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An oscillation with a period of about 30 months has been identified in the

equatorial Atlantic by analyzing sea surface temperature (SST) observations

for the period 1949-1991. The 30-month time scale was also found in numerical

simulations with an atmospheric general circulation model (AGCM) that was

forced by these SSTs and a coupled ocean atmosphere general circulation model

(CGCM). Consistent with the theory of tropical air-sea interactions, the

Atlantic oscillation (El Hermanito) is an inherently coupled air-sea mode and

can be viewed as the Atlantic analogon of the El Nifio/Southern Oscillation

(ENSO) phenomenon in the equatorial Pacific. El Hermanito is an internal

Atlantic mode and appears to be independent of the quasi-biennial (QB)

variability observed in the tropical Indian and Pacific Oceans. The discovery

of El Hermanito is important to the prediction of Atlantic climate anomalies.

Theoretical and modeling studies of tropical air-sea interactions focussed

mostly on the Pacific Ocean because of the predominance of the El

Nifio/Southem Oscillation (ENSO) phenomenon, the strongest interannual climate

variation (e.g. [1], [2], [3], [4], [5], [6], [7]). Unstable air-sea

interactions and the subsurface memory of the ocean are important factors
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contributing to the ENSO mechanism (e.g. [8]). The subsurface memory of the

system can be expressed in terms of equatorial waves, and one would therefore

expect a dependence of the oscillation period on the basin size [9]. The

dominant ENSO period is of the order of about 4 years. Assuming that the

nature of the air-sea interactions in the Atlantic is similar to that in the

Pacific, this would imply a quasi-biennial oscillation period for the Atlantic

"ENSO-analogon", since the basin size of the Atlantic is about half that of

the Pacific. Our study shows that this is indeed the case.

It has been shown ([10], [11], [12], [13]) that the equatorial Atlantic

exhibits considerable interannual variability which involves coupled processes

similar to those generating ENSO. A four year time scale was suggested based

on model results [11], but this estimate is inconsistent with the observations

which yield a considerably shorter period of 30 months, as described below.

Our estimate of a 30-month period is rather stable and obtained by different

statistical methods and also from simulations with state-of—the-art general

circulation models (GCMs).

The primary quantity analyzed is observed SST [14]. Additionally, we used the

anomalous zonal surface wind stress and precipitation from an atmospheric

general circulation model (AGCM, [15], [16]) forced by these SSTs. Such model

data are useful in studying tropical variability, since the tropical

atmospheric variability is controlled strongly by variations in SST and

realistically simulated by state-of—the-art AGCMs. Furthermore, the model

output yields a homogeneous data base which is not available from observations

for such a long period. We used also the output of a global coupled

ocean-atmosphere general circulation model (CGCM) which was integrated for ten

years [17]. This run provides a complete and internally consistent picture of

EI Hermanito.

We computed two SST indices from the SST observations: The so-called ATL-3



index for the equatorial Atlantic which is an area average of anomalous SST

over the region 3°N—3°S and 20°W-0°, and the well-known Nifio-3 index for the

Pacific which represents the SST variability averaged over the region 5°N-5°S

and 150°W-900W. The two SST indices are shown in Fig, 1. We applied standard

Fourier [18] and singular spectrum analyis (SSA, [19]), in order to derive the

dominant time scales of the SST variability in the equatorial Atlantic and

Pacific Oceans. The results for the equatorial Pacific are included here for

comparison and to show that the two statistical methods applied work well to

extract the dominant ENSO time scale.

We performed first Fourier analyses of the Nifio-3 and ATL-3 indices. The

spectrum of the Nifio-3 index shows the well-known enhanced level of

variability at interannual time scales, with a peak at a period of about 4

years (Fig. 2a). The corresponding spectrum of the ATL-3 time series shows

also enhanced variability at interannual time scales, with a peak at a period

of about 30 months (Fig. 2b). Thus, there is considerable variability at the

quasi—biennial time scale in equatorial Atlantic SST. In contrast to the

Nifi0-3 spectrum, the ATL-3 spectrum shows also enhanced variability at decadal

time scales, which will be discussed elsewhere.

In order to test the stability of our results, we performed additionally

singular spectrum analyses of the Nifio-3 and ATL—3 SST indices. Both SSAs

confirm the results of the Fourier analyses (not shown): The ENSO mode is

associated with a quasi-quadrennial time scale, while the period of El

Hermanito (which is the subject of this paper) is 30 months. In summary, the

results of our time series analyses show that the 30-months oscillation is the

dominant interannual variability mode in the equatorial Atlantic SSTs.

The results of our time series analyses are consistent with the assumption

that the dynamics of El Hermanito are similar to those of ENSO. As expected

from the ENSO theory ([2], [4], [8], [9]), the dominant period of the



interannual variability should be considerably shorter in the Atlantic

relative to the Pacific. Furthermore, the variations associated with E1

Hermanito are expected to be much weaker than those connected with the ENSO

mode, and this appears to be the case.

In order to derive the spatial characteristics of El Hermanito, we computed

associated regression patterns of the band—pass filtered (retaining all the

variability with periods between 18 and 42 months) anomalous SST, zonal wind

stress, and precipitation relative to the band—pass filtered ATL-3 SST index.

El Hermanito is an inherent Atlantic mode, and strong SST anomalies connected

with this mode are found in the equatorial Atlantic only (Fig. 3a), where it

accounts for up to 90% of the variance relative to the band—pass filtered SSTs

and up to 40% relative to the raw data (not shown). No significant SST

anomalies were found outside this region, which demonstrates that E1 Hermanito

is not linked to the quasi-biennial variability observed in the Indian and

Pacific Oceans described in many papers (e.g. [20], [21], [22], [23], [24]).

Wind stress anomalies of the same sign are found to the west of the maximum

SST anomalies (Fig. 3b), which is consistent with earlier studies (e.g. [11]).

These wind stress anomalies will tend to reinforce the SST anomalies mainly by

changing the thermocline depth in the central and eastern equatorial Atlantic

([2], [3], [4], [5], [7], [8]), so that ocean and atmosphere form a positive

feedback system. A similar SST/wind stress relationship is also found during

El Nifio episodes [1]. The zonal wind stress anomalies associated with El

Hermanito, however, are much weaker than those observed during El Nifios, and

they describe only about 30% of the total wind stress variability in the

frequency band considered. The coupling between ocean and atmosphere over the

equatorial Atlantic is considerably weaker than over the Pacific. The wind

stress change per unit SST change amounts to about 0.005 (Pa/0 C) for El

Hermanito, while it is at least twice as large for the ENSO mode. Relatively

strong precipitation anomalies connected with El Hermanito are restricted to



the region over the equatorial Atlantic, with enhanced rainfall over the

entire equatorial Atlantic (Fig. 3c). The variances explained amount to about

20% in the centers of action relative to the band-pass filtered precipitation

data.

Finally, we investigate the interannual variability simulated by our CGCM. The

combined variability in the zonal wind stress, SST, and sea level (a measure

of upper ocean heat content) was investigated by a multi—variate statistical

analysis [25]. The coupled model reproduces El Hermanito remarkably well. El

Hermanito is the leading interannual variability mode in the Atlantic,

accounting for about 20% of the combined variance. The time scale of about 32

months and the SST/wind stress signature are consistent with the observations

and the uncoupled AGCM simulation with prescribed observed SSTs (compare Fig.

4d with Fig. 3a and Fig. 4b with Fig. 3b). Furthermore, as in the

observations, El Hermanito is independent of ENSO in the coupled model (not

shown).

The space-time evolution of the model El Hermanito (Fig. 4) indicates the

importance of the subsurface memory of the coupled system. Off—equatorial heat

content anomalies of opposite sign to those in the eastern equatorial Atlantic

(Fig. 4f) are excited by the meridional shear of the zonal wind stress anomaly

in the western part of the basin (Fig. 4b) during the height of El Hermanito

events, when SST anomalies are well developed in the eastern equatorial

Atlantic (Fig. 4d). Consistent with equatorial wave theory [8], the

off—equatorial heat content anomalies propagate westward and reflect into

relatively narrow equatorial signals which propagate eastward (Fig. 4e). Once

the heat content anomalies have propagated into the eastern equatorial

Atlantic where the thermocline is shallow, they can affect the SST and reverse

the SST tendency, providing the phase switching mechanism. The time scale of

the oscillation is determined primarily by wave time scales and thus the basin

geometry, which explains the relatively short period of El Herminito compared



to ENSO.

We have shown that a distinct 30-month mode (E1 Hermanito) exists in the

equatorial Atlantic. El Hermanito is an inherent Atlantic mode and is neither

introduced from nor does it impact regions outside the Atlantic. El Hermanito

can be regarded as the Atlantic ENSO analogen. Consistent with ENSO theory, it

arises from large-scale air-sea interactions, has a shorter time scale and is

much weaker than the ENSO mode in the Pacific° The existence of El Hermanito

is important with regard to short-term climate predictability, as it might add

some skill in forecasting tropical Atlantic climate variability.
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Figure 4: Leading mode of interannual variability in the equatorial Atlantic

as derived from a combined POP analysis of zonal wind stress (a,b), SST (c‚d)‚

and sea level anomalies (62,0 simulated by the coupled ocean—atmosphere

general circulation model. The evolution of anomalies according to a single

(complex) POP mode with real part Re and imaginary part Im can be described as

a cyclic sequence of patterns:.. Im Re —Im -Re1m.. The panels on the left

precede those on the right by a quarter of the rotation period, i.e. 8 months.

The model data were normalized by their local standard deviation and

smoothed with a 5-months running mean filter prior to the POP analysis.
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Figure 3: a) Spatial distribution of linear regression coefficients (o C) of

the band-pass filtered ATL-3 index and tropical SST anomalies. b) Spatial

distribution of linear regression coefficients (Pa) of the band-pass filtered

c) Spatial distribution

filtered ATL-3
ATL-3 index and tropical zonal wind stress anomalies.

of linear regression coefficients (mm/day) of the band—pass

index and tropical precipitation anomalies. The values are representative of a

one-standard-deviation change in the ATL-3 index.
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Figure 2: a) Fourier spectrum of eastern equatorial Pacific sea surface

temperature anomalies (°C) averaged over the Nifio-3 region shown in Fig. la. A

Bartlett procedure with a window length of 180 months was chosen yielding 4

degrees of freedom. b) Fourier spectrum of eastern equatorial Atlantic sea

surface temperature anomalies (0 C) averaged over the ATL-3 region shown in

Fig. lb. A Bartlett procedure with a‘ window length of 120 months was chosen

yielding 8 degrees of freedom.
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Figure 1: a) Time series of monthly eastern equatorial Pacific sea surface

temperature anomalies (°C) averaged over the Nifio—3 region. b) Time series of

r‘nonthly eastern equatorial AtlantiC' sea surface temperature anomalies (° C)

averaged over the ATL-3 region.
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Figure 2: a) Fourier spectrum of eastern equatorial Pacific sea surface

temperature anomalies (°C) averaged over the Nifio—3 region shown in Fig. 1a. A

Bartlett procedure with a window length of 180 months was chosen yielding 4

degrees of freedom. b) Fourier spectrum of eastern equatorial Atlantic sea

surface temperature anomalies (O C) averaged over the ATL-3 region shown in

Fig. 1b. A Bartlett procedure with a window length of 120 months was chosen

yielding 8 degrees of freedom.
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Figure 3: a) Spatial distribution of linear regression coefficients (0 C) of

the band-pass filtered ATL-3 index and tropical SST anomalies. b) Spatial

distribution of linear regression coefficients (Pa) of the band-pass filtered

ATL-3 index and tropical zonal wind stress anomalies. c) Spatial distribution

of linear regression coefficients (mm/day) of the band—pass filtered ATL-3

index and tropical precipitation anomalies. The values are representative of a

one-standard-deviation change in the ATL—3 index.
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Figure 4: Leading mode of interannual variability in the equatorial Atlantic
as derived from a combined POP analysis of zonal wind stress (a,b), SST (c‚d)‚
and sea level anomalies (cf) simulated by the coupled ocean-atmosphere
general circulation model. The evolution of anomalies according to a single
(complex) POP mode with real part Re and imaginary part Im can be described as
a cyclic sequence of pattems:.. Im Re —Im -Re Im.. The panels on the left
precede those on the right by a quarter of the rotation period, i.e. 8 months.
The model data were normalized by their local standard deviation and
smoothed with a 5—months running mean filter prior to the POP analysis.
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