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We construct valence-space Hamiltonians for use in shell-model calculations, where the residual
two-body interaction is based on symmetry principles and the low-momentum expansion from chiral
effective field theory. In addition to the usual free-space contact interactions, we also include novel
center-of-mass–dependent operators that arise due to the Galilean invariance breaking by in-medium
effects. We fitted the low-energy constants to 441 ground- and excited-state energies in the sd
shell and obtained a root-mean-square derivation of 1.8 MeV at leading order and of 0.5 MeV at
next-to-leading order, with natural low-energy constants in all cases. The developed chiral shell-
model interactions enable order-by-order uncertainty estimates and show promising predictions for
neutron-rich isotopes beyond the fitted data set.

I. INTRODUCTION

The nuclear shell model [1–3] is a very successful many-
body method, which is widely used for calculations of
nuclear-structure properties in the medium to medium-
heavy mass region of the nuclear chart. Typically, the
model space for shell-model calculations includes one ma-
jor harmonic-oscillator (HO) shell, or extensions by in-
cluding another full shell or some of the lowest-lying sub-
shells. In order to perform calculations in the nuclear
shell model, one requires an effective Hamiltonian that
describes the interactions among nucleons in the valence
space under consideration.

There are two common approaches to develop valence-
space Hamiltonians, which typically consist of single-
particle energies (SPEs) and two-body matrix elements
(TBMEs). First, there are very successful phenomeno-
logical approaches, where an effective interaction is con-
structed in a specific valence space by fitting free parame-
ters to experimental properties in the model space. These
are usually theoretically motivated based on a renormal-
ized realistic interaction, where the TBMEs (or combi-
nations thereof) and SPEs are then used to fine-tune the
interaction, as in the universal sd-shell (USD) interac-
tions of Ref. [4]. This strategy (see, e.g., Refs. [1, 2]
for reviews) typically leads to shell-model interactions
that reproduce the experimental data with a root-mean-
square (RMS) deviation of only a few hundred keV.

Second, valence-space Hamiltonians can be derived us-
ing modern ab initio methods, which can then be used
in shell-model calculations. Among those methods are
many-body perturbation theory (MBPT) [3, 5–7], the
no-core shell model (NCSM) [8, 9], coupled-cluster theory
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(CC) [10–12] and the in-medium similarity renormaliza-
tion group (IM-SRG) [13–16]. All of these methods start
from a few-body Hamiltonian, which typically consists
of two- and three-body interactions from chiral effective
field theory (EFT). These methods do not achieve the
same overall accuracy as the phenomenological fits, but
they can provide uncertainty estimates.

In this paper, we use chiral EFT as a general opera-
tor basis at low energies and its capability to estimate
theoretical uncertainties due to the EFT expansion to
develop chiral shell-model interactions, where the low-
energy couplings (LECs) are fit directly to data in the
sd shell. Chiral EFT provides a systematic expansion
of strong interactions at low energies based on general
symmetry principles in terms of nucleon and pion de-
grees of freedom [17, 18]. Following Weinberg’s power
counting [19, 20], chiral EFT predicts a hierarchy of two-
and many-body interactions governed by an expansion
in powers of (Q/Λb)

ν with order ν > 0, were Q is a
generic low-momentum scale or the pion mass mπ and
Λb ∼ 500 MeV is the breakdown scale of the EFT. Chiral
EFT includes two-nucleon interactions at leading order
(LO, Q0) and many-body interactions start at next-to-
next-to-leading order (N2LO, Q3).

Because the pion-exchange interactions describe long-
range physics, which is not renormalized in the medium,
we take the long-range pion-exchange contributions di-
rectly as in free-space nuclear forces [17, 18]. The short-
range contact interactions encode physics beyond the
degrees of freedom resolved in the EFT and therefore,
for chiral shell-model interactions we fit these directly
to data in the sd shell. However, in the valence space,
the presence of the core breaks Galilean invariance, and
therefore novel short-range operators are possible that
depend on the two-body center-of-mass (CM) momen-
tum (or on the CM orbital angular momentum). These
have been explored in the context of Fermi liquid theory
in Ref. [21] and include operators that are known as an-
tisymmetric spin-orbit interactions in the context of the
shell model (see, e.g., Ref. [22]). They enter at next-to-
leading order (NLO, Q2) in Weinberg counting, and we
explore them for the first time in shell-model interactions.
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In this work, we construct valence-space Hamiltonians
in the sd shell based on chiral EFT operators up to NLO.
We fit the LECs to 441 ground- and excited-state ener-
gies in this model space. The LECs absorb in-medium
effects due to the truncation of the model space. We will
show the significance of the novel CM-dependent oper-
ators by constructing a full valence-space (vs) NLO in-
teraction, which we label NLOvs, and comparing it to
results for a NLO interaction that uses only free-space
operators from chiral EFT. We also compare our chi-
ral shell-model interactions with the USD interactions
from Ref. [4]. Moreover, we explore order-by-order un-
certainty estimates and show promising predictions for
neutron-rich isotopes beyond the fitted data set.

This paper is organized as follows: In Sec. II, we dis-
cuss the free-space contact interactions and introduce the
new CM-dependent operators at NLO. The partial-wave
decomposition of the operators is given in App. A. The
second part of Sec. II discusses the transformation to
TBMEs in a HO basis and regulator aspects. Details
on the transformation are given in App. B. We discuss
specifics on the fitting process and give an overview of
the quality of our fits in Sec. III. In Sec. IV, we show
our results and predictions for ground-state energies and
spectra, including estimates of the theoretical uncertain-
ties. Finally, we summarize and give an outlook in Sec. V.

II. VALENCE-SHELL INTERACTIONS

A. Operators from chiral EFT

Following Weinberg’s power counting [19, 20], there are
two LECs at LO and seven new LECs at NLO. The LO
and NLO contact interactions have the following form in
momentum space:

〈p|V(LO)
cont |p′〉 = CS + CT σ1 · σ2 , (1)

and

〈p|V(NLO)
cont |p′〉 = C1q

2 + C2k
2 +

(
C3q

2 + C4k
2
)
σ1 · σ2

+ C5
i

2
(σ1 + σ2) · (q× k)

+ C6 (σ1 · q) (σ2 · q) + C7 (σ1 · k) (σ2 · k) ,
(2)

where p and p′ are the final and initial relative momenta
with p = (p1 − p2)/2, q is the momentum transfer q =
p − p′ and k is the average momentum k = (p + p′)/2.
The partial-wave decomposition of the free-space contact
interactions is given in App. A 1.

The additional operators in the valence space, due
to broken Galilean invariance by the presence of the
core, depend explicitly on the two-body CM momentum
P = p1 + p2. We count powers of P as powers of Q,
as they are set by the same scale (the inverse oscillator
length) in a shell-model basis. Thus, the first contri-
butions from these operators arise at NLO. We label the

CM-dependent part of the contact interactions as NLOvs,
where vs is short for valence space. These take the fol-
lowing form in momentum space:

〈p,P|V(NLOvs)
cont |p′,P〉 = P1P

2 + P2P
2σ1 · σ2

+ P3 i (σ1 − σ2) · (q×P)

+ P4 (σ1 × σ2) · (k×P)

+ P5 (σ1 ·P) (σ2 ·P) . (3)

The CM-dependent interactions include central parts,
given by the LECs P1 and P2, the difference- and cross-
vector operators determined by P3 and P4, and a CM
tensor operator, given by P5. The latter three have been
introduced and discussed in the context of noncentral in-
teractions in Fermi liquid theory [21]. As shown by the
partial-wave decomposition in App. A 2, the central and
tensor parts are diagonal in two-body spin s, relative or-
bital angular momentum l, and total (relative plus spin)
angular momentum j, and they only contribute to the
relative 1S0 and 3S1 waves. Note that in the presence
of local regulators, regulator artifacts would also lead to
contributions in higher partial waves (see, e.g., Ref. [23]).
Moreover, the central parts are diagonal in CM angular
momentum L.

The difference- and cross-vector operators are spin-
violating [21] and mix spin-singlet 1S0 (1P1) with spin-
triplet 3Pj (3S1) relative partial waves. At NLOvs, they
do not contribute to higher l waves. As a result of the S-
P mixing and parity conservation, the spin-violating in-
teractions also change the CM angular momentum L,L′

and are not necessarily diagonal in j, j′. In the shell-
model context, their structure is similar to the anti-
symmetric spin-orbit interaction (see, e.g., Ref. [22]).

In order to investigate the impact of the different CM-
dependent interactions, we use in the following the no-
tation NLOvsc,v,t when only central, only vector, or only
tensor operators are included, respectively.

B. Transformation to HO basis and regulators

In order to apply the momentum-space interactions
in the valence space, we transform them to antisym-
metrized, normalized two-body HO states. As detailed
in App. B, this leads to TBMEs of the form

〈(n1l1j1)(n2l2j2)JT |V |(n′1l′1j′1)(n′2l
′
2j
′
2)JT 〉 , (4)

where (ni, li, ji) are the single-particle radial, orbital an-
gular momentum, and total angular momentum quan-
tum numbers, and J, T are the two-body total angular
momentum and isospin, respectively.

The radial HO wave functions are given by

Rnl(p) = Nnl (pb)
l exp

[
−1

2
(pb)2

]
L
l+ 1

2
n

(
(pb)2

)
, (5)

and are plotted in Fig. 1 for different n, l quantum num-
bers relevant for sd-shell TBMEs. The oscillator length
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FIG. 1. Radial wave functions relevant for sd-shell TBMEs in
comparison to typical regulators used in chiral EFT with the
naive cutoff estimate Λnaive = 300 MeV and ΛHO = 375 MeV.
See text for details.

b =
√

~/(mω) is used with ~ω = 13.53 MeV to reproduce
the radius of the 16O core. For completeness, the normal-

ization is Nnl = b3/2
√

2n!/Γ(n+ l + 3/2) and L
l+ 1

2
n are

generalized Laguerre polynomials.

Figure 1 shows that the radial wave functions in-
volved in a limited valence space automatically cut off
the high-momentum parts, and therefore no additional
momentum-space regulator functions are necessary. In
fact, one can naively estimate the cutoff in energy due to
the basis truncation by

Λ2
naive

mN
∼ E 6 ε1 + ε2 = 2(Nvalence + 3/2)~ω . (6)

For the sd shell it follows that Λnaive ≈ 300 MeV. A
more sophisticated estimate is given in Ref. [24] leading
to a cutoff estimate for the sd shell ΛHO ≈ 375 MeV. In
Fig. 1, we also compare the radial wave functions relevant
for sd-shell TBMEs with commonly used regulators from
chiral EFT with the two cutoff estimates described above.
We observe that the radial wave functions indeed have
a similar behavior in the high-momentum part as the
regulator function with ΛHO = 375 MeV. Hence, there
is no necessity for additional momentum-space regulator
functions for the contact interactions.
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FIG. 2. Graphical representation of the 441 experimental
states used in our sd-shell fits. Each square shows the number
of states fitted for a given isotope, where the color coding gets
darker with increasing number of states.

III. FIT

A. Data set

With the LO and different NLO operators in place, the
next step is to determine the LECs by fits to experimen-
tal data. For our data set, we consider 441 out of the
608 states that were used for the USDA/USDB fits [4].
This set is smaller than the one used for USDA/USDB,
because we included at most 12 excited states for a given
isotope. The number of states we fit to each isotope is vi-
sualized in Fig. 2. As in Ref. [4], we apply a proton num-
ber dependent Coulomb correction to the experimental
ground-state energies, so that we can focus on the strong
interaction part. The Coulomb corrections used are listed
in Table I.

B. Optimization

As mentioned above, the HO frequency is set by the
16O radius. For different mass number A, we apply a
scaling factor (18/A)1/3 to the TBMEs to correct the HO
frequency for larger nuclei, which is a standard procedure
in shell-model calculations. Our SPEs are set to repro-
duce the one-neutron separation energy and the first two
excited states of 17O. The LECs of the contact operators
are then determined by a χ2 minimization. The χ2 value
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TABLE I. Coulomb correction for a given proton number Z
from Ref. [4]. We have corrected the experimental ground-
state energies by subtracting the Coulomb correction.

Z element Coulomb correction [MeV]

8 O 0.00

9 F 3.48

10 Ne 7.45

11 Na 11.73

12 Mg 16.47

13 Al 21.48

14 Si 26.78

15 P 32.47

16 S 38.46

17 Cl 44.74

18 Ar 51.31

19 K 58.14

per datum is calculated as follows:

χ2 =
1

N − p

N∑
i=1

(
Eexp
i − Eth

i

σi

)2

, (7)

where N is the total number of states and p the number
of parameters (LECs) in the fit. The experimental en-
ergy Eexp

i is taken from the data set mentioned above,
and the theoretical result Eth

i is obtained by diagonaliz-
ing the valence-space Hamiltonian. For this, we use the
shell-model code ANTOINE [2, 25]. The uncertainty σi is
given by σ2

i = (σexp
i )2 +(σth

i )2, where we take the experi-
mental uncertainty from the data set and for the theoret-
ical uncertainty we use a constant value σth

i = 0.1 MeV
as in Ref. [4]. In future work, we will also propagate the
uncertainty from the EFT expansion, which we explore
here first after the fits in Sec. IV A. For the optimiza-
tion, we use the linear combination method, described
in Ref. [4]. The routine shows a fast and stable conver-
gence, but requires a linear dependence on our LECs,
which rules out uncertainty estimates that explicitly de-
pend on the parameters. We have also checked that the
fit is stable under further optimization with POUNDerS
algorithm [26, 27] or using the Nelder-Mead method [28].
Finally, we have considered several starting points for the
fits: all LECs set to zero; starting from LECs fit to repro-
duce the USDA/B interactions; and starting from LECs
fit to reproduce MBPT TBME from chiral NN+3N in-
teractions. We have observed that the fits based on these
starting points all lead to the same minimum.

As our theoretical uncertainty has no statistical inter-
pretation, neither does the resulting χ2 value, and thus,
we rather compare the RMS deviation to experiment for

different interactions. The RMS deviation is given by

RMS =

√√√√ 1

N

N∑
i=1

(
Eexp
i − Eth

i

)2
. (8)

C. Overview of comparison with experiment

In Fig. 3 we show the RMS deviation from experi-
ment for each fitted nucleus in the sd shell for the chi-
ral shell-model interactions at LO (left), NLO (middle),
and NLOvs (right). The RMS deviation is given by a
color coding that ranges from 0 MeV (green) to 1 MeV
(red). The results show a striking improvement from LO
to NLO and a further improvement from NLO to NLOvs,
where at NLOvs, there are only a few outliers with large
RMS deviations. This demonstrates the impact of the
new CM-dependent operators.

We also show a quantitative overview of the compari-
son with experiment in Fig. 4. The figure is divided into
two rows, where the upper row shows the difference be-
tween theoretical and experimental ground-state energies
and the lower row is for the difference between theoretical
and experimental excitation energies. The columns show
again the results for the LO (left), NLO (middle), and
NLOvs (right) shell-model interactions. The gray (or-
ange) bands show the σ (2σ) intervals given by the RMS
deviation. The order-by-order improvement from LO to
NLO and from NLO to NLOvs, already seen globally in
Fig. 3, is clearly visible from the decreasing σ bands from
left to right and from the systematically decreasing in-
dividual energy differences. Overall, we observe a very
good reproduction of experiment at NLOvs.

The results for the ground-state energies at LO in
Fig. 4 show a systematic deviation from experiment with
increasing neutron richness, especially for the oxygen to
silicon isotopes, where the LO shell-model interaction
leads to overbound states with respect to experiment.
This trend seems to be resolved at NLO, where no clear
pattern is visible. However, at NLOvs, there is again
a deficiency in the isospin dependence for the neon to
aluminum isotopic chains. It will be interesting to see
whether this will be improved at N2LO, and whether
this can be traced back to the inclusion of three-nucleon
forces [29], which enter at N2LO.

Systematic trends of this type are not visible in the en-
ergy differences for the excited states in Fig. 4. Note that
the number of excited states is higher for nuclei close to
stability (see also Fig. 2), so that there are more points
shown at the beginning of each element in Fig. 4. How-
ever, it stands out that there is little to no improvement
in the first two sodium isotopes (22Na and 23Na) from
NLO to NLOvs, which exemplary shows that additional
operator structures are necessary to reach higher accura-
cies in the fit.
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FIG. 5. Root-mean-square deviation of the chiral and USD-
type interactions as a function of the number of parameters.
The results for the USD fit are taken from Ref. [4]. The
figure shows the free-space operator NLO interaction (green
diamond), the NLOvsc interaction including only the central
CM-dependent operators in addition to NLO (yellow circle),
and the full NLOvs shell-model interactions (blue square).

D. Comparison to USD-type interactions

In addition to the direct comparison with experiment,
we study how the developed chiral shell-model interac-
tions perform compared to USD-type interactions, where
the TBMEs are not determined by a basis of operators
but are fit overall. The RMS deviation of the USD fit is
taken from Fig. 4 of Ref. [4] and is shown as solid line as
a function of the number of parameters in Fig. 5. Note
that the USD fit was to a data set with 608 states, while
our results are for the data set of 441 states described
above, so the comparison is not completely one-to-one.

In Fig. 5, we plot the RMS deviation as a function of
the number of LECs for the different chiral shell-model
interactions developed in this work. In order to assess
the impact of the new CM-dependent operators, we also
analyze the central (vsc), vector (vsv), and tensor (vst)
contributions separately. The RMS deviations for all in-
teractions and the number of LECs are given in Table II.
Note that in comparison to the RMS deviation for a given
nucleus (see Fig. 3) or for ground- and excited states sep-
arately (see Fig. 4) the RMS deviations discussed here are
with respect to the full data set considered. As shown in
Table II, the RMS deviation improves 1.8 MeV at LO to
0.7 MeV at NLO and 0.5 MeV at NLOvs.

To guide the comparison with the USD-type interac-
tions in Fig. 5, the latter are marked by a cross for 9,

TABLE II. Number of fitted LECs for the different chiral
shell-model interactions considered in this work. The first
two rows show the LO and NLO interactions based on free-
space operators. The following rows show NLO interactions
that include the CM-dependent operators from Sec. II. To
distinguish between central (c), vector (v), and tensor (t) con-
tributions, we label them vsc, vsv, and vst, respectively. The
full valence-space interaction in the last row is labeled NLOvs.
We give the RMS deviation from experiment for these fitted
interactions and compare them to the RMS deviation of the
USD fit from Ref. [4] for the same number of parameters.
The rows are ordered with increasing number of LECs and
decreasing RMS deviation.

Interaction #LECs RMS [keV] USD [keV]

LO 2 1780 −
NLO 9 718 430

NLOvst 10 641 380

NLOvsv 11 678 370

NLOvsc 11 538 370

NLOvs 14 510 300

11, and 14 parameters, which corresponds to the same
number of LECs as the NLO, NLOvsc (or NLOvsv ), and
NLOvs interactions, respectively (see Table II). Recall
that the USDA (USDB) interactions correspond to the
USD fit with 30 (56) parameters [4]. We find a simi-
lar rapid decrease of the RMS deviation with increasing
number of LECs, although for the same number of pa-
rameters the optimal USD fit has ∼ 200 keV smaller
RMS deviation. Moreover, we show in Fig. 5 explicitly
the NLOvsc result, because the central CM-dependent
operators constitute the largest source of improvement
compared to considering only free-space operators (see
also Tab. II).

E. Monopole matrix elements and
low-energy constants

The monopole matrix elements play a special role in
the shell model and for shell structure [2, 29–31]. They
determine the energy gaps between the single-particle or-
bitals, leading to effective SPEs. Using a short-hand no-
tation for the TBMEs, 〈abJT |V |cdJT 〉, where the com-
bined index i is short for (niliji), the monopole ma-
trix elements are obtained by angle averaging, i.e., by
a weighted average over all possible values of the total
angular momentum,

V Tab =

∑
J

(2J + 1) 〈abJT |V |abJT 〉∑
J

(2J + 1)
, (9)

where in the sd shell a, b consists of the 0d5/2, 0d3/2, and
1s1/2 orbitals, which are uniquely labeled by twice their
total angular momentum label (i.e., 5, 3, and 1).
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FIG. 7. Fitted LECs at LO, NLO, and NLOvs in natural units, which are obtained using Eqs. (10)–(12).

Figure 6 shows the monopole matrix elements of the
chiral shell-model interactions at LO, NLO, and NLOvs

as well as those of the USDA and USDB interaction for
A = 18 (i.e., without applying the scaling with ~ω). In

the T = 0 channel (left panel of Fig. 6), the monopole
matrix elements at LO (except for 5353) deviate signif-
icantly from the other interactions, while at NLO and
especially at NLOvs they are similar to the monopole
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matrix elements of USDA/USDB. In general the change
from NLO to NLOvs is small except for the higher lying
1111 and 3333 orbitals. For the T = 1 channel (right
panel of Fig. 6), the changes from LO to NLO are sig-
nificantly smaller, and there are only notable deviations
from USDA/USDB for the 1111 monopole matrix ele-
ment. The latter was also observed in microscopic calcu-
lations of valence-space Hamiltonians [29].

The resulting LECs at different orders are shown in
Fig. 7. To express them in natural units (see, e.g.,
Ref. [32]), we multiply the LO and NLO LECs by

CLO[nat. units] = CLO · F 2
π , (10)

CNLO[nat. units] = CNLO · (FπΛ)
2
, (11)

Pi[nat. units] = Pi · (FπΛ)
2
, (12)

with Λ = ΛHO = 375 MeV and pion decay constant Fπ =
92.4 MeV. As shown in Fig. 7, all fitted LECs at all orders
come out to be natural, or are very small in some cases.
Wigner symmetry given by CS � CT is also fulfilled
by our interactions. Note that neither naturalness nor
Wigner symmetry was imposed as a constraint on the
fit. The LECs of the new CM-dependent operators are
given by P1−5 in Fig. 7. We find that all Pi are similar
in magnitude. Finally, the changes from LO to NLO
and NLOvs are also systematic for the LECs, with larger
changes from NLO to NLOvs mainly for C4 and C7.

IV. RESULTS

After a discussion of our fits and the overview of the
comparison to experiment and to USD-type interactions
in the previous section, we next present a more detailed
picture of the quality of the chiral shell-model interac-
tions. In most cases the experimental data shown are
from the atomic mass evaluation [33] for the ground-state
energies and from Ref. [34] for excitation energies, other-
wise the experimental reference is given explicitly. More-
over, experimental states included in the fit are shown
in gray, and in red for predictions. We also provide the
TBMEs and SPEs of the NLOvs interaction in App. C.

A. Uncertainty estimates

The EFT enables estimates of the theoretical uncer-
tainty due to the truncation of the chiral expansion. We
explore these uncertainties here after the chiral shell-
model interactions have been fit, but will explore the fits
within the optimization in future work. The purpose of
the present uncertainty study is to obtain a feeling for
these in the context of the shell-model calculations. We
emphasize that these theoretical uncertainties do not in-
clude the systematic uncertainties from the shell-model
basis or from possible states that have a small overlap
with sd-shell configurations.

For the ground-state energies, we directly apply the
chiral EFT uncertainty estimate from Ref. [35] and show
the resulting uncertainties in Fig. 8. These are obtained
at LO and NLO using

∆Egs
LO = |Egs

LO|Q
2 , (13)

∆Egs
NLO = max

(
|Egs

LO|Q
3, |Egs

LO − E
gs
NLO|Q

)
, (14)

where Q = mπ/Λb with pion mass mπ, and we take Λb =
ΛHO = 375 MeV.

For excitation energies, the uncertainty estimates are
more challenging. Because the excitation energies in
medium-mass nuclei are small compared to the total
energy scale, and because the LO interaction performs
poorly in most nuclei (as expected with only two LECs),
the theoretical uncertainty would be dominated by the
large difference |Eex

LO − Eex
NLO|, if we were to follow the

same prescription for the excited states as for the ground-
state energies above. We therefore adopt the following to
estimate the uncertainties for the excitation energies

∆Eex
LO = max

(
Eav

sd , |Eex
LO|
)
Q2 , (15)

∆Eex
NLO = max

(
Eav

sd , |Eex
NLO|

)
Q3 , (16)

where we have introduced the scale Eav
sd = 3 MeV, which

is taken to be approximately the average of the splittings
between the sd-shell orbitals. This scale sets the natural
scale for excitations in the sd shell.

B. Ground-state energies

In Fig. 8, we show the ground-state energies for the iso-
topic chains from oxygen to potassium based on the chi-
ral shell-model interactions at LO, NLO, and NLOvs in-
cluding the theoretical uncertainties as discussed above.
For comparison, also the USDA and USDB energies are
given. We find that all states that were included in the
fit are reproduced at all orders within the EFT uncer-
tainties. However, the LO interaction predicts too much
binding for the neutron-rich oxygen and fluorine isotopes
that were not included in the fit. As a result, the oxy-
gen dripline is not reproduced, being at or beyond 28O
at LO, and also 28F and 29F are overbound with respect
to experiment. Remarkably, already the NLO interac-
tion correctly reproduces the oxygen dripline as well as
the two fluorine isotopes, which were not included in the
fit. Moreover, the NLO and NLOvs interactions overlap
in all cases and reproduce ground-state energies equally
well.

C. Spectra

In Figs. 9–11, we present our results for the spectra of
excited states. These cover the sd shell for representative
cases of nuclei regarding the fits. In each panel, results
are given for the chiral shell-model interactions at LO,
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FIG. 11. Excitation spectra of selected isotopes from sulfur to potassium. For details see the caption of Fig. 9.

NLO, and NLOvs including the theoretical uncertainties,
in comparison to experiment and the USDA/USDB in-
teractions. First, in Fig. 9, we show results for oxygen,
fluorine, neon, and sodium isotopes. For the oxygen spec-
tra (first row), the excitation energies generally change
weakly from LO to NLO to NLOvs. From LO to NLO,
the excitation energy usually increases, and the NLOvs

results generally lead to an improvement. In fluorine
(second row), the NLO interaction already shows a clear

improvement from the LO result, but overshoots the ex-
perimental value somewhat, where again then at NLOvs

the spectra are in good agreement with experiment. For
the neon spectra (third row), most states show a continu-
ous improvement from LO to NLO to NLOvs. Moreover,
by including the CM-dependent operators, the correct
ground-state can be reproduced in 21Ne. For the sodium
isotopes (fourth row), we show the two outliers 22Na and
23Na, which we already pointed to in the discussion of
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Fig. 3. In both of them we see that our interactions at
NLO and NLOvs lead to too low energies, and also that
there is nearly no improvement from NLO to NLOvs.
However, 25Na shows again a similar behavior as the flu-
orine isotopes.

In Fig. 10, we show results for magnesium, aluminum,
silicon, and phosphorus isotopes. We generally find sim-
ilar order-by-order behaviors described above, with an
overall improvement going to NLOvs. We note in partic-
ular the improvement for 26Al, 31Si, and 35P, as well as
the correct reproduction of the 32P ground state when
the CM-dependent operators are included. In Fig. 11,
we show results for the remaining sulfur, chlorine, argon,
and potassium isotopes, which exhibit similar order-by-
order trends as well. Another outlier here is the first
excited state of 37Ar, which is well reproduced by the
LO and NLO interactions, but at slightly too low energy
with the NLOvs interaction. However, besides this first
excited state, most of the remaining states improve with
the NLOvs interaction.

Finally, we need to comment on the theoretical uncer-
tainties for the excited states. While the behavior of the
uncertainties may not be unreasonable, the adopted pre-
scription for the uncertainties of excitation energies is not
fully satisfactory, in particular regarding the LO to NLO
behavior which is not overlapping in many cases. Future
work is needed here, with, e.g., a Bayesian analysis [36]
of the order-by-order behavior of the results leading to
improved estimates of the theoretical uncertainties.

D. Predictions

After the promising prediction of the oxygen dripline
at NLO and NLOvs observed above, we also study the
predictions for excited states of neutron-rich nuclei be-
yond the fitted data set. We focus on the spectra of
neutron-rich oxygen, fluorine, and neon isotopes, which
are plotted in Fig. 12. Only the first excited state in 26Ne
was included in the fit. All remaining states are predic-
tions of the chiral shell-model interactions. Because our
calculations do not include the continuum, we empha-
size this by showing the neutron separation energy Sn
in Fig. 12. For states close to or above Sn, the explicit
inclusion of the continuum will lead to changes, which
are often of the order of few hundred keV unless this is
further resonantly enhanced.

In comparison to measured states, the chiral shell-
model interactions at NLOvs again lead to the best over-
all agreement, and there is generally an improvement in
going from LO to NLO to NLOvs. For the oxygen iso-
topes this is especially visible in 23,24O. Moreover, all
our interactions reproduce the first 2+ energy in 26O re-
cently measured at RIKEN [39]. This state is especially
impressive, since neither the ground-state energy, nor the
excitation energy was used in our dataset, and the order-
by-order behavior is very stable. The agreement of our
chiral shell-model interaction predictions at NLOvs is also

very good for the fluorine isotopes, especially for the low-
lying states known, and for all neon isotopes shown.

V. SUMMARY AND OUTLOOK

We have developed chiral shell-model interactions in
the sd shell, by fitting the LECs of chiral EFT operators
at LO and NLO directly to 441 ground- and excited-
state energies. In addition to the free-space contact in-
teractions and pion exchanges, this includes novel CM-
dependent operators that arise due to the breaking of
Galilean invariance in the presence of the core.

The shell-model fits lead to a systematic improvement
from LO to NLO and NLOvs and resulted in natural
LECs at all orders. The RMS derivation of the fits im-
proved from 1.8 MeV at LO to 0.7 MeV at NLO and
0.5 MeV at NLOvs. The latter includes five novel op-
erators that depend on the two-body CM momentum,
so that the total number of LECs at NLOvs is 14. In
comparison to USD-type interactions, the RMS devia-
tion is about 200 keV higher, but shows a similar rapid
improvement with the number of LECs. Moreover, the
monopole matrix elements are similar to the successful
USDA/USDB interactions at NLO and NLOvs. There-
fore, we conclude that the chiral EFT operators efficiently
capture the relevant physics at low energies. The EFT
expansion enabled us to provide theoretical uncertain-
ties, which seem very systematic for ground-state ener-
gies, but require further developments for the excitation
energies.

We have found a very good reproduction of experi-
mental ground-state energies at all orders, and a striking
improvement in the reproduction of excitation energies
from LO to NLO and NLOvs. Moreover, the overall sys-
tematic improvement from NLO to NLOvs and the fact
that some states could only be reproduced, e.g., with the
correct ground-state spin at NLOvs, confirms the impor-
tance of the inclusion of the new CM-dependent opera-
tors for chiral shell-model interactions. The developed
interactions show promising predictions for neutron-rich
isotopes beyond the fitted data set. In addition to the
correct reproduction of the oxygen dripline already at
NLO, the excited states in neutron-rich oxygen, fluorine,
and neon isotopes, which were not included in the fit, are
predicted very well at NLOvs.

Besides improving the way theoretical uncertainties
can be assessed for excited states, future work includes
going to higher order, which will include also three-
nucleon interactions, and the exploration of consistent
electroweak transition based on chiral EFT operators.
Moreover, for valence-space Hamiltonians beyond a sin-
gle major shell, where phenomenological interactions in-
volve ad hoc reductions of the cross-shell matrix ele-
ments, the strategy presented here could provide inter-
esting new interactions. This is especially important for
exotic nuclei and for heavier nuclei, including key nuclei
for neutrinoless double-beta decay.
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Appendix A: Partial-wave decomposition

1. Free-space contact interactions

In the following, we give the partial-wave decomposi-
tion of the LO and NLO contact interactions, where

〈p|VCi
|p′〉 −→ Ci V

ll′sj
Ci

(p, p′) , (A1)

when projected on a given partial wave. The free-space
contact interactions lead to

V ll
′sj

CS
(p, p′) = 4πδll′δl0 , (A2)

V ll
′sj

CT
(p, p′) = 4πδll′δl0

(
2s(s+ 1)− 3

)
, (A3)

V ll
′sj

C1
(p, p′) = 4πδll′

(
δl0(p2 + p′2)− 2

3
δl1pp

′
)
, (A4)

V ll
′sj

C2
(p, p′) = πδll′

(
δl0(p2 + p′2) +

2

3
δl1pp

′
)
, (A5)

V ll
′sj

C3
(p, p′) =

(
2s(s+ 1)− 3

)
V ll

′sj
C1

(p, p′) , (A6)

V ll
′sj

C4
(p, p′) =

(
2s(s+ 1)− 3

)
V ll

′sj
C2

(p, p′) , (A7)

V ll
′sj

C5
(p, p′) = δll′δs1δl1

2π

3

(
4− j(j + 1)

)
pp′ , (A8)

V ll
′sj

C6
(p, p′) =

24π
∑
a=0,2

(−1)s+j+l
′+a â ŝ 2

{
l s j
s l′ a

} 1 1 a
1/2 1/2 s
1/2 1/2 s


×
[
Ca0

1010

(
p2δlaδl′0 + p′2δl0δl′a

)
+

2

3
â pp′δll′δl1

]
, (A9)

V ll
′sj

C7
(p, p′) =

6π
∑
a=0,2

(−1)s+j+l
′+a â ŝ 2

{
l s j
s l′ a

} 1 1 a
1/2 1/2 s
1/2 1/2 s


×
[
Ca0

1010

(
p2δlaδl′0 + p′2δl0δl′a

)
− 2

3
â pp′δll′δl1

]
.

(A10)

where â =
√

2a+ 1, Clml1m1l2m2
is a Clebsch-Gordan coef-

ficient, and {· · · } are Wigner 6j- and 9j-symbols.

2. Center-of-mass–dependent operators

Similar to the free-space contact interactions, we give
the partial-wave decomposition of the CM-dependent op-

erators with

〈p,P|VPi |p′,P
′〉 −→ δ(P − P ′)

PP ′
Pi 〈rel,cm|V JPi

|rel′,cm′〉 ,

where we use the short-hand notation

〈rel,cm|V J |rel′,cm′〉 = 〈pP [(ls)jL]J |V |p′P [(l′s′)j′L′]J〉 ,
(A11)

which is diagonal in P , since the total momentum is
conserved, and diagonal in total angular momentum
J = j + L, but not diagonal in s, s′ or j, j′. With this,
the partial-wave decomposition reads

〈rel,cm|V JP1
|rel′,cm′〉 = 4πP 2δss′δll′δl0δjj′δjsδLL′ ,

(A12)

〈rel,cm|V JP2
|rel′,cm′〉 = 4πP 2δss′δll′δl0δjj′δjsδLL′

×
(
2s(s+ 1)− 3

)
, (A13)

〈rel,cm|V JP3
|rel′,cm′〉 = 24π

√
2 δs+s′,1 ĵĵ′L̂′

× CL0
L′010

{
j L J
L′ j′ 1

}1 1 1
l s j
l′ s′ j′


× (−1)L+J+j′+s′+1 (δl1δl′0p+ δl0δl′1p

′)P , (A14)

〈rel,cm|V JP4
|rel′,cm′〉 = 12π

√
2 δs+s′,1 ĵĵ′L̂′

× CL0
L′010

{
j L J
L′ j′ 1

}1 1 1
l s j
l′ s′ j′


× (−1)L+J+j′ (δl1δl′0p− δl0δl′1p′)P , (A15)

and

〈rel,cm|V JP5
|rel′,cm′〉 = 24πδss′δll′δl0δjj′L̂′ ŝ

2

×
∑
a=0,2

â Ca0
1010C

L0
L′0a0

{
j L J
L′ j a

} 1 1 a
1/2 1/2 s
1/2 1/2 s


× (−1)L+J+jP 2 . (A16)

Appendix B: Transformation to HO basis

To calculate the TBMEs, we first transform the
partial-wave momentum-space matrix elements to the
relative-CM HO basis

〈nN [(ls)jL]J |V |n′N ′[(l′s′)j′L′]J〉

=

∫
dpp2Rnl(p)

∫
dp′p′2Rn′l′(p

′)

×
∫
dPP 2RNL(P )RN ′L′(P ) 〈rel,cm|V J |rel′,cm′〉 .

(B1)
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The relative-CM HO matrix elements are then trans-
formed to the TBMEs using the Talmi-Moshinsky trans-
formation. Including also the isospin part, this leads to

〈nN [(ls)jL]JT |V |n′N ′[(l′s′)j′L′]JT 〉 →

〈(n1l1j1)(n2l2j2)JT |V |(n′1l′1j′1)(n′2l
′
2j
′
2)JT 〉 =〈

n1n2

[
(l1

1

2
)j1(l2

1

2
)j2

]
JT

∣∣∣∣V ∣∣∣∣n′1n′2[(l′1 1

2
)j′1(l′2

1

2
)j′2

]
JT

〉
.

(B2)

To this end, we first recouple the two-body states to
|n1n2[(l1l2)Λ( 1

2
1
2 )s]J〉, with total orbital angular momen-

tum Λ = l1 + l2 or in terms of relative and CM angu-
lar momenta Λ = L + l, and then to two-body states
|Nn[(Ll)Λs]J〉, which can be recoupled to the desired
relative-CM states |nN [(ls)jL]J〉. Combining this, we
have for antisymmetrized, normalized two-body states

∣∣∣∣n1n2

[
(l1

1

2
)j1(l2

1

2
)j2

]
JT

〉
=
∑
Λs

Λ̂ŝ ĵ1ĵ2

 l1 l2 Λ
1/2 1/2 s
j1 j2 J


×
∑
nlNL

〈Nn(Ll)Λ|n1n2(l1l2)Λ〉d=1

×
∑
j

(−1)l+s+j Λ̂ĵ

{
L l Λ
s J j

}
F |nN [(ls)jL]JT 〉 ,

(B3)

where F = (1−(−1)l+s+T )/
√

2(1 + δn1n2
δl1l2δj1j2) takes

into account the normalization and antisymmetrization
of the two-body states, and 〈Nn(Ll)Λ|n1n2(l1l2)Λ〉d=1
is the Talmi-Moshinsky bracket in the conventions of
Ref. [43]. Note that for calculating the TMBEs the sum
is over all s, s′, j, j′, N,N ′, and L,L′, contrary to the
case for free-space interactions when these are diagonal.

Appendix C: Two-body matrix elements

For completeness, we list the TBMEs of the NLOvs

interaction in Table III. The corresponding SPEs are
ε0d5/2 = −4.14308 MeV, ε1s1/2 = −3.27235 MeV, and

ε0d3/2 = 0.94172 MeV, taken from the spectrum of 17O.
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