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The coupled nonlinear dynamics of ultracold quantum matter and electromagnetic field modes in
an optical resonator exhibits a wealth of intriguing collective phenomena. Here we study a Λ-type,
three-component Bose-Einstein condensate coupled to four dynamical running-wave modes of a ring
cavity, where only two of the modes are externally pumped. However, the unpumped modes play a
crucial role in the dynamics of the system due to coherent back-scattering of photons. On a mean-
field level we identify three fundamentally different steady-state phases with distinct characteristics
in the density and spatial spin textures: a combined density and spin wave, a continuous spin spiral
with a homogeneous density, and a spin spiral with a modulated density. The spin-spiral states,
which are topological, are intimately related to cavity-induced spin-orbit coupling emerging beyond
a critical pump power. The topologically trivial density-wave–spin-wave state has the characteristics
of a supersolid with two broken continuous symmetries. The transitions between different phases
are either simultaneously topological and first order, or second order. The proposed setup allows
the simulation of intriguing many-body quantum phenomena by solely tuning the pump amplitudes
and frequencies, with the cavity output fields serving as a built-in nondestructive observation tool.

I. INTRODUCTION

The experimental progresses in reaching the quantum
degeneracy limit in atomic gases paved the way for the
realization of quantum many-body phenomena in these
highly tunable systems [1, 2]. Some of the most remark-
able examples include the realization of the superfluid
to Mott-insulator quantum phase transition [3], quan-
tum magnetism and magnetic orderings [4–8], synthetic
magnetic fields (i.e., Abelian gauge potentials) [9–11],
and spin-orbit coupling (i.e., non-Abelian gauge poten-
tails) [12–14] in ultracold quantum gases. While the first
generation of experiments was limited to static lattices
and local contact interactions, the study of highly non-
linear optical systems, where the back-action of the mat-
ter on the radiation fields is not negligible, has opened
up new frontiers towards dynamical optical potentials,
long-range atom-atom interactions, and exotic collective
phenomena [15–18]. The most prominent examples in-
clude the coupling of ultracold atoms to dynamic quan-
tized radiation fields of high-quality cavities [19–21], lead-
ing to the realization of the Dicke superradiance phase
transition [22, 23], atomic recoil lasing [24–26], and the
quantum phase transition between superfluid, supersolid,
Mott-insulator, and density-wave phases [27, 28].

Almost all experimental works and most theoreti-
cal studies of coupled atom-cavity systems in the past
were limited to systems where either the atomic inter-
nal states [29–32] or the atomic external degrees of free-
dom [33–44] are taken into account. Only recently the-
oretical investigations towards including both atomic in-
ternal and external degrees of freedom in cavity QED
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have been conducted. These systems exhibit many more
interesting phenomena, including the emergence of syn-
thetic strong magnetic fields and spin-orbit coupling [45–
48], disorder-driven density and spin self-ordering [49],
topological states [50, 51], and a variety of magnetic or-
ders [52, 53]. Very recently, the first experimental im-
plementation with a spin-1 BEC inside a linear cavity
revealed spontaneous self-ordering of the atoms into a
crystalline structure with an antiferromagnetic order [54].

Figure 1. Sketch of the system. A spin-1 BEC is tightly con-
fined along one leg of a longitudinally pumped ring cavity with
four nearly resonant modes {â±e±ikz, b̂±e±ikz}. The modes

â± (b̂±) induce the transitions |↓〉 ↔ |e〉 (|↑〉 ↔ |e〉) with a

coupling strength G↓ (G↑). The modes â+ and b̂− are pumped
by external lasers with strengths η+ and η−, respectively.
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In this work we study a novel type of hybrid atom-
cavity system, where Λ-type spin-1 ultracold bosons are
confined into quasi one dimension along one leg of a ring
cavity with two “pairs” of nearly resonant modes [55, 56].
Each pair consists of two counterpropagating modes with
the same polarization which is orthogonal to the polar-
ization of the other pair. In contrast to Ref. [57], each
pair of modes only couples to one of the transitions in
the Λ scheme, where the atoms are assumed to posses
two ground states (e.g., two different Zeeman sublevels)
and an electronic excited state; see Fig. 1. The adiabatic
elimination of the upper atomic electronic state as well
as of other Zeeman sublevels results in an effective two-
component pseudospin model. We consider a case where
two counterpropagating modes of orthogonal polariza-
tions are externally pumped by lasers through the cavity
mirrors as depicted in Fig. 1. These two modes do not
interfere with one another and the system is, therefore,
initially homogeneous. This is reminiscent of the scheme
for generating equal Rashba-Dresselhaus synthetic spin-
orbit coupled for neutral atoms in free space [12].

That said, in the present case the cavity modes are
dynamic and affected by the atomic dynamics as well as
by photon losses through the cavity mirrors. Crucially,
the unpumped modes are “dynamically” populated by
coherently scattered photons and, therefore, couple to
the pumped modes and the atomic internal and exter-
nal degrees of freedom. As an important consequence,
the cavity-induced spin-orbit coupling for the atoms only
emerges above a critical pump power, which in turn gives
rise to novel nonequilibrium quantum phases and quan-
tum phase transitions of various natures in our system.
It is this dynamical population of the unpumped cavity
modes and its nontrivial interplay with the other degrees
of freedom which marks a sharp contrast to the free-space
spin-orbit coupling [12–14, 58, 59] as well as all other
previous cavity-based spin-orbit coupling schemes [45–
47, 50].

As the frequency and the strength of the pump lasers
are varied, in the mean-field regime the system displays
three fundamentally different phases with distinct char-
acteristics in density and spatial spin texture as shown
in Fig. 2. The first phase is the density-wave–spin-
wave (DW-SW) state, where the density has a crystalline
structure and the pseudospin exhibits a spatial spin-wave
texture along the cavity axis; see Fig. 4(a). The sec-
ond phase is the plane-wave–spin-spiral (PW-SS) state,
where the density is homogeneous while the pseudospin
exhibits a spin-spiral texture as illustrated in Fig. 4(b).
The third phase is the density-wave–spin-spiral (DW-SS)
state, where a crystalline-ordered density is accompa-
nied with a spin-spiral pseudospin texture; see Fig. 4(c).
The latter two states with the spin-spiral texture have
a Skyrmionic nature with a nontrivial topology [60, 61],
and are intimately related to the emergence of cavity-
induced spin-orbit coupling. The topologically trivial
DW-SW state, on the other hand, breaks the continu-
ous screw-like symmetry of the system, resulting in the

Figure 2. The mean-field atomic phase diagram in the
rescaled parameter space {

√
Nη/ωrec,∆/ωrec}. It dis-

plays three distinct phases: density-wave–spin-wave (DW-
SW), plane-wave–spin-spiral (PW-SS), and density-wave–
spin-spiral (DW-SS) states. The color coding shows the abso-
lute values of the density-wave order parameters, |N↓| = |N↑|.
The solid red curve marks the onset of the topological phase
transition. The dashed yellow curve indicates the boundary
of the second-order phase transition and the green dot indi-
cates the tricritical point. The unstable parameter regions are
marked by the hased pattern. The inset illustrates the cavity-
field phase diagram in the same parameter space, where the
color coding shows the absolute values of the cavity-field or-
der parameters, |α−|

√
N = |β+|/

√
N . It coincides precisely

with the atomic phase diagram. The other parameters are set
to (U0,Ω0R, κ) = (−1,−1, 1)ωrec.

appearance of a gapless Goldstone mode in addition to
the phonon sound mode, a characteristic of a supersolid
with two broken continuous symmetries [14, 28, 44]. The
topological phase transitions between the DW-SW and
the spin-spiral states, which is a direct consequence of
the emergence of cavity-induced spin-orbit coupling, ex-
hibit first-order characteristics, while the quantum phase
transition between the two spin-spiral states are second
order. Remarkably, all the quantum phase transitions
can be monitored in situ through the cavity output, as
can be seen from the inset of Fig. 2.

The paper is organized as follows. We introduce the
model in Sec. II and then derive the effective Hamilto-
nian and the Heisenberg equations of motion. We then
find the steady-state solutions of the equations of mo-
tion in the mean-field limit in Sec. III. In this section
we discuss the atomic phase diagram (Sec. III A), the
cavity-field phase diagram (Sec. III B), and the effect of
cavity-induced emergent spin-orbit coupling (Sec. III C).
Section IV is devoted to the elementary excitations and
the (broken) symmetries of the system. We present the
concluding remarks in Sec. V. Appendices A and B show



3

the details of the adiabatic elimination of the atomic ex-
cited state and linearization of the Heisenberg equations
of motion, respectively.

II. MODEL

Consider a Λ-type spin-1 BEC tightly confined into
quasi-one dimension along one leg of a ring cavity in z
direction as depicted in Fig. 1. The internal atomic states
of interest consist of two pseudospin ground states, des-
ignated by |↓〉 and |↑〉, and an electronic excited state |e〉
with energies {~ω↓, ~ω↑, ~ωe}. The transition |↓〉 ↔ |e〉
(|↑〉 ↔ |e〉) couples to a pair of degenerate, counterpropa-

gating electromagnetic modes â±e±ikaz (b̂±e±ikbz) of the

ring cavity as shown in Fig. 1. The operator â+/− (b̂+/−)
annihilates a forward/backward moving photon in the
first (second) pair of ring-cavity modes with a wave vec-
tor ka = ωa/c = 2π/λa (kb = ωb/c = 2π/λb). For our
desired system, the condition |ωa − ωb|/ωa(b) � 1 holds
in general. Therefore, the assumptions k := ka ≈ kb and
λ := λa ≈ λb are legitimate and will be used throughout

this work. Each pair of modes (i.e., â± or b̂±) has the
same polarization, which is orthogonal to the polariza-

tion of the other pair; e.g., {ε+, ε−}. The mode â+ (b̂−)
is driven by an external pump laser through the cavity
mirror with a frequency ω̃a (ω̃b) and an amplitude η+

(η−).

The single-particle Hamiltonian density of the system
in the dipole and rotating-wave approximation reads

H = H0,at +H0,cav +Hac +Hpump, (1)

with

H0,at =
p̂2

2m
+ ~

∑
τ=↓,↑,e

ωτ σ̂ττ ,

H0,cav = ~
∑
j=+,−

(
ωaâ

†
j âj + ωbb̂

†
j b̂j

)
,

Hac = ~
{[
G↓
(
eikzâ+ + e−ikzâ−

)
σ̂e↓

+ G↑
(
eikz b̂+ + e−ikz b̂−

)
σ̂e↑
]

+ H.c.
}
,

Hpump = i~
(
η+â

†
+e
−iω̃at + η−b̂

†
−e
−iω̃bt −H.c.

)
. (2)

Here m is the atomic mass, p̂ = i~∂z is the atomic mo-
mentum operator and σ̂ττ ′ = |τ〉 〈τ ′| are the atomic tran-
sition operators. The atom-photon coupling for the tran-
sition |↓〉 ↔ |e〉 (|↑〉 ↔ |e〉) is denoted as G↓ (G↑) and H.c.
stands for the Hermitian conjugate. H0,at and H0,cav are
the bare atomic Hamiltonian density and the cavity-field
Hamiltonian, respectively. Hac represents the coupling
between the atom and the cavity fields, and Hpump ac-
counts for the pumping of the cavity fields.

The corresponding many-body Hamiltonian is ob-

tained as

H =

∫
Ψ̂†(z)(H0,at +Hac)Ψ̂(z)dz (3)

+H0,cav +Hpump +Hint,

where Ψ̂ = (ψ̂e, ψ̂↑, ψ̂↓)> is the three-component atomic
field operator which satisfies the bosonic commutation

relation [ψ̂τ (z), ψ̂†τ ′(z
′)] = δ(z − z′)δτ,τ ′ . The Hamil-

tonian Hint accounts for two-body contact interactions
between the atoms, and ensures the thermalization and
relaxation of the BEC. However, we assume that the
two-body contact interactions are negligibly small com-
pared to cavity-mediated long-range interactions, which
is a good approximation for typical cavity-QED experi-
ments [28, 62]. Therefore, we will not explicitly include
two-body contact interactions in our model.

The dynamics of the system is governed by the Heisen-
berg equations of motion of the atomic field opera-

tors i~∂tψ̂τ = [ψ̂τ , H], and the photonic field operators

i~∂tâ± = [â±, H]− i~κâ± and i~∂tb̂± = [b̂±, H]− i~κb̂±.
The decay (i.e., leakage) of cavity photons is included
phenomenologically by adding the terms proportional to
κ in the latter equations for the photonic-field opera-
tors. If the relative atomic detunings with respect to the
pump lasers ∆↓(↑) := ω̃a(b) − [ωe − ω↓(↑)] are large com-
pared to the two-photon detuning δ := ∆↑ −∆↓ and the
atom-photon couplings {G↓,G↑}, the atomic excited state
reaches a steady-state on a short time scale and its dy-
namics can be adiabatically eliminated. This results in a
set of six coupled effective Heisenberg equations for the
atomic pseudospin and photonic field operators

i~
∂

∂t

(
ψ̂↓
ψ̂↑

)
= Hat

(
ψ̂↓
ψ̂↑

)
, (4a)

i~
∂

∂t


â+

â−
b̂+
b̂−

 = Hcav


â+

â−
b̂+
b̂−

+ i~

η+

0
0
η−

 . (4b)

The details are presented in Appendix A.
Now Hat and Hcav are the “effective” atomic and

cavity-field Hamiltonian densities, respectively, which
contain the couplings between all atomic and photonic
degrees of freedom. The effective atomic Hamiltonian
density has the matrix form

Hat =

(
p̂2

2m + ~Û↓(z)− ~δ
2 ~Ω̂R(z)

~Ω̂†R(z) p̂2

2m + ~Û↑(z) + ~δ
2

)
, (5)

with the potential operators

Û↓(z) = U0↓
(
â†+â+ + â†−â− + e−2ikzâ†+â− + e2ikzâ†−â+

)
,

Û↑(z) = U0↑
(
b̂†+b̂+ + b̂†−b̂− + e−2ikz b̂†+b̂− + e2ikz b̂†−b̂+

)
,

(6)

and the two-photon Raman coupling operator

Ω̂R(z) = Ω0R

(
â†+b̂+ + â†−b̂− + e−2ikzâ†+b̂− + e2ikzâ†−b̂+

)
.

(7)
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Here we have introduced the maximum depth of the
optical potential per photon U0τ := 2|Gτ |2/(∆↓+∆↑) and
the maximum two-photon Raman transition frequency
Ω0R := 2G∗↓G↑/(∆↓+∆↑). The former potential depth re-
sults from two-photon scatterings between cavity modes
with the same polarization without changing the atomic
internal state, whereas the latter frequency Ω0R is due
to two-photon scatterings between cavity modes with or-
thogonal polarizations accompanied by an atomic pseu-
dospin flip |↓〉 ↔ |↑〉.

The coherent scattering of photons from a mode back
into itself results in the position-independent energy

shifts (i. e. , the terms â†±â± and b̂†±b̂±) in the potential

operators Ûτ (z), while the scattering of photons from a
mode (say, â+) into its degenerate counterpropagating
mode (i.e., â−) results in the position-dependent terms
proportional to e±2ikz in the potential operators. The
former photon scatterings do not transfer any momentum
to the atom, while the latter scatterings lead to ±2~k mo-
mentum kicks to the atom. These particular processes
are schematically shown in Fig. 3(a) and Fig. 3(b), re-
spectively.

The photon scattering between modes with orthog-
onal polarizations and the same propagation direction

(that is, between â± and b̂±) gives rise to the position-

independent Raman coupling terms (i.e., the terms â†+b̂+
and â†−b̂−) in Ω̂R(z), while scattering between modes
with orthogonal polarizations and opposite propagation

directions (that is, between â± and b̂∓) results in the
position-dependent Raman coupling terms proportional
to e±2ikz in the two-photon Raman coupling operator.
These two-photon Raman processes are illustrated in
Fig. 3(c) and Fig. 3(d). While the atomic pseudospin
is flipped in both Raman processes, there is no net mo-
mentum transfer to the atom in the former processes,
whereas the latter processes impart a ±2~k momentum
to the atom. These latter Raman transition processes
with ±2~k momentum kicks can induce a synthetic spin-
orbit coupling for the atom.

The effective cavity-field Hamiltonian “density” in ma-
trix form is given by

Hcav = ~


−∆̃a U0↓N̂↓ Ω0RŜ− Ω0RŜ(−)

−

U0↓N̂ †↓ −∆̃a Ω0RŜ(+)
− Ω0RŜ−

Ω∗0RŜ+ Ω∗0RŜ
(−)
+ −∆̃b U0↑N̂↑

Ω∗0RŜ
(+)
+ Ω∗0RŜ+ U0↑N̂ †↑ −∆̃b

 ,

(8)

where we have introduced the effective cavity detunings
∆̃a(b) := (∆a(b)+iκ)−U0↓(↑)N̂↓(↑) with the relative cavity
detunings with respect to the pump frequencies ∆a(b) :=
ω̃a(b) − ωa(b) and the particle number operators

N̂τ =

∫
ψ̂†τ (z)ψ̂τ (z)dz. (9)

The off-diagonal coupling operators are given by

N̂τ =

∫
e−2ikzψ̂†τ (z)ψ̂τ (z)dz, (10a)

Ŝ− = Ŝ†+ =

∫
ψ̂†↓(z)ψ̂↑(z)dz, (10b)

Ŝ(±)
− = (Ŝ(∓)

+ )† =

∫
e±2ikzψ̂†↓(z)ψ̂↑(z)dz, (10c)

where Ŝ+ (Ŝ−) is the collective atomic spin raising (low-

ering) operator. The operators N̂τ and Ŝ(±)
± are the

density- (for pseudospin τ) and spin-wave operators, re-
spectively.

The matrix elements of the effective cavity-field Hamil-
tonian density Hcav give the strengths of the two-photon
processes depicted in Fig. 3. The diagonal terms pro-
portional to N̂τ correspond to the processes illustrated
in Fig. 3(a) and result in the dispersive shifts U0τ N̂τ of

the cavity frequencies. Terms proportional to N̂τ (and
their Hermitian conjugates) correspond to the processes
shown in Fig. 3(b) and provide the couplings between
degenerate counterpropagating modes with the same po-
larization. Finally, the matrix elements proportional to

Ŝ± and Ŝ(±)
± correspond to the pseudospin flipping pro-

cesses depicted in Fig. 3(c) and Fig. 3(d), respectively,
and yield the nontrivial couplings between modes with
orthogonal polarizations.

The system possesses a screw-like continuous symme-
try. It is manifested in the invariance of the total effective
Hamiltonian corresponding to Eqs. (4) under a simulta-
neous spatial translation z → z + ∆z, phase rotations of
the unpumped photonic field operators â− → â−e2ik∆z

and b̂+ → b̂+e
−2ik∆z, and phase rotations of the atomic

field operators ψ̂↓ → ψ̂↓e−ik∆z and ψ̂↑ → ψ̂↑e+ik∆z.
Note that the phases of the pumped cavity modes â+

and b̂− are fixed by the cavity pumps η±. The phase

rotation of â− and b̂+ results in a shift of the potential
minima in Eq. (6), defining the position of the atomic-
density maxima. On the other hand, the phase shift of
the atomic field operators leads to rotations of the spin

operators: Ŝ+ → Ŝ+e
−2ik∆z and Ŝ(±)

+ → Ŝ(±)
+ e−2ik∆z.

Hence, a translation in space is tied to a corresponding
rotation of the atomic spin, where the rotation angle di-
rectly depends on the length of the spatial translation
∆z. This leads to a screw-like continuous symmetry.

The system is highly nonlinear. The effective atomic
Hamiltonian density depends on the cavity fields through
the potential Ûτ (z) and the Raman operators Ω̂R(z),
while the effective cavity-field Hamiltonian density de-
pends on the atomic fields via the atomic number N̂τ ,
the density-wave N̂τ , the collective atomic spin Ŝ±, and

the spin-wave Ŝ(±)
± operators. It is this nonlinear dynam-

ics and the nontrivial interplay between various degrees
of freedom which give rise to intriguing phenomena in
our system, as it will be discussed in the subsequent sec-
tions. These nonlinear dynamics and the nontrivial inter-
play between the cavity modes survive even in the strong



5

Figure 3. Schematic visualization of the two-photon Raman processes. The coherent scattering of a photon from a mode into
itself (a) and into the corresponding degenerate counterpropagating mode with the same polarization (b) without changing the

atomic internal state result in position-independent and position-dependent potential terms in Ûτ (z). The coherent scattering
of a photon from a mode into another mode with an orthogonal polarization propagating in the same (c) and opposite (d)
direction, accompanied with the atomic pseudospin flip |↓〉 ↔ |↑〉, gives rise to position-independent and position-dependent

Raman coupling terms in Ω̂R(z), respectively.

pumping limit η± � ωrec, with ωrec := ~k2/2m being
the recoil frequency. Although in the strong pumping

limit the pumped cavity fields {â+, b̂−} behave as classi-

cal fields, the unpumped modes {â−, b̂+} still retain their
quantum nature and behave as dynamical fields.

III. MEAN-FIELD RESULTS

In the following, we restrict our analysis to red-detuned
pump lasers with respect to both bare atomic and cav-
ity frequencies, i.e., {∆↓,↑,∆a,b} < 0. The atoms are
therefore attracted to the intensity maxima of the light
fields, while experiencing cavity cooling. In order to re-
duce the number of free parameters and capture the fun-
damental physics, we further focus on the special case of
a completely symmetric configuration: ∆ := ∆a = ∆b,
η := η+ = η−, δ = 0, and G↓ = G↑ which results in
U0 := U0↓ = U0↑ = Ω0R. Despite these simplifying as-
sumptions, the system is still very complex and gives rise
to intriguing phenomena.

We find the stationary states of the system by self-
consistently solving Eqs. (4)-(10) in the mean-field regime
in the parameter space {η,∆}. This amounts to omit-
ting quantum fluctuations and replacing the atomic and
cavity field operators by their corresponding quantum

averages: ψ̂τ → ψτ := 〈ψ̂τ 〉, âj → αj := 〈âj〉, and

b̂j → βj := 〈b̂j〉. The parameters η and ∆ are related,
respectively, to the intensity and the frequency of the
external pump lasers and can be readily tuned in exper-
iment.

The effective atomic Hamiltonian density (5) is λ/2
periodic. Nonetheless, solving the equations for differ-
ent numbers of unit cells (of length λ/2) reveals that the
atomic condensate wave functions ψτ (z) are λ periodic in
parameter regimes possessing cavity-induced spin-orbit
coupling. Therefore, we always solve the mean-field equa-
tions corresponding to Eqs. (4)-(10) in two unit cells of
total length λ with periodic boundary conditions. The
relation between cavity-induced spin-orbit coupling and
the doubling of the periodicity of the condensate wave

functions will be discussed in more details in Sec. III C.

A. Atomic phase diagram

The mean-field density-wave order parameters Nτ =
〈N̂τ 〉, cf. Eq. (10a), can be used to characterize the den-
sity structure of each BEC component. They quantify
the magnitude of the density modulations of each BEC
component, where a zero density-wave order parameter
corresponds to a homogenous density distribution. Be-
cause of the symmetric choice of the parameters as de-
scribed above, we always find that the absolute values of
the two density-wave order parameters are equal to one
another, |N↓| = |N↑|.

On the other hand, the mean-field local pseudospin
vector s(z) = (sx(z), sy(z), sz(z)) = 〈ψeff(z)|σσσ |ψeff(z)〉,
where |ψeff(z)〉 := (ψ↑(z), ψ↓(z))> and σσσ = (σx, σy, σz)
is the vector of the Pauli matrices, can be used to illus-
trate the spatial spin texture of the steady-states. The
z component of the local pseudospin sz(z) = [|ψ↑(z)|2 −
|ψ↓(z)|2]/2 is zero everywhere in all parameter regimes
due to the symmetric choice of the parameters. There-
fore, the local pseudospin vector always lies in the x-
y plane. We find that the transverse local pseudospin
vector varies in space in all parameter regimes. In
some regimes s(z) exhibits a λ/2-periodic “spin wave”
of ferromagnetic-magnon nature, meaning that the spin
angle φ(z) := arctan(sy(z)/sx(z)) only sweeps a small
sector within the interval [0, π/2] over a λ/2 distance.
While for other parameter regimes, φ(z) sweeps a full
2π angle in the x-y plane over a λ/2 distance, leading
to a λ/2-periodic “spin spiral” of topological Skyrmionic
nature [60, 61]. As a result, the mean-field collective

atomic pseudospins S± = 〈Ŝ±〉 =
∫

[sx(z) ± isy(z)]dz

and the spin-wave order parameters S(±)
± = 〈Ŝ(±)

± 〉 =∫
e±2ikz[sx(z) ± isy(z)]dz, cf. Eqs. (10b) and (10c), ex-

hibit different behaviors in the spin-wave and the spin-
spiral states.

The spin-wave and spin-spiral states can be quantita-
tively distinguished by their distinct topological struc-
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(a) (b) (c)

Figure 4. Spin textures along the cavity axis z in one unit cell of length λ/2 in different phases. The local atomic pseudospin

vector s(z) is shown in the DW-SW phase for the parameters (∆,
√
Nη) = (−20, 20)ωrec (a), the PW-SS phase for (∆,

√
Nη) =

(−20, 30)ωrec (b), and the DW-SS phase for (∆,
√
Nη) = (−20, 50)ωrec (c). The small circles in the lower right corners display

the projection of the spin textures in the x-y plane, where the grey regions indicate the angles swept by the pseudospin vector
over a λ/2 distance. The other parameters are the same as Fig. 2.

tures via an appropriate topological invariant. The rele-
vant topological invariant to characterize the spin texture
of the system is the winding number [63, 64]

W :=
1

2π

∫ λ/2

0

[∂zφ(z)]dz =
φ(λ/2)− φ(0)

2π
, (11)

where φ(z) defines the direction of the local pseudospin
vector s(z) in the x-y plane. Note that the angle φ(z)
is tied to the relative phase between the two condensate
wave functions ψ↓(z) and ψ↑(z). The winding number
essentially counts the number of full rotations of the local
pseudospin vector s(z) around the origin in one unit cell.
Zero winding number corresponds to the topologically
trivial spin-wave state, while a nonzero winding number
(i.e.,W = +1) indicates the topological spin-spiral state.

The atomic phase diagram of the system in the rescaled
parameter space {

√
Nη/ωrec,∆/ωrec} is shown in Fig. 2

and displays three fundamentally different phases. In
the first phase, which corresponds to the region below
the solid red curve in the phase diagram, the density or-
der parameters are nonzero, |Nτ | 6= 0, while the winding
number is zero,W = 0. This implies that the atomic den-
sity distribution nτ (z) = |ψτ (z)|2 has a (λ/2-periodic)
crystalline order and the local pseudospin s(z) exhibits
a (also λ/2-periodic) spin-wave texture. Hence, we refer
to this phase as the density-wave–spin-wave (DW-SW)
state. Recall that |N↓| = |N↑| due to the symmetric
choice of parameters. The amplitude of the density mod-
ulations increases with increasing η, indicated by the in-
creasing density-wave order parameters |Nτ |. Because of
the direct pumping of two of the cavity modes and the
presence of two-photon Raman processes which scatter
photons into the unpumped modes without transfering
momentum to the atoms as shown in Fig. 3(c), there is
no threshold behavior for the onset of the density waves.
This is in contrast to transversally pumped ring cavi-
ties [35, 44] and to the case where both pairs of modes

{â±, b̂±} couple to the same atomic transition [57]. The
angle in the x-y plane which is sweeped by the local pseu-
dospin vector s(z) over a distance of λ/2, is always re-

stricted to the interval [0, π/2] for the entire parameter
regime of the DW-SW phase. Hence, the spin-wave oscil-
lations remain small in this phase. A typical spin-wave
texture in the DW-SW phase is illustrated in Fig. 4(a),
where the local pseudospin vector s(z) exhibits small os-
cillations in the x-y plane. The change in the length of
the local pseudospin vector is due to the density modula-
tions of the condensates. Note that the local pseudospin
vector s(z) always lies in the x-y plane, as sz(z) = 0
owing to the symmetric choice of the parameters.

The second phase, corresponding to the uniform black
region in the phase diagram of Fig. 2, is the plane-wave–
spin-spiral (PW-SS) state. In this regime the density-
wave order parameters are identically zero, |Nτ | = 0,
while the winding number is nonzero, W = 1. Therefore,
the condensate densities are homogeneous in this phase,
while the local pseudospin exhibits a spin-spiral texture.
Figure 4(b) depicts a representative spin-spiral state in
this phase. As indicated by the winding number W = 1,
the local pseudospin vector s(z) sweeps a full 2π angle
over a λ/2 distance. The length of the local pseudospin
vector is constant in space due to the uniform conden-
sate densities in this phase. Note that again the local
pseudospin vector has no z component, sz(z) = 0.

In the third phase, both the density order parameters
and the winding number are nonzero, {|Nτ | 6= 0,W = 1}.
This implies that the density wave and the spin-spiral
coexist in this phase, hence the name density-wave–spin-
spiral (DW-SS) state. The BEC densities exhibit strong
modulations in this phase. The local pseudospin vector
s(z), therefore, inherits this and its length changes dras-
tically in space, while again sweeping a full 2π angle over
a λ/2 distance as shown in Fig. 4(c). As for the other two
phases, the local pseudospin vector lies in the x-y plane
in the DW-SS phase.

For small cavity detuning, ∆ . −9ωrec, the system be-
comes unstable (hashed region in Fig. 2). This is due to
the fact that the effective relative cavity detuning, i.e.,
the dispersively shifted bare relative cavity detuning due
to the presence of the atoms, becomes positive (i.e., blue
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Figure 5. The absolute values of the collective atomic spins |S±| (blue solid curve) and the spin-wave order parameters |S(±)
± |

(red dashed curve) as a function of the rescaled pump strength
√
Nη/ωrec for ∆ = −10ωrec (a) and ∆ = −20ωrec (b). The

collective atomic spins S± are the dominant parameters in the DW-SW phase, while the spin-wave order parameters S(±)
±

are dominant in the PW-SS and DW-SS phases. Both parameters {S±,S(±)
± } exhibit first-order (second-order) characteristics

across the phase transitions between the DW-SW and the DW-SS/PW-SS (between the PW-SS and the DW-SS). The other
parameters are the same as Fig. 2.

detuned) resulting in cavity heating. In contrast to a sin-
gle component BEC in a cavity where the dispersive shift
is solely given by the factor U0N , an analytical expres-
sion for the dispersive shift of the cavity detuning in our
model is nontrivial due to the various dispersive terms
and coupling terms in the effective cavity-field Hamilto-
nian density (8).

The collective atomic spins S± and the spin-wave order

parameters S(±)
± exhibit distinct behaviors in these three

phases. Figures 5(a) and 5(b) show the absolute values

of S± (solid blue curves) and S(±)
± (dashed red curves)

as a function of the rescaled pump strength
√
Nη/ωrec

for constant cavity detunings ∆/ωrec = −10 and −20,
respectively. By increasing the pump strength η from
zero, for ∆ = −10ωrec in Fig. 5(a) the system under-
goes a phase transition from the DW-SW state to the
DW-SS state, while for ∆ = −20ωrec in Fig. 5(b) the
phase transition from the DW-SW to the DW-SS occurs
indirectly via the intermediate PW-SS state (cf. Fig. 2).
While the collective atomic spins S± are nonzero in both
DW-SW and DW-SS phases, it vanishes in the PW-
SS phase. The latter can be understood by the fact
that the local pseudospin vector s(z) has a constant
length over space in the PW-SS phase and it does a
full 2π rotation uniformly over one unit cell, resulting
in S± =

∫
sx(z)dz ±

∫
isy(z)dz = 0. On the other hand

the spin-wave order parameters S(±)
± are nonzero in all

three phases, indicating spin modulations in all regimes.

The winding numberW jumps from zero to one across
the phase transitions from the DW-SW to the PW-
SS/DW-SS, signaling that these are topological phase
transitions (the red solid curve in the phase diagram in
Fig. 2, which is somewhat ragged due to the extremely
slow convergence of numerics around these phase bound-
aries). In addition, the density-wave order parameters

Nτ , the collective atomic spins S±, and the spin-wave

order parameters S(±)
± exhibit discontinuous behaviors

on the onset of these phase transitions (see Figs. 2 and
5). This indicates that the topological phase transitions
from the DW-SW state to the PW-SS/DW-SS states also
have first-order characteristics.

Although the atomic parameters {Nτ , S±,S(±)
± }

change continuously across the PW-SS to DW-SS phase
transition [see Figs. 2 and 5(b)], they exhibit nonana-
lytical behavior, a characteristic of a second-order phase
transition. Therefore, the phase transition from the PW-
SS to the DW-SS is second order (yellow dashed curve
in the phase diagram in Fig. 2). Note that the winding
number W is one in both phases, and therefore it does
not change across this phase transition.

The phase boundary between the DW-SW and PW-
SS phases is linear, whereas the other phase boundaries
show more complex behaviors. All phase boundaries with
different natures (i.e., topological first-order, and topo-
logically trivial second-order phase transitions) meet at
a single tricritical point, denoted by a green dot in the
phase diagram in Fig. 2.

B. Cavity-field phase diagram

The mean-field amplitudes of the unpumped cavity
modes α− and β+ can be exploited as the cavity-field or-
der parameters to further characterize the system. The
inset of Fig. 2 shows the absolute values of the rescaled
unpumped modes |α−|/

√
N = |β+|/

√
N in the rescaled

parameter space {
√
Nη/ωrec,∆/ωrec}. The absolute val-

ues of the unpumped modes are equal to each other
once again due to the symmetric choice of the param-
eters. The cavity-field phase diagram has a similar
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Figure 6. The absolute values of the cavity-field order parameters |α−|/
√
N = |β−|/

√
N (blue solid curve) an the winding

numberW (red dashed curve) as a function of the rescaled pump strength
√
Nη/ωrec for ∆ = −10ωrec (a) and ∆ = −20ωrec (b).

The cavity-field order parameters display first-order (second-order) characteristics across the phase transitions from the DW-
SW to the PW-SS/DW-SS (from the PW-SS to the DW-SS). The first-order phase transition coincides with the topological
phase transition, where the winding number W jumps from zero to one. The other parameters are the same as Fig. 2.

form as the atomic phase diagram. In particular, the
field phase boundaries coincide precisely with the atomic
phase boundaries. The field order parameters {α−, β+}
are nonzero in the DW-SW and DW-SS phases and in-
crease monotonically by increasing pump strength. How-
ever, they are identically zero in the entire PW-SS phase.
This can be understood by noting that the density-order
parameters Nτ and the collective spins S± are zero in
this regime as discussed above. The dynamics of the
two umpumped modes {α−, β+} then decouple com-
pletely from the pumped ones {α+, β−} [see Eq. (8)],
and, therefore, no photons are scattered into these un-
pumped modes in this phase. This leads to uniform po-
tentials and Raman coupling [see Eqs. (6) and (7)], which
in turn results in homogeneous condensate densities in a
self-consistent manner. This signifies the nonlinear dy-
namical nature of the system.

Figures 6(a) and 6(b) show cuts through the field phase

diagram along the rescaled pump strength
√
Nη/ωrec at

constant cavity detunings ∆/ωrec = −10 and −20, to-
gether with the corresponding winding numbers W. The
field-order parameters {α−, β+} exhibit similar behavior

as the atomic parameters {Nτ , S±,S(±)
± }. They display

first-order (second-order) characteristics across the phase
transitions from the DW-SW state to the PW-SS/DW-SS
states (from the PW-SS state to the DW-SS phase), in ac-
cordance with the atomic phase transitions. Likewise, the
first-oder phase transition coincides with the topological
phase transition, where the winding W jumps from zero
to one. Therefore, there is a one to one correspondence

between the atomic parameters {Nτ , S±,S(±)
± } on the

one hand and the cavity-field order parameters {α−, β+}
on the other hand. As a consequence, all the quantum
phase transitions (and their natures) can be mapped out
nondestructively through the cavity outputs. This is an
important and distinct feature of the system.

C. Atomic momentum distributions and
cavity-induced spin-orbit coupling

The discrete momentum exchange between the atoms
and the light fields allows the decomposition of the
condensate wave functions into plane waves ψτ (z) =∑∞
j=−∞ cτ,je

ijkz. The absolute values of the probabil-
ity amplitudes cτ,j of the lowest six momentum states
j ∈ {0,±1,±2,+3} in the rescaled parameter space

{
√
Nη/ωrec,∆/ωrec} for each condensate component τ

are shown in Fig. 7. Note that the even and odd momen-
tum states do not coexist together. The boundary sepa-
rating even and odd momenta coincides precisely with
the topological phase boundary between the DW-SW
state and the PW-SS/DW-SS states, illustrated in Fig. 2.
The region where even (odd) momenta are occupied cor-
responds to the DW-SW (PW-SS or DW-SS) phase. In
the DW-SW phase the zero momentum cτ,0 is the dom-
inant state for both condensates and the nonzero higher
momenta result in density modulations. In the PW-SS
phase, the condensate wave functions are solely composed
of one momentum component |c↓,1| = |c↑,−1| = 1/

√
2, as

expected for a homogeneous condensate. While in the
DW-SS phase, higher odd momenta are also populated,
leading to density modulations. For the sake of clarity,
vertical cuts along the rescaled pump strength

√
Nη/ωrec

for constant cavity detuning ∆ = −20ωrec of these mo-
mentum phase diagrams are also shown in Fig. 8.

The phase boundaries where the even momenta com-
pletely deplete and the odd momenta are populated coin-
cide exactly with the first-order topological phase tran-
sitions from the DW-SW state to the PW-SS/DW-SS
state. That is, the onset of the occupation of the odd
momenta marks the appearance of spin spirals and the
discrete jump of the winding numberW from zero to one;
cf. Figs. 5(b), 6(b) and 8. This is intimately connected to
the emergence of cavity-induced spin-orbit coupling for
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Figure 7. The absolute values of the probability amplitudes
cτ,j of the lowest six momentum states j ∈ {0,±1,±2,+3}
for each condensate component τ in the parameter space
{
√
Nη/ωrec,∆/ωrec}. For the the sake of clarity, vertical

cuts of these diagrams for fixed ∆ = −20ωrec are presented
in Fig. 8. The other parameters are the same as Fig. 2.

the atoms. The transition from the even to the odd mo-
menta can be triggered and relaxed by (even very weak)
two-body contact interactions, which are not included
explicitly in our model.

The emergence of cavity-induced spin-orbit coupling
can be most easily seen in the PW-SS phase, where the
umpumped cavity modes {α−, β+} are zero. The effec-
tive atomic Hamiltonian density (5) in the mean-field
approximation then simplifies to

HSOC =
1

2m
(pI2×2 − ~kσz)2 +

~U0

2
(|α+|2 − |β−|2)σz

+ ~Ω0R

(
α∗+β−σ↓↑ + α+β

∗
−σ↑↓

)
, (12)

after applying a unitary transformation [45]. Here I2×2

is the identity matrix in the pseudospin space, σz is the
third Pauli matrix and σ↓↑ and σ↑↓ are the transition ma-
trices in the pseudospin basis. The Hamiltonian (12) has
exactly the form of an equal Rashba-Dresselhaus spin-
orbit coupled Hamiltonian, saving that the the Raman
coupling now depends on the cavity fields {α+, β−} and is

Figure 8. The absolute values of the probability amplitudes
cτ,j of the lowest six momentum states j ∈ {0,±1,±2,+3}
for each condensate component τ as a function of

√
Nη/ωrec

for a constant ∆ = −20ωrec. The even and odd momenta do
not coexist. In the onset of the first-order topological phase
transition from the DW-SW state to the PW-SS phase, the
even momenta completely deplete and give way to the odd
momenta. The other parameters are the same as Fig. 2.

determined self-consistently. This Hamiltonian has been
studied before in Refs. [45, 46, 48] and indeed exhibits
characteristics of spin-orbit coupled quantum gases, with
extra features resulting from the dynamical nature of the
synthetic spin-orbit coupling.

The effect of the spin-orbit coupling can be seen in the
momentum distributions of the condensate wavefuctions
in the PW-SS phase, where different pseudospin states
are coupled to different momentum states. That is, the
pseudospin down is solely coupled to the +~k momentum
(recall that in the PW-SS phase |c↓,1| = 1/

√
2), while

the the pseudospin up is only coupled to the −~k mo-
mentum (|c↑,−1| = 1/

√
2). Since the PW-SS phase sets

in at large pump strengths η, the effective Raman transi-
tion rate Ω0Rα

∗
+β− is, therefore, always large. Hence, the

single-particle energy dispersion of the spin-orbit coupled
Hamiltonian (12) possesses a single minimum at p = 0,
as expected for large Raman transition rates [12]. This is
also the reason that both condensates have equal particle
numbers, |c↓,1| = |c↑,−1| = 1/

√
2, as the state at p = 0

has an equal contribution from the up and down compo-
nents due to the symmetric choice of the parameters.

Despite of the fact that in the DW-SS phase the ef-
fective atomic Hamiltonian density (5) cannot be re-
cast in the usual form of the equal Rashba-Dresselhaus
spin-orbit-coupled Hamiltonian (12), the cavity-induced
synthetic spin-orbit coupling still manifests itself in the
momentum distributions of the condensate wave func-
tions. Although higher odd momenta are also popu-
lated, the ±~k momenta are still the dominant states,
and different pseudospin states are strongly coupled to
solely one of them, |c↓,1| = |c↑,−1| . 1/

√
2. This is in

sharp contrast to the DW-SW phase, where both pseu-
dospin states couple to the same zero momentum state,
|c↓,0| = |c↑,0| . 1/

√
2, resulting in no cavity-induced
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spin-orbit coupling.

The period doubling of the condensate wave functions
in the spin-orbit coupled PW-SS and DW-SS regimes,
as it was mentioned at the beginning of Sec. III, can
be understood through the momentum decomposition of
the wave functions in these phases. In these spin-orbit
coupled states, the condensate wave functions ψτ (z) =∑∞
j=−∞ cτ,2j+1e

i(2j+1)kz are composed of solely odd mo-
menta and are, therefore, λ periodic. This is in contrast
to the λ/2 periodicity of the condensate wave functions
ψτ (z) =

∑∞
j=−∞ cτ,2je

2ijkz in the DW-SW state (which

are comprised of only even momenta) and the Hamilto-
nian density (5).

The unpumped cavity modes {â−, b̂+} play an impor-
tant role in the emergence of cavity-induced spin-orbit
coupling beyond a threshold for the pump-strength. This
can be understood by re-examining the possible spin flip-
ping processes in the system (see Fig. 3). The essential
photon-scattering processes for the spin-orbit coupling
are the ones depicted in Fig. 3(d), where photons are

scattered between the modes â± ↔ b̂∓ (via the atomic
pseudospin flipping |↓〉 ↔ |↑〉) and a ±2~k momentum
is transferred to the atom. Whereas the scattering pro-
cesses shown in Fig. 3(c), where photons are scattered

between the modes â± ↔ b̂± (again via the atomic pseu-
dospin flipping |↓〉 ↔ |↑〉) without any momentum kick to
the atom, are not vital for the spin-orbit coupling. How-
ever, triggering the former processes costs more energy
than the latter ones due to the atomic kinetic energy
gain. Therefore, for lower pump strengths (i.e., in the
DW-SW phase) the spin flipping processes with no mo-
mentum kick to the atoms are energetically favored and
are the dominant processes. The essential spin-orbit cou-
pling processes become energetically favored and domi-
nant beyond the pump-strength threshold on the onset
of the PW-SS and DW-SS states, where the sum of the
kinetic energies of the odd momenta becomes less than
the corresponding even ones.

The interplay between spin flipping processes with and
without momentum transfer to the atom can be seen by
comparing the collective atomic spins S± and the spin-

wave order parameters S(±)
± . Recall that S± (S(±)

± ) quan-
tifies the spin flipping processes without (with ±2~k) mo-
mentum kick to the atom. As can be seen from Fig. 5,
the collective spins S± are the dominant quantities in
the DW-SW phase, while the spin-wave order parameters

S(±)
± become dominant only in the PW-SS and DW-SS

phases. Consequently, cavity-induced spin-orbit coupling
emerges only in the PW-SS and DW-SS regimes. This
is in sharp contrast to the free space spin-orbit-coupled
BEC, where spin-orbit coupling emerges at an infinitesi-
mal Raman frequency [12].
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Figure 9. Real part of the five lowest-lying collective exci-
tations of the system for ∆ = −20ωrec as a function of the
rescaled pump strength

√
Nη/ωrec. The other parameters are

the same as Fig. 2.

IV. COLLECTIVE EXCITATIONS

In order to check the stability of our mean-field results
and to obtain a deeper understanding of the system, we
calculate the collective excitations of the system above
the mean-field steady-states. To this end, we linearize
the Heisenberg equations of motion (4) for quantum
fluctuations of both atomic condensate wave functions
δψτ (x, t) = δψ

(+)
τ (x)e−iωt + [δψ

(−)
τ (x)]∗eiω

∗t, and field

mode fluctuations δα±(t) = δα
(+)
± e−iωt + [δα

(−)
± ]∗eiω

∗t

and δβ±(t) = δβ
(+)
± e−iωt + [δβ

(−)
± ]∗eiω

∗t around the
mean-field stationary solutions {ψ0τ (x), α0±, β0±}. The
linearized equations can be recast in matrix form,

ωf = MBf (13)

where f is a vector composed of the atomic condensate

and the field-mode fluctuations {δψ(±)
τ , δα

(±)
± , δβ

(±)
± } and

MB is a (nonhermitian) Bogoliubov matrix. We relegate
the details to Appendix B.

We numerically diagonalize the Bogoliubov matrix MB

as a function of the pump strength to obtain the collective
excitation spectrum ω(η). Figure 9 shows the real part
of the five lowest lying positive-frequency excitations of
the system as a function of the rescaled pump strength√
Nη/ωrec at a fixed cavity detuning ∆ = −20ωrec.

In the DW-SW regime corresponding to
√
Nη .

27ωrec, there exists a gapless Goldstone mode, i. e.
Re(ω) = 0. This is associated with the spontaneously
broken continuous screw-like symmetry of the system in
this regime. This symmetry breaking is a consequence of
the occupation of the even (in particular, the zero) mo-
mentum states in this phase, which leads to wave func-
tions of the form ψτ (z) = (cτ,0+cτ,±2e

±2ikz+. . . ). A spa-
tial translation of the wave functions ψτ (z)→ ψτ (z+∆z)
cannot be compensated by the phase rotation of the
condensate wave functions ψ↓ → ψ↓e−ik∆z and ψ↑ →
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ψ↑eik∆z, because of the occupation of the zero momen-
tum state cτ,0 6= 0. Hence, the condensate wave functions
in the DW-SW regime are not invariant under the con-
tinuous symmetry group of the Hamiltonian and, there-
fore, they spontaneously break the continuous symme-
try of the system. The appearance of this extra gapless
Goldstone mode, in addition to the gapless phonon mode
resulting from the spontaneous breaking of the internal
gauge symmetry which is not shown here, indicates that
the DW-SW state is a supersolid, i. e. a state with two
spontaneously broken continuous symmetries [14, 28, 44].
A supersolid has the characteristics of both a crystal and
a superfluid, that is, it is a state with a long-range peri-
odic density order which can flow without experiencing
any friction force.

For infinitely small values of η, the collective excita-
tions at frequencies ∼ ωrec are fourfold degenerate. These
excitations correspond to condensate fluctuations of both
BEC components at momenta ±~k. With increasing η,
one of these branches approaches the zero energy. The
point where this excitation branch touches zero coincides
exactly with the mean-field critical pump strength for the
phase transition from the DW-SW state to the PW-SS
phase (dashed line in Fig. 9). As soon as the gap of
the lowest ±~k branch closes, the odd momenta become
the lower energy states and the synthetic spin-orbit cou-
pling emerges. Hence, it is the interplay between the two
lowest even and odd excitation branches (solid red and
dotted blue in Fig. 9) that leads to emergent spin-orbit
coupling in this system.

In the PW-SS regime all excitation branches are dou-
bly degenerate and gapped, indicating that the continu-
ous symmetry of the system is not broken. This is in-
tuitively obvious since the spin spiral with no density
modulation perfectly respects the screw-like symmetry
of the system. This can be seen most readily by the
fact that the condensate wave functions ψ↓(z) = c↓,1eikz

and ψ↑(z) = c↑,−1e
−ikz are invariant under the screw-like

symmetry transformation: ψ↓(z)→ ψ↓(z+ ∆z)e−ik∆z =
ψ↓(z) and ψ↑(z)→ ψ↑(z + ∆z)eik∆z = ψ↑(z).

With further increasing pump strength η the degener-
ate branches start to split up at the value of η which
perfectly coincides with the mean-field critical pump
strength for the phase transition from the PW-SS state
to the DW-SS regime (horizontal dash dotted line). One
of the excitation branches (dashed black curve) exhibits
an exotic “quasi” gapless-mode behavior in large pump
strengths. This can be understood by examining the con-
densate wave functions in this regime. For the sake of
simplicity we restrict our argument to one pseudospin,
say, ψ↓(z) = (c↓,1eikz + c↓,−1e

−ikz + c↓,3e3ikz + . . . ). In
general, this state is not invariant under the screw-like
symmetry transformation ψ↓(z) → ψ↓(z + ∆z)e−ik∆z 6=
ψ↓(z). That said, at the onset of the DW-SS state c↓,1 is
the dominant probability amplitude in this expansion as
can be seen from Fig. 7, i.e., |c↓,1| � {|c↓,−1|, |c↓,3|, · · · }.
Therefore, this wave function can be approximated as
ψ↓(z) ' c↓,1eikz, which approximately preserves the

screw-like symmetry of the system. For larger pump
strengths, however, the higher momentum-state coeffi-
cients are not negligible anymore, resulting in a state
which breaks the screw-like symmetry of the system.
This leads to the appearance of a quasi gapless mode ∼
0ωrec at large η, which never reaches the zero energy ex-
actly because c↓,1 remains dominant throughout the en-
tire regime. This is in stark contrast to the DW-SW
state, where even in the onset of this phase at very small
pump strengths the screw-like symmetry is broken com-
pletely. This is due to the dominant population of the
zero momentum state |cτ,0| � {|cτ,±2|, |cτ,±4|, · · · } in
this entire regime (recall that the zero momentum state
is the one that breaks the screw-like symmetry of the
system in the DW-SW state).

It should be mentioned that imaginary parts of the
collective excitations remain remarkably small for a dis-
sipative system, i. e. κ 6= 0. This is a hint for the dynam-
ical stability of the phases which is also confirmed by
performing a real time evolution of the stationary state
solutions.

V. CONCLUSION AND OUTLOOK

We theoretically studied an effective two-component
BEC inside a ring cavity, which possesses two pairs of
nearly resonant running-wave modes with orthogonal po-
larizations. Our proposed model takes into account both
atomic internal and external degrees of freedom, as well
as the field amplitude and polarizations degrees of free-
dom. We predict that even in the simplest symmetric
choice of parameters, the interplay between various de-
grees of freedom already results in novel phases and ex-
otic quantum phase transitions of different natures. All
the phases and the quantum phase transitions between
them can be readily realized by solely tuning the frequen-
cies and powers of the pump lasers, relevant parameters
in cavity-QED experiments [26, 27, 62]. Remarkably, all
the quantum phase transitions, including the topologi-
cal one, can be monitored directly through the cavity
outputs. Our proposal can be implemented with minor
modifications to state-of-the-art experiments in cavity
QED [19, 20, 25, 26, 62, 65–67] and it may open a new di-
rection for studying topological effects in ultracold atoms
via in situ monitoring. Additional physics may arise for
asymmetric choices of the parameters as well as the in-
clusion of large two-body contact interactions. However,
we leave the investigation of these interesting issues for
future works.
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Appendix A: Adiabatic Elimination of the excited
state

Here we demonstrate how the model given in Eq. (4)
can be obtained from the single-particle Hamiltonian
density (1). The single-particle Hamiltonian density (1)
can be transferred into the rotating frame of the pump
lasers through H̃ = UHU† + i~(∂tU)U† and exploiting
the unitary transformation

U = exp
{
i
[
(â†+â+ + â†−â− − σ̂↓↓)ω̃a

+(b̂†+b̂+ + b̂†−b̂− − σ̂↑↑)ω̃b
]
t
}
.

The corresponding many-body Hamiltonian expressed in
the formalism of second quantization then reads,

H =

∫
dzΨ̂

†MΨ̂− ~
∑
j=+,−

(
∆aâ

†
j âj + ∆bb̂

†
j b̂j

)
+ i~

[
η+â

†
+ + η−b̂

†
− −H.c.

]
, (A1)

where Ψ̂(z) = (ψ̂↓(z), ψ̂↑(z), ψ̂e(z))T, and

M =

 p̂2

2m − ~δ
2 0 M13

0 p̂2

2m + ~δ
2 M23

M31 M32
p̂2

2m − ~
2 (∆↓ + ∆↑)

 , (A2)

with the elements

M31 =M†13 = ~G↓
(
eikzâ+ + e−ikzâ−

)
,

M32 =M†23 = ~G↑
(
eikz b̂+ + e−ikz b̂−

)
. (A3)

The constant term [(ω↓+ω̃a)/2+(ω↑+ω̃b)/2]I3×3 is omit-
ted. The dynamics of the atomic and cavity field opera-
tors can be determined by simultaneously solving the fol-

lowing Heisenberg equations of motion i~∂tψ̂τ = [ψτ , H]

and i~∂tâj/b̂j = [âj/b̂j , H] − i~κâj/b̂j . Substituting the
Hamiltonian (A1) leads to the following set of coupled

differential equations

i~
∂

∂t
ψ̂↓ =

(
p̂2

2m
− ~

2
δ

)
ψ̂↓ + ~G∗↓

(
e−ikzâ†+ + eikzâ†−

)
ψ̂e,

i~
∂

∂t
ψ̂↑ =

(
p̂2

2m
+

~
2
δ

)
ψ̂↑ + ~G∗↑

(
e−ikz b̂†+ + eikz b̂†−

)
ψ̂e,

i~
∂

∂t
â+ = −~(∆a + iκ)â+ + ~G∗↓

∫
dze−ikzψ̂†↓ψ̂e + i~η+,

i~
∂

∂t
â− = −~(∆a + iκ)â− + ~G∗↓

∫
dzeikzψ̂†↓ψ̂e,

i~
∂

∂t
b̂+ = −~(∆b + iκ)b̂+ + ~G∗↑

∫
dze−ikzψ̂†↑ψ̂e,

i~
∂

∂t
b̂− = −~(∆b + iκ)b̂− + ~G∗↑

∫
dzeikzψ̂†↑ψ̂e + i~η−.

(A4)

If the relative atomic detunings ∆↑ and ∆↓ are large com-
pared to the two-photon detuning δ and the atom-photon
couplings G↑ and G↓, the atomic excited state reaches
a steady-state on a short time scale and its dynamics

can be eliminated adiabatically. By setting ∂tψ̂e = 0 in

the Heisenberg equation of motion for ψ̂e and omitting
the kinetic energy compared to the term proportional to
~(∆↑ + ∆↓), we obtain the steady-state field operator of
the atomic excited state

ψ̂ss
e '

2

(∆↓ + ∆↑)

[
G↓
(
eikzâ+ + e−ikzâ−

)
ψ̂↓

+ G↑
(
eikz b̂+ + e−ikz b̂−

)
ψ̂↑
]
. (A5)

This steady-state field operator can be substituted into
the Heisenberg equations of motion (A4) resulting in a

set of six coupled nonlinear equations for {ψ̂↓, ψ̂↑, â±, b̂±}
given in Eq. (4).

Appendix B: Linearized equations

In this appendix we describe the calculations leading to
the collective excitation spectrum presented in section IV
in more detail. Plugging the ansatz ψτ (x, t) = ψ0τ (x) +
δψ(x, t), α±(t) = α±0 +δα±(t) and β±(t) = β±0 +δβ±(t)
into the mean field version of Eq. (4) and performing the
Bogoliubov transformation as it is already discussed in
section IV leads to the following linearized equations for
the modes
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ωδα
(+)
+ = −∆̃aδα

(+)
+ + U0↓N↓δα(+)

+ + Ω0RS−δβ
(+)
+ + Ω0RS(1/2)

− δβ
(+)
− + U0↓A↓+∗δψ

(+)
↓ + U0↓A↓+δψ

(−)
↓ + Ω0RB↓+∗δψ

(+)
↑ + Ω0RB↑+δψ

(−)
↓ ,

ωδα
(−)
+ = ∆̃∗aδα

(−)
+ − U0↓N ∗↓ δα

(−)
− − Ω∗0RS

∗
−δβ

(−)
+ − Ω∗0RS

(1)∗
− δβ

(−)
− − U0↓A↓∗+∗δψ

(−)
↓ − U0↓A↓∗+ δψ

(+)
↓ − Ω∗0RB↓∗+∗δψ

(−)
↑ − Ω∗0RB↑∗+ δψ

(+)
↓ ,

ωδα
(+)
− = −∆̃aδα

(+)
− + U0↓N ∗↓ δα

(+)
+ + Ω0RS−δβ

(+)
− + Ω0RS(2)

− δβ
(+)
+ + U0↓A↓−∗δψ

(+)
↓ + U0↓A↓−δψ

(−)
↓ + Ω0RB↓−∗δψ

(+)
↑ + Ω0RB↑−δψ

(−)
↓ ,

ωδα
(−)
− = ∆̃∗aδα

(−)
− − U0↓N↓δα(−)

+ − Ω∗0RS
∗
−δβ

(−)
− − Ω∗0RS

(2)∗
− δβ

(−)
+ − U0↓A↓∗−∗δψ

(−)
↓ − U0↓A↓∗− δψ

(+)
↓ − Ω∗0RB↓∗−∗δψ

(−)
↑ − Ω∗0RB↑∗− δψ

(+)
↓ ,

ωδβ
(+)
+ = −∆̃aδβ

(+)
+ + U0↑N↑δβ(+)

− + Ω∗0RS
∗
−δα

(+)
+ + Ω0RS(2)∗

− δα
(+)
− + U0↑B↑+∗δψ

(+)
↑ + U0↑B↑+δψ

(−)
↑ + Ω∗0RA↑+∗δψ

(+)
↓ + Ω∗0RA↓+δψ

(−)
↑ ,

ωδβ
(−)
+ = ∆̃∗aδβ

(−)
+ − U0↑N ∗↑ δβ

(−)
− − Ω0RS−δα

(−)
+ − Ω0RS(2)

− δα
(−)
− − U0↑B↑∗+∗δψ

(−)
↑ − U0↑B↑∗+ δψ

(+)
↑ − Ω0RA↑∗+∗δψ

(−)
↓ − Ω0RA↓∗+ δψ

(+)
↑ ,

ωδβ
(+)
− = −∆̃aδβ

(+)
− + U0↑N ∗↑ δβ

(+)
+ + Ω∗0RS

∗
−δα

(+)
− + Ω∗0RS

(1)∗
− δα

(+)
+ + U0↑B↑−∗δψ

(+)
↑ + U0↑B↑−δψ

(−)
↑ + Ω∗0RA↑−∗δψ

(+)
↓ + Ω∗0RA↓−δψ

(−)
↑ ,

ωδβ
(−)
− = ∆̃∗aδβ

(−)
− − U0↑N↑δβ(−)

+ − Ω0RS−δα
(−)
− − Ω0RS(1)

− δα
(−)
+ − U0↑B↑∗−∗δψ

(−)
↑ − U0↑B↑∗− δψ

(+)
↑ − Ω0RA↑∗−∗δψ

(−)
↓ − Ω0RA↓∗− δψ

(+)
↑ ,

(B1)

where we introduced the following shorthand notations

A↓↑± ξ : =

∫
A↓↑± ξdz,

A↓↑±∗ξ : =

∫
A↓↑±∗ξdz,

B↓↑± ξ : =

∫
B↓↑± ξdz,

B↓↑±∗ξ : =

∫
B↓↑±∗ξdz, (B2)

with

A↓↑± = ψ↓↑0
(
α0± + e∓2ikzα0∓

)
,

A↓↑±∗ = ψ↓↑∗0

(
α0± + e∓2ikzα0∓

)
,

B↓↑± = ψ↓↑0
(
β0± + e∓2ikzβ0∓

)
,

B↓↑±∗ = ψ↓↑∗0

(
β0± + e∓2ikzβ0∓

)
. (B3)

The linearized equations for the atomic degrees of free-
dom read in

ωδψ
(+)
↓ =

1

~
[D↓,1 − µ] δψ

(+)
↓ + ~ΩR(z)δψ

(+)
↑ + U0↓

(
A↓∗+∗δα

(+)
+ +A↓∗−∗δα

(+)
− +A↓+δα

(−)
+ +A↓−δα

(−)
−
)

+ Ω0R

(
B↑+δα

(−)
+ +B↑−δα

(−)
− +A↑∗+∗δβ

(+)
+ +A↑∗−∗δβ

(+)
−
)
,

ωδψ
(−)
↓ = −1

~
[D↓,1 − µ]

∗
δψ

(−)
↓ − ~Ω∗R(z)δψ

(−)
↑ − U0↓

(
A↓+∗δα

(−)
+ +A↓−∗δα

(−)
− +A↓∗+ δα

(+)
+ +A↓∗− δα

(+)
−
)

− Ω∗0R

(
B↑∗+ δα

(+)
+ +B↑∗− δα

(+)
− +A↑+∗δβ

(−)
+ +A↑−∗δβ

(−)
−
)
,

ωδψ
(+)
↑ =

1

~
[D↑,2 − µ] δψ

(+)
↑ + ~Ω∗R(z)δψ

(+)
↓ + U0↑

(
B↑∗+∗δβ

(+)
+ +B↑∗−∗δβ

(+)
− +B↑+δβ

(−)
+ +B↑−δβ

(−)
−
)

+ Ω∗0R

(
B↓∗+∗δα

(+)
+ +B↓∗−∗δα

(+)
− +A↓+δβ

(−)
+ +A↓−δβ

(−)
−
)
,

ωδψ
(−)
↑ = −1

~
[D↑,2 − µ]

∗
δψ

(−)
↑ − ~ΩR(z)δψ

(−)
↓ − U0↑

(
B↑+∗δβ

(−)
+ +B↑−∗δβ

(−)
− +B↑∗+ δβ

(+)
+ +B↑∗− δβ

(+)
−
)

− Ω0R

(
B↓+∗δα

(−)
+ +B↓−∗δα

(−)
− +A↓∗+ δβ

(+)
+ +A↓∗− δβ

(+)
−
)
, (B4)

where we introduce the shorthand notation D↓↑,i :=

− p2

2m + ~U↓↑(z) + (−1)i ~δ2 and µ denotes the chemical
potential.

The set of equations (B1) and (B4) can be written in
matrix form which results in Eq. (13). Since we do not

have an analytical steady-state solution for the conden-
sate wave functions and the cavity modes, we numerically
diagonalize the Bogoliubov matrix for a numerically de-
termined steady-state solution to obtain the collective
excitation spectrum presented in Fig. 9.
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[12] Y.-J. Lin, K. Jiménez-Garćıa, and I. B. Spielman, Nature
471, 83 (2011).

[13] Z. Wu, L. Zhang, W. Sun, X.-T. Xu, B.-Z. Wang, S.-C.
Ji, Y. Deng, S. Chen, X.-J. Liu, and J.-W. Pan, Science
354, 83 (2016).

[14] J.-R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas,
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