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On Non-Perturbative Unitarity in Gravitational Scattering
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We argue that the tree-level graviton-scalar scattering in the Regge limit is unitarized by non-
perturbative effects within General Relativity. At Planckian energy the back reaction of the incom-
ming graviton on the background geometry produces a non-perturbative plane wave which, in turn,
softens the UV-behavior. Our amplitude then interpolates between the perturbative graviton-scalar
scattering at low energy and scattering on a classical plane wave in the Regge limit.
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I. INTRODUCTION

It is well known that perturbative scattering ampli-
tudes involving gravitons violate the unitarity bound at
Planckian energy even at tree-level. For instance, the
scattering of a graviton and a massless scalar field is given
by [1]

Atree = − iκ
2

4

su

t
(1)

where s, t, u are the usual Mandelstam variables and κ
is the dimensionful gravitational coupling. This state of
affairs has given rise to an extensive activity in searching
for a UV-completion of General Relativity (GR). String
theory is one such complete theory whose legacy rests
partly on the fact that it predicts an amplitude that is
perturbatively unitary.

On the other hand, one may question whether the
assumption of asymptotic in- and out-states on which
(1) is built holds for gravitons of Planckian energy since
Gravity is a non-linear theory whose coupling strength
increases with energy. One argument in favor of it is
that a single graviton can always be boosted to an iner-
tial frame where its energy is small. However, for a two
body scattering with large COM energy there is no boost
for which both particles have small energy. Thus back-
reaction will have to be taken into account for at least one
in-going particle. This idea is not new. It was explored
already many years ago by ’t Hooft [2] and others [3] who
replaced an ingoing scalar of transplanckian energy by a
gravitational shock wave. The starting point on which we
base our argument for a non-perturbative unitarization
of (1) is similar to this although the details are somewhat
different. We perform a Lorentz boost such that the en-
ergy of the incomming scalar is small while the incoming
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graviton has transplanckian energy so that back reaction
on geometry has to be taken into account. Luckily, an
exact solution to Einstein’s equation, accounting for the
complete back reaction on geometry is available in the
form of a pp-wave [4, 5] (c.f. [6–10]). As a result, the
non-perturbative generalization of (1) in the large s but
small t (or Regge) limit can be reduced to a perturbative
calculation on top of a pp-wave as illustrated in Fig. 1.

II. PERTURBATIVE LIMIT

To see how this comes about let us first recover the
perturbative amplitude (1) for (h(1), φ(2) → h(3), φ(4))
in position space. Without restricting the generality we
make the following momentum assignments

p(1) ≡ p = (pu, 0, 0, 0) , p(2) ≡ k = (0, kv, 0, 0),

p(3) ≡ q = (qu, qv, q1, q2) , p(4) ≡ l = (lu, lv, l1, l2) .

In position space the t-channel diagram can then be cal-
culated as follows: We first solve for the internal graviton
h̃ around Minkowski background, η, through

0 = Gµν(η + λh(1) + λh(3) + λ2h̃)

= λ2 δGµν
δg

∣∣∣
η
(h̃) + λ2 δ

2Gµν
δg2

∣∣∣
η
(h(1), h(3)) , (2)

where Gµν is the Einstein tensor and we assume that h(1)

and h(3) satisfy the linearized Einstein equation

δGµν
δg

∣∣∣
η
(h(1)) =

δGµν
δg

∣∣∣
η
(h(3)) = 0 . (3)

Here, λ is a dimensionless parameter whose sole purpose
is to keep track of the order in perturbation in h. Next,
we solve for the outgoing scalar field φ̃ with the help of
the Ansatz φ = φ(2) + λ2φ̃,

0 = �η+λ2h̃φ = λ2�ηφ̃+ �λ2h̃φ(2) , (4)
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where �g stands for scalar wave operator in the back-

ground metric g. We note that (2) fixes h̃ only up to a
solution of the homogeneous equation. The latter repro-
duces 3-particle (1 graviton) scattering amplitude upon
substitution into (4). Note also that in (2) we can replace

h(1) by a wave packet since the equation for h̃ is linear in
h(1).

Equivalently, we can treat h(1) as a background field

and solve h̃ as a linearized fluctuation around that back-
ground. Setting h(1) ≡ H for later convenience, the lin-
earized Einstein equation reads

0 =
δGµν
δg

∣∣∣
η+λH

(h) . (5)

With the Ansatz [11] h = λh(3) + λ2h̃, we expand the
background once again and get

0 = λ2 δGµν
δg

∣∣∣
η
(h̃) + λ2 δ

2Gµν
δg2

∣∣∣
η
(H,h(3)), (6)

which is in agreement with (2).
In what follows we will work with the latter form since

it is suitable to accommodate non-linear effects for the
incoming graviton, H. Indeed, suppose that H has mo-
mentum p of order MPl. Then H cannot be treated as a
perturbation of Minkowski space-time and back reaction
on the geometry has to be taken into account. This can
be done by replacing H by a pp-wave. In Einstein-Rosen
coordinates [5] the pp-wave metric reads

ds2 = 2dUdV − γij(U)dyidyj , (i, j = 1, 2), (7)

with γij ∼ (δij + h(1)ij) in the perturbative limit (here
and in what follows we absorb λ in h). However, in the
non-perturbative regime, Brinkmann coordinates [4] are
more convenient, with

ds2 = 2dudv −Hab(u)xaxbdu2 − dx2
a, (a, b = 1, 2) (8)

which is an exact solution, Gµν(η +H) = 0. Then (6) is
the correct generalization of (2) provided h(3) has small
momentum which is compatible with the Regge limit,
t�M2

Pl. In Brinkmann coordinates, for h(3) transverse,
traceless with asymptotic polarization vector εa, the lin-
ear solution for h̃ on the pp-wave takes the form [12]

h̃µν =


0 0 0 0
0 − i

qv
εaΣabε

b + ε2u εuε1 εuε2
0 εuε1 ε1ε1 ε1ε2
0 εuε2 ε2ε1 ε2ε2

Φ(x) (9)

where

Φ(x) =
1√
|E|

eiqv
(
v+

Σabx
axb

2

)
+iqiE

i
ax
a+i

qiqj
qv

F ij (10)

is the solution of the scalar wave equation and

Σab = ĖiaEbi, F ij =

∫ u

−∞
γij(s)ds. (11)

Here Σab is the deformation tensor for the Vierbein Eia,
subject to

Ëai = Hab(u)Ebi , with lim
u→∞

Eia(u) = δia , (12)

and γij = EiaE
a
j . Finally, the longitudinal polarization

εu is given by

εu = εa
[ qj
qv
Eja + Σabx

b
]
. (13)

In order to disentangle the disconnected 1-graviton con-
tribution, we then substitute (9) into (4)

�ηφ̃ = ∂v

[
ε2u −

i

qv
εaεbΣab

]
Φ∂vφ(2) (14)

− ∂vεuεaΦ∂aφ(2) − ∂aεuεaΦ∂vφ(2) + ∂aε
aεbΦ∂bφ(2)

with φ(2) is the incoming scalar field. We can then make
connection to perturbation theory around Minkowski
metric by integrating �ηφ̃ against φ(4),∫

R4

φ(4)�ηφ̃ = lim
u→∞

∫
Σu

(
φ(4)∂vφ̃− φ̃∂vφ(4)

)
(15)

− lim
u→−∞

∫
Σu

(
φ(4)∂vφ(2) − φ(2)∂vφ(4)

)
where we have used that φ̃ → φ(2) as u → −∞. The
second term on the r.h.s. then subtracts the disconnected
contribution to the scattering. At 0th order in H this
gives

−(2π)4δ4(k + q + l)(εµkµ)2 . (16)

This reproduces the familiar 1-graviton scattering. This
is expected since h̃ reduces to h(3) in (2) for vanishing H.

Let us now consider the first order in H. We first
choose a polarization for H by setting

Eia = δia + σ̂ia e
ipµx

µ

, (17)

where σ̂ia is one of the Pauli matrices. The contributions,
linear in H, come from the expansion of εu and Σab in
(14). To continue we note that the deformation in εu
simply takes account of the fact that the transversality
condition of h(3) depends on H in the coordinate basis,
so that (13) still holds. The contribution at first order in
H to the connected four point function is then

− (εaεbσ̂ab) pu
k2
v

qv
(18)

where we used that Σab = ipuσ̂ab. In terms of the Man-
delstam variables this can be written as

− (εaεbσ̂ab)
s2

t
(19)

which is the t-channel contribution of the scalar-graviton
into scalar-graviton scattering amplitude.
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Next we replace φ(2) by the linearized approximation
of the scalar solution Φ(2) in the pp-wave background,

Φ(2)(x) =
eikv

[
v+

Σabx
axb

2

]
√
|E|

∼
[
1 +

iΣabx
axb

2

]
eikvv.

This should, in addition, account for the the s and u-
channel contribution. Indeed, solving for the scalar wave
equation in the pp-background before and after interact-
ing with h̃ takes into account the interaction with H.
Furthermore, this should take into account the contact
term. Indeed, the last term in (14) gives an new contri-
bution

− (εaεbσ̂ab) pukv = −(εaεbσ̂ab) s . (20)

Adding this to (19) we get

(2π)4δ4(p+ k + q + l)(εaεbσ̂ab)
su

t
(21)

which is the correct perturbative limit including all chan-
nels as well as the contact interaction.

III. NON-PERTURBATIVE CALCULATION

FIG. 1. Non-perturbative four particle scattering process
where the ingoing gravitons is replaced by a pp-wave (shaded
strip).

In order to take the complete back-reaction of the in-
coming graviton into account we make the substitution
η → η+H and insert the exact solutions Φ(2) and Φ(4) for

the scalar fields together with the internal graviton h̃µν
on the pp-wave into (14). Then integrating (14) against
Φ(4) we end up with (ignoring the one graviton contribu-
tion (16)).

A =

∫
Φ(4)∂µh̃

µν∂νΦ(2)

=

∫
Φ(4)

( i
qv
εaεbΣabk

2
v + ikvε

aεbΣab

)
Φ Φ(2), (22)

where the terms in the bracket come form the first line
in (14) and the integral at u→ −∞ in (15) subtracts the
disconnected contribution, with h(3) now disconnected in
the plane wave background. This integral can be further
simplified following [12],

A = −(2π)2δ(kv + qv + lv)

∫
du

(εaεbΣab)
(
k2
v

qv
+ kv

)
|E||E(2)|

1
2

√
|lvB|

(23)

× exp
[
i
(
− Ja(B−1)abJb

2lv
+
qiqj
qv

F ij +
lilj
lv
F ij
)]
,

where E(2) again solves (12) but with ingoing boundary

condition, lim
u→−∞

(E(2))
i
a(u) = δia, and

Ja = (li + qi)E
i
a, Bab = Σ

(2)
ab − Σab. (24)

To continue we note that Eia are functions of z = puu
only while Σab, and B are of the form puΣ(z), puB(z)
respectively [13]. This allows us to extract the pu depen-
dence as

A = (2π)2δ(s+ u+ t)
s

t

∫
dz

(εaεbΣab)

|E||E(2)|
1
2

1√
|B|

(25)

× exp
[
i
(
− Ja(B−1)abJb

u
+ 2
( lilj
u

+
qiqj
t

)
F ij
)]
,

where the extra factor of 1/pu multiplying F ij in the last
term is due to the change of measure ds = dz

pu
in (11). In

addition we used that

δ(s+u+t) = δ((kv+qv+lv)·pu) =
δ(kv + qv + lv)

pu
(26)

where 2qvpu = t, 2kvpu = s. Using (26), the form (25)
of the 4-point amplitude makes the unitarity of the am-
plitude at large s manifest. On the other hand for small
s (25) reduces to the perturbative amplitude (21). It is
not hard to see that the terms in (9) containing εu and
εa will similarly give a non-perturbative deformation of
(16) preserving the unitarity of the latter. We would like
to stress, however, that we do not expect that the total
cross-section for the (φ(k), hµν(p) → φ(l), hµν(q)) scat-
tering is unitary since, due to the absence of momentum
conservation, the integral over the outgoing momenta is
not constrained. However, this feature is expected for a
scattering on an external potential.

In order to complete the argument that the amplitude
is bounded we need to convince ourselves that the inte-
gral in (25) is finite. As mentioned before, all the steps
performed in obtaining (25) are equally valid when re-
placing h(1) by a wave packet which is the more realistic
set-up. Let us then consider the particular case when
the pp-wave is a sandwich wave [6], that is, it vanishes
for |u| > u0 where u0 > 0. A generic feature of such
pp-waves is the focusing of geodesics [6, 7] which implies,
in particular, that |γij | vanishes at some point u > u0.
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Consequently the amplitude of (10) will be singular at
this point and so will Σab(z) and A(z). We can further
simplify to the case where the pp-wave is delta function
supported in u with linear polarization. In this case we
have

Hab(u) ∝ δ(u)

(
1 0
0 −1

)
. (27)

It is a simple matter to show (e.g. [7]) that Ea2 has a sim-
ple zero (and thus γ22 has a double zero) while Ea1 > 0.
Therefore, the zero of |E(2)(z)| and the pole B(z) can-
cel against each other so that we are left with a simple
pole coming from Σab(z). Thus, the integral exists in the
sense of distributions and is bounded in the CoM energy,
s (and also in u).

The remaining terms in which lead to the 3-point am-
plitude (16) in the perturbative limit will also receive
non-perturbative contributions upon replacing φ(2) and
φ(4) by the exact solution in the pp-wave background.
It is not hard to see that that these are bounded in the
large s limit.

IV. BACK REACTION

So far we have ignored the back-reaction of the scat-
tered particles on the pp-wave. On the other hand, due to
the focusing of the geodesics we expect that the energy-
momentum density of the matter (and gravitons) will
diverge at the focusing points [7]. That this is indeed
the case can be seen by recalling the scalar field Φ2(x)
in the pp-wave background given in (10). From this we

see that the amplitude of Φ2(x) grows like |γij |−
1
4 ∼ 1√

u

near the focusing point which we set to u = 0 for conve-
nience. The dominant contribution to the stress tensor
thus comes from

Tuu ∼ ∂uΦ2∂uΦ2 ∼
1

u3
. (28)

Thus back reaction is important near the focusing point
and (27) should be modified accordingly. In order to
obtain a self-consistent solution let us define E := |E| =√
|γij |. Then we have [7]

Ë
E

= −1

2
Ruu −

1

8
tr((γ−1γ̇)2) +

1

16
tr((γ−1γ̇))2 (29)

with

Ruu = Tuu ∼ (∂u
1√
E

)2 ∼ 1

4

Ė2

E3
. (30)

Near the focusing point, where E vanishes, the curvature
term dominates so that near u = 0,

Ë
E
∼ −Ė

2

E3
(31)

which has a first integral, Ė = e
1
E . Let us then consider

z as a function of E , that is,

dz

dE
= e−

1
E . (32)

Upon substitution into (25) focusing on the pre-
exponentional factor near the zero-locus of E , as before,
we find ∫

dz(· · · ) ∼
∫ √

Ė
E
dz =

∫
e−

1
2E

E
dE (33)

which is finite near the focusing point.
Before we close this section we should perhaps com-

ment on the justification of (30) which we claimed to
be the dominating term near the focusing point. This is
apparent when expressing Φ(2) in Einstein-Rosen coordi-
nates

Φ(2)(x) =
eikvV√
|E|

.

On the other hand, the actual calculations are done in
Brinkmann coordinates where the phase of the scalar field
(10) oscillates rapidly near u = 0. So one might argue
that a more singular contribution to Tuu comes form dif-
ferentiating the phase. However, this is clearly an arti-
fact of the choice of Brinkmann coordinates. Indeed the
coordinate transformation

U = u,

V = v +
1

2
ĖiaEbix

axb = v +
1

2
Σabx

axb, (34)

yi = Eiax
a,

is singular at the focusing point away from x = 0. In
Rosen coordinates this rapid oscillation is simply ex-
pressed by noticing that for x 6= 0, u → 0 maps into

V ∼ x2

u →∞ which is not a singular point. Another way
to see that the phase does not dominate in Brinkmann
coordinates either is to consider a wave packet of com-
pact support in the v-direction which will cut-off the
wave function, at fixed v in the x-direction as required by
causality. On the other hand the pre-exponential factor
accounting for (30) is not a coordinate artifact. It simply
reflects the focusing of the geodesics which is a geometric
property of plane waves [6].

V. DISCUSSION

We have shown that the perturbative 4-particle am-
plitude evolves in the large s, small t limit into a non-
perturbative expression involving a macroscopic non-
linear plane wave, which is manifestly unitarity at the
expense of smearing out the momentum conservation
constraint. This picture is intuitively satisfactory, since
due to backreaction, we expect that an energetic gravi-
ton sources a growing number of soft gravitons, eventu-
ally approaching a classical solution. Earlier approaches
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based on related ideas were proposed by ’t Hooft and
others [2, 3] used a gravitational shock wave to repre-
sent an energetic scalar particle (in the geometrical optics
approximation) and studied the propagation of a scalar
field in that background. One might suggest that this
setting should be related to ours via a boosted refer-
ence frame in which the incoming scalar φ(2) is energetic
while the graviton h(1) is perturbative. However, since
the shock wave approximation [2] works only for point
particle sources or superposition thereof [3], the match-
ing is not clear. In fact the scenario of [2] does not have
simple perturbative limit. On the other hand, at the
calculational level some of our formulae are essentially
identical to those in [12] but the physical motivation and
interpretation is quite different.

Finally, we should emphasize that our result does
not yet allow us to conclude that GR unitarizes itself
completely since large momentum transfer, where new
physics usually arises, is not covered by our analysis.
Other approaches which focus on the large t limit instead

can be found in [14] for instance, where it is argued that
black holes may unitarize the cross section in the large
t limit. We have nothing new to say about that regime
apart, perhaps, that in order to set up an experiment in-
volving gravitons with large momentum transfer at least
one of the ingoing gravitons must have energy of the or-
der of MPl in which case our analysis becomes relevant.
The same comment applies, of course, to scattering at
transplanckian energies in string theory [15].
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