SUPPORTING INFORMATION

Guided cobamide biosynthesis for heterologous production of reductive dehalogenases

Torsten Schubert¹, Stephan H. von Reuß², Cindy Kunze¹, Christian Paetz³, Stefan Kruse¹, Peggy Brand-Schön¹, Christoph Baum¹, Anita Mac Nelly¹, Jörg Nüske¹, and Gabriele Diekert¹

¹Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, D-07743 Jena, Germany

²Department of Bioorganic Chemistry and ³Research Group Biosynthesis / NMR, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany

Figure S1: UV/Vis-absorbance spectra of the purified Cbas from *Desulfitobacterium hafniense* strain DCB-2.

Figure S2. MS/MS fragmentation of cobamides using $[M+H]^+$ and $[M+2H]^{2+}$ precursor ions with a CID energy of 70 and 30, respectively.

	Molecular formula	calc. <i>m/z</i>	obs. <i>m/z</i>	Δ (ppm)
[M+H]+	[C ₆₃ H ₈₉ CoN ₁₄ O ₁₄ P] ⁺	1355.5747	1355.5738	0.7
[M+2H] ²⁺	[C ₆₃ H ₉₀ CoN ₁₄ O ₁₄ P] ²⁺	678.2910	678.2912	0.3
MS/MS ^a	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4893	0.8
MS/MS ^a	[C ₅₁ H ₇₄ CoN ₁₀ O ₁₃ P] ⁺	1124.4501	1124.4490	1.0
MS/MS ^a	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4805	1.2
MS/MS ^a	[C ₄₆ H ₆₅ CoN ₁₀ O ₆] ⁺	912.4415	912.4403	1.3
MS/MS ^b	[C ₄₆ H ₆₆ CoN ₁₀ O ₆] ²⁺	456.7244	456.7246	0.4
MS/MS ^b	$[C_{14}H_{20}N_2O_7P]^+$	359.1003	359.1003	0.0
MS/MS ^b	[C ₉ H ₁₁ N ₂] ⁺	147.0917	147.0918	0.7

Table S1: HPLC-ESI-(+)-HR-MS/MS data of a vitamin B₁₂ standard

	••			
	Molecular formula	calc. m/z	obs. <i>m/z</i>	Δ (ppm)
[M+H]+	[C ₅₉ H ₈₃ CoN ₁₆ O ₁₄ P] ⁺	1329.5339	1329.5326	1.0
[M+2H] ²⁺	$[C_{59}H_{84}CoN_{16}O_{14}P]^{2+}$	665.2726	665.2706	3.0
MS/MS ^a	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4890	1.1
MS/MS ^a	$[C_{51}H_{74}CoN_{10}O_{13}P]^+$	1124.4501	1124.4485	1.4
MS/MS ^a	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4800	1.7
MS/MS ^a	$[C_{46}H_{65}CoN_{10}O_6]^+$	912.4415	912.4403	1.3
MS/MS ^b	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7242	0.4
MS/MS ^b	[C ₁₀ H ₁₄ N ₄ O ₇ P] ⁺	333.0595	333.0596	0.3
MS/MS ^b	[C ₅ H ₅ N ₄] ⁺	121.0509	121.0504	4.1

Table S2: HPLC-ESI-(+)-HR-MS/MS data of the purinyl cobamide (signal **1** in Fig. 1) from *D. hafniense* strain DCB-2 supplemented with YE, but without other additives.

a: MS/MS of [M+H]⁺ at CID 70; b: MS/MS of [M+2H]²⁺ at CID 30.

Table S3: HPLC-ESI-(+)-HR-MS/MS data of the 5-azabenzimidazolyl cobamide (signal **2** in Fig. 1) from *D. hafniense* strain DCB-2 supplemented with YE, but without other additives.

	Molecular formula	calc. m/z	obs. <i>m/z</i>	Δ (ppm)
[M+H]+	$[C_{60}H_{84}CoN_{15}O_{14}P]^+$	1328.5386	1328.5376	0.8
[M+2H] ²⁺	$[C_{60}H_{85}CoN_{15}O_{14}P]^{2+}$	664.7730	664.7729	0.2
MS/MS ^a	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4896	0.6
MS/MS ^a	$[C_{51}H_{74}CoN_{10}O_{13}P]^+$	1124.4501	1124.4487	1.2
MS/MS ^a	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4811	0.6
MS/MS ^a	$[C_{46}H_{65}CoN_{10}O_6]^+$	912.4415	912.4405	1.1
MS/MS ^b	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7241	0.7
MS/MS ^b	[C ₁₁ H ₁₅ N ₃ O ₇ P] ⁺	332.0642	332.0640	0.6
MS/MS ^b	$[C_6H_6N_3]^+$	120.0556	120.0551	4.2

a: MS/MS of [M+H]⁺ at CID 70; b: MS/MS of [M+2H]²⁺ at CID 30.

Table S4: HPLC-ESI-(+)-HR-MS/MS data of the 5,6-dimethylbenzimidazolyl cobamide from *D. hafniense* strain DCB-2 supplemented with YE and 5,6-dimethylbenzimidazole (DMB).

	••		•	· · ·
	Molecular formula	calc. <i>m/z</i>	obs. <i>m/z</i>	Δ (ppm)
[M+H]⁺	[C ₆₃ H ₈₉ CoN ₁₄ O ₁₄ P] ⁺	1355.5747	1355.5745	0.1
[M+2H] ²⁺	[C ₆₃ H ₉₀ CoN ₁₄ O ₁₄ P] ²⁺	678.2910	678.2922	1.8
MS/MS ^a	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4891	1.0
MS/MS ^a	$[C_{51}H_{74}CoN_{10}O_{13}P]^+$	1124.4501	1124.4493	0.7
MS/MS ^a	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4802	1.5
MS/MS ^a	[C ₄₆ H ₆₅ CoN ₁₀ O ₆] ⁺	912.4415	912.4407	0.9
MS/MS ^b	[C ₄₆ H ₆₆ CoN ₁₀ O ₆] ²⁺	456.7244	456.7246	0.4
MS/MS ^b	$[C_{14}H_{20}N_2O_7P]^+$	359.1003	359.1007	1.1
MS/MS ^b	[C ₉ H ₁₁ N ₂] ⁺	147.0917	147.0920	2.0

	Molecular formula	calc. <i>m/z</i>	obs. <i>m/z</i>	Δ (ppm)
[M+H]+	[C ₆₁ H ₈₅ CoN ₁₄ O ₁₄ P] ⁺	1327.5434	1327.5420	1.1
[M+2H] ²⁺	$[C_{61}H_{86}CoN_{14}O_{14}P]^{2+}$	664.2753	664.2754	0.2
MS/MS ^a	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4886	1.4
MS/MS ^a	[C ₅₁ H ₇₄ CoN ₁₀ O ₁₃ P] ⁺	1124.4501	1124.4485	1.4
MS/MS ^a	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4801	1.6
MS/MS ^a	$[C_{46}H_{65}CoN_{10}O_6]^+$	912.4415	912.4400	1.6
MS/MS ^b	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7243	0.2
MS/MS ^b	$[C_{12}H_{16}N_2O_7P]^+$	331.0690	331.0682	2.4
MS/MS ^b	$[C_7H_7N_2]^+$	119.0604	119.0600	3.4

Table S5: HPLC-ESI-(+)-HR-MS/MS data of the benzimidazolyl cobamide from *D. hafniense* strain DCB-2 supplemented with YE and benzimidazole (Bza).

a: MS/MS of [M+H]⁺ at CID 70; b: MS/MS of [M+2H]²⁺ at CID 30.

Table S6: HPLC-ESI-(+)-HR-MS/MS data of the 5-methylbenzimidazolyl cobamide from *D. hafniense* strain DCB-2 supplemented with YE and 5-methylbenzimidazole (5-MeBza).

	Molecular formula	calc. <i>m/z</i>	obs. <i>m/z</i>	Δ (ppm)
[M+H]+	[C ₆₂ H ₈₇ CoN ₁₄ O ₁₄ P] ⁺	1341.5590	1341.5573	1.3
[M+2H] ²⁺	[C ₆₂ H ₈₈ CoN ₁₄ O ₁₄ P] ²⁺	671.2832	671.2836	0.6
MS/MS ^a	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4882	1.7
MS/MS ^a	$[C_{51}H_{74}CoN_{10}O_{13}P]^+$	1124.4501	1124.4478	2.0
MS/MS ^a	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4800	1.7
MS/MS ^a	$[C_{46}H_{65}CoN_{10}O_6]^+$	912.4415	912.4399	1.8
MS/MS ^b	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7251	1.5
MS/MS ^b	[C ₁₃ H ₁₈ N ₂ O ₇ P] ⁺	345.0846	345.0850	1.2
MS/MS ^b	[C ₈ H ₉ N ₂] ⁺	133.0760	133.0755	3.8

a: MS/MS of [M+H]⁺ at CID 70; b: MS/MS of [M+2H]²⁺ at CID 30.

Table S7: HPLC-ESI-(+)-HR-MS/MS data of the 5-methoxybenzimidazolyl cobamide from *D. hafniense* strain DCB-2 supplemented with YE and 5-methoxybenzimidazole (5-OMeBza).

	Molecular formula	calc m/z	ohs m/z	Δ (nnm)
	Molecular formala		003.11/2	
[M+H]⁺	[C ₆₂ H ₈₇ CoN ₁₄ O ₁₅ P] ⁺	1357.5539	1357.5529	0.7
[M+2H] ²⁺	$[C_{62}H_{88}CoN_{14}O_{15}P]^{2+}$	679.2806	679.2811	0.7
MS/MS ^a	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4890	1.1
MS/MS ^a	$[C_{51}H_{74}CoN_{10}O_{13}P]^+$	1124.4501	1124.4490	1.0
MS/MS ^a	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4802	1.5
MS/MS ^a	[C ₄₆ H ₆₅ CoN ₁₀ O ₆] ⁺	912.4415	912.4400	1.6
MS/MS ^b	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7250	1.3
MS/MS ^b	[C ₁₃ H ₁₈ N ₂ O ₈ P] ⁺	361.0795	361.0793	0.6
MS/MS ^b	[C ₈ H ₉ N ₂ O] ⁺	149.0709	149.0715	4.0

	11			(
	Molecular formula	calc. <i>m/z</i>	obs. <i>m/z</i>	Δ (ppm)
[M+H]⁺	[C ₆₁ H ₈₅ CoN ₁₄ O ₁₅ P] ⁺	1343.5383	1343.5375	0.6
[M+2H] ²⁺	$[C_{61}H_{86}CoN_{14}O_{15}P]^{2+}$	672.2728	672.2728	0.0
MS/MS ^a	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4887	1.3
MS/MS ^a	[C ₅₁ H ₇₄ CoN ₁₀ O ₁₃ P] ⁺	1124.4501	1124.4484	1.5
MS/MS ^a	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4802	1.5
MS/MS ^a	$[C_{46}H_{65}CoN_{10}O_6]^+$	912.4415	912.4399	1.8
MS/MS ^b	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7243	0.2
MS/MS ^b	$[C_{12}H_{16}N_2O_8P]^+$	347.0639	347.0639	0.0
MS/MS ^b	[C ₇ H ₇ N ₂ O] ⁺	135.0553	135.0551	1.5

Table S8: HPLC-ESI-(+)-HR-MS/MS data of the 5-/6-hydroxybenzimidazolyl cobamide(s) from *D. hafniense* strain DCB-2 supplemented with YE and 5-hydroxybenzimidazole (5-OHBza)

a: MS/MS of [M+H]⁺ at CID 70; b: MS/MS of [M+2H]²⁺ at CID 30.

Table S9: HPLC-ESI-(+)-HR-MS/MS data of the purinyl cobamide (2) from *D. hafniense* DCB-2 supplemented with YE and purine

	Molecular formula	calc. <i>m/z</i>	obs. <i>m/z</i>	Δ (ppm)
[M+H]+	[C ₅₉ H ₈₃ CoN ₁₆ O ₁₄ P] ⁺	1329.5339	1329.5340	0.1
[M+2H] ²⁺	$[C_{59}H_{84}CoN_{16}O_{14}P]^{2+}$	665.2726	665.2723	0.5
MS/MS ^a	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4898	0.4
MS/MS ^a	[C ₅₁ H ₇₄ CoN ₁₀ O ₁₃ P] ⁺	1124.4501	1124.4492	0.8
MS/MS ^a	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4810	0.7
MS/MS ^a	$[C_{46}H_{65}CoN_{10}O_6]^+$	912.4415	912.4407	0.9
MS/MS ^b	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7251	1.5
MS/MS ^b	[C ₁₀ H ₁₄ N ₄ O ₇ P] ⁺	333.0595	333.0592	0.9
MS/MS ^b	[C ₅ H ₅ N ₄] ⁺	121.0509	121.0511	1.7

a: MS/MS of [M+H]⁺ at CID 70; b: MS/MS of [M+2H]²⁺ at CID 30.

Table S10: HPLC-ESI-(+)-HR-MS/MS data of the 5-azabenzimidazolyl cobamide (2) from *D. hafniense* DCB-2 supplemented with YE and 5-azabenzimidazole (5-azaBza).

	Molecular formula	calc. m/z	obs. <i>m/z</i>	Δ (ppm)
[M+H]+	[C ₆₀ H ₈₄ CoN ₁₅ O ₁₄ P] ⁺	1328.5386	1328.5384	0.2
[M+2H] ²⁺	$[C_{60}H_{85}CoN_{15}O_{14}P]^{2+}$	664.7730	664.7752	3.3
MS/MS ^a	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4894	0.7
MS/MS ^a	$[C_{51}H_{74}CoN_{10}O_{13}P]^+$	1124.4501	1124.4489	1.1
MS/MS ^a	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4813	0.4
MS/MS ^a	[C ₄₆ H ₆₅ CoN ₁₀ O ₆] ⁺	912.4415	912.4412	0.3
MS/MS ^a	[C ₄₆ H ₆₆ CoN ₁₀ O ₆] ²⁺	456.7244	456.7244	0.0
MS/MS ^a	[C ₁₁ H ₁₅ N ₃ O ₇ P] ⁺	332.0642	332.0642	0.0
MS/MS ^a	$[C_6H_6N_3]^+$	120.0556	120.0557	0.8

	Molecular formula	calc. <i>m/z</i>	obs. <i>m/z</i>	Δ (ppm)
[M+H]+	$[C_{60}H_{84}CoN_{15}O_{14}P]^+$	1328.5386	1328.5376	0.8
[M+2H] ²⁺	$[C_{60}H_{85}CoN_{15}O_{14}P]^{2+}$	664.7730	664.7749	2.9
MS/MS ^a	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4886	1.4
MS/MS ^a	[C ₅₁ H ₇₄ CoN ₁₀ O ₁₃ P] ⁺	1124.4501	1124.4479	2.0
MS/MS ^a	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4812	0.5
MS/MS ^a	$[C_{46}H_{65}CoN_{10}O_6]^+$	912.4415	912.4406	1.0
MS/MS ^a	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7241	0.7
MS/MS ^a	[C ₁₁ H ₁₅ N ₃ O ₇ P] ⁺	332.0642	332.0641	0.3
MS/MS ^a	$[C_6H_6N_3]^+$	120.0556	120.0559	2.5

Table S11: HPLC-ESI-(+)-HR-MS/MS data of the putative 6-azabenzimidazolyl cobamide (**3**) from *D. hafniense* DCB-2 supplemented with YE and 5-azabenzimidazole (5-azaBza).

a: MS/MS of [M+H]⁺ at CID 70; b: MS/MS of [M+2H]²⁺ at CID 30.

Table S12: HPLC-ESI-(+)-HR-MS/MS data of the 4-azabenzimidazolyl cobamide (4) from *D. hafniense* DCB-2 supplemented with YE and 4-azabenzimidazole (4-azaBza).

	Molecular formula	calc. <i>m/z</i>	obs. <i>m/z</i>	Δ (ppm)
[M+H]+	$[C_{60}H_{84}CoN_{15}O_{14}P]^+$	1328.5386	1328.5395	0.7
[M+2H] ²⁺	$[C_{60}H_{85}CoN_{15}O_{14}P]^{2+}$	664.7730	664.7754	3.6
MS/MS ^a	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4899	0.3
MS/MS ^a	$[C_{51}H_{74}CoN_{10}O_{13}P]^+$	1124.4501	1124.4488	1.2
MS/MS ^a	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4810	0.7
MS/MS ^a	$[C_{46}H_{65}CoN_{10}O_6]^+$	912.4415	912.4405	1.1
MS/MS ^a	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7244	0.0
MS/MS ^a	[C ₁₁ H ₁₅ N ₃ O ₇ P] ⁺	332.0642	332.0638	1.2
MS/MS ^a	$[C_6H_6N_3]^+$	120.0556	120.0553	2.5

		purinyl cobamide (1)		5-azabenzimidazolyl cobamide (2)			
		¹ H	¹³ C	НМВС	¹ H	¹³ C	НМВС
	1	-	85.3 Cq	-	-	85.3 Cq	-
	1a	0.44 s	19.8 <i>CH</i> ₃	1, 2, 19	0.42 s	19.62 CH ₃	1, 2, 19
	2	-	47.1 Cq	-	-	47.2 Cq	-
	2a	2.39 s	42.8 CH ₂	1, 2, 2a', 2b, 3	2.40 s	42.9 CH ₂	2, 2a', 2b, 3
	2b	-	175.5 Cq	-	-	175.6 Cq	-
	2a'	1.40 s	16.5 <i>CH</i> ₃	1, 2, 2a, 3	1.40 s	16.6 CH ₃	1, 2, 2a, 3
	3	4.20 <i>m</i>	56.2 CH	1, 2, 2a, 3a, 3b, 4	4.19 <i>m</i>	56.2 CH	1, 3a, 3b
	3a	1.98 <i>m</i>	25.5 CH ₂		1.98 <i>m</i>	25.9 CH ₂	
	3b	2.53 <i>m</i>	34.3 CH ₂	3c	2.53 <i>m</i>	34.6 CH ₂	3c
	3c	-	177.9 Cq	-	-	177.7 Cq	-
	4	-	180.7 Cq	-	-	180.4 Cq	-
	5	-	107.6 Cq	-	-	107.5 Cq	-
	5a	2.53 s	$15.2 CH_3$	4, 5, 6	2.53 s	$15.4 CH_3$	4, 5, 6
	6	-	165.5 Cq	-	-	165.7 Cq	-
	70	- 219 d	31.5 CQ	- 6 7 70'	- 219 d	51.3 CU	- 6 7 70'
	/a	13.7 Hz	42.7 CH ₂	7b, 8	13.8 Hz	42.3 CH ₂	7b, 8
jq	7a	2.59 <i>m</i>	42.7 CH₂	7, 7a', 7b, 8	2.59 <i>m</i>	42.3 CH₂	7, 7a', 7b, 8
ino	7b	-	174.8 Cq	-	-	174.9 Cq	-
Corr	7a'	1.88 s	18.8 <i>CH</i> ₃	6, 7, 7a, 8, 8a	1.87 s	19.0 <i>CH</i> ₃	6, 7, 7a, 8
	8	3.54 <i>dd</i> 11 Hz, 5 Hz	55.7 CH	6, 7, 7a, 8a,	3.51 <i>dd</i> 11 Hz, 4.8 Hz	55.7 CH	7, 7a, 8a
	8a	2.07 m 0.92 m	26.3 CH₂		2.03 <i>m</i> 0.91 <i>m</i>	26.7 CH₂	
	8b	1.51 <i>m</i> 1.95 <i>m</i>	31.9 <i>CH</i> ₂	8c	1.82 <i>m</i> 1.32 <i>m</i>	32.0 CH₂	8c
	8c	-	177.2 Cq	-	-	177.1 Cq	-
	9	-	174.1 Cq	-	-	173.7 Cq	-
	10	6.23 s	95.4 CH	8, 9, 11, 12	6.17 s	95.5 CH	8, 9, 11, 12
	11	-	177.7 Cq	-	-	177.7 Cq	-
	12	-	48.5 Cq	-	-	48.4 Cq	-
	12a	1.48 s	18.9 <i>CH</i> ₃	11, 12, 12a', 13	1.47 s	19.0 <i>CH</i> ₃	11, 12, 12a', 13
	12a'	1.18 s	30.8 <i>CH</i> ₃	11, 12, 12a, 13	1.19 s	31.0 <i>CH</i> ₃	11, 12, 12a, 13
	13	3.39 <i>d</i> 9.6 Hz	53.8 CH	11, 12, 12a', 13a, 14	3.37 m	53.8 CH	11, 13a, 13b
	13a	1.95 m	28.1 CH ₂		1.96 <i>m</i>	28.1 CH ₂	13c

Table S13: NMR data (700 MHz, D_2O) for the purinyl cobamide (1) and the 5-azabenzimidazolyl cobamide (2) isolated from *D. hafniense* strain DCB-2.

13b	2.63 m	34.5 CH ₂	13c	2.63 m	34.2 CH ₂	13c
13c	-	177.9 Cq	-	-	178.0 Cq	-
14	-	166.3 Cq	-	-	166.2 Cq	-
15	-	104.5 Cq	-	-	104.6 Cq	-
15a	2.60 s	14.9 <i>CH</i> ₃	13, 14, 15,	2.60 s	15.0 <i>CH</i> ₃	14, 15, 16
			16, 17			
16	-	179.6 Cq	-	-	179.4 Cq	-
17	-	59.5 Cq	-	-	59.5 Cq	-
17a	1.82 <i>m</i>	32.3 CH ₂		1.83 <i>m</i>	32.3 CH ₂	
	2.67 <i>m</i>			2.66 <i>m</i>		
17b	2.09 <i>m</i>	32.5 CH ₂	17c	2.10 <i>m</i>	32.8 CH ₂	17c
	2.55 <i>m</i>			2.54 <i>m</i>		
17c	-	177.5 Cq	-	-	178.0 Cq	-
17a'	1.39 s	15.9 <i>CH</i> ₃	16, 17,	1.39 s	16.0 <i>CH</i> ₃	16, 17,
			17a, 18			17a, 18
18	2.80 <i>m</i>	38.8 CH	17, 18a	2.79 <i>m</i>	38.9 CH	17a', 19
18a	2.69 <i>m</i>	31.5 <i>CH</i> ₂	17, 18,	2.69 <i>m</i>	31.5 <i>CH</i> ₂	17, 17a',
	2.76 <i>m</i>		18b	2.75 <i>m</i>		18, 18b,19
18b	-	175.3 Cq	-	-	175.2 Cq	-
19	4.13 <i>d</i>	75.2 CH	1, 1a', 16,	4.12 d	75.2 CH	
	11.0 Hz		18	10.7 Hz		

	1'	2.93 m	45.3 CH₂		2.92 m	45.4 CH ₂	
ke		3.59 <i>m</i>			3.61 <i>m</i>		
-İi	2'	4.30 <i>m</i>	72.9 CH		4.30 <i>m</i>	72.9 CH	
Ċ	3'	1.25 d	18.8 <i>CH</i> ₃	1', 2'	1.25 d	19.0 <i>CH</i> ₃	1', 2'
		6.1 Hz			6.0 Hz		

	1"	6.61 <i>d</i>	86.5 CH	 6.47 d	87.5 CH	2", 2""
		3 Hz				
	2"	4.31 <i>m</i>	69.0 CH	 4.31 <i>m</i>	67.4 CH	
ш	3"	4.74 <i>m</i>	72.9 CH	 4.72 <i>m</i>	73.0 CH	
SO	4"	4.10 <i>m</i>	82.6 CH	 4.09 <i>m</i>	82.5 CH	
B	5"	3.74 dd	60.2 CH ₂	 3.76 dd	60.4 CH ₂	3"
2		13.0, 3.6				3"
		Hz		3.93 dd		
		3.92 d				
		12.3 Hz				

	2""	7.41 s	146.5 <i>CH</i>	3a''', 7a'''	7.30 s	144.8.2	3a''', 7a'''
						CH	
	3a'''	-	129.5 Cq	-	-	135.5 Cq	-
	4""	-	-	-	8.00 s	138.2 CH	3a''', 7a''',
							6'''
Z	5'''	8.19 s	145.3 CH	3a''', 7a''',	-	-	-
Ъ С				4""			
	6'''	-	-	-	8.37 d	143.0 CH	7"', 7a'''
					5.0 Hz		
	7""	8.95 s	153.5 CH	6'''	7.61 d	107.9 CH	3a'''
					5.2 Hz		
	7a'''	-	149.5 Cq	-	-	137.3 Cq	-

Obtained from 700 MHz ¹H PURGE NMR, PRESAT-*dqf*-COSY, HSQC, HMBC, and PRESAT-ROESY spectra; Referenced to water at δ_H 4.79 ppm and acetate at δ_H 1.91

Figure S3: Section of the HMBC spectrum of the purinyl cobamide (1) isolated from *D. hafniense* strain DCB-2 showing H,C-correlations in the purine unit.

Figure S4: Section of the HMBC spectrum of the 5-azabenzimidazolyl cobamide (**2**) isolated from *D. hafniense* strain DCB-2 showing H,C-correlations in the 5-azabenzimidazole unit.

purinyl cobamide (1)

5-azabenzimidazolyl cobamide (2)

Figure S5: Orientation of the heteroaromatic ligands as deduced from analysis of NOE-correlations observed in the 700 MHz ROESY spectrum.

Figure S6. Low field range of ¹H-NMR spectra of 5-MeBza-Cba, 6-OHBza-Cba and 5-OHBza-Cba, and 5-OMeBza-Cba. The depicted sections show the signals for the respective benzimidazolyl moieties and the signal for the anomeric position of the α -ribosyl unit.

Figure S7. Relative transcript levels of the *rdhA1*, *rdhA3*, *rdhA4*, *rdhA5*, and *rdhA6* genes in two cultures of *D. hafniense* strain DCB-2. Cells were cultivated with pyruvate. When the cultures reached an $OD_{578} = 0.2$, 3-chloro-4-hydroxy-phenylacetate (CIOHPA; 100 µM) was added. The concentration of CIOHPA in the cultures before the harvest of the cells ($OD_{578} = 0.3$) is given in the figure.

Figure S8A: HR-MS/MS analysis of the purinyl cobamide (1) from *D. hafniense* strain DCB-2 supplemented with [¹⁵N]-enriched yeast extract or [¹⁵N]-enriched NH₄CI.

Figure S8B: HR-MS/MS analysis of the purinyl cobamide (1) from *D. hafniense* strain DCB-2 supplemented with [15 N]-enriched yeast extract or [15 N]-enriched NH₄CI.

Figure S8C: HR-MS/MS analysis of the purinyl cobamide (1) from *D. hafniense* strain DCB-2 supplemented with [15 N]-enriched yeast extract or [15 N]-enriched NH₄CI.

Figure S9: HPLC-ESI-(+)-HR-MS chromatogram of [M+2H]²⁺ signals corresponding to putative adeninyl cobamides from *D. hafniense* strain DCB-2 supplemented with the ¹⁵N-enriched YE.

Table S14: HPLC-ESI-(+)-HR-MS/MS data of putative adeninyl cobamides from D
hafniense strain DCB-2 supplemented with the ¹⁵ N-enriched YE.

Α	Molecular formula	calc. <i>m/z</i>	obs. <i>m/z</i>	Δ (ppm)
[M+H]+	[C ₅₉ H ₈₄ CoN ₁₇ O ₁₄ P] ⁺	1344.5448	1344.5434	1.1
[M+2H] ²⁺	[C ₅₉ H ₈₅ CoN ₁₇ O ₁₄ P] ²⁺	672.7760	672.7766	0.9
MS/MS ^b	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4880	1.9
MS/MS ^b	[C ₅₁ H ₇₄ CoN ₁₀ O ₁₃ P] ⁺	1124.4501	1124.4487	1.2
MS/MS ^b	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4820	0.3
MS/MS ^b	$[C_{46}H_{65}CoN_{10}O_6]^+$	912.4415	912.4417	0.2
MS/MS ^b	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7243	0.2
MS/MS ^b	$[C_{10}H_{15}N_5O_7P]^+$	348.0704	348.0704	0.2
MS/MS ^b	$[C_5H_6N_5]^+$	136.0618	136.0615	1.8

В	Molecular formula	calc. <i>m/z</i>	obs. <i>m/z</i>	Δ (ppm)
[M+H]⁺	[C ₅₉ H ₈₄ CoN ₁₇ O ₁₄ P] ⁺	1344.5448	1344.5421	2.0
[M+2H] ²⁺	[C ₅₉ H ₈₅ CoN ₁₇ O ₁₄ P] ²⁺	672.7760	672.7762	0.3
MS/MS ^b	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4875	2.3
MS/MS ^b	[C ₅₁ H ₇₄ CoN ₁₀ O ₁₃ P] ⁺	1124.4501	1124.4494	0.6
MS/MS ^b	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4797	2.0
MS/MS ^b	[C ₄₆ H ₆₅ CoN ₁₀ O ₆] ⁺	912.4415	912.4401	1.5
MS/MS ^b	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7238	1.3
MS/MS ^b	$[C_{10}H_{15}N_5O_7P]^+$	348.0704	348.0703	0.0
MS/MS ^b	$[C_5H_6N_5]^+$	136.0618	136.0620	1.7

Figure S10: HPLC-ESI-(+)-HR-MS chromatogram of $[M+2H]^{2+}$ signals corresponding to putative guaninyl cobamides from *D. hafniense* strain DCB-2 supplemented with the ¹⁵N-enriched YE.

Table S15: HPLC-ESI-(+)-HR-MS/MS data of putative guaninyl cobamides from *D. hafniense* strain DCB-2 supplemented with the ¹⁵N-enriched YE.

Α	Molecular formula	calc. <i>m/z</i>	obs. <i>m/z</i>	Δ (ppm)
[M+H]⁺	[C ₅₉ H ₈₄ CoN ₁₇ O ₁₅ P] ⁺	1360.5397	1360.5431	2.5
[M+2H] ²⁺	[C ₅₉ H ₈₅ CoN ₁₇ O ₁₅ P] ²⁺	680.7735	680.7725	1.4
MS/MS ^b	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4896	0.6
MS/MS ^b	$[C_{51}H_{74}CoN_{10}O_{13}P]^+$	1124.4501	1124.4479	2.0
MS/MS ^b	$[C_{49}H_{70}CoN_{12}O_7]^+$	997.4817	997.4811	0.6
MS/MS ^b	[C ₄₆ H ₆₅ CoN ₁₀ O ₆] ⁺	912.4415	912.4411	0.4
MS/MS ^b	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7256	2.6
MS/MS ^b	$[C_{10}H_{15}N_5O_8P]^+$	364.0653	364.0641	3.3
MS/MS ^b	$[C_5H_6N_5O]^+$	152.0567	152.0564	1.6

В	Molecular formula	calc. <i>m/z</i>	obs. <i>m/z</i>	Δ (ppm)
[M+H]⁺	[C ₅₉ H ₈₄ CoN ₁₇ O ₁₅ P] ⁺	1360.5397	1360.5411	1.1
[M+2H] ²⁺	$[C_{59}H_{85}CoN_{17}O_{15}P]^{2+}$	680.7735	680.7743	1.1
MS/MS ^b	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	nd	-
MS/MS ^b	$[C_{51}H_{74}CoN_{10}O_{13}P]^+$	1124.4501	nd	-
MS/MS ^b	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	nd	-
MS/MS ^b	$[C_{46}H_{65}CoN_{10}O_6]^+$	912.4415	nd	-
MS/MS ^b	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	nd	-
MS/MS ^b	$[C_{10}H_{15}N_5O_8P]^+$	364.0653	nd	-
MS/MS ^b	$[C_5H_6N_5O]^+$	152.0567	nd	-

С	Molecular formula	calc. <i>m/z</i>	obs. <i>m/z</i>	Δ (ppm)
[M+H]⁺	[C ₅₉ H ₈₄ CoN ₁₇ O ₁₅ P] ⁺	1360.5397	1360.5413	1.2
[M+2H] ²⁺	[C ₅₉ H ₈₅ CoN ₁₇ O ₁₅ P] ²⁺	680.7735	680.7745	1.4
MS/MS ^b	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4885	1.5
MS/MS ^b	$[C_{51}H_{74}CoN_{10}O_{13}P]^+$	1124.4501	1124.4466	3.1
MS/MS ^b	$[C_{49}H_{70}CoN_{12}O_7]^+$	997.4817	997.4805	1.2
MS/MS ^b	$[C_{46}H_{65}CoN_{10}O_6]^+$	912.4415	912.4396	2.1
MS/MS ^b	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7251	1.5
MS/MS ^b	$[C_{10}H_{15}N_5O_8P]^+$	364.0653	364.0640	3.4
MS/MS ^b	$[C_5H_6N_5O]^+$	152.0567	152.0569	1.6

Figure S11: HPLC-ESI-(+)-HR-MS chromatogram of [M+2H]²⁺ signals corresponding to putative methylguaninyl cobamides from *D. hafniense* strain DCB-2 supplemented with the ¹⁵N-enriched YE.

Table S16: HPLC-ESI-(+)-HR-MS/MS data of putative methylguaninyl cobamides from *D. hafniense* strain DCB-2 supplemented with the ¹⁵N-enriched YE.

Α	Molecular formula	calc. <i>m/z</i>	obs. <i>m/z</i>	Δ (ppm)
[M+H]⁺	$[C_{60}H_{86}CoN_{17}O_{15}P]^+$	1374.5553	1374.5549	0.3
[M+2H] ²⁺	[C ₆₀ H ₈₇ CoN ₁₇ O ₁₅ P] ²⁺	687.7813	687.7821	1.2
MS/MS ^b	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4903	0.0
MS/MS ^b	$[C_{51}H_{74}CoN_{10}O_{13}P]^+$	1124.4501	1124.4508	0.6
MS/MS ^b	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4810	0.7
MS/MS ^b	$[C_{46}H_{65}CoN_{10}O_6]^+$	912.4415	912.4417	0.2
MS/MS ^b	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7243	0.2
MS/MS ^b	$[C_{11}H_{17}N_5O_8P]^+$	378.0809	378.0816	1.7
MS/MS ^b	[C ₆ H ₈ N ₅ O] ⁺	166.0723	166.0724	0.3

В	Molecular formula	calc. <i>m/z</i>	obs. <i>m/z</i>	Δ (ppm)
[M+H]⁺	$[C_{60}H_{86}CoN_{17}O_{15}P]^+$	1374.5553	1374.5531	1.7
[M+2H] ²⁺	[C ₆₀ H ₈₇ CoN ₁₇ O ₁₅ P] ²⁺	687.7813	687.7819	0.9
MS/MS ^b	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4888	1.2
MS/MS ^b	[C ₅₁ H ₇₄ CoN ₁₀ O ₁₃ P] ⁺	1124.4501	1124.4479	2.0
MS/MS ^b	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4803	1.4
MS/MS ^b	[C ₄₆ H ₆₅ CoN ₁₀ O ₆] ⁺	912.4415	912.4406	1.0
MS/MS ^b	[C ₄₆ H ₆₆ CoN ₁₀ O ₆] ²⁺	456.7244	456.7255	2.4
MS/MS ^b	[C ₁₁ H ₁₇ N ₅ O ₈ P] ⁺	378.0809	378.0824	2.3
MS/MS ^b	[C ₆ H ₈ N₅O] ⁺	166.0723	166.0724	0.3

С	Molecular formula	calc. <i>m/z</i>	obs. <i>m/z</i>	Δ (ppm)
[M+H]⁺	[C ₆₀ H ₈₆ CoN ₁₇ O ₁₅ P] ⁺	1374.5553	1374.5544	2.8
[M+2H] ²⁺	[C ₆₀ H ₈₇ CoN ₁₇ O ₁₅ P] ²⁺	687.7813	687.7813	0.0
MS/MS ^b	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4891	1.0
MS/MS ^b	$[C_{51}H_{74}CoN_{10}O_{13}P]^+$	1124.4501	1124.4481	1.8
MS/MS ^b	$[C_{49}H_{70}CoN_{12}O_7]^+$	997.4817	997.4804	1.3
MS/MS ^b	[C ₄₆ H ₆₅ CoN ₁₀ O ₆] ⁺	912.4415	912.4400	1.6
MS/MS ^b	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7244	0.0
MS/MS ^b	[C ₁₁ H ₁₇ N ₅ O ₈ P] ⁺	378.0809	378.0816	0.1
MS/MS ^b	[C ₆ H ₈ N ₅ O] ⁺	166.0723	166.0725	0.8

Figure S12: HPLC-ESI-(+)-HR-MS chromatogram of [M+2H]²⁺ signals corresponding to putative methylhypoxanthinyl cobamides from *D. hafniense* strain DCB-2 supplemented with the ¹⁵N-enriched YE.

Table S17: HPLC-ESI-(+)-HR-MS/MS data of putative methylhypoxanthinyl cobamides from *D. hafniense* strain DCB-2 supplemented with the ¹⁵N-enriched YE.

Α	Molecular formula	calc. <i>m/z</i>	obs. <i>m/z</i>	Δ (ppm)
[M+H]⁺	$[C_{60}H_{85}CoN_{16}O_{15}P]^+$	1359.5444	1359.5419	1.8
[M+2H] ²⁺	$[C_{60}H_{86}CoN_{16}O_{15}P]^{2+}$	680.2759	680.2766	1.1
MS/MS ^b	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4896	0.6
MS/MS ^b	$[C_{51}H_{74}CoN_{10}O_{13}P]^+$	1124.4501	1124.4479	2.0
MS/MS ^b	$[C_{49}H_{70}CoN_{12}O_7]^+$	997.4817	997.4811	0.6
MS/MS ^b	[C ₄₆ H ₆₅ CoN ₁₀ O ₆] ⁺	912.4415	912.4411	0.4
MS/MS ^b	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7256	2.6
MS/MS ^b	$[C_{11}H_{16}N_4O_8P]^+$	363.0700	363.0697	0.9
MS/MS ^b	$[C_6H_7N_4O]^+$	151.0614	151.0615	0.6

В	Molecular formula	calc. m/z	obs. <i>m/z</i>	Δ (ppm)
[M+H]⁺	[C ₆₀ H ₈₅ CoN ₁₆ O ₁₅ P] ⁺	1359.5444	1359.5401	3.2
[M+2H] ²⁺	$[C_{60}H_{86}CoN_{16}O_{15}P]^{2+}$	680.2759	680.2761	0.3
MS/MS ^b	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4874	2.4
MS/MS ^b	[C ₅₁ H ₇₄ CoN ₁₀ O ₁₃ P] ⁺	1124.4501	1124.4468	2.9
MS/MS ^b	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4796	2.1
MS/MS ^b	$[C_{46}H_{65}CoN_{10}O_6]^+$	912.4415	912.4390	2.7
MS/MS ^b	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7242	0.4
MS/MS ^b	$[C_{11}H_{16}N_4O_8P]^+$	363.0700	363.0695	1.5
MS/MS ^b	[C ₆ H ₇ N ₄ O] ⁺	151.0614	151.0613	1.2

Figure S13: HPLC-ESI-(+)-HR-MS chromatogram of [M+2H]²⁺ signals and HPLC-ESI-(+)-HR-MS/MS data of dimethylimidazolyl cobamide from *D. hafniense* strain DCB-2 supplemented with the ¹⁵N-enriched YE.

Table S18: HPLC-ESI-(+)-HR-MS data of putative dimethylimidazolyl cobamide from *D. hafniense* strain DCB-2 supplemented with the ¹⁵N-enriched YE.

Α	Molecular formula	calc. m/z	obs. <i>m/z</i>	Δ (ppm)
[M+H]⁺	[C ₅₉ H ₈₇ CoN ₁₄ O ₁₄ P] ⁺	1305.5590	1305.5579	0.9
[M+2H] ²⁺	[C ₅₉ H ₈₈ CoN ₁₄ O ₁₄ P] ²⁺	653.2832	653.2838	1.1
MS/MS ^b	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4886	1.4
MS/MS ^b	$[C_{51}H_{74}CoN_{10}O_{13}P]^+$	1124.4501	1124.4510	0.8
MS/MS ^b	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4807	1.0
MS/MS ^b	$[C_{46}H_{65}CoN_{10}O_6]^+$	912.4415	912.4373	4.6
MS/MS ^b	$[C_{46}H_{66}CoN_{10}O_6]^{2+}$	456.7244	456.7225	4.2
MS/MS ^b	$[C_{10}H_{18}N_2O_7P]^+$	309.0846	309.0842	1.2
MS/MS ^b	$[C_5H_9N_2]^+$	97.0760	nd	-

a: MS/MS of [M+H]⁺ at CID 70; b: MS/MS of [M+2H]²⁺ at CID 30.

Table S19: HPLC-ESI-(+)-HR-MS/MS data of the 4,5-dimethylimidazolyl cobamide (signal **5** in Fig. 4) from *D. hafniense* strain DCB-2 supplemented with 4,5-dimethylimidazole (DMI).

	Molecular formula	calc. m/z	obs. <i>m/z</i>	Δ (ppm)
[M+H]+	[C ₅₉ H ₈₇ CoN ₁₄ O ₁₄ P] ⁺	1305.5590	1305.5605	1.1
[M+2H] ²⁺	[C ₅₉ H ₈₈ CoN ₁₄ O ₁₄ P] ²⁺	653.2832	653.2858	4.0
MS/MS ^a	[C ₅₄ H ₇₉ CoN ₁₂ O ₁₄ P] ⁺	1209.4903	1209.4909	0.5
MS/MS ^a	$[C_{51}H_{74}CoN_{10}O_{13}P]^+$	1124.4501	1124.4518	1.5
MS/MS ^a	[C ₄₉ H ₇₀ CoN ₁₂ O ₇] ⁺	997.4817	997.4837	2.0
MS/MS ^a	$[C_{46}H_{65}CoN_{10}O_6]^+$	912.4415	912.4435	2.2
MS/MS ^b	[C ₄₆ H ₆₆ CoN ₁₀ O ₆] ²⁺	456.7244	456.7251	1.5
MS/MS ^b	[C ₁₀ H ₁₈ N ₂ O ₇ P] ⁺	309.0846	309.0850	1.3
MS/MS ^b	$[C_5H_9N_2]^+$	97.0760	97.0753	3.1

Figure S14: Purification of recombinant Strep-DcaA. The soluble fractions (10 µg protein) and the eluates (1 µg protein) were separated on a 12.5% SDS/PAGE (Coomassie-stained).