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Abstract We argue that the tree-level graviton-scalar scat-
tering in the Regge limit is unitarized by non-perturbative
effects within General Relativity alone, that is without resort-
ing to any extension thereof. At Planckian energy the back
reaction of the incoming graviton on the background geom-
etry produces a non-perturbative plane wave which softens
the UV-behavior in turn. Our amplitude interpolates between
the perturbative graviton-scalar scattering at low energy and
scattering on a classical plane wave in the Regge limit that is
bounded for all values of s.

1 Introduction

It is well known that perturbative scattering amplitudes
involving gravitons violate the unitarity bound at Planckian
energy even at tree-level. For instance, the scattering ampli-
tude of a graviton and a massless scalar field is given by
[1]

Atree = −(ε1 · ε3)
iκ2

4

su

t
, (1)

where s, t, u are the usual Mandelstam variables and κ is the
dimensionful gravitational coupling, grows without bound
as s increases at fixed t . This state of affairs has given rise
to an extensive activity in searching for a UV-completion of
General Relativity (GR). String theory is one such complete
theory whose legacy rests partly on the fact that it predicts
an amplitude that is perturbatively unitary.

On the other hand, one may question whether the assump-
tion of asymptotic in- and out-states on which (1) is built
holds for gravitons of Planckian energy since Gravity is a
non-linear theory whose coupling strength increases with
energy. One argument in favor of it is that a single graviton
can always be boosted to an inertial frame where its energy is
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small. However, for a two body scattering with large center
of mass (CoM) energy

√
s, there is no boost for which both

particles have small energy. Thus back-reaction will have to
be taken into account for at least one in-going particle. This
idea is not new. It was explored already many years ago by
’t Hooft [2] and others [3] who replaced an ingoing scalar
of transplanckian energy by a gravitational shock wave. One
may also interpret this back-reaction as a contribution to the
self completeness mechanism of gravity proposed by Dvali
and Gomez [4,5]. The starting point on which we base our
argument for a non-perturbative unitarization of (1) is similar
to [2] although the details are somewhat different. We per-
form a Lorentz boost such that the energy of the incomming
scalar is small while the incomming graviton has transplanck-
ian energy so that back reaction on geometry has to be taken
into account. Luckily, an exact solution to Einstein’s equa-
tion, accounting for the complete back reaction on geometry
is available in the form of a plane wave [6,7] (c.f. [8–12]).
As a result, the non-perturbative generalization of (1) in the
large s but small t (or Regge) limit can be reduced to a per-
turbative calculation on top of a plane wave as illustrated in
Fig. 1.

2 Perturbative limit

To see how this comes about let us first recover the pertur-
bative amplitude (1) for (h(1), φ(2) → h(3), φ(4)) in position
space. Without restricting the generality we make the follow-
ing momentum assignments

p(1) ≡ p = (p+, 0, 0, 0), p(2) ≡ k = (0, k−, 0, 0)

p(3) ≡ q = (q+, q−, q1, q2), p(4) ≡ l = (l+, l−, l1, l2).

In position space the t-channel diagram can then be calcu-
lated as follows: We first solve for the internal graviton h̃
around Minkowski background, η, through
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Fig. 1 Non-perturbative four particle scattering process where the
ingoing gravitons is replaced by a plane wave (shaded strip)

0 = Gμν(η + λh(1) + λh(3) + λ2h̃)

= λ2 δGμν

δg

∣
∣
∣
η
(h̃) + λ2 δ2Gμν

δg2

∣
∣
∣
η
(h(1), h(3)), (2)

where Gμν is the Einstein tensor and we assume that h(1)

and h(3) satisfy the linearized Einstein equation

δGμν

δg

∣
∣
∣
η
(h(1)) = δGμν

δg

∣
∣
∣
η
(h(3)) = 0. (3)

Here, λ is a dimensionless parameter whose sole purpose is
to keep track of the order in perturbation in h. Next, we solve
for the outgoing scalar field φ̃ with the help of the Ansatz
φ = φ(2) + λ2φ̃,

0 = �
η+λ2h̃φ = λ2�ηφ̃ + �

λ2h̃φ(2), (4)

where �g stands for scalar wave operator in the metric back-
ground g. We note that (2) fixes h̃ only up to a solution of
the homogeneous equation. The latter reproduces 3-particle
(1 graviton) scattering amplitude upon substitution into (4).
Note also that in (2) we can replace h(1) by a wave packet
since the equation for h̃ is linear in h(1).

Equivalently, we can treat h(1) as a background field and
solve h̃ as a linearized fluctuation around that background.
Setting h(1) ≡ H for later convenience, the linearized Ein-
stein equation reads

0 = δGμν

δg

∣
∣
∣
η+λH

(h). (5)

With the Ansatz 1 h = λh(3) + λ2h̃, we expand the back-
ground once again and get

0 = λ2 δGμν

δg

∣
∣
∣
η
(h̃) + λ2 δ2Gμν

δg2

∣
∣
∣
η
(H, h(3)), (6)

1 The choice of the linear contribution is fixed by the initial condition
to have an ingoing graviton h = λh(3).

which is in agreement with (2).
In what follows we will work with the latter form since it

is suitable to accommodate non-linear effects for the incom-
ming graviton, H . Indeed, suppose that H has momentum
p of order MPl . Then H cannot be treated as a perturbation
of Minkowski space-time and back reaction on the geometry
has to be taken into account. This can be done by replacing
H by a plane wave. In Einstein-Rosen coordinates [7] the
plane wave metric reads

ds2 = 2dy+dy− − γi j (y+)dyi dy j , (i, j = 1, 2), (7)

with γi j ∼ (δi j + h(1)i j ) in the perturbative limit (here and
in what follows we absorb λ in h). However, in the non-
perturbative regime, Brinkmann coordinates [6] are more
convenient, with

ds2 = 2dx+dx− − Hab(x+)xa xb(dx+)2

−dx2
a , (a, b = 1, 2) (8)

which is an exact solution, Gμν(η + H) = 0. Then (5) is the
correct generalization of (2) provided h(3) has small momen-
tum which is compatible with the Regge limit, t � M2

Pl . In
Brinkmann coordinates, for h(3) transverse, traceless with
asymptotic polarization vector εa , the linearized solution for
h̃ on the plane wave takes the form [13]

h̃μν =

⎛

⎜
⎜
⎝

0 0 0 0
0 − i

q− εaΣabε
b + ε2+ ε+ε1 ε+ε2

0 ε+ε1 ε1ε1 ε1ε2

0 ε+ε2 ε2ε1 ε2ε2

⎞

⎟
⎟
⎠

Φ(x) (9)

where we have chosen the light-cone gauge (h−μ = 0),

Φ(x) = 1√|E | e
iq−

(

x−+ Σab xa xb

2

)

+iqi Ei
a xa+i

qi q j
q− Fi j (x+)

(10)

is the solution of the scalar wave equation and

Σab = Ė i
a Ebi , Fi j (x+) =

∫ x+

−∞
γ i j (τ )dτ. (11)

Here Σab is the deformation tensor for the Vierbein Ei
a ,

subject to

Ëai = Hab(x+)Eb
i , with lim

x+→∞
Ei

a(x+) = δi
a, (12)

and γi j = Eia Ea
j . Finally, the longitudinal polarization ε+

is given by

ε+ = εa
[ q j

q−
E j

a + Σabxb
]

. (13)

In order to disentangle the disconnected 1-graviton contribu-
tion, we then substitute (9) into (4)

�ηφ̃ = ∂−
[

ε2+ − i

q−
εaεbΣab

]

Φ∂−φ(2)

123
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− ∂−ε+εaΦ∂aφ(2) − ∂aε+εaΦ∂−φ(2) + ∂aεaεbΦ∂bφ(2)

(14)

with φ(2) is the incoming scalar field. We can then make
connection to perturbation theory around Minkowski metric
by integrating �ηφ̃ against φ(4),

∫

R4

φ(4)�ηφ̃ = lim
x+→∞

∫

Σx+

(

φ(4)∂−φ̃ − φ̃∂−φ(4)

)

− lim
x+→−∞

∫

Σx+

(

φ(4)∂−φ(2) − φ(2)∂−φ(4)

)

(15)

where we have used that φ̃ → φ(2) as x+ → −∞. The sec-
ond term on the r.h.s. then subtracts the disconnected contri-
bution to the scattering. At 0th order in H this gives

− (2π)4δ4(k + q + l)(εμkμ)2, (16)

thus reproducing the familiar 1-graviton scattering, as
expected, since h̃ reduces to h(3) in (2) for vanishing H .

Let us now consider the first order in H . We first choose
a polarization for H by setting

Ei
a = δi

a + σ̂ i
a eipμxμ

, (17)

where σ̂ i
a is one of the Pauli matrices. The contributions,

linear in H , come from the expansion of ε+ and Σab in (14).
To continue we note that the deformation in ε+ simply takes
account of the fact that the transversality condition of h(3)

depends on H , so that the ε+ contribution is most naturally
interpreted as a deformation of the 3-pt amplitude (16). The
contribution at first order in H to the connected four point
function is then

− (εaεbσ̂ab) p+
k2−
q−

(18)

where we used that Σab = i p+σ̂ab. In terms of the Mandel-
stam variables this can be written as

− (εaεbσ̂ab)
s2

t
(19)

which is the t-channel contribution of the scalar-graviton into
scalar-graviton scattering amplitude.

Next we replace φ(2) by the linearized approximation of
the scalar solution Φ(2) in the plane wave background,

Φ(2)(x) = eik−
[

x−+ Σab xa xb

2

]

√|E | ∼
[

1 + iΣabxa xb

2

]

eik−x−
.

This should, in addition, account for the the s and u- channel
contribution. Indeed, solving for the scalar wave equation in
the plane wave background before and after interacting with
h̃ takes into account the interaction with H . Furthermore,

this should account for the contact interaction. Indeed, the
last term in (14) gives an extra contribution

− (εaεbσ̂ab) p+k− = −(εaεbσ̂ab) s. (20)

Adding this to (19) we get

(2π)4δ4(p + k + q + l)(εaεbσ̂ab)
su

t
(21)

which is the correct perturbative limit including all channels
as well as the contact interaction.

3 Non-perturbative calculation

In order to take the complete backreaction of the incomming
graviton into account we make the substitution η → η + H
and insert the exact solutions Φ(2) and Φ(4) for the scalar
fields together with the internal graviton h̃μν on the plane
wave into (14). Then integrating (14) against Φ(4) we end up
with (ignoring the one graviton contribution (16))

A =
∫

Φ(4)∂μh̃μν∂νΦ(2)

=
∫

Φ(4)

( i

q−
εaεbΣabk2− + ik−εaεbΣab

)

Φ Φ(2), (22)

where the terms in the bracket come form the first line in (14)
and the integral at x+ → −∞ in (15) subtracts the discon-
nected contribution, with h(3) now disconnected in the plane
wave background. This integral can be further simplified fol-
lowing [13],

A = −(2π)2δ(k− + q− + l−)

∫

du
(εaεbΣab)

(

k2−
q− + k−

)

|E ||E(2)| 1
2
√|l−B|

× exp
[

i
(

− Ja(B−1)ab Jb

2l−
+ qi q j

q−
Fi j + li l j

l−
Fi j

)]

,

(23)

where E(2) again solves (12) but with ingoing boundary con-
dition, lim

x+→−∞
(E(2))

i
a(x+) = δi

a , and

Ja = (li + qi )Ei
a, Bab = Σ

(2)
ab − Σab. (24)

To continue we note that Ei
a are functions of z = p+x+

only while Σab, and B are of the form p+Σ(z), p+B(z)
respectively . This allows us to extract the p+ dependence as

A = (2π)2δ(s + u + t)
s

t

∫

dz
(εaεbΣab)

|E ||E(2)| 1
2

1√|B|

123
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× exp

[

i

(

− Ja(B−1)ab Jb

u
+ 2

(
li l j

u
+ qi q j

t

)

Fi j
)]

,

(25)

where the extra factor of 1/p+ multiplying Fi j in the last
term is due to the change of measure dτ = dz

p+ in (11). In
addition we used that

δ(s + u + t) = δ((k− + q− + l−) · p+)

= δ(k− + q− + l−)

p+
(26)

where 2q− p+ = t, 2k− p+ = s. This relation shows that the
prefactor δ(s +u + t) s

t in (25) is bounded for transplanckian
values of p+ and therefore also in s. Using (26), the form (25)
of the 4-point amplitude makes the unitarity of the amplitude
at large s manifest. Indeed, the integral in (25) is absolutely
convergent for any value of u (as we will see below). On the
other hand for small s (25) reduces to the perturbative ampli-
tude (21). Thus the amplitude (25) is the non-perturbative,
unitary completion of (1).

It is not hard to see that the terms in (9) containing ε+ and
εa will similarly give a non-perturbative deformation of (16)
preserving the unitarity of the latter.

We would like to stress, however, that the boundedness of
the scattering amplitude does not imply that the total cross-
section for the (φ(k), hμν(p) → φ(l), hμν(q)) scattering is
unitary since, due to the absence of momentum conservation,
the integral over the outgoing momenta is not constrained.
However, this feature is expected for scattering on an external
potential. What our calculation shows then is that the ques-
tion of unitarity of the gravitational four point scattering is
actually not well posed. What we find is that at large cen-
ter of mass energy, back reaction builds up an external field
(the plane wave) so that at large s and small t , the four-point
scattering is actually better described by a scattering off an
external plane wave.

In order to complete the argument that the amplitude is
bounded we need to convince ourselves that the integral in
(25) is finite. As mentioned before, all the steps performed
in obtaining (25) are equally valid when replacing h(1) by a
wave packet which is the more realistic set-up. Let us then
consider the particular case when the plane wave is a sand-
wich wave [8], that is, it vanishes for |x+| > x0 where x0 > 0.
A generic feature of such plane waves is the focusing of
geodesics [8,9] which implies, in particular, that |γi j | van-
ishes at some point x+ > x0. Consequently the amplitude of
(10) will be singular at this point and so will Σab(z) and B(z).
We can further simplify to the case where the plane wave is
delta function supported in u with linear polarization. In this
case we have

Hab(x+) ∝ δ(x+)

(

1 0
0 −1

)

. (27)

It is a simple matter to show (e.g. [9]) that Ea
2 has a simple

zero (and thus γ22 has a double zero) while Ea
1 > 0. There-

fore, the zero of |E(2)(z)| and the pole B(z) cancel against
each other so that we are left with a simple pole coming from
Σab(z). Thus, the integral exists in the sense of distributions
and is bounded in the CoM energy, s (and also in u).

The remaining terms in which lead to the 3-point ampli-
tude (16) in the perturbative limit will also receive non-
perturbative contributions upon replacing φ(2) and φ(4) by
the exact solution in the plane wave background. It is not
hard to see that that these are bounded in the large s limit.

4 Back reaction

So far we have ignored the backreaction of the scattered parti-
cles on the plane wave. On the other hand, due to the focusing
of the geodesics we expect that the energy-momentum den-
sity of the matter (and gravitons) will diverge at the focusing
points [9]. That this is indeed the case can be seen by recall-
ing that the scalar field Φ(2)(x) in the plane wave background
given in (10). From this we see that the amplitude of Φ(2)(x)

grows like |γi j |− 1
4 ∼ 1√

x+ near the focusing point which we

take to be located at x+ = 0 for convenience. The dominant
contribution to the stress tensor thus comes from

T++ ∼ ∂+Φ(2)∂+Φ(2) ∼ 1

(x+)3 . (28)

Thus back reaction is important near the focusing point and
(27) should be modified accordingly. In order to obtain a self-
consistent solution let us define E := |E | = √|γi j |. Then
we have [9]

Ë

E
= − R++

4
− tr((γ −1γ̇ )2)

16
+ tr((γ −1γ̇ ))2

32
− Ė 2

E 2 (29)

with

R++ = T++ ∼ (∂+
1√
E

)2 ∼ 1

4

Ė 2

E 3 . (30)

Near the focusing point, where E vanishes, the curvature
term dominates so that near x+ = 0, by rescaling E → E

16 ,
we get

Ë

E
= − Ė 2

E 3 (31)

which has a first integral, Ė = e
1
E . Let us then consider z as

a function of E , that is,

dz

dE
= e− 1

E . (32)

123



Eur. Phys. J. C           (2019) 79:914 Page 5 of 6   914 

Upon substitution into (25) focusing on the pre-exponentional
factor near the zero-locus of E , as before, we find

∫

dz(· · · ) ∼
∫

√

Ė

E
dz =

∫
e− 1

2E

E
dE (33)

which is finite near the focusing point.
Before we close this section we should comment on the

justification of (30) which we claimed to be the dominating
term near the focusing point. This is apparent when express-
ing Φ(2) in Einstein-Rosen coordinates

Φ(2)(x) = eik− y−
√|E | .

On the other hand, the actual calculations are done in Brink-
mann coordinates where the phase of the scalar field (20)
oscillates rapidly near x+ = 0. So one might argue that a
more singular contribution to T++ comes form differentiating
the phase. However, this is clearly an artifact of the choice of
Brinkman coordinates. Indeed the coordinate transformation

y+ = x+,

y− = x− + 1

2
Ė i

a Ebi xa xb = x− + 1

2
Σabxa xb,

yi = Ei
a xa, (34)

is singular at the focusing point away from x = 0. In Rosen
coordinates this rapid oscillation is simply expressed by
noticing that for x 	= 0, x+ → 0 maps into y− ∼ x2

x+ → ∞
which is not a singular point. If we now consider a wave
packet of compact support in the y−-direction which will cut-
off the wave function, at fixed x− in the x-direction in agree-
ment with causality. On the other hand the pre-exponential
factor accounting for (30) is not a coordinate artifact. It sim-
ply reflects the focusing of the geodesics which is a geometric
property of plane waves [8].

5 Discussion

We have shown that the perturbative 4-particle amplitude
evolves in the large s, small t limit into a non-perturbative
expression involving a macroscopic non-linear plane wave,
which is manifestly unitarity at the expense of smearing
out the momentum conservation constraint. This picture is
intuitively satisfactory, since due to backreaction, we expect
that an energetic graviton sources a growing number of soft
gravitons, eventually approaching a classical solution. Ear-
lier approaches based on related ideas were proposed by ’t
Hooft and others [2,3] used a gravitational shock wave to rep-
resent an energetic scalar particle (in the geometrical optics
approximation) and studied the propagation of a scalar field
in that background. One might suggest that this setting should

be related to ours via a boosted reference frame in which the
incoming scalar φ(2) is energetic while the graviton h(1) is
perturbative. However, since the shock wave approximation
[2] works only for point particle sources or superposition
thereof [3], the matching is not clear. In fact the scenario of
[2] does not have simple perturbative limit. On the other hand,
at the calculational level some of our formulas are essentially
identical to those in [13] but the physical interpretation is
quite different.

Finally, we should emphasize our result does not yet allow
us to conclude that GR unitarizes itself completely since large
momentum transfer, where new physics usually arises, is not
covered by our analysis. Other approaches which focus on
the large t limit instead can be found in [4] for instance, where
it is argued that black holes may unitarize the cross section
in the large t limit. We have nothing new to say about that
regime apart, perhaps, that in order to set up an experiment
involving gravitons with large momentum transfer at least
one of the ingoing gravitons must have energy of the order of
MPl in which case our analysis becomes relevant. The same
comment applies, of course, to scattering at transplanckian
energies in string theory [14].
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