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We study systems of bosons and fermions in finite periodic boxes and show how the existence
and properties of few-body resonances can be extracted from studying the volume dependence
of the calculated energy spectra. We use and briefly review a plane-wave-based discrete variable
representation, which allows a convenient implementation of periodic boundary conditions. With
these calculations we establish that avoided level crossings occur in the spectra of up to four particles
and can be linked to the existence of multibody resonances. To benchmark our method we use two-
body calculations, where resonance properties can be determined with other methods, as well as
a three-boson model interaction known to generate a three-boson resonance state. Finding good
agreement for these cases, we then predict three-body and four-body resonances for models using
a shifted Gaussian potential. Our results establish few-body finite-volume calculations as a new
tool to study few-body resonances. In particular, the approach can be used to study few-neutron
systems, where such states have been conjectured to exist.

I. INTRODUCTION

The study of resonances, i.e., of short-lived, unstable
states, constitutes a very interesting and challenging as-
pect of few-body physics. To explore such systems the-
oretically, we discuss here the extraction of few-body-
resonance properties from the volume dependence of en-
ergy levels in finite boxes with periodic boundary con-
ditions. Our study is motivated by recent efforts to ob-
serve [1–4] and calculate [5–13] few-neutron resonances
in nuclear physics, but the scope is more general.

For two-body systems, it was shown by Lüscher [14, 15]
that the infinite-volume properties of interacting parti-
cles are encoded in the volume dependence of their (dis-
crete) energy levels in the box. These methods are com-
monly used in the field of lattice QCD [16, 17], but also
in effective field theories (EFT) with nucleon degrees of
freedom [9, 18]. The details of extending the formalism
from the two-body sector to few-body systems is a topic
of very active current research (see, e.g., Refs. [19–25]).
In the two-particle sector, it was shown that a resonance
leads to an avoided crossing of energy levels as the size
L of the box is varied [26]. This technique was used
successfully to extract hadron resonances (see Ref. [17]
for a recent review). The same framework also applies
to resonances in few-body systems which couple to an
asymptotic two-body channel.

In the present work, we study the extension of this
method to few-body resonances. In particular, we are
interested in resonances that couple only to asymptotic
three- or higher-body channels. The properties of such
systems, which one could refer to as “genuine” few-body
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resonances, cannot be obtained by calculating a standard
two-body scattering phase shift. Because to date there
are no formal derivations for this case, we explore here
whether such states again show up as avoided crossings in
the finite-volume few-body energy spectrum, and how the
properties of the resonance state can be inferred from the
position and shape of these avoided crossings. Beyond es-
tablishing this method as a tool for identifying resonance
states, our results are relevant to test and help extend
the ongoing formal work mentioned above, in particu-
lar regarding the derivation of three-body finite-volume
quantization conditions [20–23, 25]. We note that in a
similar approach resonances can be studied in spherical
boxes; see, for example, Refs. [27, 28].

Our studies require the calculation of several few-body
energy levels in the finite box. An important consequence
of the finite volume is that for any given box size L the
spectrum is discrete, but it is still possible to distinguish
few-body bound states, which have an exponential vol-
ume dependence [24, 29]. In contrast, continuum scat-
tering states have a power-law volume dependence. Res-
onances are then identified as avoided crossings between
these discrete “scattering” states as L is varied (although
we emphasize already here that in general this signature
is expected to be necessary, but not sufficient, for the
existence of resonance states).

Naturally, such calculations are numerically challeng-
ing, in particular when the number of particles, the num-
ber of desired energy levels, or the size of the volume
increases. As numerical method we use a discrete vari-
able representation (DVR) based on an underlying basis
of plane-wave eigenstates of the box, which was previ-
ously applied to study few-nucleon systems in Ref. [30].
The latter allow one to conveniently implement peri-
odic boundary conditions and naturally describe scat-
tering states, and the use of the DVR promises signif-
icant advantages in computational efficiency over other
methods [30, 31]. We have developed a DVR frame-
work that solves the finite-volume problem for both few-
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fermion and few-boson systems, supporting both small-
scale (running on standard computers) as well as effi-
cient large-scale (running on high-performance comput-
ing clusters) calculations. An important challenge is to
extend the reach of our method to the very large box sizes
that are required to unambiguously identify the existence
of proposed three- and four-neutron resonances at very
low energies. Postponing studies of few-neutron systems
using EFT-based interactions to future work, we investi-
gate here systems of three and four bosons and fermions
using different model interactions.

This paper is organized as follows. In Sec. II we present
the DVR method applied to finite periodic boxes for both
bosons and fermions, discussing in some detail our nu-
merical implementation. This also addresses the fact that
in the periodic box one has to account for the breaking
of rotational symmetry to the cubic group, some details
of which are given in the appendix. After discussing sig-
natures of two-body resonances in Sec. III, we proceed to
the multibody case in Sec. IV, establishing first the va-
lidity of our approach using a known three-body test case
before we study bosonic and fermionic multibody reso-
nances using shifted Gaussian potentials. We conclude
in Sec. V with a brief summary and outlook.

II. NUMERICAL METHOD

A. Discrete variable representation

To avoid contributions from the center-of-mass motion
to the energy of the system, we consider the n-body
system in n−1 relative coordinates, xi = rn − ri for
i = 1, . . . , n−1, where ri denotes the position of the ith
particle. These are not Jacobi coordinates, so the kinetic
energy operator Trel contains mixed derivatives in the po-
sition representation. Because such terms are straightfor-
ward to deal with in the DVR representation, our choice
of coordinates is convenient as it keeps the boundary
conditions simple. While the three-dimensional case is
physically the most relevant one, the construction here
is completely general. In d spatial dimensions, the only
difference is that all vectors have d components.

1. One-dimensional case

The basic discussion of the DVR method given here
follows that of Ref. [31], to which we also refer for more
details. To explain the DVR method, we first consider
two particles (with equal mass m and reduced mass µ =
m/2) in one spatial dimension, setting x = x1. Confined
to an interval of length L, periodic boundary conditions
are imposed by choosing a basis of plane waves,

φj(x) = 〈x|φj〉 =
1√
L

exp(ipjx) , with pj =
2πj

L
, (1)

and i = −N/2, . . . , N/2− 1 with a truncation parameter
N (even) determining the basis size. It is clear that any
periodic solution of the Schrödinger equation,

[Trel + V ] |ψ〉 = E|ψ〉 , (2)

can be expanded in the basis (1), and this representation
becomes exact for N →∞.

Following the DVR construction laid out in Ref. [31],
we consider now pairs (xk, wk) of grid points xk and as-
sociated weights wk such that

N/2−1∑
k=−N/2

wk φ
∗
i (xk)φj(xk) = δij . (3)

For the plane-wave basis (1), this is obviously satisfied
by

xk =
L

N
k and wk =

L

N
. (4)

If we now define matrices

Uki =
√
wkφi(xk) , (5)

then these are unitary according to Eq. (3), and we obtain
the DVR basis functions ψk(x) by rotating the original
plane-wave states:

ψk(x) =

N/2−1∑
i=−N/2

U∗kiφi(x) (6)

for k = −N/2, . . . , N/2 − 1. The range of indices is the
same as for the original plane-wave states, but whereas in
Eq. (1) they specify a momentum mode, ψk(x) is peaked
at position xk ∈ [−L/2, L/2).

It follows directly from Eqs. (4) and (5) as well as the
transpose UT also being unitary that the DVR states
have the property

ψk(xj) =
1√
wk

δkj . (7)

This greatly simplifies the evaluation of the potential ma-
trix elements:

〈ψk|V |ψl〉 =

∫
dxψ∗k(x)V (x)ψl(x) ,

≈
N/2−1∑

m=−N/2

wm ψ∗k(xm)V (xm)ψl(xm) ,

= V (xk)δkl ,

(8)

so that the potential operator is (approximately) diago-
nal in the DVR representation. The approximation here
lies in the second step in Eq. (8), replacing the integral
by a sum, which is possible because the (xk, wk) defined
in Eq. (4) constitute the mesh points and weights of a
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trapezoidal quadrature rule. Note that for this identi-
fication it is important that the points −L/2 and L/2
are identified through the periodic boundary condition
because otherwise the weight w−N/2 would be incorrect.

The kinetic energy, given in configuration space by the
differential operator

Trel = − 1

2µ

d2

dx2
, (9)

is not diagonal in the DVR representation (note that we
set here ~ = 1). However, its matrix elements can be
written in closed form [30]:

〈ψk|Trel|ψl〉 =


π2N2

6µL2

(
1 +

2

N2

)
, for k = l ,

(−1)k−lπ2

µL2 sin2
(
π(k − l)/N

) , otherwise .

(10)
While this matrix is dense here, we will see below that it
becomes sparse for d > 1. Alternatively, as pointed out
in Ref. [30], one can use a discrete fast Fourier transform
to evaluate the kinetic energy in momentum space. This
operation switches from the DVR to the original plane-
wave basis (1), where we have

Trel|φi〉 =
p2
i

2µ
|φi〉 , (11)

and back.

2. General construction

The construction is straightforward to generalize to the
case of an arbitrary number of particles n and spatial di-
mensions d: The starting point simply becomes a product
of (n−1)×d plane waves, one for each relative-coordinate
component. The transformation matrices and DVR ba-
sis functions are defined via tensor products. Eventually,
while a single index suffices to label the one-dimensional
DVR states, a collection of (n−1)×d indices defines the
general case. For these states we introduce the notation
(generalizing the 1D short-hand form |ψk〉 = |k〉)

|s〉 = |(k1,1, · · · , k1,d), · · · , (kn−1,1, · · · ); (σ1, · · · , σn)〉 .
(12)

Here we have also included additional indices to account
for spin degrees of freedom. If the particles have spin S,
then each σi, labeling the projections, takes values from
−S to S. Additional internal degrees of freedom, such as
isospin, can be included in the same way. The collection
of all these states |s〉 is denoted by B, which is our DVR
basis with dimension dimB = (2S + 1)n ×N (n−1)d.

We take the interaction V in Eq. (2) to be a sum of
central, local A-body potentials (with A = 2, . . . , n for an
n-body system). Each contribution to this sum depends
only on the relative distances between pairs of particles.

This means that matrix elements of V between n-particle
states depend on n−1 relative coordinates, and for each
of these there is a delta function in the matrix element,

〈x1, · · · ,xn−1|V |x′1, · · · ,x′n−1〉
= V ({|xi|}, {|xi − xj |}i<j)

∏
i

δ(d)(x′i − xi) , (13)

so that the interaction remains diagonal in the general
DVR basis. For the evaluation between DVR states |s〉,
each modulus |xi| in Eq. (13) gets replaced with

|si| ≡
L

N

(
d∑

c=1

k2
i,c

)1/2

. (14)

If the potential depends on the spin degrees of freedom,
the potential matrix in our DVR representation acquires
nondiagonal terms, but these are determined solely by
overlaps in the spin sector, and overall this matrix re-
mains very sparse.

As already pointed out, the kinetic energy matrix is
also sparse in d > 1. To see this, first note that the 1D
matrix elements (10) enter for each component ki,c, mul-
tiplied by Kronecker deltas for each c′ 6= c and summed
for all relative coordinates i = 1, . . . , n−1. The only addi-
tional complication, stemming from our choice of simple
relative coordinates, is that the general kinetic energy
operator,

Tn-body
rel = − 1

2µ

n−1∑
i=1

i∑
j=1

∂

∂xi

∂

∂xj
, (15)

contains mixed (non-diagonal) terms. As an example to
illustrate this, consider the kinetic-energy operator for
three particles in one dimension,

T 3-body
rel = − 1

2µ

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂

∂x1

∂

∂x2

)
. (16)

For this the kinetic-energy matrix elements are given by

〈k1k2|T 3-body
rel |l1l2〉 = 〈k1|Trel;1|l1〉δk2l2

+ 〈k2|Trel;2|l2〉δk1l1 + 〈k1k2|Trel;12|l1l2〉 , (17)

where the first two matrix elements on the right-hand
side are given in Eq. (10) and the last term is a special
case of the general mixed-derivative operator

Trel;ij = − 1

2µ

∂

∂xi

∂

∂xj
. (18)

The DVR matrix elements for this are given by

〈kikj |Trel;ij |lilj〉 = − 1

2µ

[
〈ki|∂i|li〉〈kj |∂j |lj〉

]
(19)
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with [32]

〈k|∂|l〉 =



−i
π

L
, for k = l ,

π

L

(−1)k−l exp

(
−i
π(k − l)
N

)
sin

(
π(k − l)
N

) , otherwise .

(20)
As for the diagonal terms, for a general state |s〉 these
terms are summed over for all pairs of relative coordinates
and spatial components c, including Kronecker deltas for
c′ 6= c.

Analogous to the one-dimensional case the kinetic en-
ergy can alternatively be implemented by switching to
momentum space with a fast Fourier transform, apply-
ing a diagonal matrix with entries

Tn-body
rel |s〉 =

1

2µL2

n−1∑
i=1

i∑
j=1

d∑
c=1

ki,ckj,c|s〉 , (21)

and then transforming back with the inverse transform.

3. (Anti-)symmetrization and parity

To study systems of identical bosons (fermions), we
want to consider (anti-)symmetrized DVR states. The
construction of these can be achieved with the method
described, e.g., in Ref. [33] (for the stochastic variational
model in Jacobi coordinates):

1. The transformation from single-particle to relative
coordinates is written in matrix form as

xi =

n∑
j=1

Uijrj , (22)

where

Uij =


δij , for i, j < n ,

−1 , for i < n, j = n ,

1/n , for i = n .

(23)

Note that for i = n this definition includes the
center-of-mass coordinate.

2. For the n-particle system there are n! permuta-
tions, constituting the symmetric group Sn. A per-
mutation p ∈ Sn can be represented as a matrix
C(p) with

C(p)ij =

{
1 , for j = p(i) ,

0 , otherwise ,
(24)

acting on the single-particle coordinates ri.

3. The operation of p ∈ Sn on the relative coordinates
is then given by the matrix

Crel(p) = U C(p)U−1 , (25)

with the row and column of the left-hand side dis-
carded, so that Crel(p) is an (n−1)× (n−1) matrix.

Because the indices ki,c correspond directly to posi-
tions on the spatial grid via Eq. (7), acting with Crel(p)
on a state |s〉 is now straightforward: The ki,c are trans-
formed according to the entries Crel(p)ij , where for each
i one considers all c = 1, . . . , d at once. In other words,
Crel(p) is expanded (by replication for each c) to a matrix
acting in the space of individual coordinate components.
As a final step, to maintain periodic boundary condi-
tions, any transformed indices that may fall outside the
original range −N/2, . . . , N/2− 1 are wrapped back into
this interval by adding appropriate multiples of N . Ap-
plying the permutation to the spin indices (σ1, . . . , σn) is
trivial because they are given directly as an n-tuple. The
final result of this process for a given state |s〉 ∈ B and
permutation p is a transformed state,

|s′〉 = C(p)|s〉 ∈ B , (26)

where

C(p) = Crel(p)Cspin(p) (27)

denotes the total permutation operator in the space of
DVR states. The statement of Eq. (26) is that each
p ∈ Sn acts on B as a whole by permuting the order
of elements.

With this, we can now define the symmetrization and
antisymmetrization operators as

S =
1

n!

∑
p∈Sn

C(p) and A =
1

n!

∑
p∈Sn

sgn(p) C(p) , (28)

where sgn(p) = ±1 denotes the parity of the permu-
tation p. Because both of these operators are projec-
tions (S2 = S, A2 = A), they map our original basis
B onto bases BS/A of, respectively, symmetrized or an-
tisymmetrized states, each consisting of linear combina-
tions of states in B. An important feature of these map-
pings is that each |s〉 ∈ B appears in at most one state
in BS (for symmetrization) or BA (for antisymmetriza-
tion). Thus, to determine BS we can simply apply S
to all |s〉 ∈ B, dropping duplicates, and analogously for
the construction of BA. Moreover, for the practical nu-
merical implementation of this procedure (discussed in
more detail in Sec. II B) it suffices to store a single term
for each linear combination because the full state can be
reconstructed from that through an application of the
(anti-)symmetrization operator.

Parity can be dealt with in much the same way: The
parity operator P merely changes the sign of each rela-
tive coordinate, so it can be applied to the DVR states
defined in Eq. (12) by mapping ki,c → −ki,c for all i, c,
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and, if necessary, wrapping the result back into the range
−N/2, . . . , N/2 − 1. The spin part remains unaffected
by this operation. Projectors onto positive and negative
parity states are given as

P± = 1± P . (29)

They have the same properties as S and A (each |s〉 ∈ B
appears in at most one linear combination forming a state
with definite parity), and, importantly, the same is true
for the combined operations P±S and P±A. In practice
this means that it is possible to efficiently construct bases
of (anti-)symmetrized states with definite parity, where
for each element it suffices to know a single generating
element |s〉 ∈ B.

4. Cubic symmetry projection

While permutation symmetry and parity remain un-
affected by the finite periodic geometry, rotational sym-
metry is lost. In particular, in d = 3 dimensions (to
which the remaining discussion in this subsection will be
limited), angular momentum l is no longer a good quan-
tum number for the n-body system in the periodic cubic
box. Specifically, the spherical SO(3) symmetry of the
infinite-volume system is broken down to a cubic sub-
group O ⊂ SO(3).

This group has 24 elements and five irreducible repre-
sentations Γ, conventionally labeled A1, A2, E, T1, and
T2. Their dimensionalities are 1, 1, 2, 3, and 3, respec-
tively, and irreducible representations Dl of SO(3), de-
termining angular-momentum multiplets in the infinite
volume, are reducible with respect to O. As a result,
a given (infinite-volume) angular momentum state can
contribute to several Γ. In the cubic finite volume, one
finds the spectrum decomposed into multiplets with def-
inite Γ, where an index α = 1, . . . ,dim Γ further labels
the states within a given multiplet.

For our calculations, it is desirable to select spectra by
their cubic transformation properties. To that end, we
construct projection operators [34],

PΓ =
dim Γ

24

∑
R∈O

χΓ(R)Dn(R) , (30)

where χΓ(R) denotes the character (tabulated in
Ref. [34]) of the cubic rotation R for the irreducible rep-
resentation Γ and Dn(R) is the realization of the cubic
rotation in our DVR space of periodic n-body states. For
example, for the one-dimensional representation Γ = A1,
χA1

(R) = 1 for all cubic rotations R, so in this case
Eq. (30) reduces to an average over all rotated states. In
Appendix A we provide some further discussion of the
cubic group and the construction of the Dn(R).

B. Implementation details

We use a numerical implementation of the method de-
scribed above written predominantly in C++, with some
smaller parts (dealing with permutations) conveniently
implemented in Haskell. For optimal performance, par-
allelism via threading is used wherever possible. Our
design choice to use modern C++11 allows us to achieve
this by means of the TBB library [35], which provides
high-level constructs for nested parallelism as well as con-
venient concurrent data structures. To support large-
scale applications, we also split calculations across mul-
tiple nodes using MPI, so that overall we have a hybrid
parallel framework.

For a fixed setup (given physical system, box size L,
DVR truncation parameter N), the calculation is divided
into three phases:

1. Basis setup

2. Hamiltonian setup

3. Diagonalization

The last step is the simplest one conceptually, so we
start the discussion from that end. To calculate a given
number of lowest energy eigenvalues we use the parallel
ARPACK package [36], implementing Arnoldi/Lanczos
iterations distributed via MPI. This method requires the
calculation of a number of matrix-vector products,

ψout = Hψin , (31)

applying the DVR Hamiltonian H to state vectors ψin

(provided by the algorithm) until convergence is reached.
These are potentially very large (see Sec. II A 2) and thus
are distributed across multiple nodes. Explicit synchro-
nization is only required for ψin to evaluate the right-
hand side of Eq. (31). Each node only calculates its local
contribution to ψout.

We note here that while (anti-)symmetrization and
parity are directly realized by considering appropriate ba-
sis states, the simplifications discussed in Sec. II A 3 are
not possible for the cubic-symmetry projectors PΓ intro-
duced in Sec. II A 4. Instead, the latter are accounted for
via the substitution,

H → H + λ(1− PΓ) , (32)

where λ is an energy scale chosen much larger than the
energy of the states of interest. This construction ap-
plies a shift to all states which do not possess the desired
symmetry, leaving only those of interest in the low-energy
spectrum obtained with the Lanczos algorithm.

The operator PΓ is constructed as a large sparse ma-
trix, which we implement using Intel MKL [37], if avail-
able, and via librsb [38] otherwise. The same holds
for the kinetic-energy matrix when operating in a mode
where this matrix is constructed explicitly (as described
in Sec. II A 2) in step 2.
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While this mode of operation has good scaling prop-
erties with increasing number of compute nodes, we find
it to be overall more efficient (in particular with respect
to the amount of required memory) to use the Fourier-
transform-based kinetic-energy application, which we im-
plement using FFTW [39]. Because the transform is
defined for the full (not symmetry-reduced) basis, this
method involves transforming the vectors ψin to the large
space, and transforming back after applying the kinetic-
energy operator. These transformations are again imple-
mented via sparse-matrix multiplications, where the ma-
trix X that expands from the reduced space to the full
space has entries given by eigenvectors of (appropriate
combinations of) the operators S, A, and P± described
in Sec. II A 3. Reducing back at the end is performed with
the transpose matrix XT . For calculations on multiple
nodes using MPI, individual ranks need only calculate
local slices of these matrices.

In Fourier-transform mode, step 2 consists only of cal-
culating diagonal matrices for the kinetic energy and the
potential parts of the Hamiltonian, and possibly of set-
ting up the sparse cubic projection matrix PΓ. These
calculations are based on determining the symmetry-
reduced basis states in step 1, which can be efficiently
parallelized across multiple nodes. In addition, this re-
quires calculating X and XT .1

III. RESONANCE SIGNATURES

In the two-particle sector it has been shown that a
resonance state manifests itself as avoided level crossings
when studying the volume dependence of the discrete
energy levels in a periodic box [26]. Before we move on to
establish the same kind of signature for more than two
particles in the following section, we compare here the
finite-volume resonance determination to other methods.
As a test case, we consider two particles interacting via
a shifted Gaussian potential,

V (r) = V0 exp

(
−
(r − a
R0

)2
)
. (33)

This kind of repulsive barrier is very well suited to pro-
duce narrow resonance features without much need for
fine tuning. To illustrate this we show in Fig. 1 S-wave
scattering phase shifts for a = 3, R0 = 1.5 and two dif-
ferent values of V0 (all in natural units, which besides
using ~ = c = 1 also set m = 1). For V0 = 6.0 the phase
shift exhibits a very sharp jump of approximately 180◦.
From the location of the inflection point of the phase shift

1 On a single node, it is sufficient to calculate just one of these
matrices. For distributed calculations, however, different nodes
need different slices of these matrices so that in order to reduce
communication overhead it is most efficient to store both X and
XT .

V0 = 6.0
V0 = 2.0

δ(
k)

 [d
eg

]

0

−60

−120

−180

−240

−300

−360

−420

E
0 2 4 6 8 10

Figure 1. S-wave phase shift of two particles interacting via
the potential given in Eq. (33) as a function of the (dimen-
sionless) relative kinetic energy E for V0 = 6.0 (blue solid
curve) and V0 = 2.0 (red dashed curve).

we extract the resonance energy ER, while the width Γ
is given by the value of the derivative at the resonance
energy, [

dδ(E)

dE

]
E=ER

=
2

Γ
. (34)

We find a very narrow two-body resonance with energy
ER = 2.983 and width Γ = 0.001. When the height of
the barrier is lowered to V0 = 2.0, the jump is much less
pronounced, implying that the width of this resonance
is broadened. Indeed, we find resonance parameters of
ER = 1.606, Γ = 0.097 for this case.

To further check these parameters, we consider
Eq. (33) Fourier transformed to momentum space and
look for poles in the S-wave projected S-matrix on the
second energy sheet, using the technique described in
Ref. [40]. For V0 = 6.0 we find a resonance pole at
ER − iΓ/2 = 2.9821(3) − i0.00035(5), where the uncer-
tainty is estimated by comparing calculations with 300
and 256 points for a discretized momentum grid with
cutoff 8 (in natural inverse length units). In the same
way, we extract ER − iΓ/2 = 1.606(1) − i0.047(2) for
V0 = 2.0. Noting that there is no completely unam-
biguous way to relate the parameters extracted from the
phase shifts (except in the limit of vanishing background
and poles infinitesimally close to the real axis), we con-
clude that these pole positions are in very good agree-
ment with the behavior seen in the phase shifts.

We now perform finite-volume calculations of two par-
ticles in a three-dimensional box with periodic boundary
conditions using the DVR method discussed in Sec. II. As
avoided level crossings corresponding to a resonance are
only expected for states with the same quantum numbers,
we project onto states that belong to a single irreducible
representation Γ of the cubic group (see Sec. II A 4) and
definite parity. Specifically, we consider here only A+

1

states, which to a good approximation correspond to S-
wave states in the infinite volume. As shown in Table II,
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Figure 2. Energy spectrum of two particles interacting via the potential given in Eq. (33) in finite volume for different box sizes
L. The left panel shows results for V0 = 6.0 in the A+

1 representation, whereas for the right panel a weaker barrier V0 = 2.0
was used. All crossings are avoided because the spectrum is fully projected on states with the same quantum numbers. The
crosses mark the inflection points used to extract the resonance energy (see text).

the next higher angular momentum contributing to A+
1

is l = 4, which can be safely neglected for low-energy
states.

Our results are shown in Fig. 2. In the spectrum for
V0 = 6.0 (left panel of Fig. 2), a series of extremely sharp
avoided level crossings, forming an essentially horizontal
plateau, is observed at approximately E ≈ 3.0. Accord-
ing to Ref. [26] the width of the resonance is related to
the spacing of the different levels at the avoided cross-
ing. Therefore, we conclude that the resonance is very
narrow, and find good qualitative agreement with the pa-
rameters extracted from the phase shift. For the weaker
potential (V0 = 2.0, right panel of Fig. 2), on the other
hand, the avoided level crossings are less sharp, pointing
to a larger resonance width. Along with the observed
sequence of plateaus at approximately E = 1.6, we again
find good qualitative agreement with the phase-shift cal-
culation.

For a more definite analysis, we determine the inflec-
tion points of the level curves with a plateau shape and
interpret these as an estimate for the resonance energy.
For this extraction, we fit the coefficients {ci} of a poly-
nomial,

E(L) =

imax∑
i=0

ciL
i , (35)

to the plateau region of each curve in Fig. 2 and take
the position of the plateau inflection point as the res-
onance energy. In the plots, we indicate these points
with crosses. We vary the number of data points taken
into account for the fit by adjusting the lower and up-
per boundary of the fit interval. Furthermore, we vary
imax in Eq. (35) until we find the extracted resonance
energy to be independent of the order of the polyno-

mial. For V0 = 6.0 and V0 = 2.0 we obtain, respectively,
ER = 2.98(3) and ER = 1.63(3), where the quoted er-
rors correspond to the spread of the extracted inflection
points from different plateau curves. This means that
with the inflection-point method we obtain very good
agreement with the resonance positions from the phase-
shift determination, which justifies the use of this method
for the resonance-energy extraction.

At higher energies the spectra for both V0 = 6.0 and
V0 = 2.0 exhibit less pronounced avoided level crossings.
These structures, however, do not show clear plateaus,
instead varying strongly as a function of the box size.
Most likely these finite-volume features correspond to the
resonancelike jumps of the phase shift at E ∼ 6− 10 for
V0 = 6.0 and E ∼ 3− 7 for V0 = 2.0, respectively, which
may correspond to broader resonances.

Altogether, we have demonstrated here that the po-
sitions of narrow two-body resonances can be extracted
from finite-volume calculations with very good quantita-
tive agreement compared to other methods.

IV. APPLICATIONS TO THREE AND FOUR
PARTICLES

We now proceed to explore the method in the three-
and four-body sector, starting with bosonic (spin-0) par-
ticles. Because these lack a spin degree of freedom, we
can quite easily achieve large DVR basis dimensions for
these systems, whereas fermionic systems are more com-
putationally demanding.
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A. Three-body benchmark

To verify our hypothesis that, analogously to the two-
body case, three-particle resonances appear as avoided
level crossings in finite-volume spectra, we start with
three identical spin-0 bosons with mass m = 939.0 MeV
(mimicking nucleons) interacting via the two-body po-
tential,

V (r) = V0 exp

(
−
( r

R0

)2
)

+V1 exp

(
−
(r − a
R1

)2
)
, (36)

where V0 = −55 MeV, V1 = 1.5 MeV, R0 =
√

5 fm,
R1 = 10 fm, and a = 5 fm. This setup was stud-
ied in Ref. [41], where Faddeev equations with com-
plex scaling were used to calculate resonances, as well
as in Ref. [42], which used slow-variable discretization
to extract three-body resonance parameters. The po-
tential given in Eq. (36) supports a two-body bound
state (dimer) at E = −6.76 MeV [41] and a three-boson
bound state at E = −37.35 MeV [42] (Ref. [41] ob-
tained E = −37.22 MeV for this state). In addition,
it was found that there is a three-boson resonance at
ER = −5.31 MeV with a half width of 0.12 MeV [42]
(ER = −5.96 MeV and Γ/2 = 0.40 MeV according to
Ref. [41]), which decays into a dimer-particle state that
is overall lower in energy.

Using Eq. (36) with our DVR method, we find E =
−6.756(1) and E = −37.30(5) for two and three bosons,
respectively, in good agreement with the results of
Refs. [41, 42]. Note that bound-state energies converge
exponentially to the physical infinite-volume values as
we increase the box size L (see, e.g., Refs. [24, 29]). In
order to look for the three-boson resonance, we study
the positive-parity three-body spectrum as a function of
L. For small box sizes around L ∼ 20 fm, we find that
N = 26 DVR points is sufficient to obtain converged
results. For large box size (L ∼ 40 fm), on the other
hand, we performed calculations using N = 30. The
terms “small” and “large” here refer to the scale set by
the range of the interaction, which is quite sizable for the
parameters given below Eq. (36).

Our combined results are shown in Fig. 3, where we
also indicate the irreducible representations of the en-
ergy levels shown. These assignments were determined
by running a set of cubic-projected calculations at small
volumes. The levels corresponding to A+

1 clearly show
an avoided crossing at about the expected resonance en-
ergy from Ref. [42], which is indicated in Fig. 3 as a
shaded horizontal band, the width of which corresponds
to ER ± Γ/2. For the other states (with quantum num-
bers E+ and T+

2 ) shown in the figure we do not observe
avoided crossings or plateaus. At L ∼ 38 fm there is an
actual crossing between A+

1 and an E+ levels. This is not
a very sharp avoided crossing because the participating
levels belong to different cubic representations.

To extract the resonance energy from the spectrum
shown in Fig. 3 we proceed as described in Sec. III and

20 25 30 35 40 45
L [fm]

−7

−6

−5

−4

−3

−2

−1

0

1

E
[M

eV
]

↓ ground state at −37.3 MeV

A+
1

E+

T+
2

Figure 3. Energy spectrum of three bosons in finite volume
for different box sizes L interacting via the potential given in
Eq. (36). States corresponding to the irreducible represen-
tation A1 of the cubic symmetry group are shown as solid
lines, whereas E+ and T+

2 states are indicated as dashed and
dotted lines, respectively. The shaded area indicates the res-
onance position and width as calculated in Ref. [42], whereas
the cross marks the inflection point used here to extract the
resonance energy (see text).

extract the inflection points of the curves corresponding
to the A+

1 states by fitting polynomials. For the first ex-
cited state we find the fit to be quite sensitive to the num-
ber of data points included in the fit, which reflects the
fact that this level does not exhibit a pronounced plateau.
For the second excited state, however, there is a clearly
visible plateau. Applying our fit method to this state, we
extract a resonance energy ER = −5.32(1) MeV. This
means that within the quoted uncertainty, determined
by varying the number of data points included in the
fit as well as the order of the fit polynomial, we obtain
good agreement with the resonance energy obtained in
Ref. [42]. While a determination of the resonance width
is left for future work, we conclude from this result that
indeed finite-volume spectra can be used to reliably de-
termine the existence and energy of few-body resonances.

B. Shifted Gaussian potentials

1. Three bosons

Having established the validity of the finite-volume
method to extract three-body resonances, we now go
back to the shifted Gaussian potential given in Eq. (33)
which was used in Sec. III to study two-body resonances.
Starting again with the stronger barrier, (V0 = 6.0), we
consider the A+

1 spectrum for three bosons, calculated
with N = 10 DVR points and shown in Fig. 4 as solid
lines. We observe a large number of avoided crossings
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Figure 4. Energy spectrum of three bosons in finite volume
for different box sizes L. The solid lines shows the spectrum
for three bosons interacting purely via the shifted Gaussian
potential given in Eq. (33) with V0 = 6.0 while the dashed
and dotted lines show results with an additional attractive
three-body force as in Eq. (37). With increasing three-body
force, the avoided level crossing is shifted to lower energy,
while the rest of the spectrum remains unaffected. For each
choice of the three-body force, all crossings are avoided be-
cause the spectrum is fully projected on states with the same
quantum numbers. The crosses mark the inflection points
used to extract the resonance energy (see text).

at E ∼ 7.4 as the box size L is varied, producing to-
gether an almost horizontal plateau region. Using the
same inflection-point method as discussed above, we ex-
tract E = 7.42(6) as a potential resonance energy. In
addition to this, there are several avoided crossings at
lower energies that have a significant slope with respect to
changes in the box size, which we interpret as two-body
resonances (known from Sec. III to exist at ER ∼ 3.0 for
this potential) embedded into the three-body spectrum.
To test this hypothesis we repeat the calculation with an
added short-range three-body force,

V3(x1, x2, x12) = V
(3)
0 exp

(
−
(
x1

R
(3)
0

)2
)

× exp

(
−
(
x2

R
(3)
0

)2
)

exp

(
−
(
x12

R
(3)
0

)2
)
, (37)

where x12 = |x1 − x2| and R
(3)
0 = 1.0 and varying

strength V
(3)
0 . Choosing a set of negative values for V

(3)
0

we find in Fig. 4 that the lower avoided crossings (and
in fact most of the L-dependent spectrum) remain un-
affected, whereas the upper plateau set is moved down-

wards as V
(3)
0 is made more negative.

Since the range R
(3)
0 = 1.0 was chosen small (compared

to the box sizes considered), we expect it to primarily af-
fect states that are localized in the sense that their wave

function is confined to a relatively small region in the fi-
nite volume. Interpreting a resonance as a nearly bound
state, its wave function should satisfy this criterion in
the finite volume. On the other hand, scattering states or
states where only two particles are bound or resonant are
expected to have a large spatial extent. Based on this in-
tuitive picture, we interpret the action of the three-body
force as confirmation that indeed we have a genuine (be-
cause the potential we used does not support any bound
states) three-boson resonance state at E = 7.42(6).

Similar to the two-body spectrum shown in the left
panel of Fig. 2 we find that Eq. (33) with V0 = 6.0 gener-
ates very sharp features in the three-boson spectrum so
that even though we used a fine L grid to generate Fig. 4
it is difficult to exclude that some crossings might not
actually be avoided crossings. However, we observe the
exact same qualitative behavior for the potential given
in Eq. (33) with V0 = 2.0, only that in this case the
avoided crossings are broader and easily identified. From
the spectrum, shown in Fig. 5, we extract E = 4.18(8)
as the three-boson resonance energy for this case.

2. Four bosons

Looking next at four bosons, we find a very similar
picture. As shown in Fig. 6 for the shifted Gaussian po-
tential given in Eq. (33) with V0 = 2.0, the L-dependent
A+

1 four-boson spectrum (calculated with N = 8 DVR
points in this case) shows a large number of avoided level
crossings that give rise to plateaus with different slopes.
Interpreting the nearly horizontal set of avoided cross-
ings as a possible four-boson resonance, we extract its
energy as E = 7.26(2) with the inflection-point method.
The more tilted sets of avoided crossings at lower energies
most likely correspond to two- and three-boson resonance
states embedded in the four-boson spectrum.

3. Three fermions

To conclude our survey, we now turn to fermionic sys-
tems. As the additional spin degree of freedom (we con-
sider here identical spin-1/2 particles) increases the DVR
basis size [see discussion below Eq. (12)], these calcula-
tions are more computationally demanding, but we can
still achieve well-converged results for the shifted Gaus-
sian potential given in Eq. (33). Before we turn to the
three-body sector, we note that the results of Sec. III
remain correct when we assume the two fermions to be
in the channel with total spin S = 0. In this case, the
spin part of the wave function is antisymmetric and the
spatial part has to be even under exchange. Because the
latter corresponds to the bosonic case with positive par-
ity, we conclude that for two spin-1/2 fermions the two-
body potential given in Eq. (33) has a resonance state at
ER ∼ 1.6 for V0 = 2.0.
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Figure 5. Energy spectrum of three bosons in finite volume for different box sizes L. The solid line shows the spectrum for
three bosons interacting purely via the shifted Gaussian potential given in Eq. (33) with V0 = 2.0 while the dashed and dotted
lines show results with an additional attractive three-body force as in Eq. (37). With increasing three-body force the avoided
level crossing is shifted to lower energy, while the rest of the spectrum remains unaffected. The dashed rectangle in the left
panel indicates the zoomed region shown in the right panel. For each choice of the three-body force, all crossings are avoided
because the spectrum is fully projected on states with the same quantum numbers. The crosses mark the inflection points used
to extract the resonance energy (see text).
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Figure 6. Energy spectrum of four bosons in finite volume for different box sizes L interacting via the shifted Gaussian potential
given in Eq. (33) with V0 = 2.0. The dashed rectangle in the left panel indicates the zoomed region shown in the right panel.
All crossings are avoided because the spectrum is fully projected on states with the same quantum numbers. The crosses mark
the inflection points used to extract the resonance energy (see text).

For three fermions, on the other hand, the situation is
more involved because the overall antisymmetry of the
wave function can be realized via different combinations
of spin and spatial parts. Indeed, we find the finite-
volume spectrum to look different from the bosonic case.
For negative parity, we find the six lowest levels, shown in
Fig. 7, to all belong to the T−1 cubic representation, which
in this case we determined by running calculations with
full cubic projections at selected volumes while otherwise

only restricting the overall parity. Because the interac-
tion we consider here is spin independent, total angular
momentum l and spin S are separately good quantum
numbers in infinite volume, and in the finite volume we
likewise have Γ and S as good quantum numbers. The
latter, which can be S = 1/2 or S = 3/2 for three spin-
1/2 fermions, we determine by running calculations with
fixed spin z-component at selected volumes, which can
be realized by restricting the set of DVR basis states.
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Figure 7. Negative-parity energy spectrum of three fermions
in finite volume for different box sizes L interacting via the
shifted Gaussian potential given in Eq. (33) with V0 = 2.0. All
levels shown in the plot were found to belong to the T−1 cubic
representation by performing fully projected calculations at
selected volumes. Results are shown in the spin S = 1/2 and
S = 3/2 channels. The crosses mark the inflection points used
to extract the resonance energy (see text).

Because S = 3/2 states show up with both Sz = 3/2
and Sz = 1/2, whereas S = 1/2 states are absent for
Sz = 3/2, we infer that four of the six levels shown in
Fig. 7 have S = 1/2, whereas the other two (given by the
dashed lines in Fig. 7) have S = 3/2.

For S = 1/2 we observe a sequence of three avoided
level crossings. Within this sequence there is a drift to-
wards lower energies as L increases, the magnitude of
which is comparable to what we observe also for the
three-boson spectra analyzed in Sec. IV B 1 for the state
that we concluded to correspond to an actual three-body
resonance (based on varying the three-body force). We
thus conclude that this effect is likely a residual volume
dependence of an actual resonance state also in this case.
With this interpretation, we extract a resonance energy
ER = 5.7(2) from the spectrum shown in Fig. 7 with our
inflection-point method.

V. SUMMARY AND OUTLOOK

We established the method of analyzing few-body en-
ergy spectra in finite periodic boxes to extract three-
and four-particle resonance energies. Our approach re-
lies on the observation of avoided level crossings and/or
plateaus in the spectra considered as a function of the box
size. Observing such features in few-body spectra and
showing that they can be used to find and analyze res-
onance states, thus generalizing the method introduced
in Ref. [26] for two-body systems, is the central result of
this work.

To calculate the finite-volume spectra, which were then
used for the resonance identification, we used a DVR ba-
sis based on plane-wave states in relative coordinates.
Resonance features are expected for finite-volume en-
ergies corresponding to scattering states in infinite vol-
ume. Unlike bound states, the energies of which converge
exponentially with the box size L, finite-volume scat-
tering states have a power-law dependence on L (away
from regions with avoided crossing). Looking at low-
energy resonances therefore requires going to volumes
that are sufficiently large for the relevant levels to come
down to the energy range of interest. Because calcula-
tions in this regime typically require large DVR basis
sizes and become computationally very demanding, we
have developed a numerical framework to run the cal-
culations on high-performance computing clusters when
necessary. We have furthermore extended the formalism
to include the symmetrization (antisymmetrization) to
study bosonic (fermionic) systems, as well as for project-
ing onto the subspaces belonging to parity eigenstates
and to the different irreducible representations of the
cubic symmetry group. The latter allows us to deter-
mine the finite-volume quantum numbers of the reso-
nance states that we find.

After testing our method in the two-body sector, where
we verified the existence of resonances by looking at char-
acteristic jumps in the scattering phase shifts as well
as by looking for S-matrix poles on the second energy
sheet, we studied three- and four-body systems with
different potentials. First, we used a model potential
known to generate a three-boson resonance that decays
into a lower lying two-body bound state and a free par-
ticle. For this system, the resonance parameters were
extracted previously based on different methods [41, 42].
Our results clearly show an avoided level crossing in the
corresponding finite-volume spectrum and we find good
agreement with the resonance energy of Ref. [42], which
we extracted from the inflection points of the volume-
dependent energy levels.

Taking this agreement as confirmation that our
method works both qualitatively and quantitatively, we
used shifted Gaussian potentials (with the same param-
eters known to generate two-body resonances) in the
three- and four-body sector. Studying the three-boson
finite-volume spectrum, we showed that an additional
short-range three-body force can be used to move avoided
crossings forming a plateau region whereas other avoided
crossings remain unchanged. We interpret this as con-
firmation that the observed plateau region indeed cor-
responds to a three-body resonance (with a spatially
localized wave function so that it “feels” the three-
body forces), whereas the other levels likely correspond
to two-body resonances plus a third particle. For the
same shifted Gaussian potential we were also able to
observe avoided crossings for three fermions and four
bosons, from which we extracted resonance energies via
the inflection-point method. Based on these findings, we
conclude that our method can be used to search for pos-



12

Index Class Dn(R) Index Class Dn(R)
1 I 1 2 3 13 6C4 2 −1 3
2 3C2 −1 −2 3 14 −2 1 3
3 −1 2 −3 15 3 2 −1
4 1 −2 −3 16 −3 2 1
5 8C3 3 1 2 17 1 −3 2
6 2 3 1 18 1 3 −2
7 −2 3 −1 19 6C′2 2 1 −3
8 −3 −1 2 20 −2 −1 −3
9 2 −3 −1 21 3 −2 1
10 −3 1 −2 22 −3 −2 −1
11 −2 −3 1 23 −1 −3 −2
12 3 −1 −2 24 −1 3 2

Table I. Realization of the 24 cubic rotations acting on a co-
ordinate tuple in symbolic notation (see text). The second
column indicates the conjugacy class of the rotation.

sible three- and four-neutron resonances in future work.
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Appendix A: Cubic symmetry group

In this section, we briefly discuss how the projector
on the irreducible representations of the cubic symmetry
group in Eq. (30) is constructed. For each element of
the cubic group R ∈ O, the realization Dn(R) used in
Eq. (30) is given by a permutation and/or inversion of
the components c = 1, 2, 3 of each relative coordinate xi

(simultaneously for all i = 1, . . . , n − 1). In Table I
we show these operations, where the notation gives the
result of operating on a tuple (ki,1, ki,2, ki,3) in a short-
hand form, e.g., the rotation with index 7 transforms
a tuple to (−ki,2, ki,3,−ki,1). It is understood that, as
discussed in Sec. II A 3, each transformed index ki,c is
wrapped back into the interval −N/2, . . . , N/2 − 1, if

necessary.

Cubic symmetry commutes with parity as well as per-
mutation symmetry, so for both bosonic and fermionic
systems we end up with multiplets of the irreducible rep-
resentations Γ = A±1 , A±2 , E±, T±1 , and T±2 , where the
superscript indicates the parity. As already mentioned
above, the irreducible representation of the full rotational
group SO(3) is reducible with respect to the cubic group.
A basis for the irreducible representation of SO(3) is
given by the angular momentum multiplets, i.e., spherical
harmonics Ylm, labeled by the angular momentum quan-
tum number l and its projection m. The numerical values
in Table II yield the multiplicity of the cubic irreducible
representations in the decomposition of a given angular
momentum multiplet. l = 0 and l = 1 contribute only to
A+

1 and T−1 , respectively, meaning that an S-wave state
is mapped solely onto the single A+

1 state, while a P -wave
state maps onto the three T−1 states in finite volume. A
D-wave state with its five projections m = 0,±1,±2 is
decomposed into the two E+ and three T+

2 states.

To conclude this section, we note that in the case of
spin-dependent interactions, total angular momentum J
instead of l is the relevant good quantum number in the
infinite volume. For example, in the case of spin-1/2
fermions, one has to consider SU(2) broken down to the
double cover 2O of the cubic group, giving three addi-
tional irreducible representations that receive contribu-
tions from half-integer J states. For details, see Ref. [34].

l A+
1 A+

2 E+ T+
1 T+

2 A−1 A−2 E− T−1 T−2
0 1
1 1
2 1 1
3 1 1 1
4 1 1 1 1
5 1 2 1
6 1 1 1 1 2
7 1 1 2 2
8 1 2 2 2
9 1 1 1 3 2
10 1 1 2 2 3

Table II. Decomposition of the irreducible representations of
the rotational symmetry group SO(3) into irreducible repre-
sentations of the cubic symmetry group O; reproduced in part
from Ref. [43].
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