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ABSTRACT: We report on the highly sensitive optical and
colorimetric detection of perfluorinated compounds in the
vapor phase achieved by all-polymer dielectric mirrors. High
optical quality and uniformly distributed Bragg reflectors were
fabricated by alternating thin films of poly(N-vinylcarbazole)
and Hyflon AD polymers as high and low refractive index
medium, respectively. A new processing procedure has been
developed to compatibilize the deposition of poly(N-vinyl-
carbazole) with the highly solvophobic Hyflon AD polymer
layers to achieve mutual processability between the two
polymers and fabricate the devices. As a proof of principle,
sensing measurements were performed using the Galden
HT55 polymer as a prototype of the perfluorinated
compound. The Bragg stacks show a strong chromatic response upon exposure to this compound, clearly detectable as both
spectral and intensity variations. Conversely, Bragg mirrors fabricated without fluorinated polymers do not show any detectable
response, demonstrating that the Hyflon AD polymer acts as the active and selective medium for sensing perfluorinated species.
These results demonstrate that organic dielectric mirrors containing perfluorinated polymers can represent an innovative
colorimetric monitoring system for fluorinated compounds, suitable to improve both environmental safety and quality of life.

■ INTRODUCTION

Nowadays, fluorinated products and polymers offer a wide
range of materials with outstanding performances and
technological solutions for high demanding applications.
These applications very often constitute challenges in many
key sectors like automotive, aeronautics, healthcare, energy,
storage, and many others. Properties related to performances
may include chemical inertness, thermal resistance, abrasion
and weathering protection, water and stain repellency,
biocompatibility, transparency, and many others.1,2 Usually,
these materials are soluble only in expensive fluorinated
solvents, whereas their nonwettability prevents the adhesion of
overcoatings and makes them difficult to manage together with
nonfluorinated compounds. Moreover, the detection of
perfluorinated molecules (PFCs) is an important task, which
makes any progress to increase the capability to assess the
presence of these molecules highly interesting to monitor and
preserve environmental health and safety. In this respect, a
simple method for the assessment of air containing volatile
PFCs using cost-effective sensors is of great importance.
Optical and chromatic measurements constitute a class among
simple methods and has been demonstrated in a variety of
structures including molecular systems,3 photonic crystals,4,5

and liquid crystalline nanostructures.6−8 In particular, polymer
dielectric mirrors (or distributed Bragg reflectors, DBR)

proved to be a reliable and low-cost platform for colorimetric
sensing for both organic and inorganic analytes in the vapor
phase.9−13 These devices are made of polymer layers having a
different refractive index periodically alternated to generate
dielectric submicrometric lattices. The interaction between
light and these dielectric lattices, which are also known as
monodimensional or planar photonic crystals, induces
frequency regions forbidden to photon propagation. These
frequencies are called photonic band gaps (PBGs) and are
detectable as bright colors with the naked eyes, and as maxima
of reflectance in the DBR spectrum. Polymer-DBR sensors are
based on the intercalation of an analyte within the polymer
layers. This process swells the polymers increasing their
thickness, and thus, affecting the dielectric lattice. Such
swelling is reflected in the DBR spectra as a shift of the
PBG. The overall process can be driven by several analyte−
polymer interaction mechanisms. For instance, the kinetics of
intercalation of an analyte within the polymer DBR can be
engineered by modifying the free volume between the polymer
chains using nanocomposite structures.2 Another mechanism
exploits the formation of the guest-induced crystalline clathrate
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domains in amorphous polymers. This mechanism, combined
with different chemical affinity for different polymer−analyte
pairs, plays a role in label-free molecular recognition.4 Because
the interaction between the analyte and the polymers was
demonstrated to be critical to govern the sensitivity and the
selectivity of the DBR sensors, here, we propose the use of a
perfluorinated polymer (PFC-P, copolymer of tetrafluoro-
ethylene and 2,2,4-trifluoro-5-trifluoromethoxy 1,3-dioxole,
known commercially as the Hyflon AD polymer, by Solvay
Specialty Polymers) for the detection of PFCs. In addition to
its affinity for PFCs, this polymer possesses a very low
refractive index (∼1.33), which allows a remarkable increase in
the dielectric contrast with respect to polymer pairs commonly
used to grow DBRs. Indeed, this parameter usually suffers from
drawbacks related to the polymer mutual processability
connected to the requirement for high transparency.14 The
large dielectric contrast implies that high reflectance values can
be obtained using a relatively small number of bilayers, thus,
saving materials and making the device fabrication faster.14

However, as any other PFC, these polymers are highly
solvophobic and scarcely wettable. This implies low mutual
processability with other polymers. As a consequence, despite
their optical transparency and low refractive index, very few
examples of DBRs made of PFC-P have been reported in the
literature so far.15−18

In this work, we take advantage of our expertize in
processing PFC-P19,20 to design and fabricate relatively
homogeneous and large area Hyflon AD polymers (HY):poly-
(N-vinylcarbazole) (PVK) DBRs as a proof of concept sensing
devices. Galden HT55, perfluoropolyether polymer, was used
as a prototype analyte of PFCs. Our results offer a simple
colorimetric detection of PFCs in the vapor phase for the first
time, suggesting a new and simple approach to easy
environmental detection of PFCs.

■ RESULTS AND DISCUSSION
Due to low surface energy and solvophobicity, it is difficult to
implement HY films into multilayered structures. Indeed, for
the growth of DBRs, the deposition of polymer thin films need
a tight control of thickness and interface roughness, which
should not exceed few nanometers over large areas.21 To make
HY layers suitable for the deposition of PVK films, their
surface was activated by room temperature plasma treatment.
Such treatment results in improved adhesion properties.22−24

To develop a routine for HY activation, we tested plasmas with
different O2/N2 ratios.

19 The surface activation was assessed by
water contact angle measurements for over 24 h after the
plasma treatment. Figure 1 reports the contact angles
measured before and after the treatments. Before the treatment
(black dot in Figure 1), the sample shows a contact angle of
119 ± 1°. Supporting Information Figure S1 reports the value
collected for nine sample cast using different conditions,
demonstrating the reliability of the growth procedure. Upon
surface treatment, the contact angle dramatically decreases to
an upper value of ∼103° for O2 plasma, and a lower value of
97° for air-plasma (colored dots in Figure 1). N2 and different
O2/N2 mixtures induce instead contact angles between these
limit values. The surface activation was then monitored for 24
h by storing the samples in a petri dish in room conditions
without any specific precaution. The data in Figure 1 show that
only small variations occur when the samples are treated with
all the gas mixtures but air, where the contact angle further
decreases over the 24 h. These results indicate that the surface

of the HY film remains wettable over time, suitable for the
preparation of multilayered structures. In this regard, N2
plasma induces the lowest contact angle stable on the longer
time scale, and was then employed as routine treatment during
the DBR fabrication.25

DBRs were then grown on 1 in.2 glass substrate starting
from the deposition of a PVK layer. After PVK deposition and
thermal annealing, a layer of HY was cast on the latter and the
surface activation was performed. This operation was repeated
seven times to grow the multilayer. Figure 2a,b show the

photographs and Figure 2c shows the spectra of a DBR sample
resulting from this routine. Figure 2a displays the sample as
cast on the glass substrate, which appears blue and highly
relatively homogeneous. The photograph in Figure 2b reports
instead a similar sample after peeling-off from the substrate.
The Figures demonstrate that highly homogeneous, free-
standing, and flexible DBRs can be fabricated with the method
we propose. The DBR homogeneity was also confirmed by the
reflectance spectra of the sample collected over six different
spots of its surface. Indeed, Figure 2c shows that the peak
intensity and spectral position oscillates within 2 and 4%,

Figure 1. Average water contact angle of bare HY films as retrieved
from Supporting Information Figure S1 (black dot), and after 0, 1, 4,
and 24 h since the plasma treatment with different O2/N2 mixtures
(colored dots).

Figure 2. (a, b) Photographs and (c) experimental (continuous lines)
and calculated (dashed line) reflectance spectra of HY:PVK DBR.
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respectively. The spectra also show a well-defined interference
pattern in the background, demonstrating very high quality of
the top and bottom surfaces of the sample.2 The spectra show
a prominent reflectance peak at ∼900 nm assigned to the PBG
and a second order diffraction peak at ∼450 nm, responsible
for the brilliant blue color observed in the pictures reported in
Figure 2a,b. The very high reflectance intensity of the PBG is
due to the large dielectric contrast achieved with HY and PVK,
which is the largest reported so far for polymer DBR grown by
commercial polymers.7 The experimental spectra can be nicely
reproduced with those calculated via a transfer matrix method
(dashed black line in Figure 2c)26,27 using layer thicknesses dHy
= 102 ± 4 nm and dPVK = 196 ± 3 nm and refractive index
values dHy = 1.3328 for HY and nPVK as retrieved in previously
published data.26 The thickness uncertainty is comparable to
the interlayer roughness investigated in a previous work by X-
ray reflectivity.21

The sensitivity of the HY:PVK DBRs to fluorinated
compounds was assessed exposing the sample to the Galden
HT55 polymer for 100 min. Figure 3a displays the contour
plot of the reflectance spectra collected as a function of the
exposure time. Here, the PBG is observed in red tones,
whereas the spectra background is in blue shades. In the initial
stages of exposure, the first and second order PBGs are
detected at 900 and 450 nm respectively. These spectral
features remain unchanged for the first 20 min. According to
models reported in a previous work,2 this induction time is
assigned to the analyte permeation across the first PVK layer
and can be increased or decreased, changing its thickness. To
demonstrate this statement, Supporting Information Figure S2
shows that when the DBR is capped with HY layers instead of
PVK, the induction time is reduced within the time resolution
of our system (few milliseconds). After the induction time, the
DBR spectrum undergoes a dramatic change. The first order
PBG quickly fades while shifting toward longer wavelengths.
Upon 50 min of exposure, it is shifted at about 1100 nm. Upon
longer exposures, the feature keeps shifting deeper in the near
infrared part of the spectrum and inhomogeneously broadens.
This behavior occurs until 90 min of exposure, when the PBG
intensity decreases, and the feature cannot be distinguished
clearly from the background of the spectrum anymore. The
spectral details of the optical response of bare and long time
exposed DBRs are reported in Supporting Information Figure
S3. These characteristics have already been observed for
different analyte/all-polymer DBR systems,2,4 and are assigned
to the large intake of the analyte, which largely swells the active
polymer, until the order and the periodicity of the sample get

destroyed and the reflectance intensity of the PBG is
dramatically reduced. Concerning the second order PBG, at
450 nm, the glass substrate and the PVK absorptions reduce
the effects of the analyte intercalation in the optical response.
The diffraction peak remains indeed unchanged for about 20
min of exposure, and then its intensity fades indicating the loss
of periodicity order of the structure. The behavior just
observed can be interpreted considering a progressive
intercalation of the analyte through the DBR surface closer
to the enriched environment,2 and thus, a progressive and
inhomogeneous swelling of the HY layers starting from the one
on the top of the DBR, which is closer to the analyte
environment, to the bottom one, which is closer to the glass
substrate. Under this assumption, we simulated the optical
response of the sample after 80 min of exposure considering
the DBR layers to be closer to the unswollen substrate, and a
random normal distribution of the thicknesses of the upper HY
layers (295 ± 133 nm, see Supporting Information Figure S3
for details). The good agreement between the experimental
and calculated spectra (Supporting Information Figure S3)
confirms the hypothesis that the analyte intercalation generates
a giant swelling of the HY layers combined with a great
amount of disorder. These data also agree with our previous
findings on different all-polymer DBR exposed to selected
analytes, and suggest that HY-based sensing devices may be
suitable to reveal and discriminate different vapor analytes with
a lower detection limit at the ppm level and sensitivity of
ppb.2,4

To prove the role of HY in the detection of the
perfluorinated compounds, we compared the response to
perfluorinated analytes of CA:PVK DBRs, which are known to
be very efficient in the analysis of aromatic, heteroaromatic, or
alcoholic species and water.2,4,6 Figure 3b shows the response
of CA:PVK DBR to Galden HT55 polymer vapors. No effects,
even minor, are observed on the spectral position and the
intensity of the PBGs over 100 min of exposure. This
demonstrates that the fluorinated analyte does not interact
with the CA and PVK.
The analysis of the combined optical response to Galden

vapors clearly indicates that only the presence of a
perfluorinated polymer like the Hyflon AD polymer in the
DBR allows the detection of the PFC analytes as sketched in
Figure 4. Here, the fluorinated Hy films undergoes strong
swelling upon intercalation of Galden HT55 (Figure 4a),
inducing a strong bathochromic shift of the PBG spectral
position observed in Figure 3a. Conversely, when CA is used as
a low index medium, the chemico-physical interaction between

Figure 3. Contour plot of the (a) HY:PVK and (b) cellulose acetate (CA):PVK DBR spectra collected during the exposure to Galden HT55
polymer saturated vapors.
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the fluorinated analytes and the hydrogen-based polymer
forbid the polymer swelling, and thus, the optical response
(Figures 3c and 4b). To the best of our knowledge, this is the
first report on optical detection of fluorinated persistent
volatile species by polymer photonic crystals.
Finally, we would like to comment on the design of the DBR

sensor. Commonly, DBRs applied to photonics for lasing or for
light emission control are designed to have layer thicknesses
d1n1 = d2n2 = λPBG/4,

29,30 where, n is the refractive index of
each layer and λPBG is the PBG spectral position. Such values
satisfy the lambda fourth conditions,31 where the even orders
of diffraction are not detectable in the DBR spectra, and odd
PBGs with the highest reflectance and widest full width half
maximum are achieved. However, high reflectance and
bandwidth hinder the detection of small spectral variation.6

Besides this aspect, as previously reported by this group,2,4 the
presence of a second order PBG tuned in the visible part of the
spectrum and coupled with a first order PBG tuned in the near
infrared region allows slower, and thus, more sensitive
responses due to the first order of diffraction. Nevertheless,
the colorimetric response due to the second order is
maintained, allowing both simple ON/OFF colorimetric
detection and quantitative assessment of fluorinated chemical
species.
This work represents a proof of concept for easy chromatic

detection of novel relevant analytes. However, a deeper
investigation of the figures of merit of the sensors, including
the lower detection limit, sensitivity, and selectivity is necessary
to develop disposable sensors easy to operate even without the
use of a spectrometer by untrained users. Indeed, analyte
intercalation through the polymer films induces a dramatic
color change due to the PBG bathochromic shift. Then a
chemically switchable ON/OFF system can also be engi-
neered. Moreover, polymer DBRs are currently the only
photonic crystals industrially fabricable on the square meter
scale by available technology already used for food packaging,

like co-extrusion or continuous melting. These features, joined
with the size of the present sensors, which is down to few
square millimeters, make low-cost disposable sensors highly
interesting.

■ CONCLUSIONS
We demonstrated the fabrication of flexible and high quality
all-polymer DBR sensors with an area of 1 in.2 made by HY, a
perfluorinated copolymer with a very low refractive index, and
the high refractive index PVK, using a simple and cost-effective
technique as spin-coating. The high dielectric contrast
achieved using these polymers allows very high reflectance
with less than 10 bilayers, thus, achieving highly sensitive DBR
sensors with a remarkable material saving. These DBRs show
an outstanding optical response to fluorinated species in the
vapor phase. For this purpose, the Galden HT55 polymer as a
test molecule was used to demonstrate for the first time that
the PFCs can be easily and selectively detected even by an
untrained user and without complicated laboratory equipment
by a label-free photonic crystal. These characteristics together
with the possibility of mass production by established
technologies, provide a new class of disposable and functional
polymer photonic structures. Such DBR can be used to
improve environmental safety and human quality of life.

■ EXPERIMENTAL SECTION
The DBR sensors were cast by spin-coating using PVK (Sigma-
Aldrich, Mw = 135 000) as a high refractive index material and
HY as a low refractive index material. To demonstrate the
sensing mechanism, some reference sensors were also
fabricated replacing HY with cellulose acetate (CA, Sigma-
Aldrich, Mn = 50 000) as the low index medium as reported in
previous works.27,32−35 PVK was dissolved in toluene (35 g/
L),26 CA was dissolved in 4-hydroxy-4-methyl-2-pentanone
(36 g/L), and HY was dissolved in the Galden HT110 polymer
(30−42 g/L). Polymer solutions were then spun-cast at a
rotation speed between 20 and 120 revolutions per second to
obtain thicknesses in the range 100−200 nm. Due to the low
surface energy of HY, after the deposition of each HY layer,
low power O2−N2 mixtures vacuum plasma treatment (15 W,
30 s) was performed to improve PVK adhesion by using a
Gambetti Colibri system.19 After deposition of each PVK layer,
thermal annealing at 80° C for 45 s was performed.
The sensitivity of the DBR sensors to PCFs was assessed by

exposing them to a saturated environment of the Galden HT55
polymer (Pvapor = 0.27 kPa) and monitoring their dynamic
spectral response. Reflectance spectra were collected with
homemade setups previously described4 using an aluminum
mirror as a reference. For this reason, the reflectance intensity
(and not absolute reflectivity) can be slightly higher than
100%. Contact angles have been measured by a Theta Lite
optical tensiometer by Biolin Scientific36 using the sessile drop
technique.37
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The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acsome-
ga.8b00554.

Contact angle data; exposure of a HY:PVK DBR having
HY as the upper layer to Galden HT50; experimental
evolution of the reflectance spectrum upon exposition to

Figure 4. Schematic illustration of the sensing principle: (a) HY:PVK
and (b) CA:PVK DBR exposed to Galden HT55. PVK is represented
in yellow, CA in gray, and Hy in green. Galden HT55 representation
is purely indicative.
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