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We consider spinless fermions on a finite one-dimensional lattice, interacting via nearest-neighbor
repulsion and subject to a strong electric field. In the non-interacting case, due to Wannier-Stark
localization, the single-particle wave functions are exponentially localized even though the model has
no quenched disorder. We show that this system remains localized in the presence of interactions and
exhibits physics analogous to models of conventional many-body localization (MBL). In particular,
the entanglement entropy grows logarithmically with time after a quench, albeit with a slightly
different functional form from the MBL case, and the level statistics of the many-body energy
spectrum are Poissonian. We moreover predict that a quench experiment starting from a charge-
density wave state would show results similar to those of Schreiber et al. [Science 349, 842 (2015)].

Introduction. In the latter half of the twentieth cen-
tury, pioneering work by Anderson [1] and collaborators
[2] established that the eigenfunctions of a quantum par-
ticle moving in a disordered potential landscape in one
or two dimensions are exponentially localized. In the
beginning of the twenty-first century, it was [3–5] that
showed that this localization can persist even for finite
densities of fermions with repulsive interparticle interac-
tions, a phenomenon now termed many-body localization
(MBL) [6].

Subsequent theoretical work has explored the disorder-
driven transition from ergodic to MBL behavior in a
variety of mostly one-dimensional models. Key results
include the ‘l-bit’ picture of the MBL regime [7], the
logarithmic growth of entanglement entropy following a
quench into it [8, 9], and subdiffusive transport of spin
and energy in the approach to the MBL transition from
the ergodic side [10, 11]. Significant progress has also
been made in the experimental study of MBL in one-
and two-dimensional systems of cold atoms [12–14].

It is natural to ask whether disorder is at all essen-
tial ingredient for observing MBL phenomenology, or
whether it is possible for thermalization to fail for rea-
sons due to interactions alone. This can happen when
the system is integrable, but such cases constitute iso-
lated points in parameter space, with arbitrarily small
generic variations in the Hamiltonian parameters restor-
ing ergodicity. An important question is then whether
there can be robust non-ergodic phases in models with-
out quenched disorder. There have so far been several
proposals for this, ranging from models inspired by clas-
sical glassy physics [15, 16] to variants of the Bose Hub-
bard model [4, 17]; however, there are also counterargu-
ments that the localization in some of these systems is a
long-lived intermediate-time phenomenon which eventu-
ally yields to thermalization at very long times [18, 19].

Here, we approach the question of MBL without dis-
order from a different angle, by introducing interactions

into a single-particle model that exhibits Wannier-Stark
localization [20]. It is instructive to compare the re-
sulting physics, which we call Stark many-body local-
ization, with the well known many-body disorder local-
ized (MBL) case. The comparison is interesting because
in both cases the single-particle eigenfunctions are expo-
nentially localized in space, and thus one might expect
at least some MBL signatures also to be present in the
disorder-free Stark-MBL case.

Specifically, we study the properties of spinless
fermions on a finite one-dimensional lattice. The
fermions interact via nearest-neighbor repulsion, and we
subject them to a strong electric field: either a strictly
spatially uniform one, for which the non-interacting
many-body spectrum contains many exact degeneracies,
or a field with a slight spatial gradient, for which these
degeneracies are lifted. The setup is depicted in Fig. 1.

For fields with slight spatial gradients, we find that
Stark-MBL is robust and shares many similarities with
MBL. Specifically, the entanglement entropy grows log-
arithmically with time after a quench (Fig. 2), and
the many-body eigenenergies of the Stark-MBL problem
generically show Poissonian level statistics (Fig. 3). We
moreover predict the results in our Stark-MBL system of
a quench experiment starting from a charge-density wave
state of the type conducted in [12], and we obtain graphs
similar to those seen in the MBL case. Interestingly, for a
strictly uniform field, entropy and level statistics deviate
from MBL phenomenology, which we attribute to exact
degeneracies in the non-interacting spectrum.

Model. The Hamiltonian of our model is

Ĥ =
J
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FIG. 1. Schematic illustration of our model. On a finite lat-
tice in one dimension, the single particle states of spinless
fermions, which can delocalize via hopping J , are exponen-
tially localized via a strong electric field. For a purely uniform
field (i.e. a linear electric potential), this is usually referred
to as Wannier-Stark localization [20]. When the particles in-
teract via nearest-neighbor interactions V , they share many
properties with the well studied MBL phenomenology.

Here the operator c†j creates a fermion on lattice site j,

and the associated number operator nj = c†jcj . J/2 is
the hopping matrix element between neighboring sites,
V is the strength of the nearest-neighbor repulsion, and
L is the number of sites of the lattice, the boundary con-
ditions of which we take to be open.

Wj is the on-site potential energy due to the applied
electric field. For a uniform field γ, it takes the form
Wj = −γj. For a non-uniform field, it acquires some
curvature, Wj = −γj + αj2/L2. This means that the
potential has the same value and slope as the linear one
at j = 0, but differs at the other end of the chain by α
from the purely linear case (see the inset of Fig. 2).

Entanglement entropy growth. A quantity that is of-
ten used to diagnose and characterize MBL is the en-
tanglement entropy. To calculate this, a spatial bipar-
tition into two halves is made by cutting a particu-
lar bond. The reduced density matrix of the subsys-
tem, ρred, is calculated, and the entropy determined via
S = −tr (ρred log(ρred)). Serbyn et al. [9] argued, on
the basis of the general physical picture of ‘l-bits’ in the
MBL regime, that at long times the entropy should grow
logarithmically with time, i.e. that S(t) ∼ S0 ln(V t).

This argument uses the fact that the density profiles
of the individual l-bits are exponentially localized. We
now show that the long-time entanglement growth in the
Stark-MBL system behaves similarly, though with some
modification reflecting the fact that the tails of Wannier-
Stark-localized wave functions are not pure exponentials.

The functional form of these tails may be obtained
from a semiclassical argument [21] in which the wave
function is approximated by a WKB-like expression
ψ(x) ∼ exp

(
i
∫ x

k(x′)dx′
)
, with k(x) obtained from
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FIG. 2. Difference ∆S between the bipartite entanglement in
the interacting and non-interacting cases. The parameter α
denotes the cumulative effect of field non-uniformity on the
potential at the end site. For sufficiently small α and suit-
ably large field γ there is good qualitative agreement with
our semi-analytic calculation (magenta dashed line) and full
analytic calculation (green line and Eq. (4)). For larger α,
the entanglement growth becomes stronger than predicted
due to the progressive delocalization of some of the single-
particle orbitals as the field gets weaker. For the purely uni-
form field, there is an initial steep rise which we attribute
to additional degeneracies of the many-body spectrum. The
numerical curves have been smoothed by convolution with a

Gaussian, w(n) = e−(n/σ)2/2, with σ = 4. Inset: Potential
used in the respective main curves.

the condition of local energy conservation, J cos (ka) +
V (x) = E, where a is the lattice spacing. Our po-
tential is to a good approximation V (x) = −γx, and

hence k(x) = 1
a arccos

(
γx+E
J

)
. Taking x to be large

and positive, the exponent in the WKB wave function

is thus given by − 1
a

∫ x
ln
(
γx′

J

)
dx′ ≈ −xa ln

(
γx
J

)
, where

we have dropped a linear-in-x term that does not have a
logarithm. Hence the form of the tail of the wave function
is

ψ(x) ∼ exp
[
−x
a

ln
(γx
J

)]
. (2)

We now use (2) to derive the form of the entanglement
entropy S(t) at long times, in analogy to Ref. [9]. The
matrix element of the nearest-neighbor repulsion between
a pair of localized particles at distance x is approximately
V exp

[
−xa ln

(
γx
J

)]
, corresponding to a dephasing time of

tdeph ≈ V −1 exp
(x
a

ln
(γx
J

))
. (3)

This is the timescale on which the entanglement entropy
due to this pair will rise from zero to its maximum value.

Now consider the total entanglement entropy of the
subsystem. This can be thought of as an entanglement
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front moving through the system from the cut as t in-
creases. At time t, this front will have moved a distance
x(t), which is obtained by solving (3) for x. The entan-

glement entropy will thus be S(t) = Smax
x(t)
L , where L is

the length of the subsystem to the left of the cut. Solving
(3) for x(t), we obtain as entanglement entropy:

S(t) =
Smax

L

a ln(V t)

p
(
aγ ln(V t)

J

) , (4)

where p(u) is the solution of the equation p ep = u.
We supplement this analytic approach by computing

a ‘semi-analytic’ form for the entanglement entropy. For
strong fields, γ � J , we may assume that the single-
particle eigenfunctions of the Stark-localized states are
restricted to three sites. We can thus write any initial
state with fixed particle number M in fixed positions as

|ψ(t = 0)〉 =
∑
{Q}

fQβ
†
Q(jM )β

†
Q(jM−1)

. . . β†Q(j2)
β†Q(j1)

|0〉 ,

(5)

where β†j creates a fermion in the single-particle Stark-
localized state centered at position j. Here Q is an oper-
ation that, for each original site label ji, either moves it
one place to the left, moves it one place to the right, or
leaves it alone. The factor fQ is given approximately by

fQ ≈
(
J

γ

)λQ+ρQ

, (6)

where λQ counts the number of original site labels that
are shifted to the left by Q, and ρQ the number that are
shifted to the right.

The energy EQ of every state-component Q is com-
posed of two parts: the electric potential energy, and the
repulsive interaction energy of each pair of its constituent
particles:

EQ ≈ E0+γ (ρQ − λQ)+
V

2

∑
k

∑
p 6=k

(
J

γ

)2|Q(jk)−Q(jp)|−2

,

(7)
where E0 is the energy of some reference state and the
sums over k and p run from 1 to M .

Combining (5) and (7), we obtain the initial state time-
evolved to arbitrary times:

|ψ(t)〉 =
∑
Q

fQe
−iEQtβ†Q(jM )β

†
Q(jM−1)

. . . β†Q(j2)
β†Q(j1)

|0〉 .

(8)
This allows us to calculate the time-evolved reduced den-
sity matrix of any subsystem, from which we obtain S(t)
via diagonalization. The results can be found in Fig. 2.

Numerical simulations. We now compare the above
results against numerical simulations of the model (1).
Hopping is set to J = 2 and we consider an L = 16 chain
at half-filling. The field on one end has strength γ and

decreases uniformly, so that the value of the potential on
the final site of the chain differs by an amount α from
its value in the purely linear case. We use all possible
initial product states that do not have a particle on the
two sites directly adjacent to the cut, which we choose
to be at the middle bond. For L = 16, this amounts
to 1225 states. Using exact diagonalization, we compute
the time-evolution for a given initial state, and obtain the
entanglement entropy S(t) for an equal bipartition of the
lattice. We then average over all of the abovementioned
initial states.

Our results for γ = 4 and various values of α are shown
in Fig. 2. In order to show the effect of interactions, we
display ∆S(t) ≡ S(t)− S0(t), where S0(t) is the entropy
in the non-interacting case, and the bar denotes an aver-
age over the initial conditions as discussed above. Con-
sistent with previous findings, the entanglement growth
due to many-body dephasing effects commences at times
V t ∼ 1. The curves scale as a function of V t, until the in-
teractions become strong enough to alter the eigenstates
significantly.

For sufficiently nonuniform field, this growth continues
logarithmically up to a maximum value , which is finite
for a finite system size. This growth agrees qualitatively
with our semi-analytic calculation presented above, con-
firming our intuition that the physics of this system is
well described by (5) and (7). We have also compared
the pure analytic calculation (4) against the numerics.
Here Smax is taken to be as the diagonal entropy Sdiag

resulting from the reduced density matrix obtained by
(8). Sdiag denotes the maximum achievable entropy for a
given initial state, assuming that the interactions do not
significantly change the form of the eigenstates [9, 22].

In the case of a strictly linear potential, there is instead
a steep rise of the entanglement entropy followed by slow
growth. We attribute this to the many exact degenera-
cies in the non-interacting version of the problem, which
arise from the fact that all two-particle states with the
same center of mass are degenerate, and can therefore
hybridize strongly.

The logarithmic entanglement growth given by (4)
can thus fail for two different reasons: too little non-
uniformity, or too small a field. The former allows de-
localization of the two-particle states into a broad band,
with a correspondingly short dephasing time, leading to
steep initial growth of ∆S(t). On the other hand, the
latter causes the localization, to weaken in parts of the
chain, in turn making the accumulation of entanglement
in that part stronger. Both cases are visible in Fig. 2.
However, in between them there is a large range of curva-
ture values for which an MBL-like entanglement growth
is observed.
Many-body level statistics. A powerful and basis-

independent diagnostic to determine whether a model is
localized is its spectral statistics [23, 24]. Fig. 3 shows our
exact diagonalization results for the gap-ratio parameter
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FIG. 3. The many-body level statistics for the case of nonzero
α in the half-filled sector. For all displayed values of γ and α
the probability distribution of the gap-ratio parameter, rn =
min(δn/δn+1, δn+1/δn) (where δn is the gap between the nth

and (n− 1)th energy eigenvalues), agrees with the prediction
for Poisson level statistics expected for integrable or localized
models. For comparison we have included the prediction for
Wigner-Dyson statistics.

in a chain of length L = 16 with open boundary con-
ditions, for a range of field strengths γ and gradients α
in the half-filled sector. The gap-ratio parameter is de-
fined as rn = min(δn/δn+1, δn+1/δn), where δn is the gap
between the nth and (n− 1)th energy eigenvalues. Plot-
ting a histogram of the gap-ratio parameter eliminates
a dependence on the density of states, such that we can
use the whole spectrum as long as there is no mobility
edge present. We have verified this and the results are
qualitatively the same for all ranges and energy densities
used.

The probability distribution for Poisson statistics reads
PP (r) = 2/(1 + r)2, which is in excellent agreement with
our results over most of our parameter range. In the case
of very small or zero field gradient α however, we find
results that are consistent neither with Poissonian nor
with Wigner-Dyson statistics. We attribute this to the
many exact degeneracies in the non-interacting problem
creating a disproportionally large weight for small rn in
the many body spectrum.

Quench from charge-density wave. While the entan-
glement and spectral statistics are experimentally diffi-
cult to extract, there are other indicators of localization.
One of the simplest setups consists of monitoring the re-
laxation of an initial charge-density wave (CDW) order,
in which all even sites are occupied [12]. An associated
observable is the imbalance I between the occupation on
odd and even sites, No and Ne respectively,

I =
Ne −No

Ne +No
. (9)
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FIG. 4. The L = 16 study of a hypothetical imbalance ex-
periment, where an initial charge-density wave relaxes under
unitary time-evolution. The different curves represent differ-
ent field strengths γ with α = 0.5. Inset left: Visualization
of the corresponding potential. Inset right: Average imbal-
ance I at times t/J ≥ 1011. The numerical curves have been

smoothed by convolution with a Gaussian, w(n) = e−(n/σ)2/2,
with σ = 4.

In the ergodic, thermalizing case it should quickly decay
to zero, which it does in the case γ = 0 when there is no
Wannier-Stark localization. For a many-body localized
system, on the other hand, the value of the imbalance
should remain non-zero up to infinite times.

In Fig. 4, we show exact diagonalization results of the
time-evolution of an initial CDW state under unitary
time-evolution of (1). After initial transient behavior,
the imbalance (9) remains non-zero for arbitrarily long
times for sufficiently large fields.

Discussion. In summary, we have shown that the ex-
perimentally natural case of a finite system in an elec-
tric field, a simple Wannier-Stark-localized system, shows
properties that coincide with those of the MBL phase.
While the case of a purely uniform field, α = 0, remark-
ably turns out to be a non-generic limit, even moder-
ate curvature gives consistent and robust MBL-like fea-
tures. The bipartite entanglement entropy S(t) exhibits
a slow, logarithmic growth to a value much larger than
that obtained in the non-interacting case. The spec-
tral statistics, a dynamics-independent measure for local-
ization, are Poissonian. And finally, localization seems
equally persistent in a now standard imbalance experi-
ment, where the relaxation of CDW order is measured.

In the limit of large system sizes, the energy density
can grow without bound on account of the unbounded
potential implied by a uniform compound of the elec-
tric field. This precludes an asymptotic definition of ex-
ponential localization, which should however not pose a
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problem in practice given the attainability of short lo-
calization lengths. While the set-up of Stark-MBL is
quite different from conventional disorder MBL, the sim-
ilar phenomenology is quite striking. The MBL phase
is described in terms of l-bits, while other disorder-free
localized systems have also identified integrals of motion.
Here, l-bits emerge naturally and robustly as Stark loca-
tors, again without the use of any quenched disorder.
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Supplemental material

Model and initial condition

In the following we develop an approximate analyti-
cal description of the entanglement entropy growth in
Stark-MBL from a specific product-state initial condi-
tion, which allows us to circumvent full diagonalization
of the Hamiltonian, Eq. (1). We shall assume that the
number of sites, L, is even, and that the entanglement
entropy is calculated across a cut between sites (L/2)−1
and L/2. We choose our zero of potential energy to lie
in the middle of that bond. We shall often ignore the
V -term, assuming that it is too weak to modify the form
of the many-body eigenfunctions significantly, i.e. we
consider the leading effect of V on energies, not wave
functions.

Our initial condition involves placing fermions at the
sites S = {jk}, where k = 1, 2, . . . ,M , and M is the
total number of fermions. Let M = ML + MR, where
ML and MR are respectively the number of fermions to
the left and right of the cut, and let us assume that the
list S is in order from left to right (i.e. that jk < jk+1 for
all relevant k). This initial condition can be written in
second-quantised form as

|ψ〉 = c†jM c
†
jM−1

. . . c†j2c
†
j1
|0〉 , (10)

where |0〉 is the fermionic vacuum. Let us note that the
electric potential energy of this state is given by

E0 = γ

M∑
k=1

jk, (11)

where we have neglected the contribution of α.

Writing the initial condition in the many-body
eigenbasis

Clearly we can only do this analytically if we ignore V ,
so we shall do that for now. In that case, we just need to
know how to write the on-site creation operator in terms
of creation operators for the Stark-localized states. If we
assume the strong-field limit, i.e. that γ � J , then we
may suppose that

c†j =

√
1− 2

(
J

γ

)2

β†j +
J

γ

(
β†j+1 + β†j−1

)
, (12)
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where β†j creates a fermion in the single-particle Stark-
localized state centered at position j. This assumes that
the Stark-localized states are restricted to three sites (the
central, or ‘locator’, site and its two nearest neighbors).
It also does not account for the mutual orthogonality of
the different Stark-localized states, and it does not work
at the very ends of the chain.

Substituting (12) into (10), we obtain the following:

|ψ〉 =
∑
Q

fQβ
†
Q(jM )β

†
Q(jM−1)

. . . β†Q(j2)
β†Q(j1)

|0〉 . (13)

Here Q is an operation that, for each original site label,
either moves it one place to the left, moves it one place
to the right, or leaves it alone. The factor fQ is given
approximately by

fQ ≈
(
J

γ

)λQ+ρQ

, (14)

where λQ counts the number of original site labels that
are shifted to the left by Q, and ρQ the number that are
shifted to the right.

Calculating the many-body energies of the
components of the state

In order to time-evolve (13), we attach to each many-
body state in the sum a factor of e−iEQt, where EQ is
the state’s energy. As we know from Ref. [9], we need
to be more precise about the tails of the single-particle
wave functions at this stage if we want to capture the
entanglement evolution at late times.

The energy EQ is composed of two parts: the electric
potential energy, and the repulsive interaction energy of
each pair of its constituent particles. The electric poten-
tial energy can be calculated by noting which particles
have moved compared to the reference state:

EQ,elec = E0 + γ (ρQ − λQ) . (15)

The repulsive interaction energy may be roughly calcu-
lated by taking the probability density in the tail of one
Stark-localized state at the center of the other and mul-
tiplying it by V . For two Stark-localized states with lo-
cators separated by ξ lattice sites, this gives an energy of
approximately

V

(
J

γ

)2ξ−2

. (16)

Thus the complete energy of the state-component Q is
given approximately by

EQ ≈ E0+γ (ρQ − λQ)+
V

2

∑
k

∑
p 6=k

(
J

γ

)2|Q(jk)−Q(jp)|−2

,

(17)
where the sums over k and p run from 1 to M .
Calculating the entanglement entropy as a function

of time

We can thus approximate the state of the M -fermion
system at an arbitrary time t as

|ψ(t)〉 =
∑
Q

fQe
−iEQtβ†Q(jM )β

†
Q(jM−1)

. . . β†Q(j2)
β†Q(j1)

|0〉 ,

(18)
where fQ is given by (14) and EQ is given by (17). To
turn this into a density operator it is more convenient to
write it in first-quantised notation:

|ψ(t)〉 =
∑
Q

fQe
−iEQt

[
|Q(j1)〉 ⊗ |Q(j2)〉 ⊗ . . . (19)

⊗ |Q(jM−1)〉 ⊗ |Q(jM )〉
]
, (20)

where |j〉 is the single-particle state in which the particle
is on site j. From this we obtain the density operator.
We trace out the states on the right-hand side of the cut
to construct the reduced density matrix on the left, and
then use that to calculate the entanglement entropy S(t).
The results can be see in Fig. 2 of the main text.
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