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ABSTRACT

The El Niño–Southern Oscillation (ENSO) phenomenon is modeled as a stochastically driven dynamical
system. This was accomplished by adding to a Hybrid Coupled Model (HCM) of the tropical Pacific ocean–
atmosphere system a stochastic wind stress anomaly field that was derived from observations. The model exhibits
irregular interannual fluctuations, whose space–time characteristics resemble those of the observed interannual
climate variability in this region. To investigate the predictability of the model, the authors performed ensemble
integrations with different realizations of the stochastic wind stress forcing. The ensembles were initialized at
various phases of the model’s ENSO cycle simulated in a 120-yr integration with a particular noise realization.
The numerical experiments indicate that the ENSO predictability is severely limited by the stochastic wind stress
forcing. Linear stochastic processes were fitted to the restart ensembles in a reduced state space. A predictability
measure based on a comparison of the stationary and the time-dependent probability distributions of the fitted
linear models reveals an ENSO predictability limit of considerably less than an average cycle length.

1. Introduction

The El Niño–Southern Oscillation (ENSO) phenom-
enon is the dominant interannual natural climate fluc-
tuation. It results from the interaction of ocean and at-
mosphere manifesting itself, among other things, in a
quasiperiodic large-scale anomalous warming (El Niño)
or cooling (La Niña) of surface waters in the eastern
and central equatorial Pacific. Neelin et al. (1994) give
a review of recent research activities and provide an
extensive list of literature as well. Observed indices of
ENSO—for example, as derived from the U.K. Mete-
orological Office (UKMO) Global Ice and Sea Surface
Temperature (GISST) dataset, Parker et al. (1994)—
show that ENSO extremes occur irregularly in time and
with varying amplitudes. The typical recurrence time of
El Niño is 2–7 yr, and its amplitudes, measured in terms
of sea surface temperature anomalies (SSTA), averaged
over the eastern equatorial Pacific NINO3 index region
(58N–58S and 1508–908W), typically range from 18 to
28C. Additionally, ENSO is more or less tightly phase
locked to the annual cycle. The degree of phase locking
shows marked interdecadal variations as observed by
Balmaseda et al. (1995), who performed a statistical
analysis of the GISST NINO3 time series.

To explain the irregularity of ENSO, different hy-
potheses were offered. The first is linked to the char-
acteristics exhibited by nonlinear dynamical systems.
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Jin et al. (1994) and Tziperman et al. (1994), for in-
stance, explain the irregularity of ENSO by nonlinear
interactions between the annual cycle and the funda-
mental ENSO mode. Varying parameters of their sim-
ulation models yield ENSO frequencies that are rational
fractions of the annual frequency. Irregularity, in turn,
occurs by the overlapping of frequency locked regimes.
Instead of varying internal parameters, Chang et al.
(1994) studied the response of their coupled ocean–at-
mosphere model to different amplitudes of the season-
ally varying part of heat flux forcing. Apart from chaotic
regimes and transition regimes to chaos, they get three
phase-locked regimes with 1-, 2-, and 3-yr period. Con-
sequently, changes in the forcing amplitude with time
may render ENSO irregular. A second candidate for
rendering ENSO irregular is stochastic forcing. Re-
cently, Kleeman and Power (1994) studied the influence
of random wind stress perturbations on a coupled model.
Forecast ensembles initialized in the 1970s and 1980s
showed considerable error growth after initialization of
the individual predictions when random forcing was in-
cluded. In this paper, we study the influence of stochastic
wind stress forcing on ENSO as well. We designed a
stochastically forced ocean–atmosphere system that
mimics the observed statistics to some extent. This ap-
proach is related to Hasselmann (1976), who pointed
out the importance of stochastic forcing for inducing
climate variability. A similar study to ours was per-
formed by Blanke et al. (1997, this issue). Although
they use a different approach to get an estimate of the
stochastic wind forcing, their results agree well with
ours. In both models, the sensitivity to the random per-
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FIG. 1. Time series of anomalous sea surface temperature (SSTA),
averaged over the NINO3 region (1508–908W, 58S–58N), obtained by
integrating the Hybrid Coupled Model (HCM) for 120 yr.

turbations introduced is quite large. The models’ pre-
dictability is reduced to less than one average cycle
length.

At present, prediction models of different degrees of
complexity, ranging from purely statistical to fully cou-
pled ocean–atmosphere general circulation models, are
used to forecast ENSO. Barnston et al. (1994) and Latif
et al. (1994) give reviews on this topic. The forecast
skills of the models indicate that, currently, ENSO is
predictable about 1 yr ahead. ENSO predictability is
limited by various reasons. Among these are the quality
of the forecast models, the ability of getting good initial
states, and a good estimate of the influence of random
perturbations that disturb the system perpetually. Given
credence to the forecast model as such, one may con-
centrate on the latter two. The amplification of initial
errors can be caused by different mechanisms such as
unstable modes on which the error structure projects
(Goswami and Shukla 1991) or the nonself-adjoint na-
ture of the linearized system dynamics (Blumenthal
1991). The latter yields rapid initial error growth even
in asymptotically stable linear dynamical systems. To
get more insight into the physical processes that are
relevant for initial error growth Moore and Kleeman
(1996) and Chen et al. (1997) studied the fastest growing
perturbations in coupled models, the singular vectors.
Moore and Kleeman ascribe initial error growth to a
mechanism that is associated with penetrative convec-
tion anomalies in the atmosphere. They also note a sea-
sonal variation of error growth and a dependence on the
ENSO cycle itself. Chen et al. observe similar charac-
teristics in their model, although differing considerably
in detail from Moore and Kleeman. They propose as a
possible physical explanation an ocean–atmosphere in-
stability that is linked to changes in ocean dynamics in
response to changes in the atmospheric wind stress field.
Certainly, this topic needs further investigation es-
pecially with regard to the definition of the error norm
and the sensitivity of results to the model physics.

Our approach, like Kleeman and Power (1994), fo-
cuses on the random perturbations and complements the
studies concerned with uncertain initial conditions. Our
aim is to get an estimate of the ENSO predictability
limits. We performed ensemble integrations from dif-
ferent phases of the ENSO cycle simulated by our sto-
chastically forced ocean–atmosphere model. The indi-
vidual ensembles start from the same initial state but
were performed with different noise realizations. We
approximate the time evolution of the ensemble by a
low-dimensional linear stochastic process that is con-
structed in such a way that it simulates the evolution of
the ensemble mean and the ensemble covariance over
a finite time period after initialization of the model. A
predictability measure can now be defined by comparing
the stationary and the time-dependent probability dis-
tributions of the fitted linear stochastic process.

The paper is organized as follows. Descriptions of
the stochastically forced ocean–atmosphere model and

ensemble integrations performed are given in sections
2 and 3, respectively. The optimal fits of linear sto-
chastic processes in a reduced state space to the ensem-
ble data are presented in section 4. We address the pre-
dictability of the fitted linear models in section 5 and
conclude the paper with a summary and discussion of
our results in section 6.

2. The model

The coupled ocean–atmosphere model used to sim-
ulate ENSO consists of an ocean general circulation
model (OGCM) of the equatorial Pacific and a statistical
atmosphere model that was derived from observations.
Our modeling approach is similar to the one described
by Barnett et al. (1993). However, there are slight dif-
ferences in the model formulation. Therefore, and for
better readability of our paper, we give a short descrip-
tion of the coupled model and its constituents.

a. The ocean model

The OGCM is a further development of the model
described in Latif (1987). The domain extends from
308N to 308S and from 1308E to 708W. The vertical
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FIG. 2. Longitude time section along the equator from year 5 to 15 during the 120-yr integration
of the HCM. The combined scaled fields of SSTA, anomalous sea level, and anomalous zonal wind
stress were subjected to a POP analysis. Shown are the projections of the individual fields onto
the dominant POP mode. The leading POP mode has a period of 62 months, an e-folding time of
450 months, and accounts for 83% of the variance of the dataset. To get physical units, the depicted
fields have to be multiplied by factors of (a) 3.46 K, (b) 36.6 cm, and (c) 7.3 3 1022 Pa, respectively.

FIG. 3. Longitude time section analogous to Fig. 2. In this case, the NMC reanalysis data for
SSTA and anomalous sea level were combined with the zonal wind stress anomalies of the FSU
dataset. The individual fields were scaled with the factors given below before they were pooled.
The dominant POP mode has a period of 52 months, an e-folding time of 16 months, and accounts
for 15% of the variance of the dataset. The individual fields have to be multiplied by factors of
(a) 7.68 K, (b) 51.5 cm, and (c) 2.5 3 1021 Pa to get physical units.

mixing is Richardson number dependent. Prognostic
variables are the fields of horizontal currents, the three-
dimensional temperature, and sea surface elevation. The
model is based on the primitive equations, formulated

on an equatorial b plane, and simplified by making use
of the hydrostatic and Boussinesq approximations. The
bottom is flat at a depth of 4000 m. Eastern and western
coastlines are realistically chosen, whereas the southern
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FIG. 4. Schematic picture of the stochastically forced HCM we use in our predictability study.

FIG. 5. The first (a) and the second (b) EOF in units of Pa of the high-pass filtered wind stress
anomalies of the FSU dataset. They explain 10.3% and 7.0% of the variance, respectively.
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FIG. 6. Time series of SSTA averaged over the NINO3 index region obtained by integrating
the stochastically forced HCM for 120 yr. The labeled dots mark the restart months we used to
generate ensembles of trajectories with different realizations of the stochastic part.

and the northern boundaries are implemented as solid
walls. The zonal resolution is 670 km, and the merid-
ional resolution varies from 25 km at the equator to 400
km at the southern and northern boundaries. In the ver-
tical, the model has 13 levels, with 10 in the upper 300
m. The ocean model is driven by annual cycles of wind
stress and heat flux. The latter enters as a Newtonian
relaxation term to climatology with a time constant of
30 days.

b. The statistical atmosphere model

The statistical atmosphere model relates sea surface
temperature anomalies (SSTA) linearly to wind stress
anomalies via regression. The regression matrix is de-
rived from observations during the period 1970–85.
The SST data were taken from the dataset of Reynolds
(1988) and the wind stress from The Florida State
University (FSU) dataset (Goldenberg and O’Brien

1981). The linear regression is done in EOF space,
retaining the first 5 EOFs of the anomalies, which
account for 76%, 41%, and 35% of the field variance
in the SST, zonal, and meridional wind stress anom-
alies, respectively. The dominant modes of interan-
nual variability are found to be well captured by the
EOF truncation. To compensate for systematic deficien-
cies of the OGCM, its simulated SSTA is corrected us-
ing a regression matrix based on the leading 5 EOFs of
observed and simulated SSTA, the latter being obtained
by forcing the ocean model by the observed wind stress-
es.

Let the observed and simulated SSTA be denoted by
Tobs(x, t) and Tsim(x, t), respectively, and a component
of the observed wind stress anomalies, either zonal or
meridional, by tobs(x, t). The estimated component of
this wind stress anomaly is denoted by test(x, t). The
EOF expansions of the observed and simulated fields
are
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FIG. 7. Longitude time section analogous to Fig. 2 using the data of the 120-yr integration of
the stochastically forced Hybrid Coupled Model. The individual fields were scaled with the factors
given below before they were pooled. The dominant POP mode has a period of 61.9 months, an
e-folding time of 22.6 months, and accounts for 32.4% of the variance of the dataset. The
individual fields have to be multiplied by factors of (a) 4.74 K, (b) 49.3 cm, and (c) 1.3 3 1021

Pa to get physical units.

TABLE 1. List of the restart months corresponding to Fig. 6. The
stochastically forced Hybrid Coupled Model was reinitialized at these
states and integrated forward for 72 months with different realizations
of the stochastic part.

Restart month Phase of model ENSO cycle

276
372
408
420
468
552

Onset of El Niño
El Niño to La Niña
Onset of El Niño
El Niño extreme
Quiet phase
La Niña extreme

FIG. 8. Maximum entropy spectra of the NINO3 time series of the
UKMO GISST dataset lasting from 1900 to 1992, the Hybrid Coupled
Model (using the data corresponding to Fig. 1), and the stochastically
forced Hybrid Coupled Model (using the data corresponding to Fig.
6).

T (x, t) 5 a (t)e (x),Oobs n n
n

t (x, t) 5 b (t) f (x), andOobs m m
m

T (x, t) 5 g (t)g (x). (1)Osim l l
l

The linear regressions yield matrices C(1) and C(2) whose
entries are given by

^b a & ^a g &m n n l(1) (2)C 5 and C 5 . (2)mn nl2 2^a & ^g &n l

Angle brackets signify time averages. The estimated
wind stress anomaly may now be obtained by the sim-
ulated SSTA via

t (x, t) 5 b (t) f (x) (3)Oest est,m m
m

and
(1) (2)b (t) 5 C C g (t), (4)Oest,m mn nl l

n,l

Finally, we multiply the estimated wind stress anomaly
by a factor, usually termed coupling strength, which was
assigned a value of 1.4. One reason for doing so is the
relatively weak dynamical response of our ocean model
to an imposed wind stress forcing, especially in the eastern
equatorial Pacific. Most important, however, we chose the
specific value of 1.4 to run the coupled model in a regime
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FIG. 9. NINO3 time series of SSTA of the restart experiment initialized at month 276 of
the control integration of the stochastically forced HCM. In (a) we show some individual
realizations, (b) depicts the ensemble mean and the ensemble mean 6 1 standard deviation,
and in (c) the standard deviation is shown separately.
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FIG. 9. (Continued)

where it exhibits a regular oscillation. Coupling is done
on a monthly basis with linear interpolation in between.
Forced by observed SSTA, the above statistical atmo-
sphere model predicts wind stress anomalies that are well
correlated to wind stress anomalies observed during the
same time interval. In the central equatorial Pacific, the
correlations are highest, with values up to 0.8 in the date-
line region (Flügel 1994). Before these correlations were
computed, the observed wind stress anomalies were fil-
tered with a 5-month running mean.

A coupled control integration yields a self-sustained
oscillation with a period of approximately 60 months.
In Fig. 1 we display the time series of SSTA averaged
over the NINO3 index region. The model underesti-
mates the amplitudes of the extremes slightly. The spa-
tial characteristics of the oscillation are revealed by a
POP (Principal Oscillation Patterns) analysis of the
combined fields of SSTA, anomalous zonal wind stress,
and anomalous sea surface elevation, which is a good
proxy for upper-ocean heat content. The POP analysis
technique was originally proposed by Hasselmann
(1988). For a review of the technique, its applications,
and possible extensions, see von Storch et al. (1995).
In essence, a multivariate first-order Markov process is
fitted to the dataset, minimizing the one time step pre-
diction error. The normal modes of the process serve as
a new basis to describe the data. They are characterized
by an e-folding time and an oscillation period in the
case of a complex eigenvalue of the fitted linear system,
or an e-folding time only if the corresponding eigen-
value is real.

The leading POP mode derived from the control in-
tegration has an oscillation period of 62 months, an e-
folding time of 450 months, and accounts for 83% of
the variance in the combined dataset. The individual
fields were scaled by the maximum value attained during
the control integration before they were pooled. The
result of this POP analysis indicates that practically all
information contained in the dataset is well modeled by
one oscillatory mode. Figure 2 shows longitude time
sections along the equator of the anomaly fields pro-
jected onto the leading POP mode. SSTA and anomalous
zonal wind stress are characterized by standing patterns,
whereas the anomalous sea level propagates slowly from
west to east. This behavior is in accordance with the
delayed action oscillator scenario proposed by Schopf
and Suarez (1988), in which equatorial wave propaga-
tion plays an important role. The ocean is not in equi-
librium with the wind stress forcing (Cane and Sarachik
1981), which adds a delayed response in the time evo-
lution of SST. Many wave modes contribute to the ocean
adjustment, giving rise to the relatively slow phase prop-
agation.

For comparison, we performed the same analysis
with observational data. We combined the SST and sea
level anomalies of the National Meteorological Center
(NMC, now known as the National Centers for Envi-
ronmental Prediction) reanalysis dataset (see Ji et al.
1995) with the FSU zonal wind stress anomalies. The
NMC data were available for the time period February
1982–December 1992 only. The leading POP mode
derived from the observations has an e-folding time of
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FIG. 10. NINO3 time series of SSTA analogous to Fig. 9 for restart month 420: (a) individual
realizations, (b) ensemble mean 6 1 standard deviation, (c) the standard deviation of the
ensemble. This restart is characterized by a rapid initial increase in variance (standard devi-
ation).

16 months, an oscillation period of 52 months, and
accounts for 15% of the variance. Longitude time sec-
tions analogous to those shown in Fig. 2 for the HCM
data are displayed in Fig. 3. The HCM simulation is

in qualitative agreement concerning the spatial char-
acteristics. The SST anomalies, however, are simulated
too far west. Note that the time interval for the analysis
of the observations leads presumably to a biased result
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FIG. 10. (Continued)

due to the regular occurrence of ENSO extremes in the
1980s.

c. The stochastically forced HCM

The FSU wind stress dataset shows a high degree of
variability at timescales that are short compared to a
typical ENSO period (e.g., Kleeman and Power 1994).
To investigate the effects of stochastic forcing on the
coupled model variability, we added wind stress noise
to the HCM in a second integration. A schematic dia-
gram of the extension of the HCM by the stochastic
component is given in Fig. 4. The noise was constructed
as follows. The observed wind stress anomalies were
high-pass filtered, retaining variability with timescales
less than 12 months fully and with decreasing weights
up to 16 months to reduce end effects. As noted by
Kleeman and Power (1994), the high-pass filtered part
of the anomalous wind stress field is consistent with
white noise that was truncated in this manner. Next, we
combined the 10 leading EOFs of the high-pass filtered
wind stress anomaly linearly with random amplitudes
according to the variance of their corresponding prin-
cipal components. The residual part of the high-pass
filtered wind stress anomaly—that is, the sum of the
remaining EOFs multiplied with their expansion coef-
ficients—is used to construct an additional part of the
noise estimate. We assume this field to be uncorrelated
in space and time. Consequently, we add a further local
random wind stress anomaly. Its variance equals the
variance of the residual part. To emphasize the way the

random wind stress forcing was constructed, the sto-
chastic wind stress forcing box in Fig. 4 is split into
two parts. We chose this approach because the leading
EOFs still exhibit considerable spatial correlations (see
Fig. 5, which shows the first 2 EOFs). Both the first
and second EOF exhibit large-scale structures in areas
that are known to be important for the generation of
ENSO.

The model oscillates irregularly when the noise forc-
ing is included, as witnessed by the NINO3 time series
of SSTA (Fig. 6), and the amplitudes of the extremes
vary considerably. This 120-yr integration with a par-
ticular noise realization will henceforth be termed noise
run. We infer the spatial characteristics again by per-
forming a POP analysis of the combined fields of SSTA,
anomalous sea level, and anomalous zonal wind stress,
and subsequent projection onto the leading POP mode.
Figure 7 shows the corresponding longitude time section
along the equator. The leading POP mode has a period
of 61.9 months, an e-folding time of 22.6 months, and
accounts for 32.4% of the variance of the dataset. In
the noise run, the propagation characteristics of the sea
level anomalies are, however, less pronounced and more
consistent with the NMC reanalysis (Fig. 3).

Comparing the spectra of the NINO3 time series ob-
tained from the coupled experiments with a long ob-
servational record reveals the improvement that is ob-
tained by adding random anomalies to the wind stress
field (Fig. 8). The SST observations were taken from
the GISST dataset, covering the period 1900–92. We
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estimated the spectra by applying the maximum entropy
method from the SSA toolkit, Dettinger et al. (1995),
which yielded stable spectral estimates for a range of
orders, typically 30–40, of the fitted autoregressive
models. The spectral peaks of the HCM are broadened
substantially when noise is added. The spectrum of the
noise run NINO3 time series is in qualitative agreement
with the GISST record. However, it does not simulate
enough variability at decadal timescales, which may be
explained by the lack of interaction with the global-
scale ocean circulation. This problem, however, should
not affect the result of our predictability study.

3. Restart experiments

To study the model variability further, we reinitial-
ized the coupled model at selected months of the noise
run, corresponding to different phases of the model
ENSO cycle. The restart months are listed in Table 1
and marked in Fig. 6. We generated ensembles of 216
trajectories for each restart month by integrating the
model forward in time for 72 months with different
realizations of the stochastic part. We display in Fig.
9 the time evolution of one particular ensemble ini-
tialized at month 276, which corresponds to an onset
of a model El Niño event. Six particular NINO3 SSTA
trajectories are shown in Fig. 9a, whereas Fig. 9b
shows the mean and standard deviation of the complete
ensemble. The standard deviation quickly saturates af-
ter about 12 months (Fig. 9c). The time evolution of
the ensemble mean and the ensemble standard devia-
tion depend on the restart month. To illustrate this, Fig.
10 shows an ensemble initialized at the peak phase of
a model El Niño. All the ensemble members evolve
relatively quickly into La Niña events. However, they
are shifted in phase with respect to each other. This
leads initially to a strong increase in the standard de-
viation, while it drops again after all the realizations
have reached the cold state. After this, the spread
among the ensemble members evolves in the same
manner as in the previous case.

In the following sections, we will use these ensemble
data to infer the predictability limits of ENSO as derived
from our stochastically forced coupled ocean–atmo-
sphere model.

4. Linear stochastic process

To quantify the influence of the random perturbations
on the model’s interannual variability by means of a
simple approximating system, we use the ensemble data
to derive a linear stochastic model for each restart en-
semble separately. Such an approach is justified by the
success of the previous POP analyses in extracting the
dominant variability modes in the observations and the
model data.

The time evolution of a linear stochastic system is
given by the stochastic differential equation

ẋ(t) 5 Ax(t) 1 Bh(t). (5)

The vector x(t) represents the state of the n dimensional
system at time t, A and B denote n 3 n matrices, and
h(t) is meant to be an n dimensional Gaussian random
vector with mean 0 and the identity matrix as covariance
matrix. In our application, A and B are assumed to be
constant in time. This implies that the diffusion matrix
of the random process is given by BBT, the superscript
denoting the transpose of B. The time evolution of the
ensemble mean ^x(t)& and the ensemble covariance ma-
trix Cij(t) 5 ^[xi(t) 2 ^xi&(t)] [xj(t) 2 ^xj&(t)]& then obey
the differential equations

^ẋ& 5 A^x&, ^x(0)& 5 x0 (6)

and

Ċ 5 AC 1 CAT 1 BBT, C(0) 5 C0, (7)

not explicitly denoting the time dependence of ^x& and
C for notational convenience. For a derivation of Eqs.
(6) and (7) see, for instance, van Kampen (1992). Here,
C(0) vanishes since the ensemble members start from
the same initial state. To obtain an optimal linear model
in a least squares sense, we define a cost function F(A,
B), which measures the misfit between the linear model
characterized by the entries of A and B and the ensemble
data over a time interval [1 . . . T*]:

T*

TF(A, B) 5 [(^x& 2 ^x& ) M (^x& 2 ^x& )O ens 1,t ens
t51

T1 (C 2 C ) M (C 2 C )]. (8)ens 2,t ens

Here, C denotes a column vector with its entries given
by the main diagonal and upper triangle of the covari-
ance matrix. The subscript ens signifies the estimates
for the mean and covariance obtained from the restart
ensembles. The weighing matrixes M1,t and M2,t were
derived from the ensemble assuming normal variates

21M 5 NC1,t ens

21M 5 cov(C , C )2,t ens,ij ens,kl

21
1

5 (C C 1 C C ) , (9)ens,il ens,jk ens,ik ens,jl[ ]N

where N is equal to the ensemble size. For a derivation
of the second matrix see Kendall et al. (1983). To min-
imize F in parameter space, one can choose different
methods. We chose a software tool, developed by Gier-
ing (1995) and Giering and Kaminski (1996). This tool
generates the adjoint of the above model, which pro-
vides the gradient of F with respect to the entries of A
and B. A subsequent minimization algorithm based on
a standard software package (Numerical Algorithms
Group 1991) determines the minimum of the cost func-
tion.

It remains to specifiy the dimension of the state space
for the linear model. To get a reduced state space rep-
resentation of the stochastically forced HCM, we per-
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TABLE 2. Result of the EOF analysis of the combined fields of
SSTA, anomalous sea level, and anomalous zonal wind stress for the
120-yr integration of the stochastically forced HCM. The individual
fields were scaled with the maximum absolute value they attained
during the noise run before they were pooled.

EOF No. Eigenvalue
Explained
variance

Cumulative
expl. var.

1
2
3
4
5
6

8.26
1.21
1.08
0.78
0.62
0.52

35.91
5.25
4.68
3.38
2.68
2.27

35.91
41.16
45.84
49.22
51.90
54.17

FIG. 12. Illustration of the predictability measure. The shaded area
equals the quantity 1 2 s(t) according to Eq. (15).

FIG. 11. Ensemble data vs the fitted linear stochastic processes for restart month 276. We
show the first and second coefficients of the ensemble mean and variance vs fitted linear
stochastic models of dimensionalities 4 and 6. The linear processes were fitted for a time
interval of 60 months.

formed a combined EOF analysis of SSTA, sea level
anomalies, and zonal wind stress anomalies of the noise
run. Before pooling, the individual anomaly fields were
scaled by their maximum absolute value attained during
the noise run. We retain four, five, or six EOFs to derive
the linear model. Table 2 lists the eigenvalues and ex-
plained variances of the leading 6 EOFs. The first two
EOFs contain practically all the information about the
interannual variability of the model. Therefore, in Fig.
11 we show their expansion coefficients resulting from
a fit to a linear stochastic model of the above kind. In
the appendix we list the optimization results for all the
six restart experiments. We fitted various time spans T*
and dimensionalities (4, 5, 6) for each restart ensemble
separately, to obtain fits as close as possible to the in-
dividual ensemble data. We list the dominant eigenmode
of the fitted system matrices A and compare the variances
simulated to those of the stochastically forced HCM.

To summarize, the fitted linear stochastic models are
able to extract the information about ensemble averages
and ensemble covariances contained in the individual
restart ensembles. In the next section we will use the
linear stochastic models to get more insight into the
predictability of the stochastically forced HCM.

5. Predictability

The aim of this section is to quantify the predict-
ability of the linear stochastic models by defining a
predictability measure that will be based on the knowl-
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FIG. 13. Predictability measures we obtained for the restart experiments. The restart months
are depicted in the upper right of each picture.

edge of the stationary and time-dependent probability
distributions. Initially, due to the perfect knowledge of
the initial states, the time-dependent probability den-
sities are d-function like. They spread during the course
of time and asymptote into the stationary probability
density functions at times long compared to the typical
timescales of diffusion induced by the stochastic part
and damping time of the dynamical part. Consequently,
one would require an appropriate predictability mea-
sure to decrease from an initial value, which we will
require to be equal to unity, to zero for long times.

As a motivation for our definition of the predictability
measure, we start with a one-dimensional linear sto-
chastic process, the Ornstein–Uhlenbeck process

ẋ 5 2ax 1 sh and x(0) 5 x0. (10)

Its stationary and time-dependent probability density
functions are given by

2a ax
p (x) 5 exp 2 and (11)stat 2 21 2!ps s

2at 2a a(x 2 x e )0p(x; t) 5 exp 2 , (12)
2 22at 2 22at[ ]!ps (1 2 e ) s (1 2 e )

respectively. This follows from Eqs. (6) and (7) of the
previous section. For some intermediate time, Fig. 12
depicts both probability densities. As a measure of pre-
dictability sOU at time t we use the overlap of pstat(x) and
p(x; t), measured in terms of their product integrated
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FIG. 13. (Continued)

over x, and an appropriate normalization to yield sOU(`)
5 0 and sOU(0) 5 1, as discussed above.

Therefore, we define

s (t) 5 1 2 2Ïpss(t) dxp(x; t)p (x), (13)OU E stat

with s(t) 5 s (1 2 e22at). Inserting (11) and (12) intoÏ
(13) gives

s (t)OU

22at 1/2 22at2(1 2 e ) ax e05 1 2 exp 2 . (14)
22at 2 22at[ ]! 2 2 e s (1 2 e )

The second term on the left-hand side of Eq. (14) cor-
responds to the shaded area in Fig. 12. The generaliza-

tion of this predictability measure to an n-dimensional
linear stochastic process (5) is given by

n 1/4s(t) 5 1 2 (2Ïp ) [det(C(t)C )]stat

3 dxp(x; t)p (x), (15)E stat

with C(t) and Cstat denoting the covariance matrix at time
t and the stationary covariance matrix, respectively.

In Fig. 13 we summarize the time evolution of s(t)
for all the restart experiments performed. Before the
predictability measure was calculated, we projected the
fitted stochastic processes onto the leading two EOFs.
This projection reduces the initial values of s(t) slightly,
but it has little influence after a few months, since the
third and higher principal components saturate quickly
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to their stationary values. Thus, they contain little in-
formation relevant to characterize the asymptotic be-
havior of s(t). In all cases, the predictability is lost well
before a typical cycle period has elapsed. The ensembles
initialized at states evolving into La Niñas exhibit a
quick drop of the predictability measure right after the
start. Thereafter, it increases again and eventually, after
having reached a relative maximum, it asymptotes to
zero.

6. Summary and discussion

We have used a hybrid coupled ocean–atmosphere
model to investigate the importance of noise in limiting
ENSO predictability. Adding a stochastic wind stress
anomaly field yielded a more realistic behavior relative
to an unperturbed control run, inducing the irregular
occurrence and varying amplitudes of the coupled mo-
del’s ENSO extremes. We performed restart experiments
from several phases of the model’s ENSO cycle with
different realizations of the stochastic part. The spread
among the individual trajectories comprising a restart
ensemble depends on the initialization date. Those tra-
jectories initialized at an El Niño extreme (420), or
shortly after it (372), evolve quickly into La Niña states,
but due to stochastic forcing they are shifted in phase
with respect to each other. This leads to a rapid increase
of the corresponding ensemble variance immediately af-
ter the start. When the realizations have reached the cold
state, the ensemble variance drops again, and the sub-
sequent spread is similar to that obtained from the other
restart ensembles. To quantify the predictability of the
coupled model further, we approximated the stochasti-
cally forced HCM by linear stochastic processes and
defined a predictability measure for the latter. The pre-
dictability measure characterizes the overlap of the time-
dependent and the stationary probability distributions
of the fitted stochastic process. In each case studied, it
reaches ‘‘critical’’ values before a typical cycle period
has elapsed. The above-mentioned characteristics of the
ensembles initialized at an El Niño extreme (420), or
shortly after it (372), manifest themselves as an initial
drop of the predictability measure and a subsequent in-
crease, before decreasing again for larger times after the
restart.

In our study, we concentrated on the perpetual action
of random perturbations during the course of time. Ad-
ditional initial errors would limit the system’s predict-
ability still further. Initial errors would add a term Cini(t)
5 exp(At)C(0)exp(At)T to the time evolution of the en-
semble covariance matrix, which can yield considerable
initial error growth due to the nonselfadjointness of
exp(A), the one time step propagator. This was discussed
by Blumenthal (1991), using an estimate of the prop-
agator obtained from the cyclostationary POP method,
which takes into account the seasonality in the under-
lying model. Here, we estimated the propagator and the
driving noise simultaneously by fitting a linear process

locally—that is, over a short time interval—to a restart
ensemble. As such, it takes into account the model’s
actual state. The fits are optimized to monitor the time
evolution of the underlying system for a finite time span.
Our results suggest that in making actual ENSO pre-
dictions, ensemble forecasts that include noise forcing
will provide valuable estimates of the forecasts’ uncer-
tainty. The time evolution of the predictability measure
s(t) indicates a clear dependence on the system’s state
and may therefore be used as an objective measure of
the expected forecast quality. There are, however, some
caveats. The estimate of the stochastic forcing may suf-
fer from errors in the underlying dataset and the way
of constructing the random perturbation cannot be jus-
tified rigorously. This implies that we may have over-
or underestimated the noise variance, which in turn af-
fects the coupled model’s predictability. However, the
fact that our results are consistent with those of Blanke
et al. (1997) strengthens the reliability of the conclu-
sions drawn in both papers. The dominant period of the
model ENSO mode is longer than the observed one.
Further, the approximating linear systems do not fit the
stochastically forced HCM perfectly, since they are for-
mulated in reduced state spaces, and misfits remain after
optimization.

We tested the sensitivity of the stochastically forced
HCM to different noise amplitudes (not shown) and
coupling strengths. The reduction of the noise am-
plitude induced a more regular behavior, eventually
reproducing the control run. Reducing the coupling
strength at a constant noise level yielded an increas-
ingly irregular behavior. At zero coupling strength and
nonvanishing noise forcing, the NINO3 time series
did not exhibit marked interannual fluctuations any
more. Our choice of the coupling strength and the
noise level, although admittedly subjective, was guid-
ed by the spatio-temporal characteristics of the model
simulations.

Nevertheless, we believe that our main results remain
valid. The stochastic forcing is important to model
ENSO realistically, and the ENSO predictability is lim-
ited by it leading to a loss of predictability before a
typical cycle period has elapsed.
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APPENDIX

Fitted Linear Stochastic Processes
The following two tables list the results of the fit

procedure outlined in section 4. Table A1 contains the
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TABLE A1. Periods and e-folding times of the interannual
eigenmodes of the fitted system matrixes.

Restart
month Dimension

Time
interval Period e-folding time

276 4 36
48
60

60.9
60.7
62.6

25.5
26.6
24.8

276 5 36
48
60

59.8
62.1
63.0

33.4
30.2
27.2

276 6 36
48
60

60.3
62.6
63.5

37.1
31.8
27.4

372 4 36
48
60

27.3
23.8
23.0

8.0
6.4
7.1

372 5 36
48
60

27.4
23.6
24.1

7.4
7.3
7.6

372 6 36
48
60

27.3
23.8
24.4

6.6
6.8
6.8

408 4 36
48
60

47.1
50.8
52.1

11.4
12.1
11.5

408 5 36
48
60

45.8
50.3
50.2

10.0
11.8
10.5

408 6 36
48
60

46.6
56.6
51.4

10.8
12.7
11.2

420 4 36
48
60

51.4
57.0
66.1

11.9
12.4
17.4

420 5 36
48
60

59.7
61.7
63.9

13.7
13.1
16.1

420 6 36
48
60

59.2
61.5
64.7

13.1
12.9
16.0

468 4 36
48
60

112.0
66.8
58.6

11.3
14.1
16.6

468 5 36
48
60

124.3
69.1
60.5

11.9
15.4
19.0

468 6 36
48
60

121.3
67.2
61.2

12.9
18.0
21.0

552 4 36
48
60

302.1
99.7

102.5

7.1
13.8
15.1

552 5 36
48
60

233.6
107.6
112.3

7.2
15.5
16.6

552 6 36
48
60

102.5
99.1

103.9

9.3
15.7
16.9

TABLE A2. Variances simulated by the fitted stochastic processes
(sim.) and variances of the input data (dat.).

Rest.
month Dim.

Time
interv.

EOF1

(sim.) (dat.)

EOF2

(sim.) (dat.)

Dim. EOFs

(sim.) (dat.)

276 4 36
48
60

11.80
9.24
8.41

10.66
7.93
7.03

1.17
1.11
1.07

1.21
1.18
1.10

14.81
12.16
11.29

13.85
11.05
10.04

276 5 36
48
60

10.79
8.47
7.84

10.66
7.93
7.03

1.11
1.04
1.02

1.21
1.18
1.10

14.37
11.94
11.24

14.49
11.65
10.59

276 6 36
48
60

10.80
8.44
7.79

10.66
7.93
7.03

1.01
1.03
1.01

1.21
1.18
1.10

14.86
12.39
11.66

15.03
12.18
11.10

372 4 36
48
60

2.49
3.27
3.98

2.62
4.75
6.81

0.98
0.77
0.78

1.09
1.00
1.08

4.21
5.26
5.91

5.65
7.45
9.82

372 5 36
48
60

2.91
4.00
5.02

2.62
4.75
6.81

0.95
0.92
0.92

1.09
1.00
1.08

5.71
6.82
7.88

6.21
8.22

10.38
372 6 36

48
60

2.75
3.76
4.73

2.62
4.75
6.81

0.95
0.91
0.91

1.09
1.00
1.08

6.00
7.04
8.04

6.70
8.76

10.89
408 4 36

48
60

7.09
7.06
7.00

8.21
7.32
7.41

1.03
1.05
1.05

1.10
1.16
1.14

9.97
9.95
9.90

11.22
10.42
10.50

408 5 36
48
60

6.90
6.91
6.84

8.21
7.32
7.41

1.00
1.03
1.01

1.10
1.16
1.14

10.25
10.30
10.21

11.78
10.99
11.05

408 6 36
48
60

6.91
6.91
6.82

8.21
7.32
7.41

1.00
1.03
1.02

1.10
1.16
1.14

10.74
10.77
10.64

12.30
11.48
11.54

420 4 36
48
60

3.86
4.17
4.37

3.50
5.45
7.25

1.04
1.01
1.00

1.06
1.00
1.08

5.64
5.93
6.12

6.46
8.32

10.29
420 5 36

48
60

4.93
5.16
5.21

3.50
5.45
7.25

0.97
0.97
0.96

1.06
1.00
1.08

8.02
8.30
8.37

7.02
8.83

10.87
420 6 36

48
60

4.81
5.06
5.11

3.50
5.45
7.25

0.98
0.97
0.95

1.06
1.00
1.08

8.37
8.68
8.71

7.52
9.35

11.36
468 4 36

48
60

8.46
8.40
8.11

9.55
9.61
7.96

0.99
1.03
1.06

1.19
1.19
1.20

11.25
11.26
11.01

12.66
12.75
11.13

468 5 36
48
60

8.57
8.44
8.12

9.55
9.61
7.96

0.97
1.01
1.04

1.19
1.19
1.20

11.84
11.79
11.50

13.24
13.39
11.69

468 6 36
48
60

8.57
8.49
8.13

9.55
9.61
7.96

0.96
1.01
1.04

1.19
1.19
1.20

12.31
12.32
11.98

14.05
13.90
12.22

552 4 36
48
60

3.13
4.21
4.82

5.88
7.63
9.18

0.92
0.94
0.96

0.99
1.14
1.13

5.86
6.99
7.62

8.83
10.72
12.24

552 5 36
48
60

3.10
4.49
5.23

5.88
7.63
9.18

0.90
0.93
0.96

0.99
1.14
1.13

6.31
7.78
8.56

9.41
11.33
12.87

552 6 36
48
60

3.16
4.28
4.93

5.88
7.63
9.18

0.89
0.92
0.94

0.99
1.14
1.13

6.81
8.00
8.69

9.89
11.87
13.38

periods of the interannual eigenmode of the system ma-
trix and its e-folding time for the different time spans
and dimensionalities of the fitted linear stochastic mod-
els. Table A2 contains for the same experiments the
simulated variances (sim.) compared with the input data
(dat.). The variances were obtained by averaging over
the last 12 months of each dataset.
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