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Abstract
Wepropose non-phase-matched sum frequency generation (SFG) as amethod for characterizing
broadbandmultimode light. Both the central wavelength and the bandwidth are in this case not
limited by the phasematching condition. As an example, we consider bright squeezed vacuum (BSV)
generated through high-gain parametric down conversion (PDC). In the spectrumof SFG fromBSV,
we observe the coherent peak and the incoherent background.We show that the ratio of their widths is
equal to the number of frequencymodes in BSV, which in the case of low-gain PDCgives the degree of
frequency entanglement for photon pairs. By generating the sum frequency in the near-surface region
of a nonlinear crystal, we increase the SFG efficiency and get rid of themodulation caused by
chromatic dispersion, known asMaker fringes. This allows one to use non-phasematched SFG as a
wavelength-independent autocorrelator. Furthermore, we demonstrate efficient non-phase-matched
three- and four-frequency summation of broadbandmultimode light, hardly possible under phase
matching.We show that the latter contains the coherent peakwhile the former does not.

1. Introduction

Sum frequency generation (SFG) is one of themost convenient tools for the study of spectral and temporal
structure of light. Time-domain SFG is the key part of different pulse characterization techniques such as
autocorrelation [1], FROG [2] or SPIDER [3]. In particular, SFG is crucial for the study of nonclassical light as it
can be used as a fast coincidence circuit to reveal entanglement between photons or photon-number
correlations between bright twin beams [4–8].

For the SFG frombroadband radiation, thewell-known challenge is tomake it efficient for thewhole pump
spectrum. The standard solution to increase the bandwidth of SFG is a thin phasematched nonlinear crystal or a
quasi-phase-matched crystal with aperiodic poling.However, the bandwidth of such devices is still limited;
moreover, in the case of quasi-phase-matching SFG strongly depends on the quality of the nonlinear lattice.

In this paperwe propose to use non-phase-matched SFG in order to overcome the limitations set by phase
matching. This waywe drastically increase the frequency bandwidth andmake the technique applicable to
almost any bright input light. To compensate for the relatively low efficiency of non-phase-matched SFG,we use
a crystal with high quadratic susceptibility (lithiumniobate) in the geometry where its highest component is
involved. The incident radiation is tightly focused to further increase the efficiency.We consider two cases: the
onewhere the beamwaist is on the surface of the crystal and the onewhere it is in the bulk.We show that thefirst
case is preferable due to a higher efficiency of SFG and due to the absence ofMaker fringes [9] in the spectrum.

In our experiment, the input radiation is bright squeezed vacuum (BSV) generated through the high-gain
parametric down-conversion (PDC).We demonstrate efficient broadband SFGon the surface of the crystal,
revealing both the coherent peak, often interpreted as the result of the ‘pump reconstruction’, and the
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incoherent background [10, 11]. Since the SFGworks as a fast coincidence circuit [12], we are able to extract
fromSFG spectra the number of frequency Schmidtmodes, which in the case of low-gain PDC is equal to the
degree of frequency entanglement of photon pairs [13]. Furthermore, we are able to observe broadband three-
and four-frequency summation in the same geometry. For four-frequency summation, we also observe the
‘coherent peak’.We describe these effects using Schmidt-mode formalism for PDC [14–16] and SFGwith
undepleted pump [17].

This paper is organized as follows. In section 2we describe the theory for SFG from tightly focused PDC
section 3 presents the experimental setup and section 4, the results. Section 5 concludes the paper.

2. Theory

In this sectionwe present the theory of SFG from tightly focused broadband radiation. As a pumpwe use BSV
generated through high-gain PDC [14]. Figure 1 shows schematically the three stages of the nonlinear
interaction: generation of broadbandBSV, its propagation in a dispersivemedium, and SFG in a nonlinear
crystal from a tightly focused beam. Further, we calculate the SFG spectrumby describing all three stages in a
semi-analytical way.

2.1. SFG froma tightly focused pump
Wedescribe the SFGusing the theoretical approach of [17]. In the undepleted pump approximation, the output
plane-wave annihilation operator for SFG at frequencyΩ is

ò w w w wW = W + W W -ˆ ( ) ˆ ( ) ( ) ˆ ( ) ˆ ( ) ( )b b K a ad , , 1out in

where b̂in is the input plane-wave annihilation operator and wˆ ( )a is the pumpplane-wave annihilation operator.
The transfer functionK(ω,Ω) for a plane-wave pump [17] is
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where b w c w w cW ~ W - W( ) ( )( ) ( ), ,2 2 is the quadratic susceptibility,Δκ(ω,Ω)≡κ(Ω)−κ(ω)−κ(Ω−ω)
is thewavevectormismatch for SFG, andD is the lengthof the SFGcrystal. For simplicitywe assumeβ(ω,Ω)≡β is a
constant.

In the case of a tightly focused pump the plane-wave approximation does not hold. In particular, theGouy
phase becomes important. To take it into account for SFG fromaGaussian beam,we insert the factor

+ - -( ( ) )z z b1 2i 0
1 into the expression for the transfer function [18, 19],
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0, andw0 are the confocal parameter, thewaist position, and the radius of the pumpbeam,
respectively, and k w w= ( )n c0 0 0 is thewavevector at the degenerate frequencyω0 (see figure 1). For simplicity,
we assume that the pumpbeamparameters are the same for all frequencies. In the case of weak focusing, b?D,
equation (3) simplifies to equation (2).

2.2. PDC radiation
In this paper the input radiation for SFG ismultimode BSV generated through high-gain PDC. Following the
approach of [15], we describe the PDC in terms of the averagedmomentumoperator. In the case of collinear

Figure 1. Schematic representation of SFG fromBSV.
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PDCalong the z axis, it has the form

 òò w w w w w w= G +ˆ ( ) ( ) ˆ ( ) ˆ ( ) ( )† †G z F a z a zd d , , , h.c., 4s s sint i i i

whereΓ characterizes the interaction strength and s, i indices denote the signal and idler waves, respectively. The
joint spectral amplitude (JSA) F(ωi,ωs) for the PDC generated in a nonlinear crystal with the length L is [20],
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where fp(ω) is the pump spectral amplitude, w w w w w wD º + - -( ) ( ) ( ) ( )k k k k,i s i s s s i ip is the phase
mismatch. For the type-I phasematching, w w q w w w w= =( ) ( ) ( ) ( )k n c k n c, , s i s i s i s ip p e p p , , o , , , where no and ne
are ordinary and extraordinary refractive indices and θ is the optic axis angle w.r.t. kp.

TheHeisenberg equation for themonochromatic-wave annihilation operators,
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can be analytically solved using the Schmidt decomposition of the JSA. The latter is symmetric for type-I phase
matching, F(ωi,ωs)=F(ωs,ωi), therefore
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where the Schmidtmodes j w{ ( )}n form an orthonormal basis and the Schmidt eigenvaluesλn are positive. Note
that generally the JSA andjn(ω) are complex functions.

We introduce the Schmidt-mode creation and annihilation operators,
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They have standard commutation relations,
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Thus the solution of equation (6) is [14]

åw w j w= + + -ˆ ( ) ˆ ( ) ( )( ˆ ( ) ˆ ) ( )†
a L a S A C A, 0, 1 , 10

n
n n n n n

where = G = G( ) ( )S Csinh , coshn n n n , and lG º G Ln n is the parametric gain of the nthmode. Then the PDC
spectral distribution of the photon number is
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Herewefind the Schmidtmodes numerically using the Takagi factorization [21],

F U U= S ( ), 13T

whereF is amatrix corresponding to Uw w( )F , ,i s is a unitarymatrix, andΣ is a diagonalmatrix with the
singular values s l=n n . The discretized Schmidtmodesjn(ω) are given by columns ofmatrixU.

2.3. SFG fromBSV
According to equation (1), the spectral distribution of the photon number in the sum frequency radiation is
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where Inm(Ω) is the inter-modal interaction integral,

ò w w j w j wW = W W -( ) ( ) ( ) ( ) ( )I Kd , . 16nm n m

For a very thin crystal, w W ( )D K0, , const; then W( )Inm is proportional to the convolution of the
Schmidtmodes.

In the presence of frequency-independent loss, or reduced efficiency of the SHG, the right-hand part of
equation (16)will only acquire a constant factor smaller than the unity. This can be verified by describing loss
with the help of a beamsplitter with constant transmission.

Expression(15) for the SFG spectrum contains two terms. Thefirst one, so-called coherent contribution,
corresponds to the SFG from each Schmidtmodewith itself, i.e. the process reverse to PDC. It results in a narrow
spectral peakwith thewidth comparable to the one of the PDCpump. In the literature, the appearance of this
peak is sometimes called ‘the pump reconstruction’ [11]. The second term, the incoherent contribution, is
caused by the SFG fromdifferent (uncorrelated) Schmidtmodes. It gives a pedestal with thewidth determined
by thewhole PDC spectrum.Note that expression(15) is valid for any parametric gain.

Previously the coherent and incoherent SFG contributions were obtained for a PDCwith narrowband pump
see, for instance [17, 22]. Our result(15) uses the Schmidtmode formalism that takes into account the finite
width of photon correlations, which is significant for PDC generated by short pulses. In particular, it shows that
thewidth of the ‘coherent’ peak is not the same as the one of the pump; it is somewhat broader (will be discussed
later).

Note that herewe considered the case where PDChas a single spatialmode. This approach is valid for
waveguide PDC sources [23], for specially engineered PDC sources [24] and in the presence of spatialfiltering (as
in our experiment). In the general case, PDC ismulti-mode both in time and in space, and one should take into
account the overlap between PDC and SFG spatialmodes.

2.4.Dispersion effects in SFG
In the course of propagation in a dielectricmedium, a broadband radiation undergoes dispersion spreading.We
take it into account through the replacement w w f wˆ ( ) ˆ ( )† † ( )a L a L, , ei , wheref(ω) is the PDCnonlinear
phase shift (chirp). This substitution leads to the replacementj w j w f w( ) ( ) ( )en n

i and
j w j wW -  W - f wW-( ) ( ) ( )em m

i in equation (16).

3. Experimental setup

Our experimental setup is shown infigure 2(top). PDC is produced in a 10 mmBBOcrystal with type-I
collinear and frequency degenerate phasematching [25]. The pump, propagating at∼19.9°w.r.t. the optic axis,
is the radiation of an amplified Ti: Sapphire laser. It has the central wavelength 800 nm, the pulse duration 1.6 ps,
the repetition rate 5kHz and themean power 3W.To reduce the directional amplification caused by the spatial
walk-off [26], the pump is focused into the crystal bymeans of a cylindrical lens with the 700 mm focal length.

Figure 2.Top: experimental setup. Bottom left:measured (blue solid line) and calculated (green dashed line)PDC spectra and PDC
beam after spatial filtering (inset). Bottom right: sketch of SFG under tight focusing.
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The pump remains unfocused and relatively broad (2.6 mm) in the horizontal direction. It is cut off by two
dielectric dichroicmirrors and two longpass filters (LPF). Together they attenuate the pumpby about 18 orders
inmagnitude and fully block the stray light at 800 nm.

Due to pump focusing, BSV is single-mode in the vertical direction. In the horizontal onewefilter it to a
singlemodewith a 140 μmvertical slit in the focal plane of a 200 mm lens. Afterfiltering, the number of photons
per pulse is about 1010, which corresponds to about 6 μWofmean power. The beam is collimated by a 300 mm
cylindrical lens thereafter; aGaussian beamwith an extremely broadband spectrum (FWHMof 140 nm) is
formed. Figure 2(bottom left) shows the beam (inset) and the spectrum, calculated (green line) andmeasured
with an IR spectrometer (Hamamatsu-C11482GA, blue line).Wemeasure the parametric gainΓ0=10.5 for the
first Schmidtmode. The small difference between experimental and numerical spectra is introduced by
dielectricmirrors that are used in the experimental setup (not shown infigure 2).

The BSVbeam is focused into a 1 mmLiNbO3 crystal dopedwith 5.1%ofMg [27, 28] bymeans of an
aspherical lens with the 8 mm focal length. Our focusing results in the beamwaist m»w2 6 m0 and the confocal
parameter b≈40 μm.Tighter focusing is unapproppriate due to chromatic aberrations of the lens, while softer
focusing leads tomore pronouncedMaker fringes (see the next section). The LiNbO3 crystal has its optical axis
parallel to the facet, therefore the SFGoccurs through the ee e interactionwithout phasematching. The
coherence length of this interaction,π/Δκ, is extremely small: about 4 times smaller than b. On the other hand,
this interaction has very large quadratic susceptibility componentχ(2)=2d33∼60 pm V−1. In our
measurements we tune the angle of incidenceα and beamwaist position z0 w.r.t the crystal (figure 2, bottom
right). The generated light is separated fromBSVby shortpassfilters (SPF) andmeasuredwith a visible
spectrometer (Avantes AvaSpec-ULS3648)with 1.3 nm resolution.

4. Results and discussion

Figure 3(a) shows how the SFG spectrumdepends on the beamwaist position inside the crystal. The SFG
intensity takes its highest values whenBSV is focused on one of the crystal facets; focusing in the bulk leads to less
efficient SFG.

Such behavior is caused by theGouy phase for the SFGpump radiation and has nothing to dowith so-called
surface nonlinear susceptibility. TheGouy phase differs byπ before and after thewaist; therefore it leads to an
additional phase shift in the nonlinear polarization. As a result, the SFG contributions before and after thewaist
interfere destructively, which leads to a low SFG intensity if thewaist is in the bulk. Variation of the beam
focusing or the crystal length strongly affects this behavior.

The theory from equations (3), (15) and (16) predicts the same effect. Theoretical SFG signal at 800 nm
(figure 3(b), red line) agrees with the experimental one (blue dots). The latter is a 1D cross-section offigure 3(a).

The difference between the experimental and theoretical PDC spectrawas assumed small; therefore in the
calculationwe used frequency independent Fresnel losses. In our setupwe are not able tomeasure the group
delay dispersion (GDD). Thereforewe use it as afitting parameter (see section 2.4). The best agreement between
the theory and experiment is obtained forGDD≈200 fs2. Furthermore, in order to take into account that the
detection happens inwavelength-angular space, not in frequency-wavevector one, the calculated SFG spectra
are corrected by the factorλ−4 in accordance with [29, 30].

Figure 3. SFG spectrum (a) and SFG signal at 800 nm (b), measured (blue dots) and calculated (red line), versus the PDCbeamwaist
position.
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Both theoretical (blue dots) and experimental (green line) SFG spectra are shown infigure 4. Panel (a) shows
the case of focusing onto the facet (z0=0 mm) and panel (b), into the bulk (z0=0.5 mm). The SFG spectrum
contains two parts, the peak and the background. As discussed in section 2.3, the narrowpeak corresponds to the
coherent part and the broad background is incoherent one. In the bulk case, high-visibility fringes, similar to the
Maker ones [9], appear due to the variation of thewavevectormismatchΔκwith thewavelength. Their spectral
positions depend on the angle of incidenceα (figure 5); the theory predicts similar behavior. The fringe period
scales as the inverse length of the crystal and depends on the SFG coherence length. For longer confocal
parameters, the fringes become visible even under focusing onto the crystal facet.

Generally SFG can be interpreted as a fast correlator or coincidence circuit [12]. Expanding this analogy
further, one can set the correspondence between the SFG spectrum and the spectral distribution of coincidences
used tomeasure the joint spectral intensity (JSI) [31]. Then in the case of SFG fromBSV, thewidth of the peak
Δωcoh corresponds to the ‘conditional width’ of the JSI, which is the spectral distribution of the coincidence rate
for afixed frequency of the idler photon.Meanwhile, thewidth of the backgroundΔωincoh corresponds to the
JSI ‘unconditional width’, which is the spectral width of the signal radiation. The ratio of the unconditional and
conditional widths, according to [13], can be used to assess the degree of frequency entanglement for photon
pairs, as it is close to the number of the Schmidtmodes in the PDC spectrum. It follows that the ratio of the
spectral widths, w w= D DR incoh coh, can be also interpreted as the Schmidt numberK.

To test this statement, we have calculated both the Schmidt numberK, using equation (12), and the resulting
ratioR for different values of the pumppulse duration. The result is shown infigure 6(a); as expected, we see that
R=K. In experiment we getRexp=12.7, which is smaller than the expected oneKtheor=Rtheor=19.5,
because the BSV spectrum is partially cut off due to experimental imperfections, and this leads to a reduced
Δωincoh.

Figure 4.The experimental (blue dots) and theoretical (green line) SFG spectra for BSV focused (a) onto the facet and (b) into the bulk
of the LiNbO3 crystal. Red dashed line shows the spectrumof the Ti:Sapphire laser. The left inset in panel (a) schematically shows how
the peak and the background are formed. The right inset in panel (a) is a zoom into the central part of the SFG spectrum. Red empty
circles are the experimental points for the laser spectrum and the red dashed line is aGaussian fit.

Figure 5.The experimental (a) and theoretical (b) SFG spectrum versus the angle of incidenceα for the bulk focusing.
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Asmentioned above, frequency-independent losses do not affect the validity of thismethod.Meanwhile, if
losses depend on the frequency or the transfer functionK(ω,Ω) is not broad enough, the result will change. This
is why it is important tomake SFGbroadband by avoiding phasematching.

We see that both the experiment and the theory show the coherent peak broader than the PDCpump
spectrum (figure 4(a), red dashed line). This effect was absent in theworkswhere the number of Schmidtmodes
was very large due to the use of smaller pumpbandwidths [10, 11]. It becomes noticeable for afinite number of
Schmidtmodes, especially with the increase of the parametric gain, which leads to an increase in the ‘conditional
width’. A similar increase of the ‘conditional width’ at high-gain PDCwas observed in the frequency domain
[30] andmore preciselymeasured in the angular one [32]. Our theory gives the same result; the spectral
bandwidth of the coherent peak increases with the increase in the parametric gain (figure 6(b)).

Non-phase-matched generation is also possible for higher-order nonlinear optical effects where it is usually
difficult to satisfy the phasematching. Similarly to the SFG case considered above, strong focusing in the bulk
can completely suppress high-order nonlinear optical processes [18, 19]. Focusing near the surface allows one to
increase their efficiency aswell.

To demonstrate it, we observe the three- and four-frequency summation ofmultimode PDC radiation near
the surface of the same LiNbO3 crystal. They occur through eee e and eeee e interactions, respectively.
Figure 7 shows themeasured spectra. Similarly to the case of SFG, for four-frequency summationwe observe the
coherent peak and the incoherent background, while for three-frequency summation there is no peak. This
behavior, the even harmonics containing a peak and the odd ones, not, has been predicted theoretically for two-
photon correlated light [33] but never observed in an optical experiment, to the best of our knowledge.

Qualitatively, this effect can be understood by considering that photons are produced in pairs: the coherent
peak occurs if only both photons of a pair are involved into the process (see insets infigures 4(a) and 7). In other
words, as for SFG, the peak corresponds to the frequency summation only from correlated photons, while the
background, to all other possible combinations. For the four-frequency summation the coherent peakwill be

Figure 6. (a)The Schmidt numberK (blue line) and the ratioR (green dots) calculated as functions of the PDCpumppulse duration.
(b)The calculated spectral bandwidth of the peakΔλcoh versus the parametric gain. At low gain, lG D 1,0 coh is equal to the PDC
pump bandwidth.

Figure 7.The three-frequency summation (a) and four-frequency summation (b) generated in the LiNbO3. The PDC is focused in the
facet of the crystal. The insets show the schemes for the corresponding frequency summation processes.
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produced from two photon pairs. In three-frequency summation, nonlinear interaction occurs between three
BSVphotons, so that one photon from the two pairs does notmatch to this process. This leads to the absence of a
sharp peak in the frequency spectra of odd-order nonlinear processes.Moreover, the peak becomes less
pronounced as the order of the harmonic increases, because the amount of combinations forming the
background increases faster than the one forming the peak. A rigorous theoretical consideration for the case of
delta-correlated two-photon light can be found in [33].

Previously, the coherent and incoherent contributions of PDC radiationwere observed only for SFG and
only under phasematching [7, 10, 11, 34]. Our results show that evenwithout phasematching a pronounced
narrowband coherent contribution and a broad incoherent contribution can be observed.Moreover, focusing
near the surface of a nonlinear crystal suppresses theMaker fringes, which offers a possibility to use SFG as not
just a broadband, but awavelength-independent autocorrelator [35]. This type of autocorrelator will have an
advantage over the one based on two-photon absorption (TPA) in semiconductors [36, 37]. Indeed, the
operatingwavelength of a TPA autocorrelator is limited for thewavelengths that satisfy the two-photon
transition between the valence and conduction energy zones of a semiconductor band-gap. In the case of tightly
focused non-phasematched SFG in the near-surface domain, the operatingwavelength is only limited by the
transparencywindowof the nonlinear crystal.Moreover, even in the presence of absorption at the sum
frequency it is possible tomeasure the temporal characteristics of light [38].

5. Conclusion

Wehave shown that non-phasematched SFG in a strongly nonlinear crystal can be used to study the spectral
properties of broadband light. In particular, with the radiation of high-gain PDC at the input, the SFG spectra
showboth the coherent contribution (a narrowpeak) and the incoherent contribution (a broad background),
which so far have been only observed for phasematched or quasi-phasematched SFG. By tightly focusing the
radiation on the surface of the crystal instead of the bulk, one can strongly increase the efficiency of SFG;
otherwise theGouy phase leads to the destructive nonlinear interference.Moreover, by using the surface one
gets rid of theMaker fringes, whichmodulate the spectrum in the case of bulk SFG.

Certainly, the efficiency of non-phasematched SFG is still lower than the one of phase-matched SFG. This
requires the brightness of the incident light to be high enough.We easily detect SFG frompicosecond pulses
containing 1010 photons; the lowest flux forwhich the SFG can still be seenwith the spectrometer is about 109

photons per pulse. By using single-photon detectors one can further improve the sensitivity of themethod by
2–3 orders ofmagnitude.

The obtained experimental results allow a simple interpretationwithin the Schmidt-mode formalism. In
particular, we have found that the Schmidt number is equal to the ratio of thewidths of the incoherent
background and the coherent peak observed in the SFG spectra. Thismethod ofmeasuring the Schmidt number
requires the presence of the coherent peak, which can be observed as long as the signal-idler correlation is not
completely lost. In particular, the loss of this correlation can occur due to the group velocity dispersion, but one
can prevent it with the dispersion-compensatingmethods. Frequency independent Fresnel losses, although
breaking the purity of the BSV state, do not affect the validity of themeasurement.

The same geometry, with tight focusing of the input radiation on the surface of the same crystal, allowed us
to observe, in addition to SFG, the three- and four-frequency summation. As expected from the theory, for the
four-frequency summation, the spectrum consists of a pronounced coherent peak and incoherent background,
while the three-frequency summation does notmanifest the peak.

We believe that under tight focusing, non-phasematched SFG and its higher-order analogs can be used for
the characterization of nonclassical light sources and form the base for an ultrafast wavelength-independent
autocorrelator.
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