl, pH 8.0, 1 mM EDTA 

TERNase: TE supplemented with 4 µg/ml RNase cocktail (Amibon) 

2.3.1 Mini‐preparation of plasmid DNA via alkaline lysis 

The mini‐preparation of plasmid DNA was carried out using alkaline cell lysis (Birnboim & Doly, 

1979). A volume of 1.5 ml of E. coli overnight culture was pelleted by centrifugation (1 min, 

10.000 x g, RT) and resuspended in 150 μl solution I (25 mM Tris/HCl, 10 mM EDTA, pH 7.5). 180 

μl solution II (0.2 M NaOH, 1% SDS) were added and the suspension was carefully inverted to 

lyse the cells. Cell debris and proteins were denatured by adding 225 μl solution III (3 M KAc, pH 

4.7). After centrifugation (7 min, 18.000 x g, 4 °C), the supernatant was extracted and nucleic 

acids were precipitated by adding 700 µl ethanol. The solution was centrifuged (7 min, 18.000 x 

g, 4 °C) and the resulting pellet was washed with 500 µl 70 % ethanol before it was centrifuged 

again (7 min, 18.000 x g, 4 °C) to collect the purified plasmid DNA. The DNA pellet was dried in 

air to remove the ethanol and finally taken up in 20 μl TERNase. 
 

 

2.3.2 Midi- and maxi‐preparation of plasmid DNA 

For the generation of larger amounts of plasmid DNA, the NucleoBond Xtra kit (Macherey‐

Nagel) was used. E.coli cells of a 200 - 500 ml culture were collected by centrifugation (15 min, 

5.000 x g, 4 °C) and resuspended in 20 ml resuspension buffer + RNase A. For cell lysis, 20 ml 

lysis buffer was added and the suspension was inverted for mixing, before it was incubated for 5 

min at RT. A filter column was prepared by washing with 25 ml equilibration buffer. A volume of 
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20 ml neutralization buffer was added to the cell suspension and mixed by inversion. The 

suspension was transferred to the filter column, which was allowed to empty via gravity flow. 

The column was washed with 25 ml equilibration buffer and 25 ml wash buffer. The plasmid 

DNA was eluted by adding 15 ml elution buffer to the column. For DNA precipitation, a volume 

of 10.5 ml isopropanol was added, and the suspension was mixed thoroughly. After 

centrifugation (15.000 x g, 45 min, 4 °C), the pellet was washed with 5 ml 70 % ethanol and 

centrifuged again (15.000 x g, 15 min, 4 °C). The plasmid DNA was air dried and resuspended in 

a volume of 200 – 300 μl TE. 
 

2.3.3 Preparation of genomic DNA from mouse tissue 

Three week old mice were anesthetized with Isoflurane (Curamed Pharma) to amputate the tail 

tip. After placing the earmarks, a 0.5 cm long tail piece was amputated. For lysis, the tissue was 

incubated in 500 µl lysis buffer (10 mM Tris/HCl, 100 mM EDTA, 0.5 % SDS, 1 mg/ml Proteinase 

K, pH 8.0) overnight at 56 °C in a water bath. The next day, the solution was inverted multiple 

times and centrifuged (18.000 x g, 5 min, RT) before the supernatant was transferred to a fresh 

tube. To precipitate DNA from the supernatant, 500 µl isopropanol were added. Subsequently 

to centrifugation (18.000 x g, 30 min, 4°C), the supernatant was discarded and the pellet was 

washed with 300 µl 70 % ethanol. The dried pellet was dissolved in 100 µl TE. 

 

2.4 Separation, purification and quantification of plasmid DNA and DNA 

fragments 
 

2.4.1 Agarose‐gel electrophoresis 

DNA molecules were separated according to their size via agarose gel electrophoresis for 

analytical as for preparative issues. For the separation of DNA molecules of 500 – 10.000 bp 

size, gels containing 1 % agarose were used. Agarose was completely dissolved in 1 x TAE‐buffer 

(Table 4) by boiling. After cooling down to 60 °C, 1 µg/ml EtBr was added and the solution was 

poured into a gel carrier with comb. The samples were mixed with 10 x loading buffer (Table 4) 

and applied onto the hardened agarose gel. Electrophoresis was performed for 20 min in 1 x 

TAE as running buffer with a constant voltage of 120 V. Subsequently, the nucleic acid bands 

were analyzed using UV-light. As size standard, the GeneRuler 1 kb DNA ladder (Thermo Fisher 

Scientific) was used. 
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Table 4: Buffer for agarose-gel electrophoresis 

TAE (50 x) loading buffer (10 x) 

2 M tris/acetate, pH 7.5 10 x TAE 

50 mM EDTA 50 % glycerol 

 0.25 % xylene 

 

2.4.2 Elution of DNA from agarose gels 

For purification of DNA from agarose gels, the NucleoSpin Gel and PCR Clean‐up kit (Macherey‐

Nagel, Düren) was used. A gel slice containing the DNA fragment of interest was excised from 

the gel, a volume of 200 μl binding buffer per 0.1 g gel was added, and the sample was 

incubated for 10 min at 50 °C. After solubilizing the gel slice, the sample was transferred to a 

filter column, centrifuged (11.000 x g, 1 min, 4 °C), and the flow‐through was discarded. The 

sample was washed two times with 700 μl washing buffer and subsequently centrifuged 

(11.000, 1min, x g, 4 °C). After a final centrifugation step (11.000 x g, 1 min, 4 °C), the DNA was 

eluted in 25 μl ddH2O. 
 

2.4.3 Ethanol precipitation 

Ethanol precipitation was used to concentrate DNA or to exchange the sample buffer the DNA is 

dissolved in. Sodium acetate was added to the DNA solution to a final concentration of 0.3 M 

(pH 4.8) before a threefold volume of ethanol was added. After centrifugation (30 min, 17.000 x 

g, 4 °C), the precipitated DNA pellet was washed with 70 % ethanol, dried on air and dissolved in 

TE buffer or H2O. 
 

2.4.4 Purification with SureClean 

For the purification of DNA before further subcloning, the SureClean reagent (Bioline, 

Luckenwalde) was used. DNA was mixed with an equal volume of the reagent and incubated for 

10 min at RT. After centrifugation (10 min, 14.000 x g, RT), the supernatant was removed 

carefully, and 70 % ethanol were added in a volume 2x larger than the original sample volume. 

The sample was mixed thoroughly and centrifuged again (10 min, 14.000 x g, RT). The resulting 

pellet was dried on air and resuspended in 30 μl TE buffer. 
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2.4.5 Photometric quantification of nucleic acid concentration 

Before photometric analysis, the DNA sample was diluted in TE buffer. The absorption was 

measured at 260 nm (OD260) in an absorption spectrometer against TE buffer as a reference. An 

OD260 of 1 resembles a nucleic acid concentration of 50 μg/ml. Contaminations with proteins or 

phenol residues can be determined by calculating the ratio between 260 nm and 280 nm, the 

value should not be smaller than 1.8. The quantification with the Nanodrop ND-1000 (NanoDrop 

Products) was performed in a similar fashion. 
 

2.4.6 Quantification of nucleic acid concentration by agarose‐gel electrophoresis 

By comparing the DNA band intensities on an agarose gel with a simultaneously applied size 

standard with known DNA quantities, the amount of DNA in one sample can be estimated. The 

gel was stained with ethidium bromide to visualize the DNA bands using a UV‐transilluminator.  

 

2.5 Modification of nucleic acids 
 

2.5.1 Restriction digest of plasmid DNA 

In preparation for cloning, plasmid DNA was digested using restriction endonucleases. The 

digest was prepared in the appropriate buffer recommended for optimal activity of the 

endonuclease at 37 °C. Digestion with more than one enzyme at once was carried out only if the 

according buffer conditions were matching. Otherwise, the digests were performed 

subsequently, including fragment purification using preparative agarose gel electrophoresis. Per 

µg DNA, 1-3 units of the restriction enzyme were used. Each digest was incubated for 1 - 2 h at 

37 °C. The entire digest was separated by gel electrophoresis and the desired band was eluted 

from the gel with the NucleoSpin Extract II-Kit (Macherey-Nagel).  
 

2.5.2 Ligation of DNA fragments 

For ligation, 50 ng of digested vector DNA and a 2 – 5 fold molar excess of insert were prepared 

in a total volume of 10 μl, containing 1 x ligase buffer (Roche)  and 0.5 μl T4‐DNA‐ligase (Roche). 

The ligation reaction mixture was incubated for at least 60 min at RT. 
 

2.5.3 Transformation 

For bacterial transformation, 5 μl ligation product was mixed with 5 μl 10 x CM‐buffer (100 mM 

CaCl2, 400 mM MgCl2), filled up to a final volume of 50 μl using ddH2O and pre‐cooled on ice. 50 

μl competent XL1‐blue E. coli cells were thawed on ice, carefully mixed with the DNA/CM-buffer 

solution and incubated on ice for 20 min. After a 1 min heat shock at 42 °C, the mixture was 

incubated for 10 min on ice, before 200 μl LB‐medium were added. The mixture was incubated 
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for 30 min at 37 °C on a shaker. Finally, the cells were plated on agar dishes with respective 

antibiotics and incubated overnight at 37 °C. 

  

2.6 Polymerase chain‐reaction (PCR) 

 

The polymerase chain reaction (PCR) was used for the amplification of DNA fragments with 

specific length and sequence. Using consecutive cycles, the matrix‐DNA was denatured and  

hybridized with oligonucleotides (primers), which were then elongated using a heat stable 

polymerase (Mullis et al., 1986).  
 

2.6.1 Primer synthesis 

Primer were synthesized by Eurofins MWG Operon and send as lyophilisate. Primer were 

dissolved with TE to a concentration of 100 µM and stored at -20 °C. 

 

2.6.2 PCR conditions 

All PCR reactions were carried out in a thermocycler (Perkin Elmer, Waltham, USA) using KOD 

Hot Start DNA Polymerase and the according buffer (Table 5).  

In preparation for the first cycle, the DNA was denatured for 2 min at 94 °C. During cycles, the 

periods for denaturation and hybridization were set to 45 sec, followed by a final extension of 2 

min at 70 °C. The annealing temperature was chosen according to the lowest melting 

temperature (Tm) of both primers used, calculated by the following formula: 
 

Tm = (G/C) x 4 °C + (A/T) x 2 °C – (basepair mismatches) x 4 °C – 4 °C 
 

The duration of the elongation phase at 72 °C was adjusted to the length of the amplified 

fragment (1 min per 1000 bp). Dependent on the sample, 30 – 45 cycles were carried out.  

 

For genotyping of transgenic mice, the DreamTaq PCR mastermix (Thermo Fisher Scientific) was 

applied. Here, 30 µl PCR mixture, 1.5 µl tail DNA and 1.5 µl of each primer were used. 

 

Table 5: Pipetting scheme for PCR reactions 

PCR mixture 

50 ng plasmid DNA 

5 μl KOD Hot Start DNA Polymerase buffer 

5 μl dNTPs (2mM) 
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2 μl MgSO4 (25 mM) 

3 μl primer I (5 pmol/ml) 

3 μl primer II (5 pmol/ml) 

1 μl KOD Hot Start Polymerase I (1 U/μl) (Novagen) 

 

2.7 Mammalian cell culture 
 

2.7.1 Sterile work 

All cell culture work was performed under safety work benches (Herasafe, Thermo Scientific) 

with gloves. Cells were cultured in an incubator (SanyO) at 37 °C, 7.5 % CO2 and 95 % humidity. 
 

2.7.2 Cell lines 

The mammalian cell lines used in this thesis for heterologous protein expression, α-ZP antibody 
production, and transgenic mouse line generation and are listed in Table 6. 

Table 6: Mammalian cell lines 

Cell line (ATCC cell line number) Organism Medium 

HEK293 (ATCC-CRL-1573) Homo sapiens MEM + 1 % NEAA 

HEK293T (ATCC-CRL-3216) Homo sapiens DMEM 

M1.4 (ATCC-CRL-2464) 
Rattus norvegicus (B cell); Mus musculus 

(myeloma) 
DMEM 

IE-3 (ATCC-CRL-2464) 
Rattus norvegicus (B cell); Mus musculus 

(myeloma) 
DMEM 

IE-10 (ATCC-CRL-2462) 
Rattus norvegicus (B cell); Mus musculus 

(myeloma) 
DMEM 

H2.8 (ATCC-CRL-2568) 
Mus musculus (B cell); Mus musculus 

(myeloma) 
DMEM 

H3.1 (ATCC-CRL-2569) 
Mus musculus (B cell); Mus musculus 

(myeloma) 
DMEM 

JM8.N4 Mus musculus 
KnockoutDMEM 

+ GlutaMAX 
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2.7.3 Continuous culture of HEK293, HEK293T cells, and hybridoma cells 

HEK293 and HEK293T cells were cultured in medium supplemented with 10 % FCS on 9 cm petri 

dishes, hybridoma cells were cultured in 20 % FCS. At a confluency of about 75 %, cells were 

detached and distributed onto new petri dishes. To this end, cell medium was removed and cells 

were washed with 3 – 5 ml sterile phosphate-buffered saline (PBS) (137 mM NaCl, 2.7 mM KCl, 

6.5 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.4). Cells were detached by incubation with 0.8 ml             

0.05 % trypsin-EDTA (Life technologies) for 2 – 3 min at 37°C on a heating plate. The reaction 

was stopped by adding 4.2 ml of medium. The cells were resuspended and the cell number was 

determined using a Neubauer chamber. 4 x 105 cells per 9 cm dish were seeded for 

maintenance of the culture. After 30 – 40 passages, cells were discarded and a fresh aliquot of 

cells was taken into culture. 
 

2.7.4 Cryopreservation of mammalian cell lines 

For cryopreservation, cells were harvested and centrifuged (200 x g, 5 min, RT). 2 x 106 cells in 

900 µl fresh medium were mixed with 100 µl DMSO in cryogenic vials (Nunc A/S, Thermo 

Scientific). Overnight, cells were cooled down in a cryo container (Mr. Frosty, Thermo Scientific) 

and subsequently stored in liquid nitrogen. To take frozen cells back into culture, cells were 

slowly heated up in a 37°C water bath and mixed with 10 ml culture medium. To remove the 

DMSO, cells were centrifuged (200 x g, 5 min, RT), suspended in fresh culture medium and 

seeded on petri dishes. 
 

2.7.5 Transient transfection 

70 % confluent HEK cells were transiently transfected using polyethyleneimine (PEI), a stable 

cationic polymer (Boussif et al., 1995). PEI condenses DNA into positively charged particles that 

bind to anionic cell surfaces. Consequently, the DNA:PEI complex is endocytosed by the cells 

and the DNA released into the cytoplasm (Sonawane et al., 2003). For protein preparation, 9 cm 

plates were transfected. For immunocytochemical analysis, cells were seeded on polylysine-

coated coverslips in 4-well plates. Appropriate DNA concentrations were diluted in OptiMEM 

medium (Thermo Fisher Scientific) and mixed with 1 µg/ml PEI (Sigma-Aldrich). In the 

meantime, cell medium was replaced with fresh medium containing 2 % FCS to suppress 

proliferation. After 10 min, the DNA:PEI mixture was dropwise added to the cells. 4 hours post 

transfection, cells were treated with 5 mM butyrate to increase the transfection efficiency. After 

24 h, ICC was performed or cells were harvested for protein preparation.  
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2.7.6 Stem cell culture 

JM8.N4 embryonic stem cells mutant for Slc9b1 were cultured in KnockOut DMEM 

supplemented with 10 % FCS, 1 % GlutaMAX, 0.007 % β-mercaptoethanol, 0.1 % murine LIF and 

50 µg G418. As feeder layer, cell culture plates were coated with 0.1 % gelatin for 30 min before 

use. For bringing frozen cells into culture, mineral oil was removed when cells were still frozen. 

Thawing cells were mixed with 1 ml pre-warmed medium, centrifuged at 1200 x g for 5 min and 

resuspended in fresh medium. Cells were plated out and the medium was exchanged every day 

until cells reached 80 % confluency. For splitting, cells were washed in 1 x PBS and carefully 

detached by adding EDTA-free trypsin. After around 3 min, the reaction was stopped with 

medium and cells were washed at 1200 x g for 5 min. After dispersing cells in new medium, they 

were seeded on fresh gelatin-coated cell culture plates. 

 

2.8 Immunofluorescence 
 

2.8.1 Immunocytochemistry 

For the immunocytochemical analysis of mammalian cells, 24 to 48 h after transfection, cells 

seeded on PLL-coated coverslips were washed with PBS and fixed for 5 min in 4 % 

paraformaldehyde (PFA). To saturate unspecific binding domains and to permeabilize the cells, 

coverslips were incubated for 30 min with 5 % (v/v) Chemiblocker (Millipore) and 0.5 % (w/v) 

Triton‐X100 (CT). Primary antibodies diluted in CT were used for 1 h to specifically detect the 

protein of interest. Then, secondary antibodies coupled to a fluorescent dye diluted in CT were 

added for 1 h to detect the complex between antigen and primary antibody. In parallel, DNA 

was stained using 4’,6‐diamidino‐2‐phenylindole (DAPI) (Invitrogen, final concentration 

1:10.000). In between the single incubation steps, cells were thoroughly washed with PBS-T. All 

incubation steps were carried out at RT. After staining, cells were mounted on microscope slides 

using Aqua-Poly/Mount (Polyscience) and examined with a confocal laser‐scanning microscope 

(Fluoview FV 1000, Olympus) Olympus FV10 microscope; images were captured with an 

Olympus DP71 camera using the FV10-ASW 3.0 Viewer software (Olympus, Japan). 

Immunocytochemistry of mouse oocytes was performed with the similar protocol; however 

staining and washing was performed by transferring oocytes into drops of antibody solution or 

PBS-T. 

 

2.8.2 Sectioning of frozen tissue 

Adult male mice were anesthetized with Isoflurane (Curamed Pharma) and killed by cervical 

dislocation. The testis were prepared, punctured twice with a cannula and incubated overnight 

at RT in 4 % PFA. After a single washing step in PBS for 10 min, testis were transferred in a 10 % 
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sucrose solution for 1 h and subsequently incubated overnight in 30 % sucrose. On the next day, 

testis were embedded in Tissue TEK (Sakura Finetek) and stored in -80°C. Testis was sectioned in 

16 - 20 µM thick cross sections using a 2800 Frigocut-E cryostat (Reichert-Jung, Nussloch) at an 

ambient temperature of -30°C. The knives temperature was set to -22°C. Sections were stored 

on SuperFrost Plus microscope slides (Menzel) at -20°C until further use. 

 

2.8.3 β-galactosidase staining of testis sections 

To confirm the expression of β-galactosidase in testis, sectioned tissue was surrounded with a 

hydrophobic pen (ImmEdge Hydrophobic Barrier Pen, Vector Laboratories) and washed three 

times for 5 min at RT with the LacZ wash solution (Table 7). 150 - 200 µl LacZ substrate (Table 7) 

was added to each microscope slide and the cells were incubated overnight in the darkness at 

37°C in an incubator without CO2. Slices were shortly washed twice with H2O and mounted with 

coverslips using Aqua-Poly/Mount (Polyscience). 

 

Table 7: Buffer used for β-galactosidase staining 

LacZ basis solution LacZ wash solution LacZ substrate solution 

0.2 M Na2HPO4 LacZ basis solution LacZ basis solution 

0.2 M NaH2PO4 10 % Deoxycholate 50 mM K3[Fe(CN)6] 

50 mM MgCl2 Stock Nonidet P40 50 mM K4[Fe(CN)6] 

0.5M EGTA Stock pH 8.0  8 ‰ X-Gal 

 
 

2.9 Protein preparation 
 

2.9.1 Protein preparation from mammalian cells  

To prepare total lysates from cell culture lines, the medium was removed, cells war washed in 

PBS and then scraped off the plate bottom with a rubber scraper in 1 ml PBS. Cells were 

pelleted at 700 x g for 5 min and resuspended in 100 to 200 µl lysis buffer (?). After incubation 

for 30 min on ice, cell debris was removed by centrifugation (10.000 x g, 5 min, 4°C) and the 

supernatant was stored at -80 °C. 

2.9.2 Protein preparation from mouse tissue  

Mice were anesthetized with Isoflurane (Curamed Pharma) and killed by cervical dislocation. 

The desired organs were prepared and either directly used for protein preparation or stored at       
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-80°C until further use. For protein preparation, organs were cut into small pieces and then 

homogenized in 1 to 3 ml lysis buffer using a Potter homogenizer at 300-500 U/min. After         

30 min on ice, tissue remnants were removed by centrifugation (10.000 x g, 5 min, 4°C) and the 

supernatant was stored at -80 °C 
 

2.9.3 Protein quantification with bicinchoninic acid  

The amount of protein in a solution was determined using the Pierce® BCA Protein Assay Kit 

(Thermo Scientific). The sample was diluted 1:5 and 1:10 in lysis buffer, the measurement was 

performed in duplicates. 10 µl sample were mixed with 190 µl color reagent (reagent A mixed 

with reagent B in proportion 50:1) in a 96 well plate and incubated at 37 °C for 30 min. 

Subsequently, the absorption was detected at 570 nm using a microplate reader (Fusion 

Microplate Reader; Perkin Elmer). To obtain a standard curve, defined concentrations of BSA 

(Thermo Scientific) between 0 and 2 mg/ml were used. 

 

2.10 Purification of proteins from cell supernatant 
 

2.10.1 Batch purification via Ni-NTA agarose 

Heterologously expressed ZP proteins were purified by immobilized metal affinity 

chromatography via their His-tag using Ni-NTA agarose (Qiagen). To this end, 200 µl resin were 

equilibrated with 1 ml cell medium for 5 min at RT. After centrifuging at 700 x g for 2 min, the 

medium was removed and 1 ml cell supernatant were added. Incubation overnight on a rotating 

wheel ensured efficient binding between agarose and proteins. On the next day, the 

supernatant was removed by centrifugation (700 x g, 2 min) and the resin was washed four 

times with washing buffer (Table 8). For elution, the agarose was incubated for 10 min with                

200 µl elution buffer (Table 8). Analysis was performed by SDS-PAGE and Western blotting with 

40 µl supernatant of each working step including input.  

 

Table 8: Buffer used in batch and ÄKTA purification 

Washing buffer Elution buffer 

20 mM NaP 20 mM NaP 

500 mM NaCl 500 mM NaCl 

10 mM Imidazole 500 mM Imidazole 

pH 7.4 pH 7.4 
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2.10.2 Large-scale protein purification using the ÄKTA system 

In larger scale, proteins were purified from 70 ml cell supernatant using the ÄKTA Protein 

Purification System (GE Healthcare). The whole system was rinsed with H2O, a 1 ml HiTrap 

Chelating HP column (GE Healthcare) was inserted and loaded with 3 mM CoCl2. The column 

was washed with 5 ml washing buffer, 5 ml elution buffer and subsequently, 5 ml washing 

buffer (Table 8) using a flow rate of 0.5 ml/s. The supernatant was applied to the column with a 

flow rate of 0.4 ml/s never exceeding a pressure of 0.5 MPa. After removing unbound proteins 

using 5 ml washing buffer (flow rate 0.3 ml/s), proteins were eluted with a continuous gradient 

of 10 to 500 mM imidazole using a flow rate of 0.5 ml/s. The eluate was collected in fractions of 

0.5 ml which were analyzed by Western blotting. The four fractions with the highest amount of 

protein were used for further experiments. 
 

2.10.3 Buffer exchange 

Eluted ZP-fractions were buffer exchanged using Illustra NaP-5 columns (GE Healthcare) to 

remove imidazole. Excess storage buffer was removed from the column, then the column was 

equilibrated with 10 ml sperm buffer. Subsequently, 0.5 ml sample was added to the column. 

Shortly after the liquid had passed through the column, the purified sample was eluted with              

1 ml sperm buffer. 
 

2.10.4 Protein quantification 

The concentration of heterologous ZP proteins was determined by measuring the absorption at 

280 nm using a UV/Vis spectrophotometer (Hitachi, Tokio, Japan). The concentration was then 

calculated using the Beer-Lambert Law: 

 

c (concentration) =
A (absorbance)

Ԑ (absorptivity coefficient) * d (path length) 
 

 

2.10.5 PNGase digestion 

To analyze the glycosylation pattern of ZP proteins, N-linked glycosidic residues were removed 

by digestion with PNGase-F (New England BioLabs). 20 µg of protein, 1 µl Glycoprotein 

Denaturing Buffer and H2O were combined to make a 10 µl total reaction volume. The proteins 

were denatured by heating the sample to 100°C for 10 min. Then, 2 µl GlcoBuffer II, 2 µl 10 % 

NP-40 and 5 µl H2O were mixed with 1 µl PNGase F. The reaction was incubated at 37°C for 1 h, 

deglycosylation was analyzed by SDS-PAGE and Western blotting using 4 - 12 % gradient gels. 
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2.11 Separation and detection of specific proteins 
 

2.11.1  Reducing SDS-polyacrylamide gel electrophoresis  

The electrophoretic separation of proteins was performed using SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) after Laemmli (Laemmli, 1970). The SDS-PAGE was performed using 

the Minigel-Twin system (Biometra, gel size: 0,1 x 8 x 10 cm) with a 7.5 % running and 5 % 

stacking SDS-gel. The gel composition is summarized in Table 9. Samples were mixed with 4 x 

SDS sample buffer (Table 10) and boiled up for 5 min at 95°C. The electrophoretic separation in 

1 x SDS running buffer (Table 10) was performed at 12 - 15 mV for the stacking and at 20 - 25 

mV for the running gel.                                            

To separate PNGase-digested proteins, 4 - 12 % NuPAGE Novex Bis-Tris gradient gels (Life 

Technologies) with a thickness of 1.5 mm were used. Electrophoresis was performed in MOPS 

running buffer (Table 10) in an XCell SureLock mini gel chamber (Life Technologies) at 200 mV.  

 

Table 9: Pipetting scheme for SDS‐PAGE gels 

 Running gel (7.5 %) Stacking gel (5 %) 

1.5 M Tris HCl, pH 6.8/8.8 0.5 ml (pH 6.8) 1.5 ml (pH 8.8) 

10 % SDS 20 µl 60 µl 

10 % APS 40 µl 40 µl 

Acrylamide 340 µl 1.5 ml 

 

Table 10: Buffer used in SDS‐PAGE 

4 x SDS sample buffer SDS running buffer (20 x) MOPS running buffer 

8 % SDS 250 mM Tris 50 mM MOPS 

200 mM Tris/HCl 1 % SDS 50 mMTris base 

50 % Glycerol 1.92 M Glycine 0.1% SDS 

4 % ß-mercaptoethanol  1 mM EDTA 

0.04 % Bromphenol blue   

 

As molecular weight marker, the Protein Marker VI (PanReac AppliChem) was used. The marker 

contains prestained proteins from 10 to 250 kDa with two reference bands at approx. 25 and              

75 kD, coupled with a green and a red dye, respectively. 
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2.11.2  Mass spectrometry 

In preparation of protein analysis via liquid chromatography–mass spectrometry (LCMS), 

proteins isolated from sperm were separated on SDS gels and stained with Coomassie. Per lane, 

14-17 gel slices were excised and proteins were in-gel digested with trypsin (Promega). Peptides 

were separated in a 90 or 180 min gradient by a nanoAcquity LC System equipped with a HSS T3 

analytical column (1.8 μm particle, 75 μm x 150 mm) (Waters), and analyzed by ESI-LC-MS/MS 

using an LTQ Orbitrap Elite mass spectrometer (Thermo Scientific). All database searches were 

performed using SEQUEST as well as MS Amanda (Mechtler lab, Vienna, Austria) algorithm, 

embedded in Proteome DiscovererTM (Rev. 1.4, Thermo Electron© 2008-2011), with a NCBI 

protein database (mouse, accession number NP_766280.2, accessed June 13, 2013). Only fully 

tryptic peptides with up to two missed cleavages were accepted. Oxidation of methionine was 

permitted as variable modification. The mass tolerance for precursor ions was set to 10 ppm; 

the mass tolerance for fragment ions was set to 0.4 amu. To filter the results, a peptide FDR 

threshold of 0.01 (q-value) according to Percolator was set in Proteome Discoverer, two 

peptides per protein and peptides with search result rank 1 were required. 

 

2.11.3  Transfer and immobilization of proteins by Western blotting 

Proteins separated by SDS-PAGE were transferred to a PVDF membrane (Immobilon-P or 

Immobilon-FL, Millipore) with the semi-dry approach using a milliblot-graphite electroblot-

system (Millipore). The membrane was activated in MeOH, whatman paper were incubated in 

the respective blotting buffers. The experimental setup is shown in Fig. 2.1. Proteins were 

blotted for 40 min at 2.4 mA/cm2 gel area.   

 

 
Fig. 2.1: Protein transfer using the semi-dry approach 

 

 

Proteins separated by gradient gels were transferred via the wet blot procedure using the XCell 

II Blot Module (Thermo Fisher Scientific). PVDF membrane was activated with MeOH. 

Subsequently, six blotting pads, two whatman paper and the membrane were incubated in 

blotting buffer. Three blotting pads, one whatman paper, the gel and the PVDF membrane were 
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stacked into the cathode module. Air bubbles were removed, filter paper and three botting pads 

were added and the chamber was closed with the anode module. Transfer buffer was filled into 

the blotting chamber, the outer part was filled with H20. Proteins were then transferred for 2 h 

at 30 mV. A successful transfer for both blotting approaches was indicated by the presence of 

marker bands on the PVDF membrane. 

 

Semi-dry anode I 
buffer 

Semi-dry anode II 
buffer 

Semi-dry cathode 
buffer 

 
 

Wet blot transfer 
buffer 

300 mM Tris 25 mM Tris 25 mM Tris  
5 % NuPage transfer 

buffer 

20 % MeOH 20 % MeOH 20 % MeOH  10 % MeOH 

pH 10.4 pH 10.4 40 mM Glycin  
0.1 % NuPAGE 

antioxidant 

  pH 9.4   

 

2.11.4  Immunostaining of immobilized proteins 

For the immunological detection of protein on PVDF membranes, unspecific binding sites were 

saturated by incubating the membrane with Bløk blocking buffer (Millipore). After incubating 

the membrane with a specific primary antibody to verify the protein of interest, excessive 

antibody was removed by washing in PBS + 0.05 % Tween (PBS-T). Specific antigen-antibody 

complexes were detected with a secondary antibody coupled to a horseradish peroxidase (HRP) 

or near-infrared fluorophores. Before detection of the secondary antibody, the membrane was 

washed again in PBS-T and stored in PBS. During all incubation and washing steps, the 

membrane was slightly panned. All working steps including the applied solutions are 

summarized in Table 11. 

If the antibody was coupled to HRP, the membrane was incubated with the ECL (enhanced 

chemiluminescence) detection reagent (Sigma-Aldrich) in the dark. The signal was detected 

using the LAS-3000 Luminescent Image Analyzer (FUJIFILM). Fluorophor-coupled antibodies 

were visualized using the Odyssey Infrared Imaging System (Li-Cor Biosciences). 

 

Table 11: Immunological detection of immobilized proteins 

Working step 
 
 

Incubation time and  
temperature 

 
 

Incubation solution 

Blocking  40 min, RT  Blök blocking buffer 

Primary antibody detection  Overnight, 4°C  
Primary antibody in Blök /              

PBS-T (1:1) 

Washing  3 x 10 min, RT  PBS-T 
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Secondary antibody 
detection 

 60 min, RT  
Secondary antibody in Blök 

/ PBS-T (1:1) 

Washing  3 x 10 min, RT  PBS-T 

Storage  4 °C  PBS 

 

2.12 Laboratory animals 
 

2.12.1 Captive care and breeding 

The mice used for this thesis were kept in the mouse facility of the research center caesar in 

Bonn. Mice were ad libitum supplied with drinking water and a breeding diet for rat and mice 

(1314 Standard, Altromin). After three weeks, offspring was weaned from their mother, sorted 

according to sex and genotyped by PCR. Mice used in this thesis were 2 - 4 months of age. To 

analyze the mating behavior, male and female mice were mated for one night. Early the next 

morning, female mice were checked for vaginal plugs. After at least ten days it was examined if 

female mice were pregnant. If so, the number of offspring was documented after birth. 

 

CatSper-null mice  

CatSper knockout mice were kindly provided by Dr. David Clapham, Howard Hughes Medical 

Institue (Boston, USA) 

Slo3-null mice 

Slo3 knockout mice were kindly provided by Prof. Dr. Christopher Lingle, Washington University 

(St. Louis, USA). 

LRRC52-null mice 

LRRC52 knockout mice were kindly provided by Prof. Dr. Christopher Lingle, Washington 

University (St. Louis, USA). 

sNHE-null mice 

sNHE knockout mice were purchased from the Jackson Laboratory (B6; 129S6-Slc9a10tm1Gar/J, 

stock number: 007661). 

bPAC transgenic mice  

Transgenic bPAC mice were generated by Vera Jansen and Dagmar Wachten using pronuclear 

injection of a bPAC-HA fragment cloned into a pPrCExV-1 vector (Robert E. Braun, Jackson 

Laboratories, Maine, USA) (see Jansen et al., 2015) 
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NHA1-null mice 

NHA1-null mice were generated by blastocyst injection of Slc9b1 mutant ES cells 

(EPD0187_1_D11, EUCOMM) into albino BL6 females performed by the transgenic service of the 

LIMES institute in Bonn. The offspring was genotyped by PCR using NHA1-specific primers. and 

the individual founder animals further mated with wildtype animals. 

 

2.12.2 Isolation of native mouse zona pellucida 

To increase the number of ovulated oocytes per mice, female mice were superovulated. To this 

end, 10 U pregnant mare's serum gonadotropin (PMSG) (ProSpec, Rehovot, Israel) was injected 

intraperitoneally which increases oocyte production. After 48 hours, mice were treated with 

human chorionic gonadotropin (hCG) to induce ovulation (ProSpec, Rehovot, Israel). 14 hours 

later, oocyte isolation was performed. As shown in Fig. 2.2a, the oviduct was prepared from the 

genital tract of the mice. The ampulla was ruptured, and cumulus-enclosed oocytes were 

released in Toyoda Yokoyama Hoshi (TYH) medium (Toyoda & Chang, 1974) (Table 12) 

containing 300 μg/ml hyaluronidase (Fig. 2.2b). After 15 min, cumulus-free oocytes were 

transferred into fresh buffer and washed twice (Fig. 2.2c). Zona pellucidae and oocytes were 

separated by shear forces generated by expulsion from 50 nm pasteur pipettes. Zona pellucidae 

were counted, transferred into fresh buffer (Fig. 2.2d) and solubilized for 30 min at 70°C. 

 

 

 

 

 

 

 

2.13 Mouse and human sperm experiments 
 

2.13.1 Mouse sperm preparation 

 

Fig. 2.2: Isolation of oocytes and zona pellucida from superovulated mice 

(a) Oviduct with swollen ampulla (indicated by white arrow) dissected from superovulated mouse.  

(b) Oocytes surrounded by cumulus cells released from ampulla, one oocyte is highlighted with a 

white circle. (c) Cumulus-free mouse oocytes. (d) Mouse zona pellucidae. 

a b c d 
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Adult male mice were anesthetized with Isoflurane (Curamed Pharma) and killed by cervical 

dislocation. Buffer used for mouse sperm preparation and experiments are summarized in Table 

12. Cauda epididymis were excised, separated from fat tissue and each transferred into 500 µl 

TYH medium. Five small incisions were made and sperm were allowed to disperse for 15 min. 

The supernatant was collected, and the sperm number was determined using a 

hemocytometer. For capacitation, sperm were incubated for 90 min in TYH buffer with 113 mM 

NaCl containing 25 mM NaHCO3 and 3 mg/ml bovine serum albumin (BSA). To activate CatSper, 

a high K+ TYH buffer with 138 mM KCl as well as alkaline pH (K8.6) was used. Measurements 

under depolarized membrane potential were performed in TYH with 138 mM KCl at pH 7.4 (TYH 

high K+). For experiments without [Na+]ex, Na+ was replaced in the buffer by N-methyl-D-

glucamine (NMDG) (TYH Na+ free). 

 

Table 12: Buffer used for mouse sperm preparation and experiments 

TYH K8.6 TYH high K+ TYH Na+ free 

138 mM NaCl 4.8 mM NaCl 4.8 mM NaCl 138 mM NMDG 

4.8 mM KCl 138 mM KCl 138 mM KCl 4.8 mM KCl 

2 mM CaCl2 2 mM CaCl2 2 mM CaCl2 2 mM CaCl2 

1.2 mM KH2PO4 1.2 mM KH2PO4 1.2 mM KH2PO4 1.2 mM KH2PO4 

1.0 mM MgSO4 1.0 mM MgSO4 1.0 mM MgSO4 1.0 mM MgSO4 

5.6 mM Glucose 5.6 mM Glucose 5.6 mM Glucose 5.6 mM Glucose 

0.5 mM Sodium 
pyruvate 

0.5 mM Sodium 
pyruvate 

0.5 mM Sodium 
pyruvate 

 

10 mM L- lactate 10 mM L- lactate 10 mM L- lactate 10 mM L- lactate 

10 mM HEPES 10 mM TAPS 10 mM HEPES 10 mM HEPES 

pH 7.4 pH 8.6 pH 7.4 pH 7.4 

 

2.13.2 In-vitro fertilization 

KSOM medium (EmbryoMax Modified M16 Medium, Millipore) was mixed with mineral oil and 

equilibrated overnight at 37°C. On the day of the in-vitro fertilization experiment, 100 µl drops 

of fresh KSOM medium were placed into multiple wells of a multi-well plate and overlaid with             

1 ml medium-oil mixture. Oocyte-cumulus complexes (COC) were isolated from superovulated 

mice and placed into the drop. 1 x 105 capacitated sperm were added to each COC. After                
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4 hours of incubation at 37°C and 5 % CO2, oocytes were transferred into fresh KSOM medium. 

On the next day, the amount of two-cell stage oocytes was quantified. 
 

2.13.3 Human sperm preparation 

Motile human sperm were isolated from the ejaculate using the “swim-up” technique: 0.5 to                

1 ml of liquefied semen was layered in a 50 ml falcon tube below 4 ml human tubular fluid 

(HTF). Buffer used for human sperm preparation and experiments are summarized in Table 13. 

The tubes were incubated in a tilted angle of 45 degree at 37°C and 10 % CO2 for 60 - 90 min. 

Motile sperm were allowed to swim up into the HTF layer, while immotile sperm, as well as 

other cells or tissue debris, did remain in the ejaculate fraction. A maximum of 3.5 ml of the HTF 

layer was transferred to a fresh falcon tube and washed twice in HTF by centrifugation (700 x g, 

20 min, RT). The purity and vitality of each sample was controlled via light microscopy, the cell 

number was determined using a Neubauer counting chamber. Per ejaculate, a sperm count of 

0.5 – 8 x 107 cells was obtained. For capacitation, sperm were incubated in HTF with 72,8 mM 

NaCl containing 25 mM NaHCO3 and 3 mg/ml HSA (Irvine Scientific) for 90 min. Measurements 

under depolarized membrane potential were performed in HTF with 97.8 mM KCl at pH 7.4 (HTF 

high K+). For experiments without [Na+]ex, Na+ was replaced in the buffer by N-methyl- D-

glucamine (NMDG) (HTF Na+ free). For experiments under Mg+-free conditions, MgCl2 was 

omitted (HTF Mg+ free). In HTF without Cl-, the ion was replaced by gluconate (HTF Cl- free).  

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Table 13: Buffer used for human sperm preparation and experiments (in mM) 

 

HTF HTF high K+ HTF Na+ free HTF Mg+ free HTF Cl- free 

Fig. 2.3: ”Swim‐up“ technique for the preparation of motile human sperm  

Liquefied semen was layered in a 50 ml falcon tube below 4 ml of HTF. The sample was incubated at 
37 °C, 10 % CO2 for 60 ‐ 90 min to enable motile sperm to swim up into the HTF buffer. 
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97.8 mM NaCl 4.7 mM NaCl 97.8 mM NMDG 97.8 mM NMDG 
97.8 mM 

NaGluocate 

4.7 mM KCl 97.8 mM KCl 4.7 mM KCl 4.7 mM KCl 
4.7 mM 

KGluconate 

2.04 mM CaCl2 2.04 mM CaCl2 2.04 mM CaCl2 2.04 mM CaCl2 
2.04 mM 

CaGluconate 

0.37 mM KH2PO4 0.37 mM KH2PO4 0.37 mM KH2PO4 0.37 mM KH2PO4 0.37 mM KH2PO4 

0.2 mM MgSO4 0.2 mM MgSO4 0.2 mM MgSO4  0.2 mM MgSO4 

2.8 mM Glucose 2.8 mM Glucose 2.8 mM Glucose 2.8 mM Glucose 2.8 mM Glucose 

0.33 mM Sodium 
pyruvate 

0.33 mM Sodium 
pyruvate 

 
0.33 mM Sodium 

pyruvate 
0.33 mM Sodium 

pyruvate 

21.4 mM lactic 
acid 

21.4 mM lactic 
acid 

21.4 mM lactic 
acid 

21.4 mM lactic 
acid 

21.4 mM lactic 
acid 

21 mM HEPES 21 mM HEPES 21 mM HEPES 21 mM HEPES 21 mM HEPES 

pH 7.4 pH 7.4 pH 7.4 pH 7.4 pH 7.4 

 

2.13.4 Sperm membrane protein preparation  

To isolate membrane proteins from sperm, 1 x 107 cells were sonified two times for 30 s in 50 µl 

sonification buffer (25 mM Hepes, 100 mM NaCl, mPIC 1:100, pH 7.5). 0.3 % SDS was added and 

the sample was incubated for 10 min in the cold room on a rotating wheel. To remove insoluble 

cell components, the sample was centrifuged (55000 rpm, 15 min, 4°C) and the supernatant was 

transferred to a fresh tube. After quantifying the protein concentration by BCA test, the sample 

was analyzed by Western blotting.  

2.13.5 Acrosome reaction assay 

To analyze if ZP proteins evoke the acrosome reaction, 1 x 106 non-capacitated or capacitated 

sperm were incubated with buffer, ZPs or heterologous ZP proteins, or 2 µM ionomycin as 

positive control for 10 min at 37°C. Samples were washed by centrifugation at 700 x g for 7 min 

and resuspended in 50 to 100 µl PBS. From each sample, a smear was prepared on a glass slide 

and dried on a 37°C heat plates. Subsequently, cells were fixed in 100 % EtOH for 30 min at RT. 

After washing with PBS, sperm were surrounded with a Liquid Blocker Pen (Vector Laboratories, 

Burlingame, USA) and incubated for 30 min in the dark with 5 μg/ml lectin coupled to FITC in 

PBS. Peanut lectin coupled to FITC (PNA-FITC) was used for mouse sperm, pea lectin coupled to 

FITC (PSA-FITC) was used for human sperm. Additionally, sperm were counterstained with                   

2 μg/ml DAPI. Subsequent to washing with PBS, cells were covered with cover glasses using 
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Aqua Poly/Mount (Polyscience, Eppelheim) as mounting medium and analyzed with an Olympus 

FV10 microscope; images were captured with an Olympus DP71 camera using the FV10-ASW 3.0 

Viewer software (Olympus, Japan). For each condition, at least three times 200 cells were 

counted using ImageJ version 1.47. The fraction of acrosome-reacted sperm in each sample was 

normalized to the fraction of acrosome-reacted sperm in the buffer-treated control group. 

2.13.6 Antigen retrieval for ICC on sperm 

To improve ICC on mouse sperm, antigen retrieval with citrate buffer was performed. 2 x 105 

cells were smeared on positively charged microscope slides and dried at RT. A steamer was 

preheated to 99°C, staining cuvettes were filled with citrate buffer (10 mM sodium citrate,             

0.05 % Tween-20, pH 6) and preheated in the steamer for 10 min. Sperm slides were placed into 

the staining cuvettes and incubated in the steamer for 20 min. After the antigen retrieval, slides 

were transferred into staining cuvettes with PBS, cooled down for 10 min and subsequently 

dried in ICC chambers. With a Liquid Blocker Pen (Vector Laboratories, Burlingame, USA), a 

border was drawn around the sperm and ICC was performed as described in 2.8.1. 

2.13.7 STORM analysis of sperm flagellar proteins 

All STORM imaging experiments were performed in an imaging buffer (50 mM Tris, pH 8, 10 mM 

NaCl) with an oxygen scavenging system (0.5 mg/mL glucose oxidase, 40 µg/mL catalase,      

10 % glucose, and 10 mM 2-aminoethanethiol. 10.000 – 60.000 frames were acquired per data 

set using 647 nm excitation at 100 mW at the sample plane unless mentioned otherwise.                

A 405 nm laser was used to maintain an adequate number of localizations per frame. A 

cylindrical lens was introduced in the detection path for 3D STORM acquisition. Perfect focus 

system from Nikon was used to minimize axial drifting and a vibration isolation table was used 

to minimize lateral drifting. STORM movies were analyzed as described previously using either 

the Nikon software package based on a technology developed by Dr. Xiaowei Zhuang (Huang et 

al. 2008). Briefly, fluorescence peaks corresponding to individual molecules were identified in 

each frame and fit using least-squares fitting or maximum-likelihood estimator fitting with a 

two-dimensional Gaussian to determine the (x,y) position of each molecule. For 3D imaging, the 

ellipticity of the Gaussian was used to assign a z coordinate.  Drift correction was applied using 

cross-correlation.  

STORM images were rendered with each localization plotted as a Gaussian whose width is 

weighted by the inverse square root of the number of detected photons for that switching 

event. Images were filtered to reject molecules with low photon number (below 500 photons). 

Molecules with aspect ratio higher than 1.5 for 2D and 2.5 for 3D datasets were rejected. 

Moreover, molecules that appear for >10 consecutive frames were rejected. Non-specifically 

bound antibodies can give background in the STORM images, which appears as scattered 

localizations at low local densities. This background noise was removed by a local density filter. 
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Low-density localizations were filtered out by removing a localization if it was surrounded by 

fewer than 10 localizations in the 80 nm × 80 nm region surrounding the localization. 

2.13.8 Flagellar beat analysis 

Freely beating sperm were observed in shallow perfusion chambers with 200 µm depth. Sperm 

were tethered to the glass surface by lowering the BSA concentration to 0.3 mg/ml allowing to 

exchange the imaging buffer during recordings. An inverted dark-field video microscope (IX71; 

Olympus)  with a 10 x objective (UPlanFL, NA 0.4; Olympus) and an additional 1.6 x 

magnification lens (16 x final amplification) was combined with a high-speed camera (Dimax; 

PCO). Dark-field videos were recorded with a frame rate of 200 Hz. During the recordings, the 

temperature was set to 37°C (Incubator; Life Imaging Services). The flagellar beat was quantified 

with an in-house developed software package SpermQ (Jan Niklas Hansen, research center 

ceasar). 

2.13.9 Electrophysiological recordings from human sperm 

In preparation of electrophysiological recordings of human sperm, 5 mm glass plates were 

coated with PLL. Subsequently, sperm were added and incubated for 30 min at 37 °C to enable 

sedimentation of sperm. The glass plates were transferred to the measurement chamber of the 

patch‐clamp setup. The patch‐clamp setup was placed on a vibration‐cushioned table and was 

surrounded by a Faraday cage. An inverse microscope (IX 73, Olympus) was supplemented by 

two micromanipulators (PatchStar, Scientifica), enabling a precise positioning of the patch 

pipette and the object table. The object table was equipped with the measurement chamber 

and a perfusion system. Patch pipettes were pulled from borosilicate glass (Hilgenberg, 

Malsfeld) using a micropipette puller (DMZ universal puller, Zeitz‐Instrumens, Martinsried) and 

extensively fire polished. The reference electrode consisted of a silver chloride wire, which was 

connected to the bath solution via an agar bridge (3M KCl). The pipette solution was connected 

to the pre‐amplifier by a silver chloride electrode. Measurements were carried out using a 

patch‐clamp amplifier (Axopatch 200B, Axon), coupled to a PC via a data acquisition system 

(Digidata 1550A, Axon). 

Only motile sperm, with their head tethered to the glass surface but with a freely moving 

flagellum, were chosen for recordings. Slight overpressure was applied to the pipette before 

immersion into the bath solution to prevent cell debris from entering the pipette. As the sperm 

membrane is tightly attached to the rigid intracellular structures, it is not possible to generate a 

giga-ohm seal between the pipette and the sperm membrane. Only recently it was identified 

that at the cytoplasmic droplet (Fig. 2.4a, yellow arrows), the membrane is only loosely attached 

to the intracellular structures, enabling the attachment of a patch pipette with a high electrical 

resistance in between pipette and membrane (Lishko et al., 2010). The droplet could be sucked 

into the pipette by application of a slight suction (Fig. 2.4b). If the connection was strong 

enough, the sperm cell was lifted off the glass slide. To reach the whole‐cell configuration, a 
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short voltage pulse of 500 – 750 mV was applied for 0.5 ms, rupturing the membrane within the 

pipette. In this whole‐cell configuration, the whole intracellular space is accessible through the 

pipette, as demonstrated by injection of Lucifer yellow into the pipette (Fig. 2.4c). Hence, 

currents flowing over the entire cell membrane are measured in this configuration. Seals 

between pipette and sperm were formed in standard extracellular solution (HS) (in mM, 135 

NaCl, 5 KCl, 1 MgSO4, 2 CaCl2, 5 glucose, 1 Na-pyruvate, 10 Lactic acid, and 20 HEPES, adjusted 

to pH 7.4 with NaOH). CatSper currents were recorded in divalent-free (DVF) solutions 

containing (in mM) 140 CsCl, 40 HEPES, 1 EGTA, adjusted to pH 7.4 with CsOH with a pipette 

solution containing (in mM)  130 Cs-aspartate, 50 HEPES, 5 EGTA, 5 CsCl, adjusted to pH 7.3 with 

CsOH. 

 

  

 

 

 

 

 

 

 

 

 
 

2.14 Fluorometric measurements in sperm 
 

Fluorometric measurements were used to monitor alterations in [Ca2+]i and pHi of mouse and 

human sperm. Measurements of sperm populations were performed either in multi‐well plates 

in a fluorescence plate reader (FLUOstar Omega; BMG Labtech, Ortenburg, DE) (2.14.3) or in 

cuvettes using the stopped‐flow instrument SFM400 (Biologic, Cliax, France) (2.14.4). 

 

 

2.14.1 Fluorescent Ca2+ indicator CAL520 

The high affinity, non-ratiometric fluorescent Ca2+ indicator CAL520 is based on the xanthene 

fluorophore fluorescein (green), which is attached to the Ca2+ chelator 1,2-bis(o-

Fig. 2.4: Patch‐clamp technique on human sperm.  

(a) DIC‐picture of human sperm. Yellow arrows depict the cytoplasmic droplet. (b) Human sperm 
attached to a patch pipette (left). Diffusion of the dye Lucifer yellow (2 mM) inside the sperm, after 
transition into the whole‐cell configuration (right) (Lishko et al., 2010). 

a                                                    b      c 



  

- 40 - 
 

aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) (blue) (Grynkiewicz et al., 1985; Minta 

et al., 1989) (Fig. 2.5a). Binding of Ca2+ ions to the BAPTA moiety changes the fluorescent 

properties of CAL520, hence the intensity of the fluorescence emission spectrum is dependent 

on the free [Ca2+]i (Fig. 2.5b). If no Ca2+ is bound, the dye exhibits nearly no fluorescence, while 

upon Ca2+ binding, fluorescence increases up to 100 fold. With a dissociation constant (KD) of 

625 nM, CAL520 is compatible with the sperm [Ca2+]i and is thereby suitable to monitor changes 

in sperm [Ca2+]i. In the FLUOstar, the fluorophore was excited at 480 nm; the fluorescence 

emission was recorded at 520 nm with bottom optics. In the stopped flow, the excitation 

wavelength was adjusted using a 494/20 BrightLine single-band bandpass filter (Semrock, USA).  

The emitted light was sent through a 536/40 nm BrightLine single-band bandpass filter 

(Semrock, USA).  

To load sperm with CAL520, the membrane permeable CAL520 acetoxymethyl ester (CAL520-

AM) was used (Tsien, 1981). CAL520-AM does not bind Ca2+ as the charged Ca2+‐chelating 

carbonic acid residues of the BAPTA moiety are esterified. CAL520-AM is of neutral charge and 

thereby membrane permeable. Inside the cell, the acetoxymethyl ester groups are hydrolyzed 

by unspecific esterases, converting CAL520-AM into the charged, Ca2+‐sensitive fluorescent dye 

CAL520. Sperm were loaded for 45 min with 5 µM CAL520-AM (AAT Bioquest) in the presence of 

Pluronic F-127 (0.02% v/v) (Fig. 2.5c,d). For Ca2+ fluorimetry with capacitated mouse sperm, 

subsequent to dye loading, the cells were incubated for 90 min with TYH containing 25 mM 

NaHCO3 and 3 mg/ml BSA. For Ca2+ fluorimetry with capacitated human sperm, CAL520-AM was 

added during the last 45 min of capacitation. After incubation with the fluorophore, human 

sperm were washed once by centrifugation (700 x g, 7 min) with 2 ml buffer while mouse sperm 

were washed three times.  

http://en.wikipedia.org/wiki/Amine
http://en.wikipedia.org/wiki/Amine
http://en.wikipedia.org/wiki/Ethane
http://en.wikipedia.org/wiki/Acetic_acid
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2.14.2 Fluorescent pHi indicator BCECF 

For pHi fluorimetry, sperm were loaded with the fluorescent pHi indicator BCECF (2’,7’-Bis-(2-

carboxyethyl)-5(und-6)carboxyfluorescein), a fluorescein derivative that changes its  

fluorescence spectrum with pH (Fig. 2.6a). With a pKs value of 7.0, BCECF is well suited to detect 

changes in sperm pHi. Upon excitation at 490 nm, the fluorescence intensity detected at 510 nm 

increases with alkalization (Fig. 2.6b, blue). In parallel, the fluorescence intensity of the 

fluorophore is pH-independent upon excitation at 440 nm (isosbestic point) (Fig. 2.6b, green). 

This allows a ratiometric measurement in the fluorescent plate reader by alternatively exciting 

the fluorophore at 440 nm and 490 nm while detecting the emission at 510 nm. An increase in 

the ratio 
440 ex; 510 em

490 ex; 510 em
 resembles alkalization while a decrease resembles acidification, 

independent of both the amount of cells and effectiveness of BCECF loading. Further, the 

ratiometric measurement reduces injection artifacts and bleaching effects. Since in the stopped 

Fig. 2.5: Properties of the fluorescent Ca2+ indicator CAL520   

(a) Chemical structure of a non-ratiometric Ca2+ indicatior. The fluorescein moiety is labelled in green, 

the Ca2+ chelator highlighted in blue.  (b) Fluorescence emission spectra of the Ca2+ indicator CAL520 

in pH 7.4 buffer with free Ca2+ values ranging from 0 to 2.4 µM, CAL520 was excited at 450 nm. (c,d) 

Non-capacitated (c) mouse and (d) human sperm loaded with CAL520-AM visualized using 

fluorescence microscopy; scale bar: 20 µm. 

20  

μ 
m. 
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flow, it is not possible to monitor two excitation wavelengths simultaneously, I took advantage 

of the fact that the emission spectrum of BCECF is also dependent on pH. Alkalisation and 

acidification shifts the emission spectrum to shorter or longer wavelength, respectively (Fig. 

2.6c). Therefore, for pH measurements in the stopped flow, BCECF was excited using a 452/45 

nm BrightLine single-band bandpass while two emission wavelengths were recorded in parallel.  

 

 
A 494/20 nm BrightLine single-band bandpass filter (Semrock) was used for the left part of the 

spectrum (blue), which is highly dependent on the pH. The second emission was detected with a 

540/10 nm BrightLine single-band bandpass filter (Semrock) at the isosbestic point of the 

spectrum (green), where the spectrum is pH independent. An increase of the ratio 
452 ex; 494 em

452 ex; 540 em
  

represents alkalization; a decrease represents acidification. To measure changes in pHi in sperm, 

cells were loaded for 10 min with 10 µM BCECF-AM and subsequently washed with 2 ml buffer 

to remove residual extracellular fluorophore (Fig. 2.6d). For pHi fluorimetry in capacitated 

sperm, BCECF-AM was added during the last 10 min of capacitation. 
 

Fig. 2.6: Properties of the fluorescent pHi indicator BCECF   

(a) Chemical structure of BCECF. (b) Relative fluorescence intensity of BCECF in dependence of pH 

(6.2 – 9.5). During FLUOstar experiment, BCECF was excited at 440 nm (green) and 490 nm (blue), 

emission was detected at 510 nm. (c) Fluorescence emission spectra of the fluorescent pHi indicator 

BCECF in sperm buffer with varying pHi. During stopped flow experiment, BCECF was excited at 452 

nm, emission was detected at 494 nm (blue) and 540 nm (green). (d) Non-capacitated mouse sperm 

loaded with BCECF. BCECF was exited with 488 nm; scale bar: 20 μm.  
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2.14.3 Ca2+ and pHi fluorimetry in multi-well plates 

Fluorescence measurements of sperm populations in multiwell plates were carried out using the 

fluorescence plate‐reader Fluostar Omega (BMG Labtech, Ortenberg). For the measurements, 

384 well plates (Greiner Bio-One) were used, enabling to analyze several conditions and stimuli 

in parallel over long time intervals. In the Fluostar, the multi-well plate is moved past a detector 

head, which records the fluorescence individually from the bottom of each well. Fluorescence is 

excited by a flash tube and the resulting fluorescence value is averaged from individually 

measured values. The time resolution of each measurement is dependent on the number of 

wells that are recorded, determining the time needed for a full measurement cycle. Each well 

contained 50 µl of a fluorophore-loaded sperm suspension set to a concentration between 0.5 

and 5 x 106 sperm/ml. After 10 cycles, the experiment was interrupted, and 10 to 50 µl stimuli, 

inhibitor or buffer as control were added to the sperm suspension. The solutions were injected 

manually into the wells with an electronic multichannel pipette. For data analysis and 

evaluation the software Prism 5.1 (GraphPad software, USA) was used. 

2.14.4  Stopped-flow device 

The kinetic stopped-flow technique allows to detect reactions in the millisecond to second time 

scale (Johnson, 1986) after rapidly mixing a single or multiple solutions with a reacting agent. 

Mixing takes place in a special mixing chamber; afterwards, the reactants are transferred into a 

detection chamber, e.g. a cuvette. The reaction can be monitored with optical, calorimetric, or 

electrical methods. The time resolution (T) of the stopped flow depends on the volume of the 

system (V) and on the flow rate (F) and can be calculated with T = V/F. The central part of the 

stopped flow is the SFM-400 module, which consists of four 10 ml syringes (a simplified 

representation with two syringes is shown in Fig. 2.7). The syringes can be filled with solutions 

using a filling valve. The plungers of the syringes can be moved with stepping motors. Using the 

Biokine Software (version 4.45, Biologic), the stepping motors are navigated with the control 

unit (MPS-60, BioLogic). The solutions in the syringes are mixed in a mixing chamber. For pHi 

and Ca2+ fluorimetry the sperm suspension was filled in syringe 3 (S3), the test solution in 

syringe 4 (S4), and the washing solution for rinsing the cuvette between measurements in 

syringe 1. For detection, a quartz cuvette (FC-15) installed behind the mixing chamber with a 

reaction volume of 31 µl was used. The dead time between mixing of sperm with the test 

solution and the start of the detection was 87.7 ms at a flow rate of 0.5 ml/s. Alterations of the 

liquid column in the cuvette can result in considerable noise. To avoid these fluctuations, a 

hard-stop valve is installed, which closes the detection chamber after the injection and prevents 

a post-pulse oscillation of the liquid column. The hard-stop valve is operated by the control 

software of the stopped-flow device. 
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2.14.5 Ca2+ and pHi fluorimetry in the stopped-flow device 

Kinetic Ca2+ and pHi fluorimetry were performed in the stopped-flow device (SFM400, Bio-Logic, 

Grenoble, F) at 37°C. In the stopped-flow device, the sperm suspension (5 x 106 sperm/ml) was 

rapidly mixed (1:1 v/v; flow rate 0.5 ml/s) with different stimuli. At this flow rate, no physical 

damage of sperm was detected, and their swimming behavior appeared normal. Fluorescence 

was evoked by a LED light source (Spectra X; Lumencor, Beaverton, USA) and recorded by a 

photomultiplier (H9656-20; Hamamatsu Photonics, Hamamatsu City, Japan) with connected 

amplifier (C7169; Hamamatsu). At the beginning of a measurement, the stepper motors were 

synchronized (50 ms) and the system was rinsed with 400 µl sperm buffer within 200 ms. After a 

subsequent pause of 200 ms, 100 µl sperm suspension were mixed with 100 µl test solution. 

After 200 ms, the hard stop valve was closed, resulting in a dead time between the mixer and 

Fig. 2.7: Measuring principle of the SFM-400 stopped-flow device 

For Ca2+ and pHi fluorimetry the sperm suspension was filled in S3, the test solution in S4. The dead 
time between starting the reaction by mixing the sperm with the test solution and detecting the 
reaction in the cuvette was 87.7 ms at a flow rate 0f 0.5 ml/s. See text for details. S = syringe.  
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the cuvette of 87.7 ms. Changes in pHi or [Ca2+]i were fluorometrically recorded in the cuvette. 

Data were analyzed using Prism 5.1 (GraphPad software, USA). For each experiment, sperm 

were first mixed with buffer and a baseline was recorded (Fig. 2.8a). Then, sperm were 

subsequently mixed with the stimuli. For each stimulus, two or three traces were recorded and 

directly averaged. Using the Prism 5.1 software, after the measurement each trace was 

normalized to the mean value of the first three data points of the recording (Fig. 2.8b). Then the 

baseline was subtracted from each trace (Fig. 2.8c). To improve the resolution, the signal was 

smoothed with four neighbors on each side (Fig. 2.8d). 
 

 
 

 

Fig. 2.8: Analysis of stopped flow raw data with the GraphPad Prism software   

(a) Stopped-flow raw data. (b) Normalization to the mean value of the first three data points. (c) 
Subtraction of dead time from each y data point. (d) Subtraction of baseline from stimulus trace. (e) 
Smoothing of the stimulus trace with four neighbors on each side. F = fluorescence. 
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2.14.6 Calculation of EC50 values from dose‐response curves 

The half maximal effective concentration (EC50) describes the potency of a substance to induce 

an effect. To determine EC50 values, sperm were stimulated with different concentrations of the 

substance. The maximal relative change in CAL520 fluorescence (ΔF/F0) was determined and 

plotted against the logarithmic substance concentration. The resulting data set was fitted to a 

modified Hill equation (F = fluorescence, [P] = concentration of substance, n = Hill coefficient). 

 

ΔF/F0=
ΔF/Fmin‐ ΔF/Fmax

1 + ([P]/EC50)n 
 +ΔF/Fmax 

 
 Data analysis was carried out using Prism 5.1 (GraphPad software, USA).  
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3 Results 
 

3.1 The action of zona pellucida glycoproteins in mouse sperm 
 

3.1.1 Isolation and functional characterization of native mouse zona pellucida 
glycoproteins 

To study zone pellucida (ZP)-induced signaling events in mouse sperm, ZP glycoproteins were 

isolated from mouse oocytes. To this end, oviducts were prepared from the genital tract of 

superovulated female mice (Fig. 3.1ai). Fig. 3.1aii illustrates the swollen oviductal ampulla, 

containing a high number of ovulated oocytes. The ampulla was ruptured to release the oocytes 

(Fig. 3.1aiii). In mice, the ZP is made up of three different ZP glycoproteins, ZP1, ZP2, and ZP3, 

which form a mesh-like structure (Fig. 3.1b). Staining of the isolated oocytes with antibodies 

against ZP1, ZP2, and ZP3 labeled the ring-shaped ZP surrounding the oocyte (Fig. 3.1c). The 

zona pellucidae (ZPs) were mechanically peeled off the oocytes by trituration using a Pasteur 

pipette (Ø 50 nm) (Fig. 3.1iv). Overall, about 400 to 600 ZPs were isolated from 30 superovulated 

mice. ZPs were counted, homogenized by heat-solubilization, and the ZP homogenate was 

adjusted to a “concentration” of 1 ZP per µl. On Western blots of homogenized ZPs, anti-ZP1, 

 

 

Fig. 3.1: Isolation of mouse zona pellucida glycoproteins 

(a) Isolation of mouse zona pellucida (ZP) glycoproteins. (i) Mouse genital tract. (ii) Oviduct with 

swollen ampulla dissected from superovulated mice. (iii) Oocyte released from ampulla. (iv) Mouse 

ZP separated from oocytes. (b) ZP consists of three proteins: ZP2 and ZP3 heterodimers form long 

filaments that are interconnected by ZP1 dimers. Modified after Wasserman 1988. (c) Staining of 

mouse oocytes with antibodies directed against (i) ZP1 (purple), (ii) ZP2 (cyan), (iii) ZP3 (green); the 

DNA was labeled using DAPI (blue). (d) Immunoblots of isolated ZPs under control conditions (-) and 

after PNGase treatment (+) verified using specific ZP antibodies.  
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anti-ZP2, and anti-ZP3 antibody detected proteins of about 150, 100, and 80 kDa, respectively 

(Fig. 3.1d), which is in line with the molecular weight of the respective ZP glycoproteins reported 

before (Wassarman, 1988). Furthermore, the ZPs were treated with PNGase to test whether the 

isolation protocol preserved the glycosylation of the proteins. PNGase treatment decreased the 

apparent molecular weight of both ZP1 and ZP2 by around 20 kDa and of ZP3 by around 40 kDa, 

indicating that the isolation preserves the glycosylation of the individual ZP glycoproteins               

(Fig. 3.1d).  

To test whether the homogenized ZPs are functional, I analyzed if they evoked the acrosome 

reaction in mouse sperm. Non-capacitated and capacitated sperm were incubated in buffer 

containing 0.5 ZP/µl or 1 ZP/µl or, as positive control, the Ca2+ ionophore ionomycin. The 

acrosome was labeled with peanut lectin coupled to a green fluorescent dye (PNA-FITC) 

(Lybaert et al., 2009). The fraction of acrosome-reacted sperm was determined and to correct 

for spontaneous acrosome reaction, the results were normalized to acrosome reaction rates 

determined in sperm bathed in buffer (negative control). Fig. 3.2a shows a characteristic PNA-

FITC and DAPI staining of acrosome-intact and acrosome-reacted mouse sperm heads. In 

acrosome-intact sperm, PNA-FITC labels the sickle-shaped acrosome that caps the nucleus (Fig. 

3.2a, top), whereas in acrosome-reacted sperm, labeling of the sperm head is only sparse and 

punctuated or even completely absent (Fig. 3.2a, bottom). In capacitated sperm, incubation in 

0.5 ZP/µl and 1 ZP/µl increased the fraction of acrosome-reacted sperm by 1.3- and 1.7-fold, 

respectively (Fig. 3.2b, teal bars). In non-capacitated sperm, the action of ZPs was strongly 

attenuated; incubation in 1 ZP/µl increased the fraction of acrosome-reacted sperm by only 1.2 

fold and 0.5 ZP/µl did not evoke a response (Fig. 3.2b, gray bars), demonstrating that  

 

 

Fig. 3.2: Zona pellucida glycoproteins evoke the acrosome reaction in mouse sperm  

(a) Sperm were immobilized on a glass slide and the acrosome was labelled with PNA-FITC (green), 

DNA was stained with DAPI (blue). Acrosome-intact sperm (AI), acrosome-reacted sperm (AR). (b) 

Acrosome reaction evoked by ZPs or 2 µM ionomycin in non-capacitated (grey) or capacitated (teal) 

mouse sperm. The data were normalized to spontaneous acrosome reaction rates of control sperm 

bathed in buffer. Data are shown as mean; error bars indicate + SD (n = 3). 
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capacitation primes sperm for ZP-induced acrosomal exocytosis. In both non-capacitated and 

capacitated sperm, ionomycin increased the fraction of acrosome- reacted sperm by 1.7 fold, 

indicating that the action of ionomycin is independent of capacitation. Altogether, these 

experiments demonstrate that the isolated ZPs are functional. 

 

3.1.2 ZP-evoked [Ca2+]i responses 

Stimulation of mouse sperm with ZP glycoproteins evokes a Ca2+ influx (Arnoult et al., 1996b; 

Jungnickel et al., 2001; Publicover et al., 2007) via CatSper (Xia & Ren, 2009). I set out to 

reproduce this result by monitoring changes in [Ca2+]i in mouse sperm populations loaded with 

the fluorescent Ca2+ indicator CAL520-AM using the kinetic stopped-flow technique (Master 

thesis Melanie Balbach; Jansen et al., 2015; Schiffer et al., 2014; Schneider et al., 2016). First, I 

studied CatSper-mediated Ca2+ responses evoked by mixing of capacitated mouse sperm with 

alkaline-depolarizing medium (K8.6) or 8-Br-cAMP. As a positive control, I measured Ca2+ 

responses evoked by mixing with ionomycin. Fig. 3.3a-c show the individual Ca2+ responses in 

sperm from 18 different mice. All three stimuli evoked a rapid and sustained Ca2+ increase, 

demonstrating that the stopped-flow technique is suited to study Ca2+ signaling in mouse 

sperm. However, the overall signal amplitudes varied considerably among the different sperm 

samples. For the ease of illustration and to account for the variability, the individual traces were 

averaged and plotted along with the 95% confidence interval, as shown in Fig. 3.3d-f (dark blue). 

The light blue traces in Fig. 3.3d-f show the averaged Ca2+ responses evoked in non-capacitated 

sperm, which displayed a similar inter-experimental variation. The signal kinetics were overall 

similar in capacitated vs. non-capacitated sperm: irrespective of the stimulus and capacitation 

status, [Ca2+]i rose without a measurable latency within the time resolution of the stopped-flow 

technique (∼90 ms) (Fig. 3.3d-f). Moreover, the time course of the K8.6-, 8-Br-cAMP-, and 

ionomycin-evoked responses were similar, i.e. the signal saturated at about 10 s, and stayed 

elevated throughout the recording time. The signal amplitudes evoked by K8.6 and 8-Br-cAMP 

were slightly enhanced in capacitated vs. non-capacitated sperm. However, the ionomycin-

evoked amplitude, showing the upper response limit, was attenuated by capacitation. To 

correct for the different upper response limits in non-capacitated vs. capacitated sperm and for 

inter-experimental variations, the individual signal amplitudes evoked by K8.6 and 8-Br-cAMP 

were determined (Fig. 3.3a,b, gray bars) and normalized to the signal amplitude of the 

respective ionomycin control (Fig. 3.3c, gray bar). These individual normalized amplitudes were 

used to calculate the mean signal amplitudes. The normalized K8.6-induced signal amplitude 

was 0.11 ± 0.05 and 0.24 ± 0.12 in non-capacitated and capacitated sperm, respectively (Fig. 

3.3h). The amplitude evoked by 8-Br-cAMP was 0.12 ± 0.04 and 0.33 ± 0.25 in non-capacitated 

and capacitated sperm, respectively (Fig. 3.3h). Altogether, this demonstrates that capacitation 

enhances CatSper-mediated Ca2+ influx.  
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Fig. 3.3g shows the Ca2+ response evoked by mixing of sperm with 0.5 ZP/µl. In both non-

capacitated and capacitated sperm, the ZPs evoked a rapid and sustained Ca2+ increase; the 

signal saturated at about 10 to 20 s and settled at an elevated level throughout the recording 

Fig. 3.3: Zona pellucida glycoproteins evoke Ca2+ responses in mouse sperm   

(a-c) Individual responses in [Ca2+]i in mouse sperm evoked by (a) alkaline depolarizing medium 

(K8.6), (b) 10 mM 8-Br-cAMP, (c) 2 µM ionomycin. Individual signal amplitudes used to calculate the 

mean amplitudes are highlighted with gray bars. (d-g) Changes in [Ca2+]i evoked by (d) K8.6, (e) 10 

mM 8-Br-cAMP, (f) 2 µM ionomycin, or (g) 0.5 ZP/µl in non-capacitated (light blue) and capacitated 

sperm (dark blue). Mean ± 95% CI (dashed traces) (n=7). Changes in [Ca2+]i
  were recorded in a 

stopped-flow apparatus using sperm loaded with the Ca2+-sensitive fluorophore CAL520-AM. ΔF/F0 

(%) indicates the percentage change in fluorescence (ΔF) with respect to the mean basal fluorescence 

(F0) of the first 3 data points recorded immediately after mixing (F). (h) Mean signal amplitudes  

normalized to the maximal response evoked by 2 µM ionomycin; error bars indicate + SD (n = 7). 
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time. The amplitude of the ZP response was strongly enhanced in capacitated versus non-

capacitated sperm; the normalized amplitudes were 0.18 ± 0.07 and 0.03 ± 0.01, respectively, 

demonstrating that capacitation primes sperm to respond to stimulation by ZPs.   

Next, I scrutinized whether the ZP-induced Ca2+ response is mediated by CatSper  by studying ZP 

responses in capacitated CatSper-/- sperm (Fig. 3.4). In CatSper-/- sperm, ionomycin, but not ZPs 

or K8.6 and 8-Br-cAMP evoked a Ca2+ response. To verify that this particular batch of ZPs was 

functional, I studied in parallel Ca2+ responses in wildtype as a control. In wildtype sperm, ZPs, 

K8.6, and 8-Br-cAMP evoked a Ca2+ response. Altogether, these experiments confirm that the 

ZP-, K8.6-, and 8-Br-cAMP-induced Ca2+ influx is mediated by CatSper.   

                                    

 

 

3.1.3 ZP-evoked pHi responses 

Stimulation of mouse sperm with isolated ZPs evokes a pHi increase (Arnoult et al., 1996b). I 

tried to reproduce this result using the kinetic stopped-flow technique. To this end, changes in 

pHi were monitored in capacitated mouse sperm populations loaded with the fluorescent pH 

indicator BCECF-AM. First, I studied pHi responses evoked by the weak base ammonium chloride 

(NH4Cl), which is commonly used to alkalize the pHi of cells. Mixing of sperm with NH4Cl evoked 

Fig. 3.4: CatSper mediates the ZP-induced Ca2+ increase in mouse sperm   

(a-d) Changes in [Ca2+]i  evoked by (a) 2 µM ionomycin, (b) K8.6, (c) 8-Br-cAMP, and (d) 0.5 ZP/µl in 

capacitated wildtype (wt) (dark blue) or CatSper-/- (light blue) mouse sperm. Mean ± 95 % CI (dashed 

traces), n = 4. (e) Mean signal amplitudes, normalized to the maximal Ca2+ response evoked by 2 µM 

ionomycin; error bars indicate + SD (n = 4).  
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a rapid increase of the BCECF fluorescence ratio ΔR/R0 (Fig. 3.5a), indicating a pHi increase. To 

account for the variability among different sperm samples, the individual pHi responses were 

averaged and plotted along with the 95 % confidence interval. The pHi signal rose within the 

time resolution of the stopped-flow technique (∼90 ms), saturated at about 20 s, and remained 

elevated throughout the recording time (Fig. 3.5a). Thus, BCECF faithfully reports pHi changes in 

mouse sperm. Next, I studied ZP-evoked pHi responses. Mixing sperm with ZPs evoked a rapid 

and sustained pHi increase (Fig. 3.5b), confirming the results by Arnault et al.. The pHi rose 

without a measurable latency within the time resolution of the system, the signal saturated at 

around 20 s, and the pHi stayed elevated throughout the recording time. I wondered whether 

the ZP-induced pHi increase requires Ca2+ influx via CatSper. Mixing CatSper-/- sperm with either 

NH4Cl or ZPs evoked a pHi increase whose kinetics and time course was similar to that evoked in 

wildtype sperm (Fig. 3.5c-d). Moreover, also the amplitude of the pHi response was similar in 

wildtype and CatSper-/- sperm (3.3 % ± 1.1 vs. 2.3 % ± 1.1, respectively) (Fig. 3.5e). These results 

indicate that the ZP-induced pHi increase happens independent and most likely upstream of the 

Ca2+ influx via CatSper. 

 

 

Fig. 3.5: ZP evokes a pHi response in wildtype and CatSper -/- sperm   

(a) Change in pHi evoked by mixing of sperm with 10 mM NH4Cl. (b) Change in pHi evoked by 0.5 

ZP/µl in capacitated mouse sperm. (c,d) Change in pHi evoked by (c) 10 mM NH4Cl or (d) 0.5 ZP/µl in 

capacitated CatSper-/- mouse sperm. Mean ± 95 % CI (dashed traces), n = 7. Changes in pHi were 

recorded in a stopped-flow apparatus in sperm loaded with the pH indicator BCECF-AM. (e) Mean 

signal amplitudes; error bars indicate + SD (n = 7).  
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In fact, CatSper is activated by intracellular alkalization. Fig. 3.6a shows a NH4Cl-induced Ca2+ 

increase in mouse sperm. Thus, the ZP-induced pHi increase might underlie the activation of 

CatSper by ZPs. This implies that the alkalization precedes the Ca2+ influx via CatSper, i.e. the 

latency of the pHi increase must be shorter than that of the Ca2+ increase. Fig. 3.6b shows a 

superposition of the ZP-evoked pH and Ca2+ signals. Analyzing the first 10 s of the signal 

revealed that both signals rise without a measurable latency within the time resolution of the 

system (Fig. 3.6c). This renders the delineation of the sequence of events impossible. Therefore, 

I used a different approach to gain a deeper insight into the mechanism underlying the ZP-

induced alkalization.  

 

 

Fig. 3.7 shows ZP-induced pHi signals in sperm bathed in 5 mM (control) or 138 mM extracellular 

K+ ([K+]o) to depolarize VM. Under control conditions, the ZPs induced the characteristic pHi  

 

 

Fig. 3.6: Kinetic of the ZP-evoked pHi and [Ca2+]i  increase  

(a) Change in [Ca2+]i evoked by 10 mM NH4Cl in capacitated mouse sperm. (b) Superposition of  ZP-

evoked pHi (green) and [Ca2+]i (blue) responses. (c) First 10 s of ZP-evoked pHi (green) and [Ca2+]i 

(blue) increase, enlarged plot of boxed section from (b). 

 

Fig. 3.7: ZP-induced pHi responses at low and high extracellular K+ concentrations 

(a,b) Change in pHi evoked by 0.5 ZP/µl (dark green) or 10 mM NH4Cl (light green) in capacitated 

sperm bathed in (a) 5 mM (control) or (b) 138 mM K+ buffer. Mean ± 95 % CI (dashed traces), n = 3. 

(c) Mean signal amplitudes; error bars indicate + SD (n = 3).  
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increase, whereas, at high [K+]o, the ZP-evoked alkalization was abolished (ΔR/R0 = 4.8 ± 1.6 % 

vs. -0.7 ± 1.44 %) (Fig. 3.7a,b). The NH4Cl-evoked pHi increase was, however, rather independent 

of [K+]o (Fig. 3.7c). These results suggest that depolarization of VM disables ZP-induced pH 

signaling.                              

To scrutinize this hypothesis, I studied ZP-induced pHi responses in sperm deficient for the           

K+ channel Slo3 or for its accessory subunit LRRC52. Both Slo3-/- and LRRC52-/- sperm suffer from  

 

 

 

Fig. 3.8: ZP-induced pHi responses in Slo3-/- and LRRC52-/- sperm  

(a,b) Change in pHi evoked by 0.5 ZP/µl (dark green) or 10 mM NH4Cl (light green) in capacitated (a) 

Slo3-/- (n = 1) and (b) capacitated LRRC52-/- mouse sperm. (c,d) Change in pHi evoked by 0.5 ZP/µl 

(dark green) or 10 mM NH4Cl (light green) in capacitated (c) Slo3-/- (n = 2) and (d) LRRC52-/- mouse 

sperm after preincubation with 2 µM valinomycin (Val). Mean ± 95 % CI (dashed traces), n = 4. (e) 

Mean signal amplitudes; error bars indicate + SD (n ≥ 1).  
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a depolarized VM (Zeng et al., 2011; Zeng et al., 2015). Whereas mixing of Slo3-/- and LRRC52-/- 

sperm with NH4Cl evoked an alkalization, ZPs did not change pHi (Fig. 3.8a,b). Furthermore, in 

Slo3-/- and LRRC52-/- sperm bathed in the K+ ionophore valinomycin, which hyperpolarizes VM, 

the ZP-induced alkalization was restored (Fig. 3.8c,d). Taken together, these experiments 

support the notion that a polarized membrane potential is required for ZP-induced pHi signaling.   

Next, I studied ZP-evoked Ca2+ responses in LRRC52-/- and wildtype sperm bathed in 5 mM and 

138 mM [K+]o. In wildtype sperm, the ZP-evoked Ca2+ response was strongly attenuated at high 

[K+]o; the relative signal amplitudes were 0.12 ± 0.09 and 0.02 ± 0.05 at 5 mM and 138 mM [K+]o, 

respectively (Fig. 3.9a,b), confirming previous results (Chávez et al., 2014; De La Vega-Beltran et 

al., 2012). Moreover, in LRRC52-/- sperm, the ZP-evoked Ca2+ response was abolished                          

(Fig. 3.9c,d). This suggests that the ZP-induced alkalization is crucial for the Ca2+ response.                          

 

 

Fig. 3.9: ZP-, K8.6, and 8-Br-cAMP-evoked Ca2+ responses in LRRC52-/- sperm and in sperm 
bathed in high extracellular K+ 

(a) Change in [Ca2+]i evoked by  0.5 ZP/µl in capacitated sperm bathed in 5 mM (dark blue) or 138 mM 

K+ buffer (light blue). Mean ± 95 % CI (dashed traces), n = 4. (b) Mean signal amplitudes, normalized 

to the maximal Ca2+ response evoked by 2 µM ionomycin; error bars indicate + SD (n = 4). (c) Change 

in [Ca2+]i evoked by 0.5 ZP/µl in capacitated wildtype (dark blue) or LRRC52-/- (light blue) sperm. Mean 

± 95 % CI (dashed traces), n = 4. (d) Mean signal amplitudes, normalized to the maximal Ca2+ response 

evoked by 2 µM ionomycin; error bars indicate + SD (n = 4).  
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However, independent of the stimulus, CatSper-mediated Ca2+ signals were in general smaller at 

depolarized VM: in LRRC52-/- sperm and in wildtype sperm at high [K+]o, the relative amplitudes 

of K8.6- and 8-Br-cAMP-evoked Ca2+ signals were attenuated (Fig. 3.9b,d); of note, in LRRC52-/- 

sperm and in wildtype sperm at high [K+]o, mixing with K8.6 increased pHi, but did not further 

depolarize VM. I did, however, not test whether at depolarized VM, ZP concentration > 0.5 ZP/µl 

are required to evoke a Ca2+ response. Therefore, it remains unclear whether the ZP-evoked 

alkalization is indeed required for activation of CatSper by ZPs. 

 

3.1.4 Molecular mechanism underlying the ZP-evoked pHi response 

The mechanism underlying the ZP-induced pHi increase is unknown. To investigate the 

contribution of a protein of the Na+/H+ exchanger family to the ZP pHi signaling, I studied ZP-

induced pHi signals in sperm bathed in 138 mM (control) and 0 mM extracellular Na+. Under 

control conditions, ZPs evoked the characteristic pHi increase, whereas at low [Na+]o, the ZP-

evoked alkalization was abolished (ΔR/R0 = 3.7 ± 1.9 % vs. -0.2 ± 1.3 %) (Fig. 3.10a,b). The pHi 

increase evoked by NH4Cl was, however, similar at high and low [Na+]o (Fig. 3.10c). These results 

support the notion that the ZP-induced alkalization is mediated by Na+/H+ exchangers. A 

promising candidate is the sperm-specific sodium proton exchanger (sNHE) (Wang et al., 2003), 

which is potentially regulated by changes in VM because it contains a putative voltage-sensor 

domain. 

 

 

To reveal the role of sNHE in ZP signaling, I analyzed ZP-evoked pHi and Ca2+ responses in sNHE-

deficient sperm. Mixing of sNHE-/- sperm with NH4Cl evoked an alkalization, whereas ZPs did not 

change pHi (Fig. 3.11a). This finding supports the notion that the sNHE mediates the ZP-induced 

alkalization. Moreover, in sNHE-/- sperm, also the ZP-evoked Ca2+ response (1.1 ± 2.5 %), but not 

the Ca2+ response evoked by K8.6 or ionomycin, was abolished (Fig. 3.11b,c). Taken together,  

Fig. 3.10: ZP-evoked pHi responses at high and low extracellular Na+ 

(a,b) Change in pHi evoked by 0.5 ZP/µl (dark green) or 10 mM NH4Cl (light green) in capacitated 

sperm bathed in (a) 138 mM or (b) 0 mM Na+ buffer. Mean ± 95 % CI (dashed traces), n = 3. (c) Mean 

signal amplitudes; error bars indicate + SD (n = 4).  
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these experiments suggest that alkalization mediated by the sNHE is crucial for the ZP-evoked 

Ca2+ response. 

However, sNHE forms a signaling complex with SACY, and deletion of the Slc9c1 gene also 

disrupts SACY expression. Therefore, sNHE-/- sperm not only lack the sNHE, but also SACY 

function. To disentangle whether the lack of ZP signaling in sNHE-/- sperm is due to a lack of  

 

 

Fig. 3.11: ZP-induced pHi and Ca2+
i response in sNHE-/- sperm  

(a) Change in pHi evoked by 0.5 ZP/µl (dark green) or 10 mM NH4Cl (light green) in capacitated sNHE-/- 

sperm. Mean ± 95 % CI (dashed traces), n = 4. (b) Change in [Ca2+]i evoked by 0.5 ZP/µl in capacitated 

sNHE-/- mouse. Mean ± 95 % CI (dashed traces), n = 4. (c) Change in [Ca2+]i evoked by K8.6 (light blue) 

or 2 µM ionomycin (grey) in capacitated sNHE-/- sperm. Mean ± 95 % CI (dashed traces), n = 7.  

 

Fig. 3.12: Light-induced activation of bPAC stimulates cAMP synthesis in bPACtg/+sNHE-/- 
sperm 

Left panel: In wildtype sperm, SACY converts ATP into the second messenger cAMP. Right penal: 

SACY is lost in sNHE-/- sperm. To rescue cAMP synthesis, a light-activateable adenylate cyclase from 

bacteria (bPAC) is crossed into sNHE-/- sperm. 
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sNHE, SACY, or a combination of both, I used the following approach: It has been reported that 

incubation of sNHE-/- sperm with membrane-permeable cAMP derivates restores the loss of 

SACY, and, thereby, sperm motility (Wang et al., 2007). Therefore, I tested whether restoring 

cAMP levels in sNHE-/- sperm rescues the ZP responses. We have generated transgenic mice 

expressing a bacterial, photoactivatable adenylate cyclase (bPAC) exclusively in sperm (Jansen et 

al., 2015). Stimulating of bPAC-expressing sperm with blue light increased cAMP levels (Jansen 

et al., 2015). We crossed these mice with sNHE-/- mice to generate bPACtg/+sNHE-/- mice. First, we 

tested whether cAMP production in sNHE-/- sperm, and thereby sperm motility, can be rescued 

by light- induced stimulation of cAMP synthesis (Fig. 3.12). To this end, the motility of sNHE-/- 

sperm was studied via dark-field microscopy. Fig. 3.13a shows the waveform of the flagellar 

beat before and after activation of bPAC (experiment was performed by Vera Jansen). In the  

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh   

 

Fig. 3.13: Infertility of sNHE-/- mice can be rescued by an artificial increase of intracellular 
cAMP levels 

(a) Light stimulation restores flagellar beating of sNHE-/-bPACtg/+ sperm. Flagellar waveform of sNHE-/-

bPACtg/+ sperm before (left) and after light stimulation (right). Color-coded frames are superimposed 

creating a ‘stop-motion’ image, illustrating one flagellar beating cycle; scale bar: 30 µm. (b) Acrosome 

reaction evoked by 1 ZP/µl or 2 µM ionomycin in capacitated wildtype and sNHE-/- sperm before and 

after preincubation with 5 mM db-cAMP. Data are shown as mean + SD percentage of acrosome-

reacted (AR) sperm normalized to the buffer-treated control, n = 4.  (c) Non-fertilized and fertilized 

oocyte in one- and two-cell state, respectively. (d) Rate of two-cell state oocytes after incubation of 

oocytes with sperm from wildtype, sNHE-/-, and bPACtg/+sNHE-/- sperm. The bPACtg/+sNHE-/- sperm 

were illuminated for 90 min with blue light prior to the in vitro fertilization experiment (mean + SD,       

n = total number of oocytes from three independent experiments).  
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dark, bPACtg/+sNHE-/- sperm were immotile. However, after activating bPAC by light, sperm 

regained a symmetric flagellar beat, resulting in a regular, progressive movement. These results 

confirm that the immotility of sNHE-/- sperm is due to the lack of cAMP synthesis via SACY.                  

Next, I studied acrosome reaction in sNHE-/- sperm in the absence and presence of db-cAMP 

(Fig. 3.13b). In the absence of cAMP, both ZPs and ionomycin failed to evoke the acrosome 

reaction in sNHE-/- sperm. Similar results have been reported for SACY-/- sperm (Xie et al., 2006). 

Bathing sNHE-/- sperm in db-cAMP restored the ZP- and ionomycin-evoked acrosome reaction, 

demonstrating that SACY-dependent cAMP synthesis, but no the sNHE function, is required for 

the acrosome reaction.  

Moreover, I tested whether light-induced cAMP synthesis rescues the infertility phenotype of 

sNHE-/- sperm. In an in vitro fertilization assay, capacitated wildtype or bPACtg/+sNHE-/- sperm 

were incubated with wildtype oocytes. After 24 hours, the number of two-cell-stage oocytes 

was quantified as a measure for fertilization (Fig. 3.13c). Wildtype sperm fertilized about 30 % of  

           

 

 

Fig. 3.14: Increase in cAMP rescues ZP-induced pHi and [Ca2+]i increase in sNHE-/- sperm  

(a) Change in pHi evoked by 0.5 ZP/µl (dark green) or 10 mM NH4Cl (light green) in capacitated sNHE-/- 

sperm after preincubation with 5 mM db-cAMP. Mean ± 95 % CI (dashed traces), n = 4. (b) Mean 

signal amplitudes; error bars indicate + SD (n = 4). (c) Change in pHi evoked by 0.5 ZP/µl (dark green) 

or 10 mM NH4Cl (light green) in bPACtg/+sNHE-/- sperm after light stimulation. (d) Change in [Ca2+]i 

evoked by 0.5 ZP/µl in capacitated sNHE-/- sperm after preincubation with 5 mM db-cAMP. Mean ±    

95 % CI (dashed traces), n = 4. (e) Mean signal amplitudes normalized to the maximal response 

evoked by 2 µM ionomycin; error bars indicate + SD (n = 4). (f) Change in [Ca2+]i evoked by 0.5 ZP/µl 

(dark blue) or K8.6 (light blue) in bPACtg/+sNHE-/- sperm after light stimulation.  
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the oocytes, whereas in bPACtg/+sNHE-/- sperm the fertilization rate was 2 % (Fig. 3.13c). This 

residual fertilization rate reflected the spontaneous first mitotic division that occurs in some 

oocytes due to in vitro maturation (Bałakier & Casper, 1991; Cheng et al., 2012). However, after 

light stimulation, bPACtg/+sNHE-/- sperm were able to fertilize the oocyte, resulting in a 

fertilization rate of 16 % (Fig. 3.13d). These results demonstrate that light-induced cAMP 

synthesis restores the fertility of sNHE-/- sperm. 

Finally, I studied ZP-induced pHi and Ca2+ responses in sNHE-/- sperm that were bathed in db-

cAMP and in bPACtg/+sNHE-/- sperm stimulated with blue light to activate bPAC (Fig. 3.14). Both, 

db-cAMP and light-stimulated cAMP synthesis via bPAC restored the pHi and Ca2+ response in 

sNHE-/- sperm, demonstrating that the sNHE does not underlie the ZP-induced alkalization-

signaling in mouse sperm.   
 

 

 

 

 

 

 

3.1.5 The ZP-evoked pHi response in mouse involves the NHA1 Na+/H+ exchanger 

To further analyze, which protein underlies the ZP-evoked alkalization, we investigated other 

members of the NHE family. Members of the Na+/H+ antiporter (NHA) subfamily, NHA1 and 

NHA2 (encoded by Slc9b1 and Slc9b2, respectively), are possible candidates (Chen et al., 2016; 

Liu et al., 2010). Using mass spectrometry, ten peptides proteotypic for NHA1 were identified 

 

 

Fig. 3.15: Generation and characterization of NHA1-/- mouse  

(a) Targeting strategy to generate NHA1-/- mice. (b) Western blot analysis using testis and sperm 

lysates from wildtype (+/+)- and heterozygous NHA1 knockout-mice (lacZ/+).  (c) XGal staining of 

wildtype and NHA1-/- testis section; scale bar: 50 µm. (d) Staining of wildtype and NHA1-/- sperm with 

an anti-NHA1 antibody; scale bar: 10 µm. (e) Immunoblot of wildtype and NHA1/- testis, epididymis, 

and wildtype sperm lysates. Heterologously expressed NHA1 serves as positive control. (f) Staining of 

HEK 293 cells expressing NHA1-HA with an anti-NHA1 and anti-HA antibody; scale bar: 20 µm.  
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in lysates from mouse sperm (Fig. 6.1), confirming the presence of NHA1 in sperm. To 

investigate whether NHA1 is involved in ZP signaling, a knockout mouse was generated using 

genetically modified embryonic stem cells available from EUCOMM. NHA1 knockout mice 

contained a floxed lacZ/NEO cassette in the Slc9b1 locus (Fig. 3.15a), which abolishes Slc9b1 

gene expression and conveys expression of the lacZ gene, encoding a beta-galactosidase, under 

the control of the Slc9b1 promotor. This allows to indirectly visualize the transcription of the 

Slc9b1 gene. Western blot analysis using an anti-beta-galactosidase antibody demonstrated 

Slc9b1 expression in testis and sperm in heterozygous NHAlacZ/+, but not in wildtype mice (Fig. 

3.15b). In testis sections, XGal staining revealed the beta-galactosidase expression in developing 

sperm of NHA1lacZ/lacZ mice, but not in wildtype mice (Fig. 3.15c). To verify the expression 

pattern, I applied a commercially-available NHA1 antibody. To scrutinize the specificity of the 

antibody, I used HEK293 cells transiently transfected with NHA1. Both in immunocytochemistry 

and Western blot analysis, the antibody detected NHA1 in transfected, but not in non-

transfected cells (Fig. 3.15d,f). In wildtype sperm, the anti-NHA1 antibody stained the midpiece; 

in NHA1-/- sperm, the staining was gone (Fig. 3.15e). These results question findings from of Liu 

et al., demonstrating that NHA1 is located in the principal piece (Liu et al., 2010). In lysates from 

testis, epididymis, and sperm, a band was detected at the height of the predicted molecular 

weight of around 61 kDa. However, the band was detected in both wildtype and NHA1-/- mice. 

NHA1-/- mice were viable without any gross phenotype and were born in Mendelian ratios from 

heterozygous matings. Testis and epididymis weight of male NHA1-/- and wildtype littermates 

were similar (Fig. 3.16a). Furthermore, the average count of sperm isolated from the cauda was 

identical (1.6 x 107) in both wildtype and NHA1-/- males, demonstrating that sperm development 

 

 

Fig. 3.16: NHA1-/- mice are strongly impaired in their fertilization capacity 

(a) Testis (T) weight, epididymis (E) weight, and cauda epididymal sperm counts between wildtype           

(n = 6) and NHA1-/- (n = 8) animals. (b) Mating with offspring (%) following mating of eight NHA1+/- 

and NHA1-/- males with twenty-one females. 
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is not impaired. However, the fertility of NHA1-/- males was strongly reduced (Fig. 3.16b). Only 

two out of twenty-one matings of NHA1-/- males produced offspring, whereas heterozygous 

littermates reproduced normally. These results demonstrate that NHA1 is crucial for sperm 

function and fertilization, confirming the results by Chen et al. (Chen et al., 2016).  The study by 

Chen and colleagues (Chen et al., 2016) suggested that deletion of the Slc9b1 gene also disrupts 

the expression of SACY and, thereby, renders the majority of sperm immotile. However, my 

results are not in line with these findings. The percentage of motile sperm with symmetric 

flagellar beat and progressive movement was similar between wildtype and NHA-/- sperm (Fig. 

3.17a,b). Furthermore, a detailed characterization of the flagellar beat using the SpermQ 

software developed by Jan Niklas Hansen revealed that the basal beat frequency was also 

similar between wildtype and NHA1-/- sperm (8.5 Hz and 6.4 Hz, respectively) (Fig. 3.17c). 

Stimulation of NHA1-/- sperm with 25 mM HCO3
- to activate SACY increased the flagellar beat 

frequency by 1.9 fold to 12.3 Hz, similar to what was observed for wildtype sperm (15.6 Hz) (Fig. 

3.17c). These results demonstrate that the ablation of NHA1 does not affect SACY function. 

However, NHA1-/- sperm displayed a restricted motility of the midpiece (Fig. 3.17b), resembling 

a phenotype that has been described for sperm deficient for calcineurin or CatSper ζ (Chung et 

al., 2017; Miyata et al., 2015). 

 

 
 

 

Fig. 3.17: Motility analysis of NHA1-/- sperm  

(a,b) Flagellar waveform of (a) wildtype and (b) NHA1-/- sperm before (left) and after (right) 

stimulation with 25 mM HCO3
-. Color-coded frames 1 to 17 are superimposed creating a ‘stop-

motion’ image, illustrating one flagellar beating cycle; scale bar: 30 µm. (c) Flagellar beat frequency in 

wildtype and NHA1-/- sperm before (grey) and after (teal) stimulation with 25 mM HCO3
-. Data are 

shown as mean, error bars indicate + SD (n = 5, 13 sperm analyzed in total). 

 

 stimulation with 25 mM HCO3
-. Data are shown as mean, error bars indicate + SD (n = 5, 13 

sperm in total). 
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To investigate the motility defect in the midpiece in more detail, I performed an ultra-structural 

analysis. Along the flagellum, Ca2+ signaling domains organized by CatSper display a 

quadrilateral arrangement; this supramolecular structure is crucial for sperm motility (Chung et 

al., 2014). We applied super-resolution microscopy to scrutinize whether the stiffness of the 

NHA1-/- sperm midpiece is caused by defects in the ultrastructure of the Ca2+ signalosome. The 

experiments were performed by Hussein Hamzeh. Mouse sperm were labeled with an antibody 

against the CatSper1 subunit, demonstrating localization of the CatSper channel in the principal 

piece (Fig. 3.18a). When subjecting these samples to stochastic optical reconstruction 

microscopy (STORM), clustering of CatSper in four distinct Ca2+ signaling domains aligned 

longitudinally to the sperm flagellum was observed in both wildtype and NHA1-/- sperm (Fig. 

3.18b,c). Thus, the stiff midpiece in NHA1-/- sperm does not seem to relate to defects in the 

ultra-structure of the Ca2+ signalosome. 

 
                                                                                             

 
 

Next, I studied ZP-induced pHi signaling in NHA1-deficient sperm. Compared to wildtype sperm, 

the amplitude of the ZP-evoked alkalization was strongly attenuated in NHA1-/- sperm (ΔR/R0 = 

4.0 ± 0.9 % vs. 1.2 ± 1.1 %) (Fig. 3.19a,b), whereas the pHi increase evoked by NH4Cl was similar 

(Fig. 3.19a,b). Preincubation of NHA1-/- sperm with db-cAMP did not restore the ZP-induced 

alkalization (Fig. 3.19e), arguing against that defective cAMP signaling accounted for the 

attenuation of the pHi response. Altogether, these results indicate that ZP-induced alkalization- 

signaling involves Na+/H+ exchange via NHA1.   

 

Fig. 3.18: Ultrastructure of CatSper channel complex is intact in NHA1-deficient sperm 

(a) Epifluorescence image of a CatSper immunostained mouse sperm showing nonspecific labeling in 

the acrosome and specific labeling exclusively in the principal piece; scale bar: 5 µm. (b,c) 3D STORM 

image of CatSper in (b) wildtype and (c) NHA1-/- sperm in x-y projection color coded for z (scale bar on 

right), image shows the four CatSper domains that runs along each side of the longitudinal columns of 

the sperm principal piece; scale bar: 5 µm. Enlarged image of boxed section from (d,e): Z cross-

section of principal piece showing the four CatSper domains across the flagella in wildtype and             

NHA1-/- sperm; scale bar: 5 µm. Experiments performed by Hussein Hamzeh. 
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Moreover, I studied whether the ZP-induced alkalization via NHA1 is involved in the ZP-induced 

Ca2+ influx via CatSper. To this end, I studied ZP-induced Ca2+ responses in NHA1-/- sperm. 

Compared to wildtype sperm, the amplitude of the ZP-evoked Ca2+ signal was strongly 

attenuated in NHA1-/- sperm (ΔF/F0 = 3.5 ± 1.1 % vs. 1.1 ± 0.6 %) (Fig. 3.20a,b), whereas K8.6-

evoked Ca2+ responses were similar (Fig. 3.20b). This finding supports the notion that the ZP-

evoked alkalization stimulates the ZP-evoked Ca2+ influx via CatSper. 

 

However, the ZP-evoked pHi and Ca2+ response was not abolished in NHA1-deficient sperm, 

suggesting that additional proteins contribute to the ZP-evoked alkalization. Considering that 

the ZP-induced pHi increase requires extracellular Na+, NHA2 is a promising candidate. To test 

this hypothesis, a knockout for NHA2 is required, which was, however, not available.    

 

Fig. 3.19: The ZP-induced alkalization involves NHA1 

(a,b) Change in pHi evoked by 0.5 µg/ml ZP (dark green) or 10 mM NH4Cl (light green) in capacitated 

(a) wildtype and (b) NHA1-/- sperm. Mean ± 95 % CI (dashed traces), n =3. (c) Mean signal amplitudes; 

error bars indicate + SD (n = 3) (d,e) Change in pHi evoked by 0.5 µg/ml ZP (dark green) or 10 mM 

NH4Cl (light green) in capacitated (d) wildtype and (e) NHA1-/-  mouse sperm preincubated with 5 mM 

db-cAMP. Mean ± 95 % CI (dashed traces), n = 3. (f) Mean signal amplitudes; error bars indicate + SD 

(n = 3). 
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3.1.6 The ZP-induced acrosome reaction in mouse sperm requires a polarized 
membrane potential and alkalization  

To reveal how ZP signaling regulates the behavioral responses facilitating ZP penetration, I 

studied the molecular mechanism(s) underlying the ZP-evoked acrosome reaction. The Ca2+ 

influx via CatSper is reportedly dispensable for the ZP-induced acrosome reaction (Xia & Ren, 

2009). I tried to reproduce this result in wildtype and CatSper-/- sperm (Fig. 3.21a.b): ZPs 

increased the fraction of acrosome-reacted sperm by about 2.8 and 1.4 fold, respectively (Fig. 

3.21c), suggesting that the ZP-evoked acrosome reaction is strongly attenuated in CatSper-/-  

  

 

 

Fig. 3.20: Alkalization via NHA1 controls the ZP-induced [Ca2+]i increase  

(a) Change in [Ca2+]i evoked by 0.5 ZP/µl in capacitated wildtype or NHA1-/- sperm. Mean ± 95 % CI,                 

n = 4. (b) Mean signal amplitudes; error bars indicate + SD (n = 4).  

 

Fig. 3.21: ZP-evoked acrosome reaction in CatSper-/- sperm 

(a,b) Acrosome reaction assay of (a) wildtype and (b) CatSper-/- sperm, the acrosome was labelled 

with PNA-FITC (green), DNA in the nucleus was stained with DAPI (blue). Acrosome-intact sperm (AI), 

acrosome-reacted sperm (AR). (b) Acrosome reaction evoked by 1 ZP/µl or 2 µM ionomycin in 

wildtype (grey) or CatSper-/- (teal) sperm. Data are shown as mean + SD percentage of acrosome-

reacted (AR) sperm normalized to the buffer-treated control; (n = 3). (c) ZP-evoked acrosome 

reaction in wildtype and CatSper-/- sperm normalized to the maximal response evoked by ionomycin. 
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sperm. However, in CatSper-/- sperm also the action of ionomycin was diminished. The reason 

for this is unclear. Normalization of the ZP-evoked acrosome reaction to the ionomycin control 

revealed, that ZP action was only slightly attenuated in CatSper-/- sperm (Fig. 3.21d). This result 

confirmed that the ZP-evoked acrosome reaction does not require Ca2+ influx via CatSper. 

 

To test whether the ZP-evoked acrosome reaction requires a polarized VM, sperm were bathed 

in low (control) or high [K+]o (Fig. 3.22a). Under control conditions, ZPs increased the fraction of 

acrosome-reacted sperm by 1.6 fold, whereas at high [K+]o, the response was strongly 

attenuated (1.1 fold increase). The action of ionomycin was, however, similar at low and high 

[K+]o, confirming that a depolarized membrane potential impairs the action of ZPs (Escoffier et 

al., 2015). 

In sperm bathed in low [Na+]o, ZPs failed to evoke the acrosome reaction, whereas ionomycin 

evoked the acrosome reaction even at low [Na+]o (Fig. 3.22b). These results suggest that the ZP-

evoked alkalization is required for the ZP-induced acrosome reaction. To test this hypothesis, an 

acrosome reaction assay should be performed with NHA1-deficient sperm, which was, so far, 

not possible due to limited numbers of NHA1-deficient males. 

 
 

 

 
 

3.1.7 Summary 

The data presented in this first part of my thesis provide new insights into the molecular 

mechanism underlying ZP-evoked [Ca2+]i and pHi signaling in mouse sperm: the ZP-evoked 

alkalization requires extracellular Na+ and involves Na+/H+ exchange carried by NHA1, but not 

Fig. 3.22: ZP-evoked acrosome reaction in sperm bathed in high [K+]o and low [Na+]o 

(a) Acrosome reaction evoked by 1 µg/ml ZP or 2 µM ionomycin in capacitated sperm bathed in 5 mM 

(grey) or 138 mM extracellular K+
 (teal) buffer. (b) Acrosome reaction evoked by 1 µg/ml ZP or 2 µM 

ionomycin in 138 mM (grey) (control) or 0 mM Na+ buffer (teal). Data are shown as mean + SD 

percentage of acrosome-reacted (AR) sperm normalized to the buffer-treated control (n =4). 
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sNHE. The mechanism underlying NHA1 activation remains, however, elusive. Furthermore, the 

ZP-evoked Ca2+ influx via CatSper is abolished at conditions preventing ZP-evoked alkalization, 

which suggests that the alkalization is crucial for activation of CatSper. The ZP-evoked acrosomal 

exocytosis does, however, not require Ca2+ influx via CatSper but seems to be initiated by the 

ZP-evoked alkalization. Finally, my data indicate that a polarized VM mediated by Slo3 and 

LRRC52 and the second messenger cAMP are required for the ZP-induced increase in pHi and 

[Ca2+]i and acrosomal exocytosis. 
 

3.1.8 Heterologous expression and characterization of mouse zona pellucida 
glycoproteins 

So far, it is not known, which of the ZP glycoproteins initiates ZP signaling in mouse sperm. To 

answer this question, I used heterologously expressed ZP glycoproteins. First, I established an 

eukaryotic expression system using HEK293T cells for ZP glycoproteins (Fig. 3.23a). The cDNA 

sequences encoding for mouse ZP1, ZP2, or ZP3 were cloned into the expression vector pHLsec. 

Thereby, a signal peptide was added to the N-terminus of the proteins, promoting their 

secretion into the medium. Additionally, a polyhistidine tag was introduced upstream of the 

conserved furin cleavage site (CFCS) that serves as a processing site for C-terminal cleavage. In 

the secreted, cleaved proteins, the polyhistidine tag is located at the C-terminus, allowing for 

purification of the proteins from the medium. The expression of ZP1, ZP2, and ZP3 was 

scrutinized by immunocytochemistry and Western Blot using an anti-His (red) and anti-ZP 

antibodies (green) (Fig. 3.23b,c). The apparent molecular weight of the heterologous proteins 

was slightly lower than that of the native proteins (compare Fig. 3.23 and Fig. 3.1), but PNGase 

digestion confirmed that the heterologous proteins were glycosylated.                                     

To determine the time course of secretion, the supernatant was collected over six consecutive 

days after transfection and analyzed by Western blot. All three proteins were detected already 

one day after transfection (Fig. 3.23d). The time point where secretion was maximal varied 

between the different proteins: for ZP1, protein secretion was maximal at day six, whereas for 

ZP2 and ZP3, four or three days seemed to be optimal. The proteins were subjected to batch 

purification using a Ni-NTA resin. The polyhistidine tag of ZP3 forms a chelating complex with 

the nickel ions of the resin. Fig. 3.23e shows the Western blot analysis of a representative 

purification of ZP3. After subsequent washing steps to remove unbound proteins, ZP3 was 

eluted with imidazole (Fig. 3.23e), demonstrating that the proteins can be purified from the 

supernatant. Subsequently, the purification was scaled up using the ÄKTA protein purification 

system and a Co2+-charged HiTrap column. Fig. 3.23f shows the Western blot analysis of a 

representative purification of ZP3. ZP3 was bound to the column and after washing, proteins 

were eluted with a linear gradient of 10 to 500 mM imidazole and collected in multiple 

fractions. Fractions containing the respective purified proteins were subjected to buffer 

exchange to remove the imidazole and then used for further experiments. In total, from 70 ml 

medium, 3 ml of protein with a maximal concentration of 40 µg/ml was purified. However, even 
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after buffer exchange, samples might still contain ≤ 5 mM imidazole. Imidazole, like NH4Cl, is a 

weak base that alkalizes the pHi of cells and thereby evokes a CatSper-mediated Ca2+ increase 

(Fig. 6.2). Thus, as a control, an “empty” fraction was generated, which was eluted from a Co2+-

charged HiTrap column and then buffer-exchanged similar as described above, yet, in the 

absence of proteins. 

To test whether the heterologous ZP glycoproteins are functional, I performed acrosome 

reaction assays (Fig. 3.24). Bathing of sperm in the empty fraction did not evoke acrosome 

reaction, whereas ionomycin increased the fraction of acrosome-reacted sperm by about 1.5 

 

 

Fig. 3.23: Heterologous expression and purification of mouse ZP glycoproteins 

(a) cDNA of mouse ZP glycoproteins were cloned into a pHLsec vector for expression in HEK293T cells. 

Heterologous ZPs secreted into the supernatant were purified via their polyhistidine tag. (b) Staining 

of HEK293T cells expressing mouse ZP glycoproteins with an anti-His and anti-ZP antibodies; scale 

bar: 10 µm. (c) Western blots of cell lysates from mock (negative control, NK) and ZP-transfected cells 

with and without PNGase treatment. (d) Secretion of mouse ZP peaks after three to six days. (e) 

Batch purification of secreted mZP3 using Ni-NTA agarose. I = input, FL = flow through, W = washing 

step, e = Elute. (f) Purification of secreted mZP3 using a Co2+-HiTrap column via the ÄKTA protein 

purification system. Bound protein was eluted using a linear imidazol gradient and collected in 

multiple fractions. I = input, FL = flow through, W = wash, F = fraction. 
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fold in non-capacitated and capacitated sperm. Bathing sperm in 22.5 µg/ml ZP3 increased the 

fraction of acrosome-reacted sperm by 1.2 fold and 1.5 fold in non-capacitated and capacitated 

sperm, respectively (Fig. 3.24). This result demonstrates that heterologous ZP3 is functional and 

confirms that capacitation primes the sperm for ZP-induced acrosomal exocytosis. Acrosome 

reaction rates were also increased by ZP2. However, ZP2 was less efficacious than ZP3 and its 

action was rather similar in non-capacitated and capacitated sperm (Fig. 3.24). Finally, ZP1 did 

not evoke the acrosome reaction. 

 

 

 

Next, I studied the action of the heterologous ZP glycoproteins on [Ca2+]i in capacitated mouse 

sperm. Mixing of sperm with ZP1 evoked only a small Ca2+ increase (Fig. 3.25a), whereas ZP3 

and ZP2 evoked a sizeable Ca2+ response (Fig. 3.25b,c). The relative potency of the individual ZP 

isoforms to evoke a Ca2+ response was ZP3 > ZP2 >> ZP1 (Fig. 3.25d). ZP3 evoked Ca2+ responses 

in a dose-dependent fashion: both the kinetics and amplitude of the Ca2+ response became 

faster and larger, respectively, with increasing ZP3 concentrations (Fig. 3.25e); the signal 

amplitude did not saturate up to 20 µg/ml. However, due to the experimental design, higher 

ZP3 concentrations could not be achieved. Of note, the empty fraction did not evoke a Ca2+ 

response and the ZP3 response was abolished in CatSper-/- sperm (Fig. 3.25f).  

 

Fig. 3.24: Heterologous ZP2 and ZP3 evoke an acrosome reaction in mouse sperm  

Acrosome reaction evoked by empty fraction (EF), 22.5 µg/ml mZP1, 22.5 µg/ml mZP2, 22.5 µg/ml 

mZP3, or 2 µM ionomycin in non-capacitated (grey) and capacitated (teal) mouse sperm. Data are 

shown as mean + SD percentage of acrosome-reacted (AR) sperm normalized to the buffer-treated 

control, error bars indicate + SD; (n = 4). 
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Next, I studied whether the heterologous ZP glycoproteins also evoke a pHi response. Mixing of 

sperm with ZP1 and ZP2 evoked only a small pHi increase compared to ZP3, which evoked a 

prominent alkalization (Fig. 3.26a-c). The kinetics and amplitude of the ZP3-evoked alkalization 

became faster and increased, respectively, with increasing ZP concentrations (Fig. 3.26e). The 

empty fraction did not change pHi (Fig. 3.26d). Similar to native ZPs, ZP3 did not evoke an 

alkalization in sNHE-/- sperm, whereas preincubation of sperm in db-cAMP restored the 

alkalization (Fig. 3.26f).  

 

Taken together, heterologously expressed and native ZP glycoproteins display a similar action in 

mouse sperm. Moreover, among the three recombinant ZP glycoproteins, ZP3 seems to be the 

most potent in evoking Ca2+ and pHi responses; ZP2 is less potent, while ZP1 evokes only 

minuscule responses. This indicates that ZP signaling in vivo can be ascribed to a combined 

action of ZP2 and ZP3. Furthermore, these experiments demonstrate that functional 

recombinant ZP glycoproteins can serve as a surrogate for native ZP. This paves the way for 

analyzing ZP signaling in human sperm.  

Fig. 3.25: Heterologous ZP glycoproteins evoke Ca2+ responses in mouse sperm  

(a,b,c) Changes in [Ca2+]i evoked by (a) 20 µg/ml mZP1, (b) mZP2, or (c) mZP3 in capacitated mouse 

sperm. Mean ± 95 % CI (dashed traces), n =4. (d) Mean signal amplitudes; error bars indicate + SD           

(n = 4). (e) Change in [Ca2+]i evoked by increasing concentrations of mZP3 or by K8.6. (f) Change in 

[Ca2+]i evoked by 20 µg/ml mZP3 in wildtype (dark blue) and CatSper-/- sperm normalized to the 

maximal response evoked by 2 µM ionomycin. Data are shown as mean; error bars indicate + SD          

(n = 4).  
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Fig. 3.26: Heterologous ZP glycoproteins evoke a pHi increase in mouse sperm  

(a,b,c) Changes in pHi evoked by (a) 20 µg/ml mZP1, (b) 20 µg/ml mZP2, or (c) 20 µg/ml mZP3 in 

capacitated mouse sperm. Mean ± 95 % CI (dashed traces), n = 4. (d) Mean signal amplitudes; error 

bars indicate + SD (n = 4). (e) Change in pHi evoked by increasing concentrations of mZP3 or 10 mM 

NH4Cl. (f) Change in pHi evoked by 20 µg/ml mZP3 or 10 mM NH4Cl in sNHE-/- sperm before (dark 

green) and after (light green) preincubation with 5 mM db-cAMP. Data are shown as mean; error bars 

indicate + SD (n = 4).  
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3.2 The action of human zona pellucida glycoproteins in human sperm 
 

3.2.1 Heterologous expression and characterization of human zona pellucida 
glycoproteins 

To study the action of ZP glycoproteins in human sperm, human ZP2 and ZP3 were expressed in 

HEK293T cells. To this end, the cDNA sequence of ZP2 and ZP3 were cloned into the pHLsec 

vector. Protein expression of ZP2 and ZP3 was verified by immunocytochemistry and Western 

blot using an anti-His (red) and anti-ZP2 and -ZP3 antibodies (green) (Fig. 3.27a,b). For ZP2 and 

ZP3, bands at 100 and 60 kD were detected, respectively, which is in line with the apparent 

molecular weight of the native proteins (Bauskin et al., 1999). PNGase treatment decreased the 

apparent molecular weight of the proteins by about 10 kDa, confirming that the proteins were 

glycosylated. Analyzing the supernatant of ZP2- and ZP3-expressing cells at six consecutive days 

after transfection revealed that the secretion peaked at day three and four for ZP2 and ZP3, 

respectively (Fig. 3.27c). For the following experiments, the ZP glycoproteins were purified in 

large scale, using the same purification protocol established for the murine proteins. After 

purification, a maximal protein concentration of 40 µg/ml was achieved. To reach higher protein 

concentrations, ZP glycoproteins were concentrated using a centrifugal evaporator. This allowed 

to stimulate human sperm with ZP2 and ZP3 concentrations up to 200 µg/ml. Similar to the 

protocol described for mouse proteins, an empty fraction was generated in parallel.  
 

 
 

 
To test whether the heterologous human ZP glycoproteins are functional, I studied acrosome 

reaction in human sperm (Fig. 3.28). Non-capacitated and capacitated human sperm were 

incubated with 22.5 µg/ml ZP2 and ZP3 or, as a positive control, with ionomycin. The acrosome 

was labeled with a pea lectin coupled to a green fluorescent molecule (PSA-FITC) (Lybaert et al., 

2009). Similar to the experiments performed in mouse sperm, the fraction of acrosome-reacted 

Fig. 3.27: Heterologous expression of human ZP glycoproteins 

(a) Staining of heterologous ZPs in HEK293T cells using anti-His and specific anti-ZP antibodies; scale 

bar: 10 µm. (b) Immunoblots of cell lysates from mock (negative control, NK) and heterologous ZP-

transfected cells with and without PNGase treatment. (c) Secretion of heterologous ZP peaks after 

three to four days.  
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sperm was determined and normalized to acrosome reaction rates determined of sperm bathed 

in buffer (negative control). Fig. 3.28a shows a characteristic PSA-FITC and DAPI staining of 

acrosome-intact and acrosome-reacted human sperm. In acrosome-intact sperm, the acrosomal 

cap was stained (Fig. 3.28a, top), whereas, in acrosome-reacted sperm, only the equatorial 

region of the head was labeled (Fig. 3.28a, bottom).                                     

In non-capacitated and capacitated sperm, neither the empty fraction nor ZP2 evoked a sizeable 

change in in the fraction of acrosome-reacted sperm (Fig. 3.28b). In non-capacitated sperm, also 

ZP3 had rather no effect, whereas, in capacitated sperm, ZP3 evoked a pronounced, 3-fold 

increase in the fraction of acrosome-reacted sperm. These results support the notation that in 

human sperm, ZP3 but not ZP2 stimulates the acrosome reaction and that capacitation primes 

human sperm for the ZP-induced acrosomal exocytosis.  Finally, these results demonstrate that 

heterologous human ZP glycoproteins are functional. 

 

 

 
 

3.2.2 ZP-evoked [Ca2+]i responses 

Similar to mouse sperm, stimulation of human sperm with ZP glycoproteins evokes a Ca2+ 

increase (Bray et al., 2002; Brewis et al., 1996a; Patrat et al., 2006). I monitored changes in 

[Ca2+]i in human sperm loaded with the fluorescent Ca2+ indicator CAL520, using a fluorescent 

plate reader (FLUOstar). First, as a positive control, I studied CatSper-mediated Ca2+ responses 

evoked by stimulation of capacitated sperm with progesterone. The hormone evoked a rapid, 

Fig. 3.28: Heterologous ZP3 evokes acrosome reaction in capacitated human sperm  

(a) Acrosome reaction assay in human sperm. Sperm were immobilized on a glass slide and the 

acrosome was labelled with PSA-FITC (green), DNA in the nucleus was stained with DAPI (blue). 

Acrosome-intact sperm (AI), acrosome-reacted sperm (AR). (b) Acrosome reaction in non-capacitated 

(grey) and capacitated (teal) human sperm induced by empty fraction (EF), 22.5 µg/ml hZP2, 22.5 

µg/ml hZP3, or 2 µM ionomycin. Data are shown as mean + SD percentage of acrosome-reacted (AR) 

sperm normalized to the buffer-treated control, error bars indicate + SD; (n = 4).  
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transient Ca2+ increase; the mean signal amplitude (ΔF/F0) was 188.7 ± 57.7 % (Fig. 3.29a,b). 

Stimulation of capacitated sperm with ZP2 and ZP3 (100 µg/ml) evoked a transient Ca2+ increase 

(Fig. 3.29a) with a mean amplitude of 145.1 ± 44.2 % and 69.4 ± 26.4 %, respectively (Fig. 3.29b). 

The empty fraction did not change [Ca2+]i (Fig. 3.29a). Moreover, heat denaturation of ZP2 and 

ZP3 by incubation at 100 °C for 10 min abolished the Ca2+ increase, whereas similar heat 

treatment of progesterone did not affect the Ca2+ response (Fig. 3.29b). Taken together, these 

experiments confirm that ZP glycoproteins evoke a rapid Ca2+ increase in human sperm and, 

moreover, indicate that ZP3 acts more potently than ZP2. 

Next, I studied the dose dependence of ZP3 action in capacitated and non-capacitated sperm. In 

capacitated sperm, ≥ 5 µg/ml ZP3 evoked a sizeable transient Ca2+ increase. The response 

amplitude rose with increasing ZP3 concentrations and saturated a protein concentration of      

150 µg/ml (Fig. 3.29c). Of note, at ≥ 25 µg/ml ZP3, [Ca2+]i did not recover to basal levels, but 

rather settled at an elevated level. Analysis of the dose-response relationship (Fig. 3.29d) 

yielded a half maximal effective concentration (EC50) of 47.3 ± 7.5 µg/ml, i.e. 790 nM, (mean of 

n=4), indicating that ZP3 acts at nanomolar concentrations. In non-capacitated sperm, ZP3 

concentrations of ≥ 25 µg/ml were required to induce a Ca2+ influx and the response did not 

saturate at up to 200 µg/ml ZP3 (Fig. 3.29f). Because the ZP3-evoked Ca2+ signals in non-

capacitated sperm did not saturate, the EC50 could not be determined (Fig. 3.29f). These results 

indicate that capacitation renders the sperm more sensitive to ZP3.  

 

To investigate the kinetics of the ZP3-evoked Ca2+ signal, I studied the ZP glycoprotein-evoked 

Ca2+ responses at higher time resolutions using the stopped-flow technique. For the stopped-

flow experiments, larger volumes of buffer containing human ZP glycoproteins were required. 

Therefore, it was only feasible to mix sperm with ZP3 at concentrations ≤ 20 µg/ml. First, I 

studied Ca2+ responses evoked by mixing of capacitated sperm with progesterone. As control, to 

determine the upper response limit, I studied Ca2+ signals evoked by mixing with ionomycin. For 

the ease of illustration and to account for the variability between different samples, the 

individual traces were averaged and plotted along with the 95 % confidence interval. After 

mixing with either progesterone or ionomycin, [Ca2+]i rose without a measurable latency within 

the time resolution of the stopped-flow apparatus (∼40 ms) (Fig. 3.30a,b). The ionomycin-

evoked signal saturated at about 5 s and [Ca2+]i settled at a constant, elevated level throughout 

the recording time. Progesterone induced a transient Ca2+ increase; the signal reached its 

maximum after about 7 s and [Ca2+]i almost recovered to basal levels within the recording time. 

Next, I studied the action of ZP3. Fig. 3.3c illustrates that ZP3 evoked a rapid Ca2+ response; the 

signal kinetics and amplitude became faster and larger, respectively, with increasing ZP3 

concentrations (Fig. 3.30c); the signal amplitude did not saturate at concentrations up to 

20 µg/ml. The signal reached its maximum at about 5 to 10 s and [Ca2+]i almost recovered to 

basal levels within the recording time. Zooming into the first three seconds of the ZP3-induced 

Ca2+ signals shows that [Ca2+]i rose without a measurable latency within the time resolution 
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Fig. 3.29: Heterologous human ZP glycoproteins evokes a Ca2+ response in human sperm  

(a) Change in [Ca2+]i evoked by the empty fraction (EF) (light purple), 100 µg/ml hZP2 (light blue), 100 

µg/ml hZP3 (dark blue), or 2 µM progesterone (dark purple) in capacitated human sperm; 

representative measurement.  (b) Change in [Ca2+]i evoked by EF, hZP2, hZP3 or progesterone before 

and after incubation at 100 °C for 10 min. Data are shown as mean, error bars indicate + SD (n = 6). 

(c,e) Dose-dependent [Ca2+]i increase evoked by hZP3 in (c) capacitated and (e) non-capacitated 

human sperm; representative measurement. (d,f) Representative dose-response relationship of 

hZP3-induced Ca2+ increase in (d) capacitated (EC50 = 50 µg/ml) and (f) non-capacitated human 

sperm. The arrow indicates the time point of stimulus stimulation. 
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of the stopped-flow apparatus (∼40 ms) (Fig. 3.30d).  

To scrutinize whether the ZP3-induced Ca2+ response is mediated by CatSper, I used a 

pharmacological approach. To this end, I utilized the CatSper inhibitor RU1968F1 that was 

provided to me by Andreas Rennhack (caesar). Bathing sperm with RU1968F1 abolished the 

progesterone-induced Ca2+ response (Fig. 3.30f), confirming that the blocker suppresses 

CatSper-mediated Ca2+ signals. In sperm bathed in RU1968F1, the ZP3-evoked Ca2+ signal was 

abolished (Fig. 3.30e,f), demonstrating that also in human sperm, CatSper mediates the human 

ZP-induced Ca2+ influx. 

 

 

 
 

 

 

Fig. 3.30: CatSper mediates the human ZP glycoprotein-induced Ca2+ increase in human 
sperm   

(a,b) Change in [Ca2+]i evoked by (a) 2 µM ionomycin and (b) 2 µM progesterone in capacitated 

human sperm. Mean ± 95 % CI (dashed traces), n = 10. (c) Representative measurement of Ca2+ 

responses evoked by increasing concentrations of hZP3. (d) First three seconds of hZP3-evoked Ca2+ 

increase. (e) Change in [Ca2+]i evoked by 20 µg/ml hZP3 in capacitated human sperm before (dark 

blue) and after (light blue) preincubation with 30 µM RU1968F1. Mean ± 95 % CI (dashed traces), n = 

4. (f) Mean signal amplitudes before (dark blue) and after (light blue) preincubation with 30 µM 

RU1968F1, normalized to the maximal response evoked by 2 µM ionomycin. All values are given as 

mean + SD, error bars indicate + SD (n = 4).  
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3.2.3 Species-specificity of heterologous mouse and human ZP glycoproteins 

The ZP ensures species specificity during fertilization. To test for the species specificity of the 

heterologous ZP glycoproteins, acrosome reaction assays were performed with mouse and 

human ZP3 glycoproteins in both mouse and human sperm. Mouse and human ZP3 increased 

the fraction of acrosome-reacted in mouse and human sperm by 1.6 and 3 fold, respectively. 

However, mouse ZP3 did not evoke the acrosome reaction in human sperm and vice versa (Fig. 

3.31), demonstrating that heterologous ZP3 evokes the acrosome reaction in a species-specific 

fashion. 

 

 
 

Moreover, I studied Ca2+ responses evoked by mixing of mouse sperm with human ZP2 and ZP3 

(100 µg/ml). The human ZP glycoproteins did not induce a Ca2+ increase in mouse sperm (Fig. 

3.32a,b). In contrast, at 100 µg/ml, mouse ZP3 evoked a sizeable Ca2+ increase in human sperm, 

indicating that mZP3 activates human CatSper (Fig. 3.32c,d); heat denaturation abolished the 

mZP3-evoked Ca2+ response in human sperm (Fig. 3.32d). Of note, mouse ZP3 was less potent to 

evoke a Ca2+ response than human ZP3 and human ZP2 (signal amplitudes: 39.1 ± 22.9 % vs. 

145.1 ± 44.2 % vs. 69.3 ± 26.4 %). Human CatSper is promiscuously activated by a variety of 

ligands (Brenker et al., 2012; Schiffer et al., 2014), which might explain the cross-species action 

of mouse ZP3 in human sperm 

Fig. 3.31: Species-specificity of ZP3-evoked acrosome reaction 

(a) Acrosome reaction evoked by 22.5 µg/ml mZP3 (grey), 22.5 µg/ml hZP3 (teal), or 2 µM ionomycin 

(purple) in capacitated (a) mouse and (b) human sperm. Data are shown as mean + SD percentage of 

acrosome-reacted (AR) sperm normalized to the buffer-treated control, error bars indicate + SD;             

(n = 4). 
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3.2.4 ZP-evoked pHi responses 

Next, I studied whether human ZP glycoproteins evoke a pHi response human sperm. To this 

end, I monitored changes in pHi in human sperm loaded with the fluorescent pH indicator 

BCECF, using the FLUOstar. In capacitated human sperm, NH4Cl evoked a rapid pHi increase; the 

mean signal amplitude (ΔR/R0) was 26.6 ± 3.9 % (Fig. 3.33a,b). Similar to NH4Cl, ZP2 and ZP3 

(100 µg/ml) evoked a pHi increase (Fig. 3.33a) with a mean amplitude of 7.6 ± 1.8 % and 

18.3 ± 3.2 %, respectively (Fig. 3.33b). The empty fraction did not change pHi (Fig. 3.33a,b). 

Taken together, these experiments demonstrate that ZP glycoproteins evoke a rapid alkalization 

in human sperm and suggests that ZP3 acts more potently than ZP2.  

 

Fig. 3.32: Species-specificity of the ZP-evoked Ca2+ response  

(a) Change in [Ca2+]i evoked by 100 µg/ml mZP3 (light purple), 100 µg/ml hZP2 (light blue), 100 µg/ml 

hZP3 (dark blue), or K8.6 (dark purple) in capacitated mouse sperm, representative measurement.  

(b) Mean signal amplitudes, error bars indicate + SD (n = 4). (c) Change in [Ca2+]i evoked by 100 µg/ml 

mZP3 (light purple), 100 µg/ml hZP2 (light blue), 100 µg/ml hZP3 (dark blue), or 2 µM progesterone 

(dark purple) in capacitated human sperm; representative measurement. The arrow indicates the 

time point of stimulus stimulation. (d) Change in [Ca2+]i evoked by mZP3, hZP2, hZP3, or 

progesterone before and after heat denaturation in capacitated human sperm. Data are shown as 

mean, error bars indicate + SD (n = 4). 
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Fig. 3.33: ZP glycoprotein-evoked pHi responses in human sperm  

 (a) Change in pHi evoked by the empty fraction (EF) (grey), 100 µg/ml hZP2 (moss green), 100 µg/ml 

hZP3 (dark green), or 20 mM NH4Cl (light green) in capacitated human sperm. (b) Change in pHi 

evoked by EF, hZP2, hZP3 or NH4Cl. Data are shown as mean + SD, (n = 6). (c,e) Dose-dependence of 

the pHi increase evoked by hZP3 in (c) capacitated and (e) non-capacitated human sperm; 

representative measurement. (d,f) Representative dose-response relationship of hZP3-induced pHi 

increase in (d) capacitated (EC50 = 20.3 µg/ml) and (f) non-capacitated human sperm (EC50 = 14.9 

µg/ml). The arrow indicates the time point of stimulus stimulation.  
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Moreover, I investigated the dose dependence of the ZP3 action (Fig. 3.33c,e). In non-

capacitated and capacitated sperm, ≥ 1 µg/ml ZP3 evoked a sizeable pHi increase. The response 

amplitude rose with increasing ZP3 concentrations and commenced to saturate at protein 

concentrations of about 100 µg/ml. Analysis of the dose-response relation (Fig. 3.33d,f) yielded 

an EC50 of 20.5 ± 10.4 µg/ml (i.e. 390 nM, n=4 ) and 23.1 ± 4.6 µg/ml (i.e. 340 nM, n=4) for non-

capacitated and capacitated sperm, respectively. Thus, capacitation does not potentiate the 

ZP3-evoked pHi increase. 

 

The kinetics of the ZP3-evoked pHi signal was studied using the stopped-flow technique. As 

control, I studied pH signals evoked by mixing with NH4Cl. Mixing of capacitated sperm with ZP3 

(20 µg/ml) and NH4Cl evoked a rapid pHi increase with a mean signal amplitude of 11.4 ± 1 % 

(Fig. 3.34b) and 17.2 ± 1.5 % (Fig. 3.34a), respectively. The pHi signals evoked by both ZP3 and 

NH4Cl rose without a measurable latency within the time resolution of the stopped-flow 

apparatus (∼40 ms). The superposition of ZP3-evoked pHi and Ca2+ responses (Fig. 3.34c) 

demonstrates that the time resolution of the system does not allow to deliniate the sequence of 

events.  

 

 
 

 
 

 

 

 

 

 

 

3.2.5 Molecular mechanism underlying the ZP glycoprotein-evoked pHi response 

To learn about the mechanism underlying the ZP-evoked alkalization, I studied ZP3-induced pHi 

responses in sperm bathed in 5 mM (control) or 138 mM extracellular K+ (Fig. 3.35). Under 

control conditions, 100 µg/ml ZP3 induced the characteristic pHi increase, whereas at high [K+]o, 

the pHi response was abolished (ΔR/R0 = 12.3 ± 2.7 % vs. 0.8 ± 0.2 %) (Fig. 3.35a,b). The NH4Cl-

evoked pHi increase was only slightly attenuated at high [K+]o (Fig. 3.35c). These results indicate 

that ZP-induced pHi signaling in human sperm requires, similar to mouse sperm, a polarized 

membrane potential. 

Fig. 3.34: Kinetics of the hZP3-evoked pHi response  

(a,b) Change in pHi evoked by (a) 20 mM NH4Cl or (b) 20 µg/ml hZP3 in capacitated human 

sperm. Mean ± 95 % CI (dashed traces), n = 3. (c) Superposition of hZP3-evoked pHi (green) 

and [Ca2+]i (blue) increase. 
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Next, it was studied whether the ZP-evoked alkalization involves Na+/H+ exchange. Fig. 3.36 

shows ZP3-induced pHi responses in sperm bathed in 138 mM (control) or 0 mM extracellular 

Na+. The pHi response was similar in the presence and absence of Na+, excluding that the ZP-

evoked pHi response in human sperm, in contrast to mouse sperm, involves Na+/H+ exchanger 

or proteins that require extracellular Na+. 
 

 

 
 

In human sperm, the flux of protons across the membrane is controlled by the voltage-gated H+ 

channels Hv1 (Lishko 2010, Berger 2016). The role of Hv1 in human sperm is still enigmatic. To 

test whether Hv1 mediates the ZP-evoked alkalization, I studied the pHi response in the 

presence of the HV1 inhibitors Zn2+ (Lishko et al., 2010; Mahaut-Smith, 1989; Qui et al., 2015) 

and 5-chloro-2-guanidinobenzimidazole (Ch-GBI) (Chiu et al., 2010; Hong et al., 2013). The pHi 

Fig. 3.35: ZP3-evoked pHi responses at low and high extracellular K+ concentrations 

(a,b) Change in pHi evoked by 100 µg/ml ZP3 (dark green) or 10 mMNH4Cl (light green) in capacitated 

sperm bathed in (a) 5 mM [K+]o
 (control) or (b) 138 mM [K+]o buffer. The arrow indicates the time 

point of stimulus stimulation.  (c) Mean signal amplitudes; error bars indicate + SD (n = 3). 

Fig. 3.36: ZP3-evoked pHi responses at high and low extracellular Na+ 

(a,b) Change in pHi evoked by 100 µg/ml hZP3 in capacitated sperm bathed in (a) 138 mM [Na+]o
 or 

(b) 0 mM [Na+]o
 buffer, representative measurement. The arrow indicates the time point of stimulus 

stimulation. (c) Mean signal amplitudes; error bars indicate + SD  (n = 3). 
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response was similar in the absence and presence of the inhibitors, demonstrating that the ZP3-

evoked alkalization is not mediated by Hv1 (Fig. 3.37). 

 

 
 

 
 

After excluding a Na+/H+ exchanger and Hv1 as proteins controlling the ZP glycoprotein-evoked 

pHi response, I tried several other conditions to get further insights into the molecular 

mechanism underlying ZP-evoked pHi signaling in human sperm. In sperm bathed in buffer 

lacking either Cl- or Mg2+, the ZP response was similar to that observed under control conditions 

(Fig. 3.38). Thus, transport mechanisms that require extracellular Cl- or Mg2+ are not involved in 

the ZP-evoked pHi response.  

 

Fig. 3.37: ZP3-evoked pHi response is not mediated by Hv1  

(a,b,c) Change in pHi evoked by 100 µg/ml hZP3 in capacitiated sperm bathed in (a) HTF (control), (b) 

100 µM ZnSO4, or (c) 200 µM Ch-GBI, representative mesurement. (d) Mean signal amplitudes; error 

bars indicate + SD (n = 5). The arrow indicates the time point of stimulus stimulation. 
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Moreover, the ZP-induced alkalization was similar at a pHo of 6.9, 7.4, and 7.9; with increasing 

pHo, the amplitude of the NH4Cl response increased, because the action of weak bases is 

enhanced at alkaline pHo (Fig. 3.39).  

 

 

 

Fig. 3.38: ZP3-evoked alkalization at high and low extracellular Mg2+ and Cl- 

(a,b,c) Change in pHi evoked by 100 µg/ml hZP3 in capacitiated sperm bathed in (a) 1 mM [Mg2+]o/          

145 mM [Cl-]o (control), (b) 0 mM [Mg2+]o, or (c) 0 mM [Cl-]o, representative mesurement. The arrow 

indicates the time point of stimulus stimulation.  (d) Mean signal amplitudes; error bars indicate + SD 

(n = 5). 

 

 



 

- 84 - 
 

 

 
 

Finally, I studied the action of ZP3 at 0, 4, and 25 mM extracellular HCO3
- (Fig. 3.40). The 

amplitude of the ZP-induced alkalization decreased with increasing [HCO3
-]o. Thus, the ZP-

induced alkalization might involve a HCO3
- dependent transport mechanism. Taken together, 

this shows that although similar to mouse, ZP-evoked alkalization in human also requires a 

polarized VM, ZP-evoked alkalization is mediated by different proteins in mouse and human 

sperm. 

Fig. 3.39: ZP3-evoked alkalization at high and low extracellular pH 

(a,b,c) Change in pHi evoked by 100 µg/ml hZP3 (dark green) or 20 mM NH4Cl (light green) in 

capacitated human sperm incubated in buffer with pH (a) 6.9, (b) 7.4 or (c) 7.9, representative 

measurement. The arrow indicates the time point of stimulus stimulation. (d) Mean signal 

amplitudes; error bars indicate + SD (n = 4). 
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3.2.6 ZP glycoproteins directly activate human CatSper  

Next, I investigated whether the ZP-induced pHi increase is required for Ca2+ influx via CatSper. 

To this end, I studied ZP3-induced Ca2+ responses in sperm bathed in high [K+]o (Fig. 3.41); at 

high [K+]o, the ZP-evoked pHi increase was abolished. The ZP3-evoked Ca2+ increase was 

however similar at high and low [K+]o, demonstrating that in human sperm, in contrast to mouse 

sperm, the ZP-evoked alkalization is not required for the Ca2+ influx via CatSper.  

 

To scrutinize that hZP3 activates CatSper, whole cell patch-clamp recordings from human sperm 

were performed by Dr. Christoph Brenker (CeRA, Münster) (Fig. 3.42). CatSper is highly selective 

for Ca2+. However, due to the long dwell time of Ca2+ in the pore (Kirichok et al., 2006), Ca2+ 

currents carried by CatSper are very small and below the detecting limit of the patch-clamp 

technique. Therefore, measurements were performed in divalent-free intra- and extracellular  

Fig. 3.40: ZP3-evoked pHi response at high and low extracellular bicarbonate 

(a,b,c) Change in pHi evoked by 100 µg/ml hZP3 (dark green) or 20 mM NH4Cl (light green) in 

capacitated human sperm incubated in (a) 0 mM, (b) 4 mM or (c) 25 mM [HCO3
-]o, representative 

measurement. The arrow indicates the time point of stimulus stimulation. (d) Mean signal 

amplitudes; error bars indicate + SD (n = 3). 
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solutions (NaDVF). Under these conditions, CatSper is permeable for monovalent ions like Cs+ 

and Na+ and the monovalent CatSper current (ICatSper) is readily detectable. Perfusion of sperm 

with ZP3 evoked a sizeable increase of the monovalent CatSper current. These results  

 

 
 

Fig. 3.42: ZP3 potentiates monovalent CatSpers current in human sperm 

Control current in extracellular solution containing Mg2+ and Ca2+ (HS, grey). Representative monovalent 

whole-cell CatSper currents recorded in divalent-free Na+-based bath solution (NaDVF, teal). Perfusion 

with 0.5 ZP/µl potentiated monovalent currents  (NaDVF + hZP3, blue). Currents were recorded at pHi 7.3 

by running a ramp protocol from - 100 mV to + 100 mV in 1 s using a holding potential of 0 mV.  

 

Fig. 3.41: ZP3-evoked Ca2+ responses at high and low extracellular K+ 

(a,b) Change in [Ca2+]i  evoked by 100 µg/ml hZP3 (dark blue) or 2 µM progesterone (light blue) in 

capacitated sperm bathed in (a) 5 mM (control) or (b) 138 mM K+ buffer, representative 

measurement. The arrow indicates the time point of stimulus stimulation. (c) Mean signal amplitudes 

normalized to the maximal response evoked by ionomycin; error bars indicate + SD (n = 3). 
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demonstrate that ZPs directly activate CatSper and that the activation of the channel does not 

require an increase of pHi or diffusible intracellular signaling molecules. 

 

Finally, I tested whether human ZP glycoproteins compete with progesterone or prostaglandine 

E1 (PGE1) for the activation of CatSper (Fig. 3.43). To this end, sperm were stimulated with a 

saturating concentration of progesterone or PGE1. Progesterone and PGE1 evoked a rapid, 

transient Ca2+ increase. In a second step, in the presence of progesterone or PGE1, sperm were 

stimulated with ZP3 (100 µg/ml). The ZP3-evoked Ca2+ response was similar in the absence and 

presence of progesterone or PGE1, demonstrating that ZP3 employs a distinct binding site to 

activate CatSper.  

 

 
 

 
 

 

 

 

 

 

 

 

Fig. 3.43: ZP3 does not compete with progesterone and prostaglandine for CatSper 
activation 

(a,b) Representative cross-desensitization experiment between hZP3 and (a) progesterone 

(P) or (b) prostaglandine E1 (PGE1) in capacitated human sperm. The arrow indicates the 

time point of stimulus stimulation. 
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4 Discussion 
 

This thesis provides new insights into the signaling pathways underlying the action of ZP 

glycoproteins in sperm. Based on my results, I propose the following model (Fig. 4.1): In mouse 

sperm, activation of an unknown ZP-binding protein activates Na+/H+ exchange and, thereby, 

increases pHi. The Na+/H+ exchange is mediated by NHA1 and other, yet, unknown Na+/H+ 

exchangers. The pHi increase activates CatSper, resulting in a Ca2+ influx. This action of ZPs 

requires a polarized VM set by the Slo3 channel and the second messenger cAMP. However, the 

ZP-binding protein and the additional Na+/H+ exchanger(s), the role of VM and cAMP, and the 

mechanism of NHA1 activation remain elusive.                                                                              

In human sperm, ZPs evoke a rapid increase of pHi that does not involve Na+/H+ exchange or H+ 

efflux via Hv1 and requires a polarized VM. Remarkably, in humans, the ZP-induced alkalization is 

not required for the ZP-induced Ca2+ influx mediated by CatSper; ZPs do however not compete 

with progesterone or prostaglandins for CatSper activation, indicating that ZPs employ a 

different binding site and mechanism (Fig. 4.1). Altogether, these results demonstrate that the 

mechanism of ZP action is distinctively different in mouse and human sperm. However, the 

mechanism and role of the ZP-induced alkalization in human sperm is unknown. 
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4.1 ZP signaling in mouse and human sperm 
 

Most of the knowledge in reproductive biology comes from work with mice. Initial studies on 

human gametes revealed many similarities between humans and mice, suggesting that mice 

serve as a good model to study human reproduction. However, a more detailed analysis of 

sperm signaling pathways revealed fundamental differences between mouse and human sperm, 

demonstrating that fertilization is controlled by species-specific mechanisms. My studies 

concerning ZP signaling provide another interesting twist concerning the difference between 

mammalian species.                                                         

First, CatSper activation by ZPs in human sperm does not require a change in pHi. In line with 

this observation, other studies have shown that in human, but not in mouse sperm, CatSper 

mediates a ligand- rather than a pH-dependent Ca2+ influx (Brenker et al., 2012; Lishko et al., 

2011; Strünker et al., 2011).  This might explain why a more direct activation by ZPs has evolved 

in humans. In contrast, mouse CatSper has developed a higher sensitivity towards changes in 

pHi (Lishko & Kirichok, 2010), which might allow for activation by ZP-evoked alkalization 

Supporting this notion, Xia and Ren excluded a direct CatSper activation by ZPs in mouse (Xia & 

Ren, 2009).                                                          

Second, the ZP-evoked alkalization is mediated by different proteins in mouse and human 

sperm. In mouse sperm, the alkalization is predominantly mediated by the NHA1, whereas in 

human sperm, Na+/H+ exchange is not involved in the pHi response. In fact, the ZP-evoked pH 

response was attenuated at high extracellular HCO3
- concentrations, suggesting that it involves a 

HCO3
--dependent transport mechanism. Indeed, HCO3

--transporting proteins have been 

identified in the human sperm head and midpiece (Chávez et al., 2012; Holappa et al., 1999; 

Parkkila et al., 1993; Xu et al., 2007). However, these candidates belong to the Cl-/HCO3
- 

exchanger family that utilize the electrochemical gradient of Cl-. The ZP-evoked alkalization was, 

however, independent of the extracellular Cl- concentration, arguing against that Cl-/HCO3
- 

exchange is involved. In fact, the attenuation of the ZP-evoked alkalization at high extracellular 

HCO3
- concentrations might rather reflect an enhanced pHi buffering capacity: an increase of the 

extracellular HCO3
- concentration increases also the HCO3

- concentration inside the cell. This  

Fig. 4.1: Model for ZP signaling in mouse and human sperm 

Mouse: Interaction of an unknown ZP-binding protein with the ZP activates NHA1 and another 

protein of the NHE family, resulting in proton export and an increase in sperm pHi. Sperm alkalization 

activates CatSper, resulting in a Ca2+ influx. A polarized VM set by Slo3 and the second messenger 

cAMP are required for the ZP-induced increase in pHi and [Ca2+]i. Human: Activation of CatSper by ZPs 

does not require an alkalization. A polarized VM is required for the ZP-induced increase in pHi. The 

underlying molecular mechanism and a potential role in CatSper activation still have to be elucidated. 

Question marks indicate hypothetical signaling pathways that have not been confirmed 

experimentally.  
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increases the intracellular pH buffering capacity, which might dampen the ZP-induced 

alkalization. Other candidate proteins in human sperm, which could underlie the ZP-evoked 

alkalization, are the voltage-dependent phosphoinositide‐phosphatase paralogs TPTE and TPTE2 

(transmembrane phosphatase with tensin homology). TPTE and TPTE2 are expressed in sperm 

precursor cells in the human testis, but have not yet been detected in mature sperm (Chen et 

al., 1999; Tapparel et al., 2003; Walker et al., 2001). It has been proposed that both TPTE and 

TPTE2 carry voltage‐activated H+ currents (Sutton et al., 2012); thus, TPTEs might be involved in 

the ZP-evoked pH response.  

In my thesis, I could also attribute a physiological function to the NHA1, which underlies the ZP-

evoked alkalization in mouse sperm. This suggests that the subfertility of NHA1-deficient male 

mice is caused by impaired ZP penetration. This notion should be scrutinized by in vitro 

fertilization experiment with NHA1-deficient sperm.                                                                                            

However, NHA1-deficient sperm also display a motility defect, namely stiffness of the sperm 

midpiece. A similar phenotype has been described after inhibition of the Ca2+-dependent 

phosphatase calcineurin and knockout of CatSper ζ (Chung et al., 2017; Miyata et al., 2015). In 

these mouse models, the rigidity of the midpiece can be explained by a defect in Ca2+ signaling: 

In CatSper ζ sperm, the Ca2+ signaling platform along the flagellum is disturbed (Chung et al., 

2017), whereas blocking calcineurin activity removes a crucial component of the Ca2+ signaling 

platform (Chung et al., 2014). However, the ultrastructure of the quadrilateral Ca2+ signaling 

domains is not affected in NHA1-deficient sperm.               

In contrast to my results, Chen et al. describe a much stronger motility defect in their NHA1 

knockout mouse-model, which they relate to attenuated SACY-cAMP signaling (Chen et al., 

2016). I failed to reproduce these results: In fact, SACY function is not impaired in NHA1-

knockout sperm. The reason for this discrepancy is unclear. However, Chen et al. used a 

different buffer for sperm isolation and the tools to analyze sperm motility were also different. 

Another explanation could be that the stiff midpiece of NHA1-deficient sperm was mistakenly 

considered as an immotility phenotype 

So far, my work does not provide insights how NHA1 is activated. The sNHE in sea urchin sperm 

is regulated by hyperpolarization and cAMP (Florian Windler, unpublished data). The NHA1 does 

not contain a cyclic nucleotide-binding domain or a voltage-sensor domain (Liu et al., 2010), 

arguing against an activation by cyclic nucleotides or by changes in VM. Alternatively, the NHA1 

might be directly activated by ZP glycoproteins. Other members of the NHE family are indeed 

regulated by protein-protein interaction. The human NHE1 is for example activated by binding 

of calmodulin (Bertrand et al., 1994), carbonic anhydrase II (Li et al., 2006b) or the actin binding 

proteins ezrin, radixin, and moesin (Denker et al., 2000). Patch-clamp experiments with 

heterologously expressed NHA1 might provide further insights into the activation mechanism of 

the exchanger.  
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4.2 Regulation of ZP-evoked acrosome reaction  
 

My results indicate that ZP-evoked alkalization regulates acrosomal exocytosis. Reportedly, the 

acrosome reaction is triggered by Ca2+ release from intracellular stores (O'Toole et al., 2000; 

Rossato et al., 2001). It has been suggested that binding of IP3 to its receptor is pH-dependent 

(Worley et al., 1987), since alkalization decreases the IP3-concentration required for half-

maximal Ca2+ store depletion by ∼50 fold (O'Toole et al., 2000). To scrutinize that the 

alkalization is crucial for the ZP-induced acrosome reaction, experiments using NHA1-deficient 

sperm should be performed. Moreover, it could be tested if an increase in intracellular pH, for 

example induced by NH4Cl, is already sufficient to evoke acrosomal exocytosis in mouse sperm.                                       

For human, my work does not provide conclusive insights whether acrosomal exocytosis is 

controlled by ZP-evoked alkalization or by the CatSper-mediated Ca2+ influx. In sperm 

preincubated with the CatSper inhibitor, high levels of spontaneous acrosome reaction were 

detected in the non-stimulated control so it was not possible to draw any conclusion (Fig. 4.2). 

Progesterone evoked acrosomal exocytosis in human sperm (Fig. 4.2). The action of 

progesterone in human sperm does not involve a change in pHi (Strünker et al., 2011), 

suggesting that the acrosome reaction in human sperm is not controlled by alkalization but 

rather by CatSper-mediated Ca2+ influx. However, further experiments are required to confirm 

this hypothesis.  

The fact that ZP glycoproteins evoke acrosomal exocytosis suggests that in vivo, sperm undergo 

the acrosome reaction only upon binding to the zona pellucida. However, this is challenged by 

studies demonstrating that the acrosome reaction in mouse and human sperm is already  

 

 

Fig. 4.2: CatSper inhibitor- and progesterone-evoked acrosome reaction  

Acrosome reaction in capacitated human sperm induced by 30 µM RU1968F1, 1 µM progesterone or 

2 µM ionomycin. Data are shown as mean + SD percentage of acrosome-reacted (AR) sperm 

normalized to the buffer-treated control, error bars indicate + SD; (n = 4). 
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initiated while sperm pass through the cumulus oophorus (Jin et al., 2011; Pereda & Coppo, 

1985) or even prior to reaching the oocyte (La Spina et al., 2016). In line with this observation, 

acrosome-reacted sperm are able to bind and penetrate the ZP (Inoue et al., 2011; Morales et 

al., 1989), indicating that undergoing the acrosome reaction directly at the ZP surface is not 

required to fertilize the oocyte. It might be possible that ZPs are secreted from the oocyte into 

the uterus and interact with the approaching sperm before they reach the oocyte. This would 

require that ZP glycoproteins are shed from the ZP. However, experimental evidence supporting 

this hypothesis is lacking. Alternatively, ZP glycoproteins might act in concert with other factors 

in the female genital tract. Similar to ZPs, progesterone and prostaglandin have been implicated 

in human sperm acrosomal exocytosis (Baldi et al., 2009; Harper et al., 2003; Oren-Benaroya et 

al., 2008; Publicover et al., 2008; Schaefer et al., 1998; Tamburrino et al., 2014; Tamburrino et 

al., 2015). In mice, other physiological stimuli of acrosomal exocytosis have not been identified. 

Since only acrosome-reacted sperm are able to fuse with the oocyte`s plasma membrane, 

sperm have to undergo the acrosome reaction prior to fertilization. A redundancy of the site of 

acrosome reaction might therefore be beneficial for fertilization success. The cumulus 

oophorus, for instance, dissipates over time (Chang & Pincus, 1951) so that sperm arriving late 

after ovulation rely on interactions with the ZP to induce acrosomal exocytosis (Avella & Dean, 

2011).  

 

4.3 Which roles play different ZP glycoproteins in ZP signaling?  

 

Another goal of my PhD thesis was to reveal, which of the different ZP glycoproteins evokes a 

signaling response in sperm. To this end, I established a heterologous eukaryotic expression 

system, which allowed to express functional human and mouse ZP glycoproteins. In human, ZP3 

evoked larger Ca2+ and pHi responses than ZP2 and only ZP3 evoked acrosomal exocytosis, in 

line with other studies using different heterologous expression systems (Chiu et al., 2008a; 

Ganguly et al., 2010; Gupta, 2015). This suggests that the Ca2+ or pHi increase induced by ZP2 

was not sufficient to evoke a behavioral response. In mouse, the relative potency of the 

individual ZP glycoproteins to evoke a Ca2+ and pHi response, as well as acrosomal exocytosis, 

was ZP3 > ZP2 >> ZP1. A study using purified native mouse ZP glycoproteins reported similar 

results (Bleil & Wassarman, 1983). 

In both mouse and human, ZP2 was identified as the primary sperm binding protein (Avella et 

al., 2014; Avella & Dean, 2011). Results from my thesis demonstrate that binding of sperm to 

ZP2 is not sufficient to evoke a behavioral response. Instead, the interaction with ZP3 seems to 

be required to evoke acrosomal exocytosis. These results suggest that the primary interaction 

with the ZP and induction of acrosomal exocytosis are two distinctly regulated events. This is in 

line with the finding that sperm-oocyte interaction is characterized by two phases, an initial 

loose attachment followed by tight binding between the gametes (Shur & Neely, 1988). Studies 

analyzing the binding between sperm and oocyte should, therefore, not be used to draw a 
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conclusion about the regulation of sperm behavior, e.g. acrosomal exocytosis. Moreover, the 

distinct regulation of sperm binding and induction of acrosomal exocytosis provides an 

additional control point to exclude cross-species fertilization. Although mouse sperm are able to 

bind to human ZP, acrosomal exocytosis is not evoked, presumably because sperm only interact 

with ZP2. The secondary ZP interaction might exclusively be established with sperm from the 

same species, ensuring species-specific fertilization.                             

What`s the molecular basis for the species-specificity of the sperm-oocyte interaction? ZPs 

lacking posttranscriptional glycosylation do not evoke acrosomal exocytosis (Chakravarty et al., 

2008; Dell et al., 1999), suggesting that the carbohydrate residues of ZP glycoproteins mediate 

the secondary interaction with sperm. Mouse and human ZP might contain species-specific 

glycan residues, whereby acrosomal exocytosis is evoked in species-specific fashion. Indeed, it 

has been shown for human ZP glycoproteins that they express a species-specific sequence of 

glycan residues called sialyl-Lewisx (Pang et al., 2011). In contrast, the synthesis of O-linked 

oligosaccharides with terminal α-galactosides is restricted to mouse oocytes (Larsen et al., 

1990). One way to test this hypothesis would be to perform acrosome reaction assays with 

human ZP3 expressed in transgenic mouse oocytes, thereby modifying the human protein with 

glycan structures of mouse ZP3 due to post-transcriptional modification by the 

glycosyltransferases in the Golgi apparatus of mouse oocytes (Dell et al., 2003). Another 

explanation could be a defined 3-dimensional species-specific presentation of highly branched 

glycans. Here, a difference in ZP ultrastructure between mouse and human ZP could account for 

the species-specific induction of acrosomal exocytosis. Furthermore, it is likely that also the 

male gametes contain regulatory mechanisms, which ensure that acrosomal exocytosis is only 

evoked when they bind to the ZP of the same species. Mouse and human sperm could, for 

example, express species-specific multimeric oocyte-binding complexes, which only allow a tight 

interaction with ZP glycoproteins from the same species.   

 

4.4 Outlook 
 

My thesis provides multiple important insights into the molecular mechanism of ZP signaling; 

however, a plethora of questions still have to be addressed. It is still unknown how ZP 

glycoproteins activate CatSper in human sperm. Do they bind to one of the four pore-forming 

subunits, to one of the five accessory subunits, or, act like progesterone via ABHD2 (Miller et al., 

2016)? Furthermore, the binding partner of ZP glycoproteins on the mouse sperm surface 

remains elusive, although numerous candidates have been proposed (Bleil & Wassarman, 1990; 

Cheng et al., 1994; Ensslin & Shur, 2003; Maldera et al., 2014; Petit et al., 2013). However, so 

far, no candidate could be experimentally verified because in the respective knockout sperm, 

the binding and penetration of the zona pellucida was not impaired (Baba et al., 2002; Lin et al., 

2007; Lu & Shur, 1997). There is increasing evidence that the sperm-ZP interaction involves 

multiple recognition sites (Nixon & Aitken, 2009; Redgrove et al., 2011; van Gestel et al., 2007), 
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indicating that gamete interaction is not mediated by a single receptor-ligand pair. The 

differentiation between primary sperm binding and induction of acrosomal exocytosis is in line 

with this finding, indicating that different sperm proteins might be involved in these two events, 

which further complicates the hunt for the ZP receptor. The only potential ZP receptor that has 

been assigned with acrosome reaction-inducing properties is the β1,4-galactosyltransferase 

(GalTase). When GalTase was heterologously expressed in Xenopus oocytes and when the 

oocytes were stimulated with ZP3, cortical granules were released (Shi et al., 2001). However, 

exocytotic signaling is controlled very differently in amphibians and mammals, which questions 

the physiological significance of this finding. A possibility, which has not yet been considered is 

that ZP glycoproteins might directly activate an ion channel or exchanger in the flagellum of 

mouse sperm. To identify the ZP binding site on CatSper in human sperm and the ZP binding 

partner in mouse sperm, a crosslinking experiment could be performed, similar to the approach 

used for identifying the progesterone receptor in human sperm (Miller et al., 2016). Here, ZP 

glycoprotein derivates containing a photoactivatable cross-linker have to be synthesized. Using 

UV-light, these derivates could then be covalently attached to their sperm receptor. 

Subsequently, the cross-linked proteins could be purified and identified via mass spectrometry. 

However, ZP glycoproteins in quantities over 1 mg would be required for the synthesis, which is 

out of reach for the established heterologous expression system using HEK293T cells.                

The role of cAMP for ZP signaling is also enigmatic. One study analyzing the possible interplay 

between ZP and cAMP signaling suggested that ZPs stimulate the activity of transmembrane 

adenylate cyclases (tmACs) (Leclerc & Kopf, 1995). However, the presence of tmACs and their 

role in mammalian sperm is controversial. The knockout of tmACs does not impair fertility 

(Iwamoto et al., 2003; Li et al., 2006a; Livera et al., 2005), a well-established tmAC activator 

does not increase the intracellular cAMP concentration in mouse sperm and human sperm 

(Brenker et al., 2012; Mukherjee et al., 2016), and total cAMP levels in SACY-deficient sperm are 

below the detection limit (Xie et al., 2006). Taken together, this rules out a dominant role for 

tmACs in controlling cAMP levels in the sperm flagellum. In addition, I measured cAMP levels in 

transgenic sperm expressing a novel FRET-based bio-sensor (Mukherjee et al., 2016); 

stimulation of sperm with ZPs did not evoke an increase in intracellular cAMP (Fig. 4.3). 

Therefore, my results suggest that ZPs do not stimulate cAMP synthesis. However, cAMP is 

unequivocally involved in the ZP-evoked signaling pathway. cAMP orchestrates different aspects 

of sperm function, which makes it difficult to identify its precise function for ZP signaling. For 

example, cAMP is essential for protein phosphorylation during sperm epididymal maturation 

and capacitation (Alvau et al., 2016; Baker et al., 2006; Battistone et al., 2014; Varano et al., 

2009). Thus, one explanation would be that the phosphorylation primes the NHA1 activation by 

ZPs. For NHE1 it has been shown that phosphorylation greatly increases carbonic anhydrase II 

binding (Li et al., 2006b). To scrutinize this hypothesis, the phosphorylation of NHA1 in wildtype 

and SACY-deficient sperm could be compared.  
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Finally, it should be addressed why a polarized VM is a prerequisite for ZP signaling. One possible 

explanation might be that the activity of SACY is voltage-dependent. Adenylate cyclases in sea 

urchin sperm have been shown to be controlled by the VM (Beltrán et al., 1996). In line with this 

observation, SACY in mouse sperm might not produce cAMP at a depolarized VM so that ZP 

signaling cannot be evoked. To scrutinize this hypothesis, SACY activity should be analyzed at 

depolarized and polarized VM. Moreover, one might be able to rescue the loss of ZP signaling in 

sperm with polarized VM by preincubation with cAMP. 

Fig. 4.3: ZPs do not evoke a cAMP increase in mouse sperm 

Changes in FRET after stimulation of a mlCNBD-FRET sperm with 0.5 ZP/µl or 25 mM bicarbonate. 

FRET has been measured using a spectrofluorometer. Data is shown as mean ± SD; n = 3. 
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6 Appendix 
 

Table 14: Primer sequences 

Primer 5`  3` sequence Construct 

#C2399 GGCGAATTCAAGCTTGCCACCATGGGG 
pHLsec-mZP1intHis 
pHLsec-mZP2intHis 
pHLsec-mZP3intHis 

#C2400 ACAAAGCCAGGTTCCAGATGCAGACGC pHLsec-mZP1intHis 

#C4001 AGCGTCTGCATCTGGAACCTGGCTTTG pHLsec-mZP1intHis 

#C2402 CCTGTGATGGTGATGGTGTGGTGCATCTCCATGCACACTGAGAG pHLsec-mZP1intHis 

#C2403 GCACACCACCATCACCATCACAGGCGTCGACGATCCTCTGGTC pHLsec-mZP1intHis 

#C2404 AGTCTCGAGTTACTAATATCTGATGCCTTCCCAGAG CTTC pHLsec-mZP1intHis 

#C2405 CTGTGATGGTGATGGTGGTGCAGTGATGCAGGGCAAGTCACAG pHLsec-mZP2intHis 

#C2406 CTGCACCACCATCACCA TCACAGGAGCAAACGAGAGGCCAACAAAG pHLsec-mZP2intHis 

#C2407 AGTCTCGAGTTACTAGTGATTGAACCTTATAGTTCTTTTCTTATAC pHLsec-mZP2intHis 

#C2408 CGGTGA TGGTGATGGTGGTGAGAAACTAGCTTGGACCACTGGCG pHLsec-mZP3intHis 

#C2409 TTCTCACCACCATCACCATCACCGAAACCGCAGGCACGTGACC pHLsec-mZP3intHis 

#C2410 AGTCTCGAGTTACTATTGCGGAAGGGATACAAGGTAGGAAG pHLsec-mZP3intHis 

#C2566 TATACCGGTATGGCGTGCAGGCAGAGAGGAG pHLsec-hZP2intHis 

#C2567 CCTGTGATGGTGATGGTGGTGAGAGGACACAGGGCAGGTCAC pHLsec-hZP2intHis 

#C2568 CTCACC ACCATCACCATCACAGGCACAGGCGAGCCACAGG pHLsec-hZP2intHis 

#C2569 ATACTCGAGCTATTAGTGATTTGACACAGTCCTTTTCTC pHLsec-hZP2intHis 

#C2578 TATACCGGTATGGAGCTGAGCTATAGGCTCTTC pHLsec-hZP3intHis 

#C2579 CGGTGATGGTGATGGTGGTGGGAAGCAGACCTGGACCACTG pHLsec-hZP3intHis 

#C2580 CCCACCACCATCACCATCACCGTAACCGCAGGCATGTGACAG pHLsec-hZP3intHis 

#C2581 ATACTCGAGCTATTCGGAAGCAGACACAGGGTG pHLsec-hZP3intHis 

C2939 GCCATAAAAGCTTGTCACCTTTAGG Slc9b1-HA 

C2940 GATGATGGCAAGCTTTTTAATGATGG Slc9b1-HA 

C2942 AGTCTGTCTGCGCTTGTCATTTGG Slc9b1-HA 

C2943 GTGAAGCTTCCACCATGAGTGAGCACGACGTAGAATCAAAC Slc9b1-HA 

C2944 GTCTCTCCTGCTGTTGTCGTCCCC Slc9b1-HA 

C2945 GGGGACGACAACAGCAGGAGAGAC Slc9b1-HA 

C2946 GTAGTCGGGCACGTCGTAGGGGTAATGATGGAAGTTCGAGAGCTCAAC  Slc9b1-HA 
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        10         20         30         40         50         60 

MSEHDVESNK KDDGFQSSVT VEMSKDPDSF HEETVEPKPE LKEPEPKEPE PKEPERKEPE 

        70         80         90        100        110      120 

RKEPERKEPE RKEPERKVPG RRETQTKETQ TTEIERKETK KKRGTNSYCP PQGTINKTIT 

        130        140        150   160        170        180 

DGAALIALWT LLWALIGQEV LPGGNLFGLV VIFYSAFLGG KILEFIKIPV VPPLPPLIGM  

       190        200        210        220        230        240 

LLAGFTIRNV PIIYEFVHIP TTWSSALRNT ALTIILVRAG LGLDPQALKH LKGVCLRLSF 

       250        260        270        280        290        300 

GPCFLEACSA ALFSHFIMNF PWQWGFLLGF VLGAVSPAVV VPNMLMLQEN GYGVEKGIPT 

       310        320        330        340        350        360         

LLVAASSMDD IVAITGFNTF LSIVFSSGSV ISNILSSLRD VLIGVLVGIV MGVFVQYFPS 

       370        380        390        400        410        420 

GDQERLTQRR AFLVLSMCIS AVLGCQHIGL HGSGGLVTLV LSFMAAKRWA EEKVGIQKIV 

       430        440        450        460        470        480  

ANTWNVFQPL LFGLVGTEVS VESLESKTIG MCLATLGLAL SVRILSTFVL MSFANFRFKE 

        490       500        510        520        530        540         

KVFIALSWIP KATVQAVLGP LALETARVMA PHLEGYAKAV MTVAFLAILI TAPNGALLIG 

       550        560 

ILGPKILEQS EVTFPLKVEL SNFHH 

        

 

 

 

Fig. 6.1: Mass spectrometry detection of NHA1 in mouse sperm 

Ten unique peptides for NHA1 (indicated in blue) were identified in mouse sperm. 

Fig. 6.2: Imidazole evokes a Ca2+ response in mouse sperm 

(a) [Ca2+]i increase evoked by K8.6 (dark blue) and 75 mMimidazole (light blue) in capacitated mouse 

sperm. Representative stopped-flow measurement.  
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