MARGIN LEARNING IN SPIKING NEURAL NETWORKS

Dissertation
for the award of the degree
“Doctor rerum naturalium”
of the Georg-August-Universitdat Gottingen

within the doctoral program
Theoretical and Computational Neuroscience
of the Georg-August University School of Science (GAUSS)

submitted by
Rafael Brune

from Gottingen, Germany
Gottingen, 2017

THESIS COMITTEE:

Dr. Robert Giitig
Dept. of Theoretical Neuroscience
Max-Planck-Institute for Experimental Medicine Gottingen

Prof. Dr. Theo Geisel
Nonlinear Dynamics
Max-Planck-Institute for Dynamics and Self-organization Gottingen

Prof. Dr. Fred Wolf
Theoretical Neurophysics
Max-Planck-Institute for Dynamics and Self-organization Gottingen

REFEREES:

Prof. Dr. Theo Geisel
Dr. Robert Giitig

ADDITIONAL EXAMINATION BOARD MEMBERS:

Prof. Dr. Tim Gollisch
Dept. of Opthalmology
University Medical Center Gottingen

Prof. Dr. Alexander Gail
Sensorimotor Group
German Primate Center Gottingen

Prof. Dr. Tobias Moser

Insitute for Auditory Neuroscience
University Medical Center Gottingen

DATE OF ORAL EXAM: December 15, 2017

DECLARATION

Hereby I declare that my doctoral thesis entitled "Margin learning
in spiking neural networks" has been written independently with no
other sources or aids than quoted.

Rafael Brune: Gottingen, October 2017

ABSTRACT

The ability to learn, generalize and reliably detect features embedded
in continuous sensory input streams is a crucial function of the central
nervous system. Sensory neurons process input from thousands of
synapses and respond to short features embedded in the input spike
stream.

Although supervised synaptic learning rules that allow neurons
to learn and detect spatio-temporal structures in spike patterns have
been developed and studied, it is unclear how neurons can learn to
generalize when only a limited set of training examples embedded
in high-dimensional input patterns are available. Current learning
rules rely on the availability of many training patterns. The neurons
generalization performance to previously unseen feature variations
suffers from overfitting when the number of its synapses is too high
and hence limiting their usefulness when studying neural processing
of high-dimensional spatio-temporal input streams.

We introduce a novel definition of margin for spiking neuron mod-
els and a learning rule that extends the multi-spike tempotron with
methods to increase said margin during training. We discover that
this margin learning ensures high generalization ability even when
only a small set of training patterns are available and the number of
synapses is high. Using features embedded in Poisson patterns we
demonstrate the improvement in performance even under noise. By
successfully applying the introduced margin learning rules to human
speech recognition tasks we show their potential for studying neural
processing of high-dimensional inputs in spiking sensory neurons.

CONTENTS

1 INTRODUCTION 1
1.1 Classification Tasks and Neuron Model Framework . . 3
1.2 Thesis Structure L. 4

2 METHODS 7
2.1 NeuronModels 8

2.1.1 McCulloch-PitzModel 8
2.1.2 Integrate-and-Fire Neuron 8
2.2 Perceptron Learning 11
2.3 Linear Support Vector Machines 12
23.1 Soft-Margin 13
2.4 Aggregate-Label Learning 15
2.4.1 Spike-Threshold-Surface 15
2.4.2 Multi-Spike Tempotron Learning Rule 16
243 0" Gradient 17
2.4.4 Neuron Parameters and Momentum Term . .. 22
2.4.5 Pre-Training of the Neuron 22
2.5 Feature Detection Tasks 23
2.5.1 Synthetic Embedded Features Task 23
2.5.2 Phoneme Detection Task 25
2.6 Phoneme Recognition Test Evaluation 27
2.6.1 Proficiency 27
2.7 Parameter Optimization 29

3 LEARNING FROM SEGMENTED INPUT PATTERNS 31
3.1 Limitations of Existing Learning Rules. 31
3.2 A Novel Learning Rule for Segmented Training Data . 32
3.3 Voltage Gradient 36

4 TEMPOTRON LEARNING WITH MARGIN 41
4.1 Margin in the Spike-Threshold-Surface 42
4.2 Comparison with Stochastic Margin Learning 44
4.3 Noise Robustness 46
4.4 Weight Decay and Rescaling 52
4.5 Generalization Performance under Optimal Margin Learn-

ing Parameters 58
4.6 Margin Based Optimization 63
5 APPLICATION TO SPEECH RECOGNITION 67
5.1 Auditory Brain-Stem Model 67
5.1.1 Typical Responses of Auditory Neurons 67
5.1.2 Auditory Front-End 69
5.2 Phoneme Recognition Task 77
5.3 Generalization Performance and Front-End Dimension = 82
5.4 General Performance Improvement 85

vii

viii

CONTENTS

5.5 Weight Vector Regularization

6 DISCUSSION

6.1 Margin Learning for Spiking Neuron Models
6.1.1 Biological Plausibility

6.2 Limitations and Outlook
A APPENDIX

BIBLIOGRAPHY

91
91
93
94

101

105

LIST OF FIGURES

Figure 2.1
Figure 2.2

Figure 2.3
Figure 2.4
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4

Figure 4.1
Figure 4.2

Figure 4.3
Figure 4.4

Figure 4.5

Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

Figure 4.10
Figure 4.11

Figure 4.12
Figure 4.13

Figure 4.14

Linear classifier and margin example. 12
Spike-threshold-surface and multi-spike tem-
potron learning. 16
Synthetic embedded feature task example. . . 23
TIMIT example speech sentence. 26
Segmented learning progression example.. . . 33
Generalization performance of segmented learn-

ing. 34
LTP and LTD steps for the segmented learning
algorithm. 37
Precision comparison of analytical and numer-

ical gradient calculation. 38
Margin in the spike-threshold-surface. 42
Optimal learning step size for stochastic mar-

gin learning algorithms. 45
Convergence time and margin width of stochas-

tic and gradient margin learning. 48
Mean minimal margin width for tempotron and
margin learning. L 49

Performance under noise and generalization
performance of tempotron and margin learn-

ing. 50
Synaptic weight vector Euclidean norm for tem-
potron and margin learning. 51
Minimal margin and weight vector norm for
margin learning with weight rescaling. 55
Noise robustness and generalization performance

of margin learning with weight rescaling. . . . 56
Relative position of output spike times inside

the target feature for different learning rules. . 57
Bimodal generalization error distribution. . . . 59
Parameter optimization for margin up learn-

ing with weight rescaling. 60
Generalization performance of margin learn-

ing rule variants. 62
Mean margin as a proxy for generalization per-
formance. L 64
Generalization performance of margin optimized
parameters.., 65

ix

List of Figures

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10

Figure 5.11

Figure 5.12
Figure 5.13

Figure 5.14
Figure 5.15

Figure 6.1

Auditory neuron responses from the inferior
colliculus of mice.
Probe signal to test the auditory front-end spike
generators.
Signal on- and off-set detector output.
Long- and short-pass detector output.
Band-pass detector output.
Spike pattern output for a probe signal.
Example spike pattern output of the full audi-
tory front-end for a TIMIT sentence.
Example voltage traces for tempotron and mar-
ginlearning.
Parameter optimization runs for phonemes AY
andT. L oo
Impact of limited training data on phoneme
recognition performance..
Performance shift under increasing auditory
frontend size.
Proficiency for tempotron and margin learning.
Euclidean norm of synaptic efficacies after learn-
ing.

Spike triggered spectrograms for S..

Synaptic efficacies for tempotron and margin

learning for phoneme S.

Importance of phoneme context.

68

70
71
72
73
74

75
78
79
83

84
85

86
88

INTRODUCTION

When we look out the window and see a cat walking through the
garden our brain is usually able to quickly recognize the animal as
a cat and not as a dog. Even if we have never seen this exact cat in
this specific context before it seems effortless for our brain to do this
classification.

The problem that the brain faces is that rarely, if ever, we repeatedly
encounter the same situation. It needs to be able to generalize from
limited previous encounters with cats and transfer the knowledge to
successfully identify new unseen instances. However, this ability to
generalize must be balanced with the ability do discriminate among
different stimuli. Inappropriately broad generalizations can result in
confusing a dog with a cat.

This ability to learn and generalize is a crucial function of the cen-
tral nervous system. Already on a single neuron level specificity and
invariance can be observed. For example neurons in the brain of mon-
keys show specialized selectivity for faces and features present in
faces (Perrett, Rolls, and Caan, 1982) while also being able to main-
tain selectivity over changes in stimulus size, position and viewing
angle (Quiroga et al., 2005; Schwartz et al., 1983). These neurons pro-
cess signals from thousands of synapses and are seemingly able to
reliably detect their target feature embedded in their sensory input
stream. It is still unclear how they learn, or are trained, to discrimi-
nate the target feature from others and are able to generalize from a
limited number of encountered examples.

Although supervised synaptic learning rules that allow neurons
to learn and detect spatio-temporal structures in spike patterns have
been developed and studied (Florian, 2012; Ghosh-Dastidar and Adeli,
2009; Giitig, 2016; Giitig, Gollisch, et al., 2013; Giitig and Haim Som-
polinsky, 2006, 2009; Ponulak and Kasifiski, 2010; Ran Rubin, Monas-
son, and Haim Sompolinsky, 2010; Xu, Zeng, and Zhong, 2013), it is
unclear how neurons can learn to generalize when only a limited set
of training examples embedded in high-dimensional input patterns
are available. Current learning rules rely on the availability of many
training patterns. With limited training data, current approaches are
at risk to overfit such that the neurons generalization performance
on previously unseen feature instances suffers. The model learns ir-

INTRODUCTION

relevant noise instead of extracting important aspects of the target
feature.

This limits the ability of these learning rules to explain neural pro-
cessing of high-dimensional spatio-temporal input streams in etho-
logical situations.

To better understand how neurons might be able to implement
measures to increase robustness and generalization performance we
turn to the field of machine learning. At the beginning of the com-
puter age collaboration between the disciplines of machine learn-
ing, neuroscience and psychology was highly productive (Church-
land and Sejnowski, 1988; Hebb, 1949; G. E. Hinton, McClelland, and
D. E. Rumelhart, 1986; J. J. Hopfield, 1982; McCulloch and Pitts, 1943;
Rosenblatt, 1958).

A classical algorithm on the border between machine learning and
neuroscience is the Perceptron learning rule (Rosenblatt, 1958). It
trains a single neuron such that the linearly weighted sum of its in-
puts predicts a category based on whether or not it exceeds a fixed
threshold. More intuitively this can be described as the neurons in-
puts being points in a high dimensional space and the neurons weights
defining a hyperplane that separates the space into two classes. One
of the important breakthroughs for the field of machine learning is
Vapnik’s work on support vector machines (SVM) (Cortes and V. Vap-
nik, 1995; V. N. Vapnik and A. J. Chervonenkis, 1974). It improves on
the concept and performance of the Perceptron by using a margin.

This margin is defined as the distance between the closest points of
both classes and the decision hyperplane. The goal of support vector
machine learning is to maximize this margin. The intuition behind
it being that a larger margin increases the probability that variants
of the training data points end up on the same side of the hyper-
plane and are classified correctly. If the decision hyperplane is di-
rectly next to one of the training data points already small variations,
e.g. through sensory noise, can lead to misclassification. This learn-
ing towards a larger margin allows support vector machines to find
solutions that offer increased robustness and generalization perfor-
mance (Cortes and V. Vapnik, 1995; V. N. Vapnik and A.]J. Chervo-
nenkis, 1974). Support vector machines are now a standard tool in
machine learning and deliver state-of-the-art performance in applica-
tions like text categorization, hand-written character recognition and
image classification (Cristianini and Shawe-Taylor, 2000).

So far the typical approach to increase the robustness of spiking
neuron models is to apply different types of noise during training
(Giitig, 2016; Giitig and Haim Sompolinsky, 2006; R. Rubin, L. F. Ab-
bott, and H. Sompolinsky, 2017). While this research demonstrates

1.1 CLASSIFICATION TASKS AND NEURON MODEL FRAMEWORK

that continuously applying noise before training pattern presenta-
tion allows for robust neural selectivity it has the disadvantage of
being a stochastic process. It only indirectly increases the robustness
by generating artificial stimuli variations. Using this approach is also
expected to be slower than a learning algorithm that increases robust-
ness by directly operating with a deterministic gradient. Similar to the
tempotron learning rules (Giitig, 2016; Giitig and Haim Sompolinsky,
2006) being dramatically faster than stochastic reinforcement learning
schemes (Seung, 2003).

Recent research successfully transferred the margin concept from
support vector machines to pools of spiking neurons (Le Mouel, Har-
ris, and Yger, 2014). But their approach is based on using aggregate
numbers of spikes from pools of neurons being lower or higher than
a certain threshold to distinguish classes. This pooled binary classi-
fication is conceptually different from the single neuron as a feature
detector model we are interested in.

Although the concept of margins can be naively transferred to bi-
nary neural classifiers by using the distance between firing thresh-
old and voltage maximum, it is unclear how to meaningfully define
and implement a margin in neuron models that use multiple output
spikes for classification.

The goal of this thesis is to transfer the concept of margins from ma-
chine to synaptic learning rules. We introduce a definition for margins
in spiking neuron models together with learning rules that extend
the multi-spike tempotron (Giitig, 2016) with methods to increase the
margin during training. We compare our margin learning algorithm
with the approach of adding noise during training and show that our
learning rule is both more effective and efficient. Using a synthetic
task with features embedded in Poisson patterns we demonstrate the
improvement in generalization performance under limited availabil-
ity of training data and under noise. To show the potential for study-
ing neural processing of realistic high-dimensional inputs in spiking
sensory neurons we then apply the introduced margin learning rules
to a phoneme recognition task based on human speech.

1.1 CLASSIFICATION TASKS AND NEURON MODEL FRAMEWORK

To define what we expect from the introduced margin learning rule
we describe here the concept of the feature detection tasks and the
general framework used to characterize the learning rule’s advan-
tages.

INTRODUCTION

We use a synthetic embedded feature task to test the learning rules
ability to train a neural classifiers to detect features embedded in a
sensory input stream. The same task with the same parameters as
used in Giitig, 2016. It consists of a set of different short spike pat-
terns, features, inserted, with random counts and times, into patterns
of background noise. Only one of those features will be used as the
target, the others will serve as distractors. The task of the learning
rules is to train integrate-and-fire neurons to elicit output spikes at
times of target feature presence in the input spike pattern. If we imag-
ine this target feature to correspond to an odor, or clue, about a food
source then this clue would already be present in the sensory input
stream before any reward signal about the successful acquisition of
the food source arrives at the neuron. Meaning that the neuron must
change its synaptic efficacies to detect the target feature without the
knowledge about its appearance times. Giitig, 2016 introduced an ag-
gregate label learning rule that solves this temporal credit-assignment
problem. It is able to train neurons to fire for features embedded in
the input pattern by only using the count of target features present in
it as a teaching signal. We will be using this aggregate label learning
rule throughout this thesis and extend it with algorithms for margin
learning.

By limiting the availability of spike patterns during training and
measuring the feature detection performance on test patterns we quan-
tify the generalization performance of the resulting neural classifiers.
To measure the robustness of the feature detection we also create
noisy variations of the training patterns and check if they are still
classified correctly.

To test the introduced margin learning rule with a more realistic
feature detection task we apply it to human speech processing. Using
an auditory front-end that converts sound input into spike patterns
suitable for the integrate-and-fire neuron we train neurons to detect
phonemes, distinct units of sound in human speech. We measure the
generalization performance for the different learning rules for dif-
ferent amounts of training data and dimensionality of the auditory
front-end.

1.2 THESIS STRUCTURE

In chapter 2 we review neuron models, learning rules and support
vector machines. In this machine learning framework we will show
how to construct a maximum margin hyperplane which is the main
inspiration for the neural margin learning rule introduced in this the-
sis. It also introduces the multi-spike tempotron learning rule and

1.2 THESIS STRUCTURE

the concept of the spike-threshold-surface (both introduced in Giitig,
2016). Additionally we describe the embedded feature task and TIMIT
speech corpus used as training data in our simulations. Chapter 2
does not represent any new work but is the foundation this research
is build on.

Chapter 3 describes a new learning rule that in contrast to the ag-
gregate label learning of the multi-spike tempotron makes use of ex-
act timing of target features in the input spike patterns. This learning
rule will later be used as a comparison baseline for the phoneme
recognition application.

Our definition for margins in spiking neuron models is introduced
in chapter 4. Here we demonstrate the effectiveness of the learning
rules in comparison with a stochastic margin learning approach and
show the increased noise robustness and generalization performance
using the embedded feature task described in chapter 3.

In chapter 5 we develop a biologically inspired auditory front-end
that converts sound waves into spike patterns suitable for use with
the multi-spike tempotron. The front-end is based on previous works
(Giitig, 2016; Giitig and Haim Sompolinsky, 2009) but we extend it
with additional response types based on frequency, loudness and
temporal structure of the input signal. The output of this auditory
front-end is then used as training patterns in a phoneme recognition
task to compare generalization performance of multi-spike tempotron
learning and the new margin learning rule.

We summarize all results and discuss avenues for further research
in chapter 6.

METHODS

In this chapter we will introduce two neuron models. The first, the
McCulloch-Pitz model is a binary classifier that uses the weighted
sum of inputs and compares it to a threshold to determine its binary
output. Binary classifier means that given an input the classifier as-
signs it to one of two classes based on its internal decision rule.

The second neuron model is the more realistic leaky integrate-and-
fire neuron. It integrates input spikes from different synapses over
time and generates an explicit time dependent voltage trace. If this
voltage exceeds a predefined firing threshold an output spike is gen-
erated. Since multiple output spikes can be generated over the time
course of an input spike pattern this neuron model can be used as
a multi-class classifier with different output spike counts correspond-
ing to different classes. We will use the integrate-and-fire neuron as a
feature detector and interpret the times of output spikes as the times
where the neuron detected a target feature to be present.

To train these neuron models to solve a certain task we require
learning rules that describe how their synaptic efficacies should be
changed during training. Based on the McCulloch-Pitz model we de-
scribe the Perceptron learning rule, basics of support vector machines
and the concept behind maximum margin classifiers that we use as
the main inspiration for the later introduced margin learning con-
cepts for spiking neural classifiers.

For the integrate-and-fire neuron we will describe the multi-spike
tempotron learning rule and the concept of the spike-threshold-surface
(both introduced in Giitig, 2016).

To study the different learning rules ability for feature detection
we use synthetic embedded features and an English natural language
speech corpus (TIMIT) for phoneme recognition.

METHODS

2.1 NEURON MODELS
2.1.1 McCulloch-Pitz Model

The McCulloch-Pitz neuron model (Hertz, Krogh, and Palmer, 1991;
McCulloch and Pitts, 1943) is one of the earliest and simplest math-
ematical descriptions of a biological neuron. It receives input from
N synapses in the form of real values x;, multiplies them with their
respective synaptic efficacies or weights w; and compares the result
to a firing threshold ©.

N
y= Sgn(Zwixi - 19) (2.1)

The sgn is the sign function results in an output of 1 if the sum is
above ¢ and —1 otherwise.

A more generic description of the model is reached when the thresh-
old ¢ is folded into the weight vector as an additional weight wx 4
with the corresponding input value xy.1 kept fixed to a constant for
all input vectors.

y =sgn(X- o) (2.2)

This definition of the neuron models decision rule using the dot prod-
uct makes a geometric interpretation apparent. The weight vector @
defines a decision surface in the N dimensional input space. This de-
cision hyperplane splits the input space into two volumes and input
vectors ¥ are assigned to one the two possible output classes based
on which volume they are in.

2.1.2 Integrate-and-Fire Neuron

Biological neurons receive their input not in the form of an aggre-
gated number but as a sequence of action potentials, or spikes, ar-
riving at different times at its synapses. A more realistic model that
includes the temporal dynamics of a real neuron is the integrate-and-
fire neuron (Dayan and Laurence F Abbott, 2001).

In this model the neuron behaves like a parallel electric circuit con-
sisting of a capacitor and a resistor.

av
TmE — Vrest — V(t) + Rm Ie(t) (23)

Where 1, is the membrane time constant, R,, the total membrane re-
sistance and L. (f) the externally applied current. This input current

2.1 NEURON MODELS

can correspond to spiking inputs from other presynaptic neurons.
Typically these induced input currents are modeled as an exponen-
tially decaying kernel e~ (/%) with time constant 7. Using this ex-
ponentially decaying input current allows for solving the differential
equation for a single input spike.

t t

K(t) = Vnorm(eifm - 37?5) vt >0 (24)

This double exponential kernel describes the time evolution of rela-
tive voltage change caused by a single input spike and is called the
postsynaptic potential (PSP). Viorm is used to normalize the ampli-
tude of the kernel to unit size.

Additionally the solution of the differential equation also yields an
explicit representation of the voltage Vj as a function of time ¢.

N .
VO(t) - Z wj Z K(t - ti) + ‘/rest (25)
i=1

=1

The parameter t{ describes the time of the j-th input spike at synapse
i and w; are the efficacies for each synapse.

The effect of spike reset is modeled by setting the voltage to the rest-
ing potential whenever the integrated membrane potential exceeds
the given firing threshold ¢. Assuming Viest = 0

V() =Vo(t)— 8) = (2.6)

H<t

With té is being the time points of reset and the exponential modeling
their decaying influence.

Output spikes can have an impact on the voltage trace and timing
of the following output spikes. This will be an important aspect to
consider in gradient calculation for the multi-spike tempotron learn-
ing rule.

9

2.2 PERCEPTRON LEARNING

2.2 PERCEPTRON LEARNING

One important synaptic learning rule for the McCulloch-Pitz neu-
ron model is the perceptron learning rule (Hertz, Krogh, and Palmer,
1991; Rosenblatt, 1958).

It adapts the synaptic weights @ of the neuron through repeated
presentation of input vectors ¥;. With the goal of the learning rule
being that the classification output y; of the McCulloch-Pitz model

yi = sgn(@ - %) (2.7)

for each input input vector X; is equivalent to their corresponding
label li.

The perceptron learning algorithm is defined as follows: Given a
set of input vectors ¥;, corresponding labels /;, initial weights @ and
a learning rate

1. Iterate through all X; and perform the following steps:
e Calculate the perceptron output y; = sgn(w - x;).

e If the output y; is not equal the desired label I; update the
weights:

AW = i Zi J?i (28)

2. Repeat from 1. until all input vectors are correctly classified.

This learning rule guarantees that the dot product @ - x; after a
corrective learn step increases, or decreases depending on the label,
towards the correct classification:

(@+ L %) % =@ %+ nl; |7 (2.9)

Additionally Block, 1962; Novikoff, 1962 proved that if the input vec-
tors of the two classes are linearly separable the perceptron learning
rule converges to a solution within a finite number of steps.

In case of an linearly separable set of input vectors there are usually
an infinite set of possible solutions and the convergence guarantees
only to find one. These different solutions can be of varying quality
with respect to the classifier performance on test data. The perceptron
of optimal stability or linear support vector machine solves this issue.

11

X2

12 METHODS
. b
“.
.
.
“
“‘. .
.
. [)
. ()
N BN NN SEE NN BN BN BEN BEN SENGNEN BN BN BN BN NN BN SN SN S e .
\d o~
“ ><
.
“
| .
| K
.
.
[y
" ¥
.
| s,
-
X1

Figure 2.1: (a) Example of a linear classifier in two dimensions. Both lines, dashed and dotted, are
solutions that correctly separate red and blue data points.
(b) Example of a large margin classifier. The gray dashed lines illustrate the margins
between the decision surface and the nearest data points.

2.3 LINEAR SUPPORT VECTOR MACHINES

As mentioned in the case of linearly separable training vector sets the
perceptron algorithm is guaranteed to converge to a solution. While
these solutions are valid their quality in terms of classification of in-
put vectors that weren’t part of the training set varies. The question
is which out of all valid solutions is the optimal one?

An approach called perceptron of optimal stability or linear support vec-
tor machine solves this issue by defining an optimal valid solution, the
maximum margin hyperplane (Cortes and V. Vapnik, 1995; V. N. Vapnik
and A. J. Chervonenkis, 1974; V. Vapnik and A. Chervonenkis, 1964).

To find this maximum margin hyperplane we require a hyperplane

W-X—b=0 (2.10)
that maximizes the distance between the hyperplane and the nearest
points of each input data class. b is the bias, or threshold, as it was

used in McCulloch-Pitz neuron model.

To do this we define two parallel hyperplanes that separate the
input space correctly while maximizing the distance between them.

—

Xi

S

b 1
b i—l (2.11)

X —

Sl

2.3 LINEAR SUPPORT VECTOR MACHINES

We can now calculate the distance of a point to the decision plane.

yi(@-X; —b)
i = = (2.12)
’ Il
For points satisfying
yi(@-X;—b)—1=0 (2.13)

which are points that lie directly on one of the parallel hyperplanes,
we get a distance of

1
= 2.1

The space between these two hyperplanes is called the margin and the

hyperplane in the middle is the maximum margin hyperplane. The
total distance between the two planes yields

2
d = 7= (2.15)
]
Hence to maximize the margin one has to find a solution that fulfills
the criteria for correctly classifying the training data
li(w-x;—b) > 1 Vi (2.16)
while minimizing the Euclidian weight vector norm

E = ||@| (2.17)

The points ¥; on the two parallel hyperplanes are called support vec-
tors.

In contrast to the perceptron learning rule which is an online learn-
ing algorithm, it iterates through all input vectors one after another,
solutions for the support vector machine are typically calculated by
solving the above optimization problem.

2.3.1 Soft-Margin

To extend this approach to non-linear separable training data sets
Cortes and V. Vapnik, 1995 proposed the soft-margin support vector
machine. They proposed use of the hinge loss function

pi = max(0,1 —[;(@ - xX; — b)) (2.18)

that assigns a loss p; to each misclassified input vector. This penalty is
proportional to the distance from the corresponding decision hyper-
plane. Using the hinge loss function the minimization problem can
be written as

N L oo
E = «||@|| —I—EZmax(O,l—li(w-xi—b)) (2.19)
i

13

14 METHODS

in which parameter « is used to prioritize between weight vector reg-
ularization and correct classification of training samples.

2.4 AGGREGATE-LABEL LEARNING

2.4 AGGREGATE-LABEL LEARNING

We now take a look at a neuron that is processing sensory input
streams, e.g. vision, hearing, smell, in which sensory clues about the
environment are embedded. If this neurons task is to learn to detect
a certain odor that for example is linked to a food source we can as-
sume that the odor clue is already present in the sensory input stream
before a reward signal about the successful acquisition of the food ar-
rives at the neuron. The question is how can the neuron change its
synaptic efficacies to learn to detect said odor clue in the sensory
input?

In Giitig, 2016 a novel aggregate-label learning rule is proposed
that solves this temporal credit-assignment problem. This multi-spike
tempotron is the basis for the research of this thesis and the following
sections will give an insight into the concept and implementation be-
hind it. First we will introduce the spike-threshold-surface, then the
multi-spike tempotron learning rule followed by a detailed calcula-
tion of the necessary gradient.

2.4.1 Spike-Threshold-Surface

If we imagine an integrate-and-fire neuron that elicits three output
spikes based on the current input spike pattern and its synaptic effi-
cacies and the goal is to change these efficacies such that the neuron
generates one additional output spike it is unclear how to do this.
One mathematical approach is to calculate the gradient of the output
spike count k with respect to the efficacies @w. While k is a function of
W it can only take discrete values and the gradient would be zero ev-
erywhere besides at the undefined points at the discontinuous steps
of k.

Solving this problem Giitig, 2016 introduced a continuous objective
function by using a new method called the spike-threshold-surface
that maps virtual threshold values to output spike counts given an
input pattern and current synaptic efficacies. If the current input pat-
tern would generate 3 output spikes and one would slowly decrease
the natural threshold value away from @ = 1 there will be a critical
threshold value 9 at which the output spike count jumps from 3 to
4. Following this 8} is defined as the critical threshold value at which
the output spike count switches from k to k — 1. Each ¢ corresponds
to a specific voltage value of equation 2.6, if we set the firing thresh-
old to ¢ = ¢} then, by definition of ¢}, V(t) will reach this new firing
threshold exactly k times. Since each ¢, corresponds to a specific volt-

15

16 METHODS

a b

1 - 6 4 0*

5
—_— 5 n *
> 0 84
< Q 4 A *
(4] ~ 05
% Q 3 . *
o v 9,
~ # 2 o
1 -
O 1 1 1 T 1 1 1 0 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.8 1.0 1.2
Time (s) Threshold (9)
C 1 - d 6 -
— 5 1 .
S o 9;
v g4
g 521
©° # 2 A
>
1 -
0 1 T T T T T T 0 T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.8 1.0 1.2
Time (s) Threshold (9)

Figure 2.2: (a+b) Voltage trace of a leaky integrate-and-fire neuron for an example input pattern

and its corresponding spike-threshold-surface. The current output spike count of 3 is
marked with a horizontal line in the spike-threshold-surface. The d; threshold values
mark the virtual threshold value at which the neuron would start to elicit k output
spikes. If we would move the virtual threshold across #; from the left the neuron would
go from 4 output spikes to three. By operating in this abstract space of continuous
threshold variables a gradient based learning rule can be used (illustrated by red and
blue arrows) to decrease the distance between the biological threshold and the desired
output spike count.

(c+d) Voltage trace and spike-threshold-surface after long-term-potentiation (LTP) learn
steps along the gradient @wﬁ;‘, red arrow in (a), have been applied to change the
synaptic efficacies until ¢} is above the natural threshold of ¢ = 1.0.

age value they are a function of the neurons synaptic efficacies. Their
gradients with respect to the efficacies are, in contrast to the gradient
of the output spike count, meaningful.

Figure 2.2 (a) and (b) show the voltage trace and corresponding
spike-threshold-surface for an example spike pattern and neuron ef-
ficacies.

2.4.2 Multi-Spike Tempotron Learning Rule

Following what is illustrated in figure 2.2 we can now do the fol-
lowing: if the neuron is supposed to elicit 4 instead of the current 3
output spikes we take a look at ¢#; in the spike-threshold-surface. As
expected the critical threshold value for 4 output spikes is lower than

2.4 AGGREGATE-LABEL LEARNING

the natural threshold of ¢ = 1. To get the neuron to fire 4 times in-
stead of 3 we need to somehow change the efficacies of the neuron in
a way that 9} is above the natural threshold. In contrast to the func-
tion of output spike counts, as mentioned in the previous section, ¢
is differentiable with respect to @ and we can calculate the gradient
@wﬂ,’; 41 and move ¢ towards ¢ until it crosses it.

Generalizing this gives us the multi-spike tempotron learning rule:

1. If the desired spike count o is smaller than the current spike
count k apply a long-term potentiation (LTP) learn step:

AW = n@wﬂijﬂ (2.20)

2. Otherwise if o is bigger than k apply a long-term depression
(LTD) learn step instead:

AD = —nV 0% (2.21)

3. If 0 equals k the neuron already classifies this pattern correctly
and no learning will be done.

The parameter # is the learn step size that is used to update the
synaptic efficacies.

2.4.3 0" Gradient

Applying these updates to the neurons synaptic efficacies requires the
calculation of the ¢* gradient. In this section we repeat the calculation
described in Giitig, 2016 but go into more detail in some of the trickier
parts. For this we assume that the exact value of the critical threshold
¢* for the output spike count required has already been determined
(see Giitig, 2016 on how to numerically determine ¢*). Equation 2.6
can then be written as

o]
V() = Vo(t) — 0" Y e

H<t

(2.22)

We expect that with well behaved input patterns there exists only a
single t* corresponding to the desired @*. By definition the voltage at
this time point is equivalent to #* as well as to the time points of all
previous output spikes t}.
(i)
O =V([EH)=V{t)—0") e (2.23)
j=1

17

18 METHODS

O =V(E)=V(H) V<t (2.24)

Applying the derivative diwi gives us the individual components 9’
of the gradient and the following equivalence which will be useful
later on.

oo g Aoy =4y
0 =308 = qw, V) = 4, V() (2.25)

Due to the dependence of t* and all té on w; we have to include these
indirect dependencies of V(+*) when calculating the derivative:

*x/ d *
0" = flwiv(t) (2.26)
= awy(t)+ nga)%HSJr at*V(t)dw't (2.27)
1 j=1 0L 1 L

=0

The last term vanishes due to either t* being a local maximum and
hence 4-t* = 0 or * coincides with an inhibitory input spike and
does not depend on w;.

The derivatives at the output spike times can be calculated the same
way:

vk elom -2 V(th) = J V(tk)+zk:iv(tk)
dwi s/ awi s] s

j=1 ats

d
dwi

ti (2.28)

Using the equivalence with ¢/ and pulling out the term for j = k
from the sum lets us obtain

d

* k
o' = v (220
_ 9 = A I BN R N
— awiv(ts) +]Z; aT‘éV(tS)dwi ts + aT’;V(tS)dwi ts
(2:30)
d i 1 w0 ok A0 d
= o — vt - Y Lyt
dw; %V(t’;) (ow; <)]g at]s (>dwi
(2.31)

To illustrate how we can refactor this equation we use the definition

V() = 2vi) (232)

for the

2.4 AGGREGATE-LABEL LEARNING

derivative at point tf approaching from the left and as an

example explicitly write out all necessary terms for k = 3:

d

1 _ * 1
d » 1 o 0 N T
dwi ts - V(tg) (191 awiv(ts) at;V(tS)dwi ts (234)
d 5 1 o 0 3v 0 oavd 4 0 a0 d
dw;® = V() (191 g V1)~ g V) gt — 5V B
(2.35)
Inserting the terms for k = 1 and k = 2 results in
it:; - 1 (
dwi s V(t?)
+ 19*/
J 3
- aw1V(tS)
d 3 1 */
Sy
0 5 1 9 1
+ aT_},V(tS) V(tg) awiv(tS) (2.36)
d 3 1 */
- an%V(tS) V(t%) 191'
0 5 1 90 5
0 5 1 0 o 1
TV Sy an V) v Y
0 5 1 0 o 1 9 1
SV () i gV () g V()

which allows us to group all terms containing ¢}/ and all terms that
do not together.

d

dwi

3 _
s

_ 1 [
V()
192"(1 - ;%V(ti)v(ltg)
~5/ O (- 51V D))
- aath(ti’)V(ltg) <—afuiV(t§> + %V(t?) V(lt;) a?ul

19

t§>

20

METHODS

This grouping makes it easier to spot a more useful definition of the

derivative

d

tk
dwi s

V(lg) [ﬂ*/Ak + Bk}

using two recursive coefficients Ay and By.

k—1
A =1
) ' k-1]

=0T at]

Similarly we can write for ¢*

m A‘
A, =1) 9
i1 V(#) otk
3 . mo B9
B.=—5 - V(t) —2,’}.—}.
Wi i=1 V(ts) ots

We can now insert the definition of 44
earlier

(2.38)

V(t)
(2.39)

V(t)

(t)
(2.40)

(t)

tls‘ into the derivative 9} from

0 o9 d
o Vit +Y —=V(+
i R (G
d m 1 (2:41)
= V() + Y V() 97A; + B
awi]:18% V(H [1]]
sor 07y 2ve - = vy Ly D
= ot V(e) owi =1 ot} V(£)
* B*
191‘/_—A7*

To finally calculate A, and B. we need to explictely write down the

. . p)
derivatives a—in(tx), o
the voltage reaches the threshold, [t!,¢
definition

— Z e ;nts

<t

V(t) =

V(ty) and V(). At all time points t, where

2 ..., t",t*], the neuron model

(2.43)

2.4 AGGREGATE-LABEL LEARNING

can be reduced to

*(fx*f]Q
V(tx) - VO(tx) - V(tx) 2 e Tm

<ty

—(tx—t)
S V(t)—V(ty) Y e m = V()
et Vo(ta) (2.44)
0
< V(tx) - - —(tx—t])
1 Zt£<t e m
VO(tx)
S Vty) =
(x) Ctx
Where C;, is defined as
~(tx-t])
Ch=1-Y ¢ w (2.45)

ety

This simpler definition of V(ty) allows us to calculate the missing
derivatives

d 1 0
%V(tx) = a%‘/o(fx)
i x i
1 ; (2.46)
Ly k)
b j
<ty
d Jd 1
~(tx—tk) (2.47)
_ Vo(tx) e T
Ct T
Vty) = =—V(ty) = —
(x> at_x (X) atx Ctx
1 0 —(t (248)

VO(tx) Xﬁté‘)
= — |G, Vo(t — i
x th<ty
With these three explicit derivatives one is able to fully calculate
all parts of the recursive A and B definitions and the gradient V30"
necessary for the multi-spike tempotron rule.

A comparison of this analytical gradient calculation with a numer-
ical approximation can be found in figure 3.4 in the section about a
novel segmented learning rule.

21

22

METHODS

2.4.4 Neuron Parameters and Momentum Term

If not mentioned otherwise we will use the following parameters for
the neuron model: Membrane and synaptic current time constants of
Tn = 20ms, T; = 5ms. The learn step size is # = le—5.

As described in Giitig, 2016; Giitig and Haim Sompolinsky, 2006
and also common in machine learning (David E Rumelhart, Geoffrey
E Hinton, Williams, et al., 1988) we use a momentum heuristic to
accelerate learning. A linear combination of the current gradient and
previous update is used to implement a decaying trace of former
synaptic changes.

Awlqurrent = Aw; + VAwyrevious (249)

1

This update of w""™" is only applied if the current synaptic change
was not zero (Aw; # 0). With the exception of the direct compari-
son with stochastic margin learning and all learning done with the
segmented learning rule, where u = 0, we kept u fixed to 0.99.

2.4.5 Pre-Training of the Neuron

We use two different versions of pre-training in this thesis. Both pre-
training variants make sure the neuron is initialized such that it gen-
erates a ~ 5Hz output spike rate when driven by 5Hz Poisson back-
ground activity.

The first one is as described in Giitig, 2016 and will be used if not
mentioned otherwise. It randomly draws efficacies strengths from a
Gaussian distribution with zero mean and 0.01 standard deviation.
The learning step size is set to 7 = le—3 and the momentum to
u = 0. The neuron is then trained on blocks of 100 spike patterns of 1s
background activity each with labels drawn from a Poisson distribu-
tion with average 5. Pre-training stopped when the neuron generated
more than 5Hz firing rate for a block of spike patterns.

The second method is meant to reduce a possible influence of the
random initial weights. All efficacies are set to the same small value
0.01 and a 100 second long input pattern of background activity is
used to determine the center of the plateau in the spike-threshold-
surface that yields a 5Hz output rate. Using this center value we
rescale the synaptic weights resulting in a weight vector with stan-
dard deviation of zero and an average background noise response
rate of 5Hz.

2.5 FEATURE DETECTION TASKS 23

500 =

O B
~

. - - . L) i o, . (] L . : T
. i, AR B
] . . :

Input

0 | ;' P I=:" ."Z-I AT -'I'- T X il ".I- e bl '-I.'
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

Figure 2.3: 1.55 excerpt from a synthetic embedded feature task spike pattern. Squares denote
positions of embedded features. Blue is the target feature, squares of similar gray level
correspond to the same distractor feature.

2.5 FEATURE DETECTION TASKS

2.5.1 Synthetic Embedded Features Task

To test a neural classifiers ability to detect features embedded in a
sensory input stream we use a synthetic embedded feature task. The
same task with the same parameters as used in (Giitig, 2016). It con-
sists of a set of different short spike patterns, features, inserted, with
random counts and times, into patterns of background noise. Only
one of those features will be used as the target, the others will serve
as distractors.

We generate spike pattern for a neuron with Nsynapses = 500 af-
ferents. First Nieture = 10 features with a length of Tietyre = 50ms
and average spike rate of r = 5Hz per afferent are generated. This
is achieved by drawing for each synapse first from a Poisson distri-
bution the number of spikes and then the corresponding spike times
from a uniform distribution. Background noise of length Tp,gise = 2.5s
is generated using the same output rate and statistics.

To embed features into the background noise a feature count with
average Mieature = O 15 drawn from a Poisson distribution for each
feature. Corresponding feature times are drawn from a uniform dis-
tribution. Features are not allowed to overlap. To avoid this the inser-
tion process iterates through the sorted feature times and after each
insertion the following feature times are shifted by the feature length

Tfeature .

24

METHODS

By generating new background noise, feature counts and feature
times new patterns can be generated that contain the 10 features in
different amounts, positions and in different background noise. On
average a resulting spike pattern will have the length of Tipa =
Thoise + Mfeature * Tfeature = 98-

Using these patterns together with the count of one of the features
as a target spike count we can study how well a neural classifier is
able to learn and detect this target feature.

2.5.1.1 Noisy Embedded Features

To measure generalization performance and noise robustness of dif-
ferent learning rules we also use this synthetic feature task but with
added noise.

For e.g. 25% noise this is implemented through two variables p,; =
0.25 and 7,3y = 1.25Hz. pg, is the probability with which an in-
put spike gets removed from a spike pattern and r,4; gives the per
synapse spike rate that is added as Poisson distributed noise. These
parameters are balanced such that the average input spike rate per
synapse of r = 5Hz is kept (r = (1 — pger)” + ra44)- The target fea-
tures embedded in these noisy spike patterns are all different but still
instances of the same template feature.

2.5 FEATURE DETECTION TASKS

2.5.2 Phoneme Detection Task

For the phoneme recognition task in chapter 5.2 we use the DARPA
TIMIT Acoustic-Phonetic Continuous Speech Corpus (TIMIT) (Garo-
folo et al., 1993). TIMIT stands for the joint effort of the Massachusetts
Institute of Technology (MIT), Stanford Research Institute (SRI), and
Texas Instruments (TI). It contains 6300 sentences spoken by 630 speak-
ers with 10 sentences each. The speakers are 70% male and 30% fe-
male and come from 8 different major dialect regions of the United
States. Sentences were designed and selected to be phonetically di-
verse and to contain a rich set of phone pairs.

Every sentence comes as a 16-bit, 16kHz wave file and orthographic
transcription of the spoken sentence as well as phone boundary
aligned segmentation into words and individual phonemes. The an-
notation on the phoneme level was done manually. Due to it being
one of the few carefully annotated speech corpora it has become a
wildly used dataset for comparison of phone recognition techniques
(Lopes and Perdigao, 2011).

The TIMIT transcriptions use a phonetic alphabet called the ARPA-
BET that consists of the following symbols

e Stops:b,d, g p, t, k dx, q

* Affricates: jh, ch

e Fricatives: s, sh, z, zh, f, th, v, dh

¢ Nasals: m, n, ng, em, en, eng, nx

¢ Semivowels and Glides: 1, r, w, y, hh, hv, el

* Vowels: iy, ih, eh, ey, ae, aa, aw, ay, ah, ao, oy, ow, uh, uw, ux, er,
ax, ix, axr, ax-h

For example usage of each symbol see the tables in the appendix.

TIMIT comes with a suggested split into training and test data. The
core test data set consists of 24 speakers, two male one female from
every dialect region. Since 2 sentences per speaker are always the
same they are not included in the suggested test and training data
sets. This results in a final number of 192 test sentences in the core
test set and 3696 sentences in the training set. We will be using these
suggested test and training sentences in our phoneme recognition
task.

25

26 METHODS

AlEH i

h# k ae | s Jiyixm y kels bcI w n z entclt iyth ﬁ tclt r o ' ng h

0.0 0.5 1.0 15 2.0

Figure 2.4: (a) Example sentence from the TIMIT test dataset. Borders between individual words

have been added. Note how the word ’calcium’ and 'makes’ overlap. The phone 'm’
only appears once and is part of both words. By just looking at the spectrogram it is
not obvious how it can be easily segmented into words.
(b) The same example sentence with phone segmentation instead of words. The phones
are described by the ARPABET used in the TIMIT dataset ("h#" denotes beginning and
end of a sentence). As can be seen the transitions between different phones are smooth
and often do not have obvious borders. This means the appearance of many phones in
the spectrogram can vary depending on the phone context.

2.6 PHONEME RECOGNITION TEST EVALUATION

2.6 PHONEME RECOGNITION TEST EVALUATION

A common way to discuss the performance of classifiers is to count
the amount of true and false positives as well as true and false neg-
atives. These values can be used to calculate derived descriptors like
the hit rate (or recall), false positive rate and precision

true positives

hit rate = — - (2.50)
true positives + false negatives
.. true positives
precision = — — (2.51)
true positives + false positives
. false positives
false positive rate = P (2.52)

false positives + true negatives

The hit rate describes what fraction of relevant targets have been
detected. Precision gives us how many of the detected targets are
actually relevant and the false positive rate how many non targets
were wrongly classified as targets.

These three measures capture different aspects of the classifiers per-
formance and are usually not discussed in isolation. Instead typically
the value of one measure is compared for a fixed level of another
measure or combined into a single new measure.

2.6.1 Proficiency

A disadvantage of these measures is that they are affected by the rel-
ative fractions of target and non-target classes. Different phonemes
have wildly different average rates to appear in a TIMIT sentence,
from ~ 0.03 for the phoneme "ENG’ to ~ 2 per sentence for 'IX". Com-
paring hit- and false positive rates across phonemes is not directly
possible since the average target feature rate as well as the amount of
null-patterns influence what the classifier prioritizes. If there are 50%
null-patterns it is easier to not fire for all of them instead of learn-
ing to elicit the correct output spike count for the other 50% of the
patterns that contain targets.

Instead of the rates described before we use a different measure
based on information entropy. The proficiency, also called uncertainty
coefficient or Theil’s U (Press, 2007; Theil, 1970) determines the de-
gree of association between two variables. In this case the discrete
variables are the true sequence of target and non-targets for a given
phone X and the output sequence generated by the classifier Y. The

27

28

METHODS

uncertainty coefficient then answers the question: what fraction of
information about X does Y predict?

To calculate the proficiency we need the entropy H(X), conditional
entropy H(Y|X) and mutual information I(X;Y') as defined by (Shan-
non and Weaver, 1998).

H(X) = —) _P(x;)log, P(x;) (2.53)
i=1
H(X|Y) = —) log P .
(X]Y) xegeyp(x y)log p(x) (2.54)

ZZny1g< ’5() y<)> (2.55)

yeY xeX

Where p(x) are the distributions and p(x,y) the joint distributions of
XandY.

Putting this together gives us the proficiency as the normalized
mutual information.

H(X) - H(X]Y) I(X;Y)
H(X) ~ H(X)

Uix,y)= (2.56)

It tells us what fraction of bits of X can Y predict.

To calculate the proficiency for a phoneme classifier we have to
calculate the the distributions p(x) and the joint distributions p(x,y)
of X and Y. For this we take the correct sequence of phonemes in a
sentences and convert it into a binary sequence of targets and non-
targets for each phoneme. We treat each phoneme that is not the tar-
get as an individual non-target in the binary sequence. If we would
merge them into one big non-target that separates targets the result
would be skewed due to multiple erroneous output spikes inside of
this block only being treated as one error. This binary target sequence
is X.

To construct Y we start with a sequence of non-targets with the
same length as the correct one and use the output spike times of the
neural classifier to mark entries in this sequence as targets.

By counting the targets and non-targets in both sequences and de-
termining the agreement between both correct and classifier output
sequence the distributions p(x), p(y) and p(x,y) are determined.

2.7 PARAMETER OPTIMIZATION

2.7 PARAMETER OPTIMIZATION

For parameter optimization we employ a coordinate descent opti-
mization algorithm (Wright, 2015). It iterates through each dimension
and optimizes it independent of the others. The optimization of each
dimension is done with the Brent optimization (Brent, 1971; Dekker,
1969) function from the NumPy Python package (Jones, Oliphant, Pe-
terson, et al., 2001). After roughly bracketing the minima with a line-
search it uses the bisection, secant and inverse quadratic interpolation
methods to iteratively refine its guess for the minima position.

As an initial step size we supply a factor of three over the current
parameter value and limit the amount of steps after minimum brack-
eting to three. After the final guess the current optimal value is used
and optimization switches to the next parameter/dimension. Opti-
mization stops if no improvement was made after a full iteration over
all parameters.

29

LEARNING FROM SEGMENTED INPUT PATTERNS

In both the synthetic feature and phoneme detection tasks the train-
ing and test data provide access to the times of feature appearance
in the input patterns. The aggregate label learning rule of the multi-
spike tempotron is specifically developed under the assumption that
this knowledge about feature times is not typically available to a
learning neuron. To quantify the price of using aggregate labels in-
stead of the timing information about target features we require a
learning rule capable of incorporating this additional information.

Here we adapt an existing learning rule to the requirements of the
feature detection task to use it as a comparison for the multi-spike
tempotron and the margin learning rule.

3.1 LIMITATIONS OF EXISTING LEARNING RULES

In previous research (Florian, 2012; Memmesheimer et al., 2014; Ponu-
lak and Kasiriski, 2010) Perceptron like synaptic learning rules have
been presented that can train a neuron using a given sequence of out-
put spikes. Their goal is to study how neurons are able to generate
precisely timed output spike sequences while we only require output
spikes to be generated inside target feature appearance windows and
not at specific time points.

We will concentrate on the learning rule proposed by
Memmesheimer et al., 2014 discuss its shortcoming in regards to our
application and propose a new learning rule based on similar con-
cepts. Their learning rule is used to study feedforward networks and
their capacity to generate desired spike sequences. The general con-
cept is that when given a sequence of desired output spike times
[t}...t7] with a given tolerance window [t} — €/2,t} + €/2] of width
€ the algorithm determines the first error in the current output spike
sequence and applies weight potentiation or depression based on the
error type. Learning from the first error ensures that learning steps
are not based on erroneous output spike times that occurred earlier in

31

32

LEARNING FROM SEGMENTED INPUT PATTERNS

the spike output sequence. Weights are modified by a simple update
rule

Aw; = £y Z K(terr — t{) (3.1)

t<terr

with 7 a learning rate, ¢, the input spike times for synapse i and terr
the time of the error. If the error is an undesired spike t is set to the
exact time of this spike. In case of a missed output spike in the target
spike tolerance window t. is set to the end of this time window.

With this finite precision learning rule one is able to study neuron
capacity and the generation of precise output spike trains but when
applied to the task of embedded feature detection the following limi-
tations become clear.

e Weight potentiation is fixed to the end of the target output
spike tolerance window. The optimal output spike position for
a phoneme is unlikely to lie exactly on the end of the segment
and most likely varies with different phonemes and phoneme
contexts.

¢ Weight depression happens at the time of erroneous output
spikes. Giitig and Haim Sompolinsky, 2006 suggest to use a
gradient at the time of the unthresholded voltage maximum to
reduce the distance between threshold and maximum instead.

¢ The learning rule uses an imprecise gradient approximation
and ignores contributions of previous output spikes.

3.2 A NOVEL LEARNING RULE FOR SEGMENTED TRAINING DATA

Faced with the previously mentioned limitations we adapted the
learning algorithm to allow for training with target feature segments
of arbitrary length.

To address these issues we kept the general concept of the learning
rule the same but changed how weight potentiation and depression
are done. Instead of a sequence of desired output spike times we
now have a sequence of target features [[t,t}], ..., [t?,"]] in which
times [t}, t¥] describe the interval in which one output spike should
be generated.

Learning is always done on the first (in time) occurring error in
the output spike sequence. This ensures that every learning step min-
imizes the impact on previous already correct parts of the output se-
quence. Figure 3.1 shows the learning rule applied to a single training

3.2 A NOVEL LEARNING RULE FOR SEGMENTED TRAINING DATA 33

=
1

o Voltage (V)
o

o
o

0.2 0.4 0.6 0.8 1.0
Time (s)

[}
1

o Voltage (V)
o

o©
o

0.2 0.4 0.6 0.8 1.0
Time (s)

=
1

o

n Voltage (V)

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

o Voltage (V)

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

[}
1

o Voltage (V)
o

o°
o

0.2 0.4 0.6 0.8 1.0
Time (s)

Figure 3.1: From (a) to (e) show the progression of the segmented learning algorithm. Learning
always corrects the earliest error the neuron generates. In (a) an output spike should
be generated in the first gray marked segment but is missing. Hence from (a) to (b)
repeated LTP learning steps are applied to generate an additional output spike at the
center of the target segment (the exact position inside the segment at which the LTP
gradient is calculated can be chosen as a parameter and optimized for each task). In
(b) two erroneous output spikes are generated between the first and second target
segment. LTD learning steps are applied. Now in (c) an output spike corresponding to
the second target segment is missing and is as in (a) learned by LTP steps calculated at
the center of the interval. Lastly in (d) there are again erroneous output spikes which
are de-learned by LTD steps.

pattern and illustrates the concept and working of the new learning
algorithm.

In case of an error that consist of a missing output spike it is unclear
where in the target feature interval [t},)| a new output spike should
be generated. Memmesheimer et al., 2014 fixed t., to the end of their

Generalization Error

34 LEARNING FROM SEGMENTED INPUT PATTERNS

1.0 A
= tempotron learning
segmented learning
0.5
00 LRI | T T T T T ooy T T T T Trr]
10! 102 103

Training Patterns

Figure 3.2: Embedded feature task generalization performance for multi-spike tempotron (blue)

and segmented learning (green). The learning step sizes # have been optimized for
best generalization performance and the generalization error is measured with a test
set of patterns separate from the training pool. The momentum for the tempotron was
set to = 0.99 and training for both learning rules was allowed to last 500 cycles. The
trainings error for both learning rules reached zero before reaching this limit. General-
ization performance was measured on a test set unused during training.

Access to feature appearance interval information during training allows the seg-
mented learning rule to achieve a low generalization error even when only a very
small amount of training patterns are available. The aggregate-label based multi-spike
tempotron learning rule does not have access to this timing information and is unable
to reach a low generalization error when the training pool size is small: while it learns
to elicit the correct amount of output spikes for all training patterns it doesn’t necessar-
ily learn to fire for the target feature.

Even though the segmented learning rule is forced to fire inside the target feature for
all training patterns when the amount of training data is too small (N < 100) it starts
to mis-classify some of the test patterns. The training data doesn’t contain enough
background noise to minimize the effects of background noise in the test pattern.

tolerance window but doing the same, fixing it to the end of the target
feature interval t}, is artificially limiting the applicability especially
when the target feature interval is longer than 7; and T,,. With the
average length of phonemes varying wildly (in the TIMIT dataset:
17.5ms for "B’ to 163.0ms for "AW’) learning could happen at a time
point in the phone that is not representative or unique to it.

Using the spike-threshold-surface and selecting a ¢ for LTP gradi-
ent learning for which its corresponding t; lies inside the target in-
terval would be an approach following the concept of the tempotron
and multi-spike tempotron. Similarly for the LTD step one can uti-
lize the spike-threshold-surface to directly target the @] responsible
for the erroneous output spike. Effectively this would implement a
multi-spike tempotron learning rule limited to only operate inside
a given time interval that is embedded inside a larger input spike

3.2 A NOVEL LEARNING RULE FOR SEGMENTED TRAINING DATA

pattern. This spike-threshold-surface based segmented learning rule
requires the calculation of many 9, t; pairs to search for the appro-
priate critical thresholds - which might not even exist if the voltage
inside the target segment stays below the resting potential. The com-
putational complexity of this spike-threshold-surface based learning
rule is prohibitive to its use in its current state and instead we chose
to follow a simpler approach instead.

We introduce an additional parameter a € [0,1] that allows tey to
be positioned relative to the beginning and end of the target interval
[t3, £2]-

This additional parameter can now be tuned for optimal placement
of terr inside the target feature.

Based on this error time an LTP step based on the voltage gradient
V'V (terr) will be used to change the synaptic weights. See Figure 3.3
a+b.

AD = 7V 5V (ferr) (3-3)
Where 7 is the learning step size parameter.

In case of a wrongly elicited output spike, a spike outside a target
interval or too many output spikes inside of it, we execute an LTD
learning step towards de-learning the erroneous spike.

We follow Giitig and Haim Sompolinsky, 2006 to do such an
LTD step and first shunt all synaptic inputs after the erroneous
output spike ter and then calculate the voltage gradient at the un-
thresholded voltage maximum fmax. Figure 3.3 c+d illustrate the pro-
cess. The resulting LTD weight update can be written as

AW = _Uﬁzﬁvshunted (tmax) (34)

Where both Viunteqa and tmax are based on the time of feyy.

Lastly we need to calculate the gradient. While all three previ-
ously mentioned papers, the binary tempotron (Giitig and Haim
Sompolinsky, 2006), the multi-spike tempotron (Giitig, 2016) and
Memmesheimer et al., 2014 use the same basic neuron model none of
their gradients are directly transferable. The binary tempotron does
not take into account multiple output spikes and voltage reset, the
multi-spike tempotron calculates the gradient for borders in the spike-
threshold-surface (see section 2.4), and lastly Memmesheimer ignores
the contributions of previously voltage resets to the voltage gradient.
In the next section we derive an analytical solution for the needed gra-
dient, following the gradient calculation of the multi-spike tempotron

35

36

LEARNING FROM SEGMENTED INPUT PATTERNS

Giitig, 2016, which is also described in section 2.4, and validate its so-
lution by comparing it to numerical differentiation (figure 3.4).

As mentioned in the introduction of this chapter this learning
method can be used as a basis of comparison and to quantify the price
of using aggregate labels as a teaching signal. Figure 3.2 shows the
generalization performance of both the multi-spike tempotron learn-
ing rule and the here introduced learning rule that takes advantage of
feature presence interval information. The parameters for both learn-
ing rules have been optimized for best generalization performance.
Even for very small training pool sizes the segmented learning al-
gorithm is able to learn the target feature and generalize to unseen
test data. Without access to target feature timing information the tem-
potron learning rule needs an order of magnitude more training pat-
terns to reliably detect the target feature in the test pattern.

3.3 VOLTAGE GRADIENT

The gradient calculation follows the approach described by Giitig,
2016 which can also be found here in section 2.4. The main difference
is that to calculate the gradient for ¢ this critical threshold value is
dependent on the synaptic efficacies @ while the firing threshold for
the voltage gradient stays fixed at ¢ simplifying the calculation of
required derivatives.

As previously described in the section about the multi-spike tem-
potron the voltage dynamics of the neuron model are described by
the following equation:

V(t) = iwi Y K(t— t{) —8) ei(;té) (3.5)
i=1

= th<t H<t

With a postsynaptic potential kernel K given by

—(t-t)) —(t—t})

K(t_t{)zvnorm(e woo—e s) VtZt; (3.6)

To build the gradient of the voltage V at time #' we need to calculate
the derivative with respect to each synapse weight w;. The reset term
of our neuron model makes the voltage dependent on all previously
generated output spikes tg. Hence the derivative V/ needs to take all
contributions of previous input spikes into account.

I i /

= . t, (3-8)
aw,- i até dwi

3.3 VOLTAGE GRADIENT 37

a 1- — — — b 1 - I
> S
& & /VM
o o
8 8
> £ t
S0 A 2
I I I I I 1 0 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 0.6 0.7 0.8
Time (s) Time (s)
C - d
1 "
—_ —_ "-I.~\
S S
) (U] S ‘\
g0 J S
I 1 1 1 1 1 I T
0.0 0.5 1.0 1.5 2.0 2.5 1.838 1.840
Time (s) Time (s)

Figure 3.3: (a)+(b) Visualization of the LTP step in the segmented learning algorithm. To move

towards weights that generate an additional output spike in the first grey marked
interval we calculate the gradient for the voltage at a given t' inside the target segment
(here t' is chosen to be at the center of the segment &« = 0.5). The resulting kernel is
illustrated in blue.

(c)+(d) LTD steps are used to remove erroneous output spikes. This is done by first
calculating the exact time point of the shunted voltage maximum after the erroneous
output spike. (d) shows the original voltage trace in black, the output spike as the
thick vertical black line and the shunted (all input spike contributions after the output
spike are ignored) in dashed green. The resulting time ¢ is used to calculate the voltage
gradient based on the shunted spike inputs. The learning kernel is illustrated in blue.
The smaller local maximum in the kernel is contributed by the output spike shortly
before the one that is targeted.

To calculate the missing ﬁté we take a look at the voltage derivative
at times of output spike generation:

Vkel.m

d ky_ O k £ 0 ok d
V) = 5V + L V()

t] .

By definition of our neuron model an output spike is generated when
the voltage reaches the threshold ¢. Accordingly a change in w; may

38 LEARNING FROM SEGMENTED INPUT PATTERNS

— d9/dw
— dV(t')/dw

1074

max(|dWpym — dwan|)
=
o
&

10_8 Trrr T T TTrrr 1 1 7 T TTrrr 1 1 7 T UL LB B T 1
1074 1073 107° 1077 10-8
precision of numercial differentiation (A)

Figure 3.4: To validate the analytical derivation of the gradient we calculated the maximum dif-
ference between the analytical and a numerical difference quotient solutions dw vector.
With increasing precision of the numeric A the maximum difference between the two
methods converges. At a precision of about 10~/ the numerical solution starts to dep-
recate due to loss of significant digits during the subtraction of two very similar values
and the subsequent division by the smaller and smaller A (due to limits of the double
precision floating point calculations used). Blue shows the analysis for the multi-spike
tempotron V8" gradient and green for the segmented learning LTP gradient.

influence the time of #, but V(té) will always equal ¢. The derivative
therefore will be zero at all times.

_od ok
0= din(ts) (3.10)
9 i 9 e d g9 o d g
— ain(ts) - ; a—té.V(ts)d—t + Wv(t)d—t
(3.11)
d go_ 1 O ok N0 d
te= 35— | —5- V() —) V() (3-12)
dwl a%v(tlg) (ow; g ot] dw; °

Reusing the notation introduced in the the ¢#* gradient calculation of
the multi-spike tempotron we can rewrite this recursive equation as

i, 1
—t; = —=——B 1

with B defined as

ts) (3-14)

As a last step we need to explicitly build the three missing partial
derivatives of equation 3.5 at time ¢, used by Vi’ and diwl_t’;. With t,
being a placeholder for all output spike times t} and ' at which we
calculate the gradient V'.

d j
5w,V (tx) = 2 Kt —1) (3.15)

t] <ty

3.3 VOLTAGE GRADIENT

d % —tx—th
Vtk t 7Vt = - Tm .
s < tx oiF (tx) s (3.16)
) N 1) 1 -
D) = Yo ¥ Vi~ 5 L)
x i=1 j Ts
H<ty
s i (3.17)
+ e Z e Tm :

With these explicit partial derivatives all recursive definitions can now
be implemented in a computer simulation framework.

We use a mix of python and C code to achieve good usability and
fast simulation execution for the multi-spike tempotron as well as the
new learning rule introduced here.

39

TEMPOTRON LEARNING WITH MARGIN

So far the typical approach to increase robustness of spiking neuron
models is to apply different types of noise during training. Three
different approaches are apparent: removal and addition of random
spikes from and into the input pattern (Giitig, 2016), jitter applied
to the input spike times (Giitig, 2016; Giitig and Haim Sompolinsky,
2006) and noise on the firing threshold position (R. Rubin, L. F. Ab-
bott, and H. Sompolinsky, 2017). These previous works demonstrate
that continuously training with noisy patterns allows for robust neu-
ral selectivity.

But adding noise during training has the disadvantage of requir-
ing careful choice of parameters: How to add the noise? What type
of noise distribution should be used? How much noise is required?
Moreover the presence of noise interferes with the learning of the
task leading to slower learning. It is expected that a learning algo-
rithm that increases robustness by directly operating with a gradient
would be faster. Similar to the tempotron learning rules (Giitig, 2016;
Giitig and Haim Sompolinsky, 2006) being dramatically faster than
stochastic reinforcement learning schemes e.g. Seung, 2003.

The theory of support vector machines and the concept of maxi-
mum margin classifiers was an important breakthrough in machine
learning. It allows the construction of highly robust classifiers with
high generalization performance through mapping the input into a
high dimensional feature space and maximizing the margin there. So
far it was unclear how a meaningful margin can be defined and im-
plemented for spiking neurons.

The concept of a margin can be naively transferred to a binary neu-
ral classifier by using the distance between firing threshold and volt-
age maximum - but when the neuron elicits multiple output spikes
this definition loses all meaning as the voltage maximum is, by defini-
tion of the neuron model, at the firing threshold. If we disregard some
area around each output spike and use the distance between volt-
age maximum outside this areas and the firing threshold this would
give us a measure, albeit with a complex definition and imprecise, for
how far away the neuron might be from eliciting an additional output
spike. But how far away the neuron is from losing one output spike
is not captured in this definition and would probably need an even

41

42 TEMPOTRON LEARNING WITH MARGIN

o
=
|
(=
(o))
1

93

Voltage (V)
Spikes
w

0.0 0.2 0.4 0.6 0.8 1.0 0.8 1.0 1.2
Time (s) Threshold (9)

0
o

margin
5 1 _lg_l
93

64
1

margin
O 1 T T T T T T 0 T T
0.0 0.2 0.4 0.6 0.8 1.0 0.8 1.0 1.2

Time (s) Threshold (9)

Voltage (V)
Spikes
w

Figure 4.1: (a) For the current input our neural classifier elicits three output spikes. One at each
target feature embedded in the input spike pattern (gray areas).
(b) In the corresponding spike-threshold-surface we can see that ¢} is close to the fir-
ing threshold. Already little amounts of noise in the input pattern could result in this
additional 4th spike to be elicited. Our intuition is that if we use learning steps along
the gradients —6@19,’; 41 and @wﬂj{‘ (green arrows) we can move ¢; and 93 further away
from the firing threshold and increase the robustness of the neural classifier.
(c) Voltage trace after applying a series of these gradient learning steps with corre-
sponding spike-threshold-surface shown in panel (d). Note how the sub-threshold volt-
age maxima are pushed away from the firing threshold.
(d) By using the spike-threshold-surface we define margins for a spiking neural clas-
sifier as the distances between the firing threshold ¢ and the neighboring threshold
values ¢/ ; and ¢; for a desired output spike count k.

more complex workaround by looking at the un-thresholded voltage
trace. Also it remains unclear how one would use these definitions
for a learning rule to increase the margins during training.

4.1 MARGIN IN THE SPIKE-THRESHOLD-SURFACE

Instead of trying to develop a margin description in the voltage over
time representation we use a different approach that builds on the
foundation of the multi-spike tempotron (Giitig, 2016) and use it to
introduce a margin definition for spiking neurons and accompanying
gradient based learning rules.

Figure 4.1 illustrates the concept on a single input pattern. By us-
ing the spike-threshold-surface, introduced in Giitig, 2016 and also

4.1 MARGIN IN THE SPIKE-THRESHOLD-SURFACE

described here in section 2.4 we define margins as the distances be-
tween the firing threshold ¢ and the neighboring threshold values
0y, and 9 for a desired output spike count k. We define the mini-
mal margin for k output spikes as

ke = min(¢ — &, 1, % — 0) (4.1)

When x; is positive the neuron currently elicits the desired out-
put spike count k and its magnitude describes the shortest distance
to a neighboring threshold value in the spike-threshold-surface - the
amount of change required, in input pattern spikes or synaptic effica-
cies, to change the current output spike count. If x; is negative the cur-
rent output spike count does not equal k and multi-spike tempotron
learning steps should be applied. The multi-spike tempotron learning
rule can be described as a process to get k to be positive for all training
patterns at their respective desired output spike counts. Multi-spike
tempotron learning stops the moment all trainings patterns make the
neuron elicit the corresponding requested spike counts. To increase
the margins we need to continue learning even when « is already
positive.

As illustrated in figure 4.1 we can use the same learning steps op-
erating on the spike-threshold-surface as the multi-spike tempotron.
Instead of moving the threshold values towards and over the firing
threshold, we move the threshold values on both sides of the firing
threshold further away to increase their margins. For the learning rule
we introduce an additional parameter «ir.in to control when increas-
ing x; should stop.

We propose the following learning rule:

1. If the current input pattern does not generate the desired
amount of output spikes the normal multi-spike tempotron
learning rule is used.

2. When the neuron classifies the current spike pattern correctly
we switch to margin learning:

a) If the current pattern has a label of zero and ¢ — 9, ; <
Kirain an LTD step is used to move d;_ ; further away from
the threshold.

b) If the pattern has a non-zero label and the margin towards
¢ is smaller than the margin to 9/ ; and xx < Kirain We

43

44 TEMPOTRON LEARNING WITH MARGIN

change the neurons synaptic efficacies with an LTP step to
move & further away.

AW = ﬂmarginﬁﬁ’;ﬂ;: (43)

c) Otherwise if the pattern has a non-zero label and the mar-
gin towards 0 ; is smaller and x; < Kiain we apply an
LTD learning step instead.

AW = _Wmarginﬁu”;ﬂ]:rl (44)

The gradient Vz0* is the same as used for the multi-spike tem-
potron as described in section 2.4. f/margin iS a learning step size sepa-
rate from the tempotron learning step size r7 and allows us to control
how strong learning of the margin is in comparison to normal tem-
potron learning.

The definition 4.1 of x uses both ¢ “ and ¢;. However, if the cur-
rent spike has a label and output of k = 0 spikes, only ¢}, is mean-
ingful. For now we will define the margin x for null-patterns as the
distance between the threshold ¢ and 9. Accordingly, on null pat-
terns we do LTD margin learn steps. In contrast to patterns with a la-
bel above zero, margin learning for null-patterns does not have both
LTP and LTD efficacy updates which introduces a dependence on the
statistics of the trainings data and might be a potential problem that
requires further research.

The intuition behind the LTP and LTD steps is the following: by in-
creasing ¢ we reinforce the synapses leading to the currently weak-
est output spike. The LTD step on the other hand weakens synapses
that might lead to additional erroneous output spikes and as such
weakens contributions from background noise or non-target features.

4.2 COMPARISON WITH STOCHASTIC MARGIN LEARNING

In this section we demonstrate that this gradient based margin learn-
ing rule is able to quickly and reliably increase the margins by com-
paring it to a stochastic learning rule based on firing threshold noise
that also increases margins.

We chose a model with noise on the firing threshold for compari-
son since it allows us to use identical input patterns for both learning
algorithms which would not be the case if we used a model with
stochastic removal and addition of input spikes before training pat-
tern presentation. From the perspective of the spike-threshold-surface

4.2 COMPARISON WITH STOCHASTIC MARGIN LEARNING 45

a 1.0 - b

103 4
] .. — tempotron
s margin 0.10
o - " o ==== margin unlimited
2 *, < 107 3 noisy threshold 0.10
v '\ *, Rl noisy threshold 0.27
£ 051 teerts 2 — - noisy threshold 0.35
= NS] noisy threshold 0.
‘© ',__./ -g 10! 5 j ==== noisy threshold 0.40
F [=]
10° -
0.0 \u - *

——y
104 103 1072
n n

Figure 4.2: (a) Training error for different learn step sizes 7. # = 0.002154, thin vertical line, was
chosen for the following simulations as it minimizes the average training error reached
within 1000 training cycles for the noisy threshold learning rule.

(b) Average number of training cycles required to reach zero training error.

both the margin and the stochastic learning rule do the same learn-
ing steps to increase the margin Both increase the margins by moving
0y, and 9} further away from the threshold. We expect that the noise
on the threshold interferes with the learning of the task. The stronger
the noise on the threshold the higher the probability that a learning
step is moving a critical threshold in the wrong direction. This should
lead to reduced convergence speed and issues when the noise is too
strong. By setting «iain to different values for both margin learning
algorithms we study their dependence on this parameter.

Noise on the firing threshold before pattern presentation was im-
plemented by drawing a new firing threshold from a uniform distri-
bution in the interval [& — Kiain, @ + Kirain]. With Kirain being the re-
quested minimal margin. This simple stochastic learning rule is not
limited to the multi-spike tempotron as it does not use the spike-
threshold-surface to determine the current margin or the next learn-
ing step. For instance R. Rubin, L. E. Abbott, and H. Sompolinsky,
2017 used a similar approach by drawing noise for the perceptron
decision surface from a Gaussian distribution.

To compare the two methods for learning margins we use the syn-
thetic embedded feature task and neuron parameters as described in
section 2.5.1. The training pool consists of N = 1000 patterns gener-
ated without noise. In each learning cycle every pattern is presented
once. All simulations are run for 100 different random seeds. To al-
low for comparability between convergence times of the two learning
methods we set the momentum parameter to zero y = 0.0.

46

TEMPOTRON LEARNING WITH MARGIN

First we determined the optimal learning step size 7 for the noisy
threshold algorithm with respect to the lowest training error reached
within 1000 training cycles. The resulting parameter 7 = 0.002154 was
then used for tempotron, stochastic margin and margin learning rules
to track how the training error, the amount of misclassified training
patterns, and the critical threshold positions 9} ; and d; change over
training time. #margin for the margin learning rule was set to the same
value as 7 for the tempotron correction learn steps.

Figure 4.3 shows the results for both margin learning methods
trained for different «iain. Initially we set kyain = 0.1 for both algo-
rithms to compare them at a value of xin that both are able to reach.
For the margin learning rule we can set kiin to infinity without it
preventing the learning rule from solving the task. x increases until it
saturates at a maximum value for each training pattern. We measured
the mean maximum margin for this task at around & = 0.27. We used
this value as Kirain for the stochastic margin algorithm as well as val-
ues above it (Kiain = 0.35, Kirain = 0.40) to demonstrate the limits of
the stochastic learning rule.

As expected the stochastic margin learning algorithm requires
more training cycles to reach a zero tempotron error when &irin is
increased. Doing the same using the gradient based margin learning
method does not negatively affect the mean amount of training cy-
cles needed. Since every margin training step is designed to directly
operate on the plateau in the spike-threshold-surface it requires less
training cycles to reach the target margin. When setting «iain to in-
finity the learning rule increases the margin until it saturates with
out negatively affecting the convergence time. But if the margin pa-
rameter for the stochastic algorithm is set too high its performance
starts to degrade, it becomes orders of magnitudes slower and not all
simulation runs converge to a solution within the maximal number
of training cycles. To achieve a maximal margin with the stochastic
learning algorithm the margin parameter needs to be carefully tuned
since a too small parameter wastes potential and a too high param-
eter increases training time and the risk for unconverged simulation
runs.

4.3 NOISE ROBUSTNESS

The mean x value across all training patterns is not a good indica-
tor for the robustness of the classifier. In maximal margin classifiers
the optimal hyperplane is defined by the margins to the nearest data
points in the training vectors. Similarly the smallest x across all train-
ing patterns is a better indicator for the robustness of the neural classi-

4.3 NOISE ROBUSTNESS

fier. In figure 4.3 panel (c) it can be seen that the mean x for tempotron
learning without margin is relatively high (> 0.1) but individual pat-
terns have a «x close to the firing threshold (< 0.01) while the margin
learning rules are able to increase « for all training patterns above 0.1.

To study how noise robustness and generalization performance of
the tempotron with and without margin learning is impacted by the
amount of available training data we measured the performance with
different training pool sizes. Simulations were allowed to run until
the trainings error reached zero and the average margin width, the
distance between ¥ 1 and 97, saturated (< 1% increase in the last
250 training cycles). Tempotron learn step size was set to 7 = 1le—05,
momentum is set to x = 0.99, no noise was applied during training
and test pool generation. We used three different learning step sizes
for margin learning #margin = 1€—06, #fmargin = 5¢—06 and margin =
25e—06. Results are shown in figures 4.4, 4.5 and 4.6.

The minimum margin for both sides, ¢/, and 9}, of the multi-
spike tempotron, are very close to the threshold (figure 4.4 (b)). Al-
ready minimal threshold noise or additions and removal of input
spikes can lead to misclassification of training patterns. This can be
seen in figure 4.5 (a), it shows the classification error on training pat-
terns under 5 and 10% spike noise (random addition and removal
of input spikes). Margin learning increases the observable margins
around the threshold of training patterns which leads to drastically
improved noise robustness of the resulting solutions. Generalization
performance is only slightly improved, see figure 4.5 (b).

These results show that this margin learning rule stabilizes the
found solution regardless of its ability to detect the target feature
correctly.

47

48 TEMPOTRON LEARNING WITH MARGIN

tempotron
— margin 0.10
margin unlimited
- noisy threshold 0.10
noisy threshold 0.27
I noisy threshold 0.35
— [l noisy threshold 0.40

FIy

T I UL | T
11 100 1000
Training cycles until solution

= -
N
w -
g
Ul
o)
~
o0
O
=
o

b 0.6 ¢
- 1.4

0.5 -
=
T
2 0.4 d - 1.2
> X
5 2
J‘B’ 0.3 A < —
e - 1.0 %
5, 0.2 - ®
2 —
©
. \‘| - 0.8

S
0.0 LLLLLILRL B UL B BN BENLELELLLALL B - 0.6

T hALL BEELELELRLLL |
-1000 -100 -10 -101 10 100 1000
Training cycles offset from solution cycle

Figure 4.3: (a) Histograms of training cycles needed to reach zero training error for a trainings pool
of 1000 training patterns. The graph is separated into linear- and log-scale distributed
histogram bins. The bins on the right collect runs that did not reach zero training error
during 1000 training cycles (17% for kirain = 0.35 and 39% for Krain = 0.40).

(b) Progression of plateau width (8; — 9/) in the spike-threshold-surface aligned on
convergence time.

(c) Histograms showing the distribution of §; and d;_; at the end of training for all
simulation runs that reached zero training error. Small grey lines indicate «4in.

4.3 NOISE ROBUSTNESS 49

b = tempotron correct
1.2 . ==== tempotron incorrect
L. = Margin n = 1e—6 correct
N ',_:'%.. === margin n=le—6 incorrect
‘% 10 _—""4.'?_.‘,'“\‘ ‘ margin n=5e—6 correct
+ u.|.|.|.|.|.|.‘ ___.Ju--imﬁm ==== Margin n=5e—6 incorrect
@ 0.9 _":“u‘ margin n =25e—6 correct
- margin n = 25e—6 incorrect
0.8 'V_‘/
101 102 10°

Training Patterns

Figure 4.4: Average minimal margin for different training pool sizes. Results are presented split up
based on generalization performance. Dotted lines are averages for simulation runs that
did not learn to detect the target feature. Margin learning results are shown for three
different margin learn step sizes #margin- Since tempotron learning stops as soon as the
correct amount of spikes are elicited for every training pattern the average minimal
margin to both sides is small. A low amount of threshold noise, missing or additional
spikes can already lead to errors in the output spike count.

50 TEMPOTRON LEARNING WITH MARGIN

1.0 1
= tempotron 5% noise
== tempotron 10% noise
"'"'—-‘-~~_\ = margin n=1e—6 5% noise
/’T;ff\\\ \N__--_______ == margin n=1e—6 10% noise
Psig N = margin n=5e—6 5% noise

o
w
]
)Y
\
K/

== margin n=5e—6 10% noise
margin n=25e—6 5% noise
margin n=25e—6 10% noise

Error on training pool with noise?

o
o
1

10! 102 103
Training Patterns

=3
=
o
1

tempotron
margin n=1e—6
margin n=5e—6
margin n=25e—6

|
1]

Generalization error
o
(6]
1

0.0 — —
10! 102 103
Training Patterns

Figure 4.5: (a) Performance measured on the training pool with noise. After training without noise
performance was measured on the same training pool but with noise (addition and re-
moval of spikes). Full lines represent 5% spikes removed and randomly added, dashed
lines are for 10% removal and addition.

(b) Generalization performance measured on a test set of patterns that have not been
used during training.

4.3 NOISE ROBUSTNESS 51

4.0 7
3.5

3.0 :, S

2.5
2.0 A

[lwll2

“' EEEE

1.5 ““
1.0 A o .

0.5 e e

0.0 ———— ——— T .
10! 102 103
Training Patterns

tempotron correct
tempotron incorrect
margin n = 1le—6 correct
margin n = le—6 incorrect
margin n=5e—6 correct
margin n=5e—6 incorrect
margin n = 25e—6 correct
margin n=25e—6 incorrect

Figure 4.6: Euclidean (L2) norm of the synaptic weight vector separated by generalization perfor-

mance.

52

TEMPOTRON LEARNING WITH MARGIN

4.4 WEIGHT DECAY AND RESCALING

The margin definition for a linear support vector machine (see section
2.1.1) is

H (4.5)

It describes the distance between two hyperplanes parallel to the de-
cision surface that are defined by the closest training data points, the
support vectors. To maximize the margin d one has to minimize the
Euclidean norm of the weight vector @ while correctly classifying all
training vectors.

So far the margin learning rule only includes the aspect of maxi-
mizing the margin in the spike-threshold-surface but disregards the
weight vector minimization that comes naturally from the margin def-
inition for support vector machines.

Limiting the total synaptic strength, or norm, (Giitig, 2016; R. Ru-
bin, L. F. Abbott, and H. Sompolinsky, 2017) or introducing a weight
decay (Giitig, 2016), in machine learning often called Tikhonov Reg-
ularization, has been shown to increase robustness and stability of
neural classifiers. Based on these results and the motivation from ma-
chine learning we introduce two methods to combine margin learning
with reduction of the Euclidean norm of the synaptic efficacies. The
first one uses weight decay while the second one, weight rescaling,
operates on the spike-threshold-surface.

Both methods extend the margin learning rule in a similar way.
Only if a margin LTP synaptic update was applied for a pattern with
k output spikes and its 9} is further away from the natural thresh-
old than d; 41, Meaning the center of the k-th plateau in the spike-
threshold-surface is above the firing threshold, a weight decay or
rescaling step is executed.

The weight decay step is defined as an attenuation by factor A
W — AW (4.6)

By only applying weight decay after LTP steps when the center is
above the firing threshold ensures that, if the attenuation is not too
strong, it moves the center of the plateau closer to the threshold and
not away from it.

Weight rescaling directly uses the positions of ¢; and ¢, to cen-
ter the margin plateau on the natural threshold. This is possible since

4.4 WEIGHT DECAY AND RESCALING

multiplying the synaptic weights with a factor « is equivalent to scal-
ing the threshold and its resulting voltage trace.

V() :a<iwiZK(t—t£)—ﬂZegmfé)) (4.7)
i=1

=1 <t
N] *(f*’i{;)
= Z(xwiZK(t—ti)—lxﬁze Tin (4.8)
=1 e th<t

By multiplying the synaptic weights with & we can rescale the spike-
threshold-surface of the current pattern. Based on this we define the
weight rescaling step to center the current margin plateau on the nat-
ural threshold 4.

1 29

W — W =W
O OS50 —0) O, + %

(4.9)

Combining weight decay and rescaling with our margin learning
method gives us the following margin learning rule variants:

¢ Margin: margin learning without weight decay or rescaling.
¢ Margin + decay: margin learning with weight decay.
* Margin + rescaling: margin learning with weight rescaling.

* Margin momentum + decay: margin learning with weight de-
cay where the margin weight updates are included in the tem-
potron momentum heuristic (see section 2.4.4).

Additionally we define a learning rule, margin up with rescaling,
that only relies on LTP steps to increase the margin and uses weight
rescaling to center the plateau of the current output spike count. Its
learning rule is as follows:

1. If the current input pattern does not generate the desired
amount of output spikes the normal multi-spike tempotron
learning rule is used.

2. Only when the neuron classifies the current spike pattern cor-
rectly we switch to margin up learning:

a) If the current pattern has a label of zero and ¢ — ¢; ; <
Kirain an LTD step is used to move &} " further away from

the threshold.

AW = _ﬂmarginﬁwﬁ;:-s-l (4'10)

53

54 TEMPOTRON LEARNING WITH MARGIN

b) If the current pattern has a label above zero and ¢ — ¢ <
Kirain an LTP step is used to move ¢ further away from the
threshold.

AW = Umarginﬁu”)ﬂ]t (4-11)

c) If an LTP step was done and the center of the current
plateau is above the threshold (¢}, ; + ¢;)/2 > ¢ a weight
rescaling step is done.

2¢
ﬂkJrl + l9k

In the next section (4.5) we will optimize the learning parameters
of these margin learning rules and take a look at the noise robustness
and generalization performance. But first we will study the margin
up and rescaling learning rule and apply it to the same task as the
pure margin learning rule in figures 4.4, 4.5 and 4.6. The results are
shown in the following figures 4.7 and 4.8. The margin learning rate
was set to Nmargin = 25 * 107°, the value with the best generaliza-
tion performance for pure margin learning, for both margin learning
rules.

The results show that the margin up with rescaling learning rule
increases the average minimal margin over the multi-spike tempotron
albeit not as strongly as for the pure margin learning. The Euclidean
norm of the synaptic efficacies is also decreased when compared to
tempotron and pure margin learning.

The noise robustness and generalization performance is also in-
creased. When 5% of input spikes are randomly added and removed
from the trainings data set the margin up with rescaling learning rule
is still able to correctly classify all patterns even for very small train-
ings pool sizes (N > 20). Similarly the resulting synaptic efficacies
of the neural classifier are able to correctly classify test patterns that
were not used during training. For N > 20 the neuron successfully
generalized without any errors. This is over an order of magnitude
less training patterns than the pure tempotron or margin learning
rule require to achieve the same low generalization error.

To minimize the impact of background noise in front of and directly
after a feature in an input spike pattern the neurons response should
learn to fire near the end of the feature but also not outside of it. The
multi-spike tempotron learning rule as well as pure margin learning
both have simulation runs in which the neuron learned to elicit spikes
shortly after onset of the feature or directly after offset. Margin up
with rescaling improves this, all runs learned to fire inside the target

4.4 WEIGHT DECAY AND RESCALING 55

a
1.2 —/\
1.1 - e,
¢ 3
D A’#
,. 1.0 Lilsns .:Ell-----------.
+ e
¢ .
D ‘¢‘
094 .
0.8 '/
10? 102 103
Training Patterns
b 4.0
3.5 A
3.0 A
2.5 m ‘0’0’ N
~ * ’.)
§ 2.0 7 0"' 2 .‘.‘.:
ju— .‘0 *, '.
1.5 1 o o
"0 '.
1.0 H ““ :
L LA “‘
0.5 4 —— o ssmaamu®s
0.0 S—
10* 102 103

Training Patterns

tempotron correct

tempotron incorrect

margin correct

margin incorrect

margin up + rescale correct
margin up + rescale incorrect

tempotron correct

tempotron incorrect

margin correct

margin incorrect

margin up + rescale correct
margin up + rescale incorrect

Figure 4.7: (a) Average minimal margin distance for tempotron, margin and margin up with rescal-
ing learning rules. Dashed lines indicate the data points for runs that did not learn to
detect the target feature. Margin up with rescaling only has such runs for 10 training
patterns, its values are marked with "x’.
(b) Euclidean norm of the synaptic efficacies for all three margin learning algorithms.

feature and on average further away from both feature on- and offset
(see figure 4.9).

Error on training pool with noise?

o

Generalization error

56 TEMPOTRON LEARNING WITH MARGIN

1.0 A
=— tempotron 5% noise
== tempotron 10% noise
-'""'-"-~-_\ == margin 5% noise
== margin 10% noise
margin up + rescale 5% noise
0.5 7 margin up + rescale 10% noise
/ <
0.0 + —————— R A EEEA] :
10! 102 103
Training Patterns
1.0 A
— tempotron
m—Margin
margin up + rescale
0.5
0.0 ———rrrry ——
10! 102 103

Training Patterns

Figure 4.8: (a) Robustness to noise added to the training patterns after learning. We again measure

performance under 5% and 10% removal and addition of spikes.
(b) Generalization performance measured on test patterns which have not been used
during training.

4.4 WEIGHT DECAY AND RESCALING 57

HEl tempotron
Il margin
margin up + rescale

. e
—l e——
I I I
0.000 0.025 0.050

Time relative to feature on-set (s)

Figure 4.9: Relative position of output spike times inside the target feature for different learning
rules. Histogram of mean output spike times relative to target feature for each simula-
tion run. Target feature duration is 50ms, on- and off-set of target feature are marked
with thin vertical lines.

58

TEMPOTRON LEARNING WITH MARGIN

4.5 GENERALIZATION PERFORMANCE UNDER OPTIMAL MARGIN
LEARNING PARAMETERS

A crucial part of learning is the ability to generalize from a limited
amount of stimuli to similar, yet not identical, stimuli. The simula-
tions in the previous section use the embedded feature task and in
both, training and test data, the pure feature, together with distractor
features, were embedded in background noise. Every instance of the
feature has the exact same pattern of input spikes. This means the
generalization performance so far measured the ability to detect the
feature and not how well the detector was able to generalize to new
previously unseen feature instances.

To test the generalization performance of our margin learning al-
gorithms to new feature instances we modified the synthetic embed-
ded feature task by randomly removing and adding 25% of the input
spikes (see section 2.5.1). This ensures that the target features embed-
ded in patterns of the training pool and in the test set are all different
but still instances of the same template feature. The generalization
performance now measures how well the neuron generalizes from
the training feature instances to new instances of the template fea-
ture.

Additionally we change how the neuron models efficacies are ini-
tialized before training. To reduce the influence of the initial random
weights we use a different pre-training algorithm based on rescaling
the synaptic efficacies to a 5Hz output rate while keeping a zero stan-
dard deviation of the weights (see section 2.4.5).

To compare the best case scenario for all learning rules we op-
timize the various parameters for each margin learning rule (tem-
potron learn step size, margin learn step size, decay factor) with
respect to a generalization performance score. This score is calcu-
lated as the average generalization error across training pool sizes
of N = 10,20,30,50,100,200 patterns. Each parameter set and pool
size combination is evaluated with 100 different initial seeds. Simula-
tions were limited to maximum of 500 training cycles. Optimizing for
these limited training pool sizes is a trade off as parameter sets that
work well for small pool sizes might not work as well for bigger pool
sizes outside the optimized range (N > 200) and vice versa. Since we
are interested in the generalization performance that can be achieved
for very small pool sizes and optimize for these, the results for larger
pools are shown for completeness but should not be mistaken for
optimal performance at these values of N.

Figure 4.11 (a), (b) and (c) show three optimization runs for the
margin up and rescaling learning rule. We let the algorithm optimize

4.5 GENERALIZATION PERFORMANCE UNDER OPTIMAL MARGIN LEARNING PARAMETERS 59

a 10 b
80
S
5 60 -
e
2
80357 * 40 -
=
Q
e
K] 20 -
0.0 . 4 ————rrr 0
10? 102 103 00 02 04 06 08 1.0
Training Patterns Generalization Error

Figure 4.10: Bimodal distribution of generalization performance.
(a) Generalization error for individual simulations runs at different training pool sizes
for the unmodified multi-spike tempotron learning rule. The vertical gray line indi-
cates where the bi-modal distribution of raw data points shown in (b) is taken from.

learn step size 7, margin learn step size #margin and requested mar-
gin Kirain from three different initial conditions. The lines show the
progression of the currently optimal parameter set while the dots
show explored parameter sets that did not yield a performance im-
provement. The optimization runs resulted in the following parame-
ter pairs. The standard error of the mean was calculated by treating
the average results from one seed across all pool sizes as one score
value and estimating based on this across all seeds.

run n Hmargin ‘ Ktrain ‘ score
1| 2.92e—05 | 11.87e—04 | 0.129 | 0.206 £ 0.019
2 | 3.11e—05 | 8.23e—04 | 0.283 | 0.209 + 0.021
3| 3.67e—05 | 9.39e—04 | 0.452 | 0.213 +£0.018

The raw results in figure 4.11 (a), (b) and (c) together with the end
parameter sets in the table show that while they all reached a similar
performance score their end values for Kiain Varies. kirain Needs to be
above ~ 0.1 to reach a close to optimal generalization performance
score but higher values of «yain have a small detrimental effect. For
all following simulations we will set Kin to infinity to simplify the
parameter optimizations.

Optimizing tempotron step size 77, margin step size #margin and at-
tenuation factor Ajttenuation for all margin learning variants results in
the generalization performance and mean minimum margin shown
in figure 4.12.

60 TEMPOTRON LEARNING WITH MARGIN

a 1.0~ b 1.0 € 1.0
o 0.8 A
o
&
q) -
g 0.6
@©
£
(@]
E 0.4 -
[a
0.2 A
T 1 T T
10~4 107t 0.00 0.25 0.50
n Nmargin Ktrain

d 1.0

margup + rescale run 1
. = margup + rescale run 2
g = margup + rescale run 3
w
C
K<l
505 -
©
()
c
()
G]

0.0

LR | T T T L | T T T L |
10! 107 103
Training Patterns

Figure 4.11: Parameter optimization runs for three different initial conditions.

(a+b+c) Lines show progression of current optimal parameter set. Dots show individ-
ual parameter sets that where explored during optimization but did no yield a better
performance score. Low scores are better. # is the learn step size for multi-spike tem-
potron synaptic weight updates, #margin is the same for margin weight updates and
Ktrain 15 the requested margin.

(d) Generalization performance for the final parameter sets at the end of their opti-
mization runs. Area between thin vertical lines depicts which training pool sizes are
used to calculate the performance score (N = 10,20, 30,50, 100, 200). As can be seen
parameters optimized for this range are not necessarily optimal for training pool sizes
outside of it.

The pure margin learning algorithm is unable to improve general-
ization performance over tempotron learning but increases the min-
imal margin reliably. If no margin learning steps are done and we
only add weight rescaling to the learning rule the generalization per-
formance is improved. Training patterns required for 50% general-
ization performance is decreased by a factor of three. As expected,
with out margin learning steps, the average minimal margin is only
slightly above tempotron learning. Margin up with rescaling offers

4.5 GENERALIZATION PERFORMANCE UNDER OPTIMAL MARGIN LEARNING PARAMETERS

the highest generalization performance for small amounts of train-
ing patterns, only needing above ten patterns for 50% generalization
error instead of one hundred required by the tempotron. An improve-
ment of nearly an order of magnitude. The margin learning rule with
decay that includes the margin synaptic weight updates in the mo-
mentum heuristic also offers similar improvements in generalization
performance and minimum margin.

The optimized parameters for all margin learning variants are

listed in the following table.

run n Hmargin Aattenuation
tempotron | 2.13e—05
margin | 1.45e—05 | 5.07e—06
rescaling | 4.20e—05
margin + decay | 1.97e—05 | 2.70e—04 0.99109
margin + rescaling | 2.63e—05 | 2.34e—04
margin momentum + decay | 1.25e—04 | 1.69e—06 0.98079
margin up + rescaling | 4.73e—05 | 7.06e—04

61

62 TEMPOTRON LEARNING WITH MARGIN

Q
=
o

1

tempotron

margin

rescaling

margin + decay

margin + rescaling

==1: margin momentum + decay
==== margin up + rescaling

Generalization Error
o
(6,
1

=

,’-'.H'-r-... |=-_'::@U
0.0 +——r T —— T
10! 102 103

Training Patterns

=3
o
o
B
1

Mean Minimum Margin
o
o
N
1

0.00

10t 102 103
Training Patterns

Figure 4.12: Mean generalization error and mean minimum margin for the multi-spike tempotron
learning rule and margin learning variants. Shown are the results of optimized pa-
rameter sets. Area between thin vertical lines depicts training pool sizes for which the
generalization performance was optimized.

(a) Generalization error for each simulation is measured by checking the classification
correctness on a test data set of input patterns that were generated with the same
process as training patterns but not used during training.

(b) Minimum margin on training batch averaged across simulation runs. With increas-
ing training pool size the achievable minimal margin decreases due to the increasing
amount of target feature instances and background noise limiting the possible solu-
tion space.

46 MARGIN BASED OPTIMIZATION

46 MARGIN BASED OPTIMIZATION

To optimize the parameters of the margin learning rules for optimal
generalization performance we used the performance on the test data
set directly as feedback for the optimization algorithm. It is unlikely
that a neuron has access to test data to estimate its generalization
performance.

An advantage of the margin learning rules is that they continue
learning after the trainings error reached zero. When the trainings
error is zero the multi-spike tempotron stops changing the synaptic
efficacies while the margin learning rules continue to widen the mar-
gins on the training patterns. To study how access to the margins on
training patterns can help with judging the classifiers generalization
performance without using test data we limit the performance score
for parameter optimization to training error and average margin.

For the simulations we use the synthetic embedded feature task
with 25% noise. We calculate a performance score at the same train-
ing pool sizes (N = 10,20, 30, 50,100, 200) but instead of the average
generalization error we use the average fraction of incorrectly classi-
fied training patterns for optimizing the pure multi-spike tempotron
and the average margin for the margin learning rule with momentum
and decay. The average margin is defined as the average x across all
training patterns and simulation runs. This includes negative values
of k to penalize for incorrectly classified training patterns. Not unlike
the concept behind soft margin classifiers (Cortes and V. Vapnik, 1995)
that penalizes incorrectly classified input vectors with the distance to
the decision surface (see section 2.3.1). The score is calculated as 1 — x
where x is the average margin since the optimization searches for a
minimal score. After parameter optimization finishes we measure the
generalization performance on a test data set as before.

To validate the use of this mean margin score as a proxy for gen-
eralization performance we tracked both scores during the margin
learning optimization runs and calculated a Pearson correlation coef-
ficient of 0.81. Figure 4.13 shows the raw data points for all parameter
pairs explored.

63

64 TEMPOTRON LEARNING WITH MARGIN

0.9
0.8
0.7 1
0.6
0.5 .5

&)
044 %

s
‘e

Generalization Error Score

0.3 ~

1 1 1 1 1
0.90 0.95 1.00 1.05 1.10 1.15 1.20
Mean Margin Score

Figure 4.13: To validate the use of the mean margin as a proxy for generalization performance we
measured both generalization error score, as used in the previous optimizations, and
the average margin score (1 — x with x being the average margin) for all parameter
pairs encountered during optimization for margin learning. Lower scores are better.
While the margin can not perfectly predict generalization performance lower margin
scores do strongly correlate with lower generalization error scores resulting in a Pear-

son correlation coefficient of 0.81.

run n Hmargin score

tempotron 1 | 3.38e—05 0.00£0.0

tempotron 2 | 2.85e—05 0.00£0.0

tempotron 3 | 4.11e—06 0.00£0.0

margin momentum + decay 1 | 1.09e—04 | 9.00e—05 | 0.8866 = 0.0042
margin momentum + decay 2 | 1.16e—04 | 5.99e—05 | 0.8835 =+ 0.0046
margin momentum + decay 3 | 1.35e—04 | 3.54e—05 | 0.8851 £ 0.0038

For the pure tempotron we optimized the learn step size 7 for three
different initial conditions. Since the tempotron learns to correctly
generate the output spikes for all training patterns over a broad range
of values its final parameter set also varies widely (figure 4.14 (a)).
This also explains the varying generalization performance of the re-
sulting parameter sets (figure 4.14 (c)).

Similarly we optimize the learning step size for tempotron 7 and
margin steps #margin for margin learning with momentum and de-
cay using the minimal margin distance as performance measure. We
fixed the decay attenuation factor Aagtenuation to 0.98, the value ob-
tained from optimization determined in the previous chapter. Leav-
ing Aattenuation as a free parameter leads to it being decreased towards
zero as the margin learning rule without any decay is able to achieve
a higher average minimal margin (see figure 4.12). This is an obvious

4.6 MARGIN BASED OPTIMIZATION 65

a b
1.4 A 144 -
) 0.3 1
o [.
v S 1.3 4 1.3
z $
2 0.2 £ 1.2 1
w o
S S 1.1
S 0.1 c
2 3 1.0
S = .
[Yy
0.0 - . 0.9 +
e e AELALRLLLL BEELELELLLLLL BN L AELALRLLLL BELELELLLLLL B AL
107> 1072 10-% 1075 1074 10-¢ 1073 1074
n n nmargin
C

tempotron run 1

tempotron run 2
= tempotron run 3
margin+decay run 1
margin+decay run 2
margin+decay run 3
==== margin+decay optimized on test

Generalization Error

0.0

LR | T T T L | T T T LA L |
10! 102 10°
Training Patterns

Figure 4.14: Tempotron error and average minimal margin based parameter optimization and re-
sulting generalization performance.
(a) Optimization of learning step size # for three different initial conditions of the pure
multi-spike tempotron. The performance score is based on the average fraction of in-
correctly classified training patterns across multiple training pool sizes (area between
thin vertical lines in (c), N = 10,20, 30,50,100,200). Over a wide range of # values
the training error reaches zero for all simulation runs giving ambiguity to what is the
optimal value for # (see (c)).
(b) Similar optimization for the margin momentum with decay learning rule. Perfor-
mance score is based on the average margin across the same training pool sizes. Score
is calculated as 1 — x, this means 1.0 is equivalent to an average minimal margin of
zero.
(c) Generalization performance of the resulting parameter sets. Gray dotted line rep-
resents the result from the parameter optimization based on generalization perfor-
mance.

drawback of using the average margin as a performance measure and
further research into other objective functions is required.

The optimized parameter sets for the margin learning rule are more
clustered together and offer more stable and predictable generaliza-

66

TEMPOTRON LEARNING WITH MARGIN

tion performance. With only access to the average margin during
training margin learning is able to successfully improve the gener-
alization performance and is able to cross 50% average generalization
error for a factor of 5 less training patterns when compared with
multi-spike tempotron learning.

APPLICATION TO SPEECH RECOGNITION

5.1 AUDITORY BRAIN-STEM MODEL

To apply the neural learning rules to a task of phoneme recogni-
tion we developed an auditory brain-stem model to generate spike
patterns from sound signals. This model is based on in-vivo mea-
surements of neurons in the inferior colliculus of various mammals
and mimics observed characteristic spike responses to varying sound
stimuli. These responses vary in frequency tuning, loudness thresh-
olds and required temporal structure of the sound signal.

Previously used auditory brain-stem models (Giitig, 2016; Giitig
and Haim Sompolinsky, 2009; John] Hopfield and Brody, 2000) only
implement a subset of neurons of the inferior colliculus described in
the literature: neurons reacting to sound onset and offset. Since we do
not know which features in the sound input are used for the discrimi-
nation of different human speech sounds we extended the brain-stem
model to include additional more complex response types that cover
frequency ranges and time spans possibly relevant for phoneme de-
tection. These can be described as short-, long- and bandpass filter
neurons as well as neurons that exhibit sustained firing behavior.

These different response types of neurons are mimicked by first
separating the sound signal in the frequency domain using Fast-
Fourier-Transform to allow for different frequency tuning. The result-
ing signal in each frequency channel can then be used to generate
output spikes conditioned on a desired loudness threshold and tem-
poral structure.

5.1.1 Typical Responses of Auditory Neurons

As a first step of neural auditory processing the cochlea executes a
spectral decomposition of the incoming signal and splits it up into
frequency specific neural channels, individual fibers of the auditory
nerve (Harrison, 2001; Ruggero, 1992). This topographic representa-
tion of sound frequency, called tonotopy, then projects through the
vestibulocochlear nerve and associated midbrain structures to the au-

67

68 APPLICATION TO SPEECH RECOGNITION

On-Sustained-Off: 9/56

|
L

0 100 200 300 0 100 200 300 100 200 300
(ms) (ms) (ms)

Off: 23/56 On-Off: 17/56

|l
|
1
]

Firing rate (spikes/s) >

0 250
Firing rate (spikes/s) O

|]
Firing rate (spikes/s) 0J
0 400

0 250

i

o

B Bandpass C Longpass

>

Shortpass

. . . MR B0 G e
25 . 24 2431 '.N"’W"I‘.ﬁ:.‘-

.

o d

173 . Ve AN, N, W
16 < E AP
3 2P0 I ORI

i

117 . AN
103 Oy 07
-

>

Stimulus Duration (ms)
<

i

=

[

LN R A NONEOSINBE NP IDDS
@

SRR NDD

i e

* ABIA vo0d
T T T T T T T T T T

10 20 30 20 30 40 20 30 40

Time (ms) Time (ms) Time (ms)

l

O-“H
2

o
o-““
5

o

>

Figure 5.1: Different pure tone response types of auditory neurons measured in vivo in the inferior
colliculus of mice. Different types of duration-tuning and response patterns can be
observed. Top row from (Kasai, Ono, and Ohmori, 2012). Bottom row from (Faure et
al., 2003).

ditory cortex. Along this pathway the inferior colliculus is the princi-
pal midbrain nucleus. Major ascending auditory pathways converge
here and it appears to be an integrative station, is involved in the in-
tegration and routing of multi-modal sensory perception and might
be responsible for detection of pitch (Shore, 2010).

Pure tone experiments show that typical neurons in the inferior
colliculus have a best frequency at which they are most responsive
(Phillips, S. Hall, and Boehnke, 2002). Additionally to the best fre-
quency inferior colliculus neurons, measured in bats and other ani-
mals, also show tuning to different loudness thresholds (J. Casseday
and Ellen Covey, 1992). And even more complexly shaped excitatory
and inhibitory response areas to frequencies and sound pressure lev-
els have been measured in mice (Egorova et al., 2001).

Duration tuned inferior colliculus neurons have been measured in
many animals, in rats (Perez-Gonzalez et al., 2006), mouse (Brand,
Urban, and Grothe, 2000), chinchilla (Chen, 1998) and many different
bats (J. Casseday, Ehrlich, Covey, et al., 1994; Daphna Ehrlich, John
H Casseday, and Ellen Covey, 1997; Z. Fuzessery and J. Hall, 1999;
Zoltan M Fuzessery, 1994; P-S. Jen and R. Feng, 1999; Pinheiro, Wu,
and Philip H-S Jen, 1991).

5.1 AUDITORY BRAIN-STEM MODEL

These duration tuned neurons can be described as shortpass, long-
pass and bandpass filters of the input signal at the neurons best fre-
quency and loudness level (see figure 5.1). Measurements show that
duration tuned neurons can fulfill crucial roles for mating calls in
frogs (Potter, 1965) or echo location calls of bats (Galazyuk and A. S.

Feng, 1997).

The neurons response type to their preferred frequency, loudness
and temporal structure can also vary (figure 5.1). Some neurons react
to stimulus offset, some to onset and others are observed to elicit a
sustained stream of output spikes during stimulus presence (Faure
et al., 2003; Kasai, Ono, and Ohmori, 2012).

According to these observed preferences of inferior colliculus neu-
rons we modeled our auditory front-end. It contains a multitude of
spike output channels mimicking inferior colliculus neurons to cover
a wide range of different frequencies, loudness thresholds and tem-
poral structures that might be relevant to phoneme recognition.

5.1.2 Auditory Front-End

To generate spike patterns from sound files we extended a previously
introduced auditory front-end (Glitig, 2016; Giitig and Haim Som-
polinsky, 2009). The process is based on what is described in (Giitig,
2016) and is implemented as follows:

First the raw sound samples are converted to spectrograms us-
ing the specgram function included in the matplotlib library (Jones,
Oliphant, Peterson, et al., 2001). Based on the sound data sampled
with 16kHz these spectrograms are generated using a 512 samples
wide overlapping sliding window with 1ms resolution. The resulting
spectrogram is then mapped into 32 Mel-scale frequency channels be-
tween oHz and 8oooHz via triangular overlapping frequency filters
(see figure 5.2 (a) small red lines).

The Mel-scale (Stevens, Volkmann, and Newman, 1937) is a percep-
tual frequency scale for which an equal distance between frequencies
in mel is perceived as to be of equal distance in pitch. We use the
following formula to convert frequency in Hertz f into m in mels:

m:HWIMHVQ) (5.1)

These filters have their peak at the corresponding 32 Mel-scale cen-
ter frequencies (55Hz, 116Hz, 180Hz, 250Hz, 325Hz, 407Hz, 495Hz,
589Hz, 692Hz, 802Hz, 921Hz, 1050Hz, 1189Hz, 1339HZz, 1501HzZ,

69

Frequency (Hz)

Mel Frequency Bands

70 APPLICATION TO SPEECH RECOGNITION

11114 et et e e e e e e

1 1 1
10.0 12.5 15.0 17.5

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

Figure 5.2: (a) Spectrogram generated by fast Fourier transform (FFT) of a probe signal to test

the auditory front-end. Signal strength increases from blue to red. The first 10 seconds
consist of a chirp with exponentially increasing frequency component starting at oHz
going up to 8oooHz. The second half contains pure 440Hz tones of increasing length.
On- and offset of the pure tones are smoothed out by a 1oms ramp to decrease the
distortions in the FFT caused by sharp changes in the waveform derivative. The back-
ground consists of white noise with amplitude 0.005. Thin red lines mark the Mel-scale
distributed frequency edges that are used to calculate the signal in the Mel-scale fre-
quency bands.

(b) The smoothed and renormalized signal strength in the Mel-scale frequency filter
bands generated from the FFT. The spike generators of the auditory front-end operate
on the signal in each of these channels separately. Signal strength increases from blue
to red.

1675Hz, 1864Hz, 2067Hz, 2287Hz, 2524Hz, 2780Hz, 3056Hz, 3354Hz,
3676Hz, 4023Hz, 4398Hz, 4802Hz, 5239Hz, 5710Hz, 6219Hz, 6768Hz,
7360Hz) and cut off at the corresponding neighboring higher and
lower frequencies from 34 Mel-scale frequency edges (oHz, 55Hz,
116Hz, 180Hz, 250Hz, 325Hz, 407Hz, 495Hz, 589Hz, 692Hz, 802Hz,
921Hz, 1050Hz, 1189Hz, 1339Hz, 1501Hz, 1675Hz, 1864Hz, 2067Hz,

5.1 AUDITORY BRAIN-STEM MODEL 71

a 10 -
. , i i
o 081 I I I I
2 T g | f |
& 0.6 1 I | I | |
T I i i i ! i
c 0.4 1 | I I I | I
S i i o i ¥ i
» 024

0.0

I I I I I
10.6 10.8 11.0 11.2 11.4

Time (s)
b 10
I I
v 0.8 : kL L y
2 N | | | |
&£ 0.6 1 I I I | }
I I h h h h h
2 0.4 I I I I I I
k=) & & & 5 k I
» 0.2 4
00 T T T T T
10.6 10.8 11.0 11.2 11.4
Time (s)

Figure 5.3: On-set (a) and off-set (b) detector output. The signal shown in gray corresponds to a
Mel-scale filter band (center frequency 406.8Hz, low edge 325.4Hz, high edge 494.6Hz)
that covers the 440Hz pure tone of the probe signal. In light red lines the signal thresh-
old levels used for output spike generation are shown. On- and off-set detectors gener-
ate output spikes, shown as black vertical lines, whenever the signal level in the respec-
tive frequency band crosses its corresponding threshold level in the desired direction
(from below /from above).

2287Hz, 2524Hz, 2780Hz, 3056Hz, 3354Hz, 3676Hz, 4023Hz, 4398Hz,
4802Hz, 5239Hz, 5710Hz, 6219Hz, 6768Hz, 7360Hz, 8000HZ).

The signal in each channel is first normalized by the global maxi-
mum then log-scaled (log(S +e) —log(e), with e = 1e—05 being used
to prevent log(0)) and then again normalized by the global maxi-
mum. The resulting signals are smoothed using a Gaussian kernel
with o = 1ms, shifted by subtracting the global minimum and after-
wards rescaled with the global maximum (the resulting signals can
be seen in figure 5.2 (b)).

Inside the Mel frequency bands 15 different threshold levels (0.0625,
0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.625, 0.6875, 0.75,
0.8125, 0.875, 0.9375) are used to determine when the signal crosses
a threshold from below and above. To achieve better than 1ms res-
olution the threshold crossing times are estimated by linear interpo-
lation. Based on these threshold crossings different spike generating
response filters are implemented. Each of the different possible re-
sponse type blocks contribute (32 frequencies x 15 threshold levels)
480 afferents to the chosen front-end configuration.

72 APPLICATION TO SPEECH RECOGNITION

Q
=
o

1

Signal Power

© o o o ©°
o N B~ O
1 1 1 1

I I I I I
10.6 10.8 11.0 11.2 11.4

Time (s)
b 10-
| |
= 0.8 |
2 P I '
S 0.6 I
T 0.4 1 I|
2
v 0.2
OO T T T T T
10.6 10.8 11.0 11.2 11.4
Time (s)

Figure 5.4: 5oms long-pass (a) and 50ms short-pass (b) detectors operate in the same way as on-
and off-set detectors. Their output generation is based on threshold crossings but addi-
tionally have a temporal filter parameter that is used to only elicit output spikes when
the temporal signal requirements are met. The long-pass filter only generates spikes
when the signal has been above the respective threshold for a given time. Similarly
for the short-pass filter the signal must have been above threshold shorter than the
given parameter. The time of the output spikes is determined by causality - only at the
moment where the temporal criterion is known to be fulfilled the output spikes are
inserted into the output spike pattern.

Onset detectors are implemented such that each threshold cross-
ing from below generates an output spike at its respective afferent
channel corresponding to its frequency and threshold level. Offset de-
tectors instead use the times of threshold crossings from above (see

figure 5.3).

For short-, long- and bandpass response filters the above-threshold
durations between signal on- and offset for a given threshold level
are calculated and used as a conditional for output spike generation.

Shortpass response filters generate output spikes on threshold
crossings from above only if the duration above-threshold is shorter
than the given filter parameter (see figure 5.4).

Longpass filters generate a spike whenever the duration above-
threshold is at least as long as the given filter duration parameter
and an output spike is generated as soon as the requirement was
fulfilled: at the time of threshold crossing from below shifted by the
filter duration parameter (see figure 5.4).

5.1 AUDITORY BRAIN-STEM MODEL 73

a 10 -
i I

5 0.8 1 |
2 |
5 0.6 |
© 0.4
2 I
» 0.2 1

0.0

I I I I I
10.6 10.8 11.0 11.2 11.4
Time (s)

Figure 5.5: 40-6oms band-pass detector. The band-pass filter is a combination of short- and long-
pass filter. It only generates output spikes when the time of the signal above the corre-
sponding threshold lies in a certain interval.

Bandpass filters have two duration parameters and only generate
output spikes if the signal stays above threshold for a duration be-
tween those two parameter values. Its output spikes are generated at
the time of threshold crossing from above (see figure 5.5).

Figure 5.6 shows the Mel frequency signal strength for an exam-
ple chirp sound and probe sounds of increasing duration. Panel (b)
plots the raw spike output for the onset and offset detector front-end
blocks. Note the synchronous line of spikes generated by the onset
and offset detector at the beginning and end of the sound sample re-
spectively. They are an artifact stemming from the fact that our sound
sample must start and end at some point and is not an endless con-
tinuous stream. Accordingly these artifacts are removed before using
the output spike pattern with a neural classifier.

74 APPLICATION TO SPEECH RECOGNITION

Output channels

PR PRI
77 A

, o R : : | :
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

o

Mel Frequency Bands

it itissiaassang

= md”
P
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

Figure 5.6: Full spike pattern output (a) for the probing signal (b) using a auditory front-end of

only on-set (bottom) and off-set (top) detectors. The on- and off-set of the chirp and
pure tones can be clearly seen. Due to higher noise in the lower Mel-scale filter bands
the lower threshold level detectors generate more spurious spike responses.
The synchronous line of spikes generated by the onset and offset detector at the begin-
ning and end of the sound sample respectively are an artifact stemming from the fact
that our sound sample must start and end at some point and is not an endless con-
tinuous stream. Accordingly these artifacts are removed before using the output spike
pattern with a neural classifier.

5.1 AUDITORY BRAIN-STEM MODEL 75

he ma tr to hone us
8kHz - Y Y P
4kHz - &

- ==
h"‘#'-_ 28 {ﬂ" | !

— — ﬁ-r -_——

OHz - i
h# hhiy m ey tcl t r ay dxix f ow n ah s h#
band -
W

short

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

Figure 5.7: Example spike pattern generated by an auditory front-end configuration with 41 dif-

ferent active feature detectors, 32 frequency channels and 15 threshold levels. A TIMIT
trainings sentence was used as input.
The front-end configuration consists of 41 output spike channel blocks covering time
scales up to 200ms (from bottom to top): onset detector block, 14 long-pass filter
blocks (20ms, 30ms, 40ms, 50ms, 60ms, 70ms, 80ms, 90ms, 100ms, 120ms, 140ms, 160ms,
180ms, 200ms), 13 short-pass filter blocks (10ms, 20ms, 30ms, 40ms, 50ms, 60ms, 80ms,
100ms, 120ms, 140ms, 160ms, 180ms, 200ms), offset detector block, 12 band-pass filter
blocks (10-50ms, 20-60ms, 30-70ms, 40-80ms, 50-90ms, 60-100ms, 80-120ms, 100-140ms,
120-160ms, 140-180ms, 160-200ms, 180-220ms)

5.2 PHONEME RECOGNITION TASK

5.2 PHONEME RECOGNITION TASK

To show the potential of margin learning for studying neural pro-
cessing of realistic feature detection tasks we use the auditory front-
end to generate high dimensional spike patterns based on natural
speech and train neurons as phoneme detectors. We use the TIMIT
dataset that contains sentences of speech from American English
speakers along with the provided information about the occurrences
of phonemes.

To convert the raw sound input into spike patterns we configure
the auditory front-end to contain a wide range of short-, long- and
overlapping band-pass output spike channels. The auditory front-end
It consists of 41 output spike channel blocks covering time scales up
to 200ms:

¢ 1 onset detector block
¢ 1 offset detector block

* 14 long-pass filter blocks (20ms, 30ms, 40ms, 50ms, 60ms, 70ms,
80ms, 90ms, 100ms, 120ms, 140ms, 160ms, 180ms, 200ms)

* 13 short-pass filter blocks (10ms, 20ms, 30ms, 40ms, 50ms, 60ms,
80ms, 100ms, 120ms, 140ms, 160ms, 180ms, 200ms)

* 12 band-pass filter blocks (10-50ms, 20-60ms, 30-70ms, 40-
80ms, 50-90ms, 60-100ms, 80-120ms, 100-140ms, 120-160ms, 140-
180ms, 160-200ms, 180-220ms)

We use 32 mel-scale frequency channels with 15 loudness thresh-
olds each resulting in a total of Ngynapses = 41 x 15 %32 = 19680
synapses. To better accommodate the average length of phonemes
(around 17.5ms for ‘B’ to 163.0ms "AW’) we increase the neuron mod-
els decay time constants for membrane integration 7, to 40ms and
synaptic currents 7; to 10ms.

Training is done by presenting a TIMIT sentence from a training
pool to the auditory front-end and using the generated spike pattern
as input for the neuron. For the multi-spike tempotron and margin
learning rule only the count of the target phone is provided as the
teaching signal. If we train for the phoneme "T” and the current train-
ing sentence contains 5 instances of "T” we train the neuron with a de-
sired output spike count of 5. No information about the exact timing
of phonemes is used during training with the multi-spike tempotron
and margin learning rules.

77

78 APPLICATION TO SPEECH RECOGNITION

to his surprise his plan worked perfectly
8kHz - z - '
.-.;' }
4kHz | ’m.:‘;uzh‘
| Lﬁ ’
' ’ “T, | a
k = I |)
OHz - — ___aN

h#tcl tixhvih saxpclp r ay zix zpclp | ae nw er kcl p er faxkalk | ix h#

AY - s /!/\v /!k
PAaVANGN, ~ASVESEN /“\MVM
N S

/\4’\N\/\MM VAN A YN
N J P
. DA VAU

0.0 0.5 1.0 1.5 2.0
Time (s)

Figure 5.8: Voltage traces of neurons after tempotron (red) and margin learning (blue) on a TIMIT
test sentence. Time intervals for the target phones AY, R, S and T are marked with gray
areas.

Since traditional speech recognition machines using hidden-
markov-models (HMMs) and deep neural networks are not spike
based we cannot use them to test the performance achievable with
our spike generating auditory front-end. We need a different ap-
proach to provide a baseline for comparison. For this we use the seg-
mented learning rule to determine what performance can be reached
with the current front-end if a neuron has access to the precise timing
information of the target feature during training. We optimized learn

5.2 PHONEME RECOGNITION TASK 79

a b Ay
0.12 4
" 1.04 - 1.04 -
S 0.10 v
A S 1.02 1.02
(W) - -
= 0.08 - a .
g c
w _ (@)}
Y 0.06 2 1.00 - 1.00
S 0.04 = '
) - -
8 & 0.98 - 0.98 - :
£ 0.02 s \?
= 0.96 - 0.96 - ‘
000 - Pme o o oo
|'|'|_|_|'|'|'|'|'|'|'|_|_|'|'|'|'|'|'|'|_|_|'|'|'|'|'|' T™TTTTTT T ™ T T Trrrrm
10-7 10-¢ 10-5 1077 1075 10-1 10° 10!
n n fr?’rargin
C d T
1.12 - 1.12 -
(O]]
5 0.06 o 1.10 A 1.10 -
s o
5 & 1.08 1.08
= 0.04 ~ £
w © 1.06 - 1.06
C ©
g = 1.04- 1.04 -
S 0.02 - § : :
£ / S 1.02 1 .+ 1.02 -
'_)
0.00 ™=+ e o d ‘ 1.00 - 1.00
|'|'|_|_|'|'|'|'|'|'|'|_|_|'|'|'|'|'|'|'|_|_|'|'|'|'|'|' T™TTTTTT T ™™ T T oo T Trrrrm
10-7 10-¢ 1075 1077 1075 1071 10° 10!
n n fr?wrgin

Figure 5.9: (a+b) Parameter optimization runs for phoneme AY using the training error for the
tempotron learning rule (a) and the mean margin for the margin learning rule (b).
(c+d) Similar parameter optimization runs for phoneme T.

step size 1 and relative spike position in the target feature a for four
different phonemes each from a different group of phonetic sounds:
diphthongs "AY’, stops "T’, fricatives 'S” and liquids 'R’. Optimization
of segmented learning was done with respect to optimal generaliza-
tion performance on the TIMIT provided test sentences. This general-
ization performance is measured as proficiency, the ability to predict
the correct sequence of target and non-target features (see section
2.6.1).

For the optimization of parameters for tempotron and margin
learning we do not use the generalization performance on test data
or the provided segmentation information of the trainings sentences.
We proceed as in the section on margin based optimization 4.5 and
restrict the optimization to information available during training. We
optimize learn step size 7 for the tempotron based on the training

8o

APPLICATION TO SPEECH RECOGNITION

error (the fraction of training patterns for which it did not elicit the
correct spike count). For margin learning with momentum and decay
we use an attenuation of A = 0.995 and optimized 7 and f;;argin- The
latter is a factor determining the strength of the margin learning step
relative to 7. As a scoring function for margin learning we use the
average margin, same as in section 4.5. Due the fact that null-patterns
can make up a large portion of the training data set (e.g. 50% for "AY”)
and that it is unclear how to incorporate them in a balanced way in
the margin learning rule we limited margin learn steps and average

margin calculation to patterns with non-zero label.

We optimize the parameters at a small training pool size of N = 500
sentences, randomly drawn from the 3696 TIMIT train sentences for
each simulation, to test the learning rules ability to generalize from a
limited set of training examples. Each parameter pair was run for 100
random seeds over which the optimization score and generalization
performance was averaged. Simulations were allowed to run for 500
training cycles.

Figure 5.9 shows the progression of the optimization runs for tem-
potron and margin learning. Initial parameters for tempotron learn-
ing were 7 = le—7 and 2e—5. Margin learning started at 7 = le—7,

le—6 and 2e—5 with corresponding values of frzlargin = 1.0, 0.5 and
0.1.

The table lists the resulting parameter sets and averaged across
all runs: Training error, hit- and false-positive rates as well as the
proficiency on the test dataset for the optimization results with the
best performance. The hit-rate is the fraction of targets the neuron
elicited spikes for while the false-positive rate is the fraction of non-
targets the neuron erroneously spiked for. The last column lists the
percentage of achieved proficiency with regards to the result from
segmented learning.

To compare the proficiency values with a machine learning sys-
tem we used the hidden-markov-model (HMM) based HTK speech
recognition toolkit (Young, 1992) and calculated proficiency values
for all TIMIT phonemes. First we used the standard approach with
tri-phoneme context dependent HMMs that allow the system to use
multiple HMMs per target phoneme to model context dependent
phoneme variations. And secondly a modified version where we dis-
abled tri-phoneme modeling to restrict each phoneme to a single
HMM model more similar to our neural phoneme detectors that
uses one neuron model per phoneme. But even restricted to single
phoneme models the results are not fairly comparable as the hidden-
markov-models are designed to output the most likely sequence of
phonemes at once and hence each internal phoneme model competes

5.2 PHONEME RECOGNITION TASK

81

run n glargm train-error | hit-rate | fp-rate proficiency Yo
segmented AY 0.072 0.487 | 0.012 | 0.267 +=0.006 | 100%
tempotron AY | 2.84e—06 0.000 0.171 | 0.009 | 0.065+0.005 | 24%
margin AY | 6.66e—06 0.70 0.230 0.214 | 0.011 | 0.088 £0.009 | 33%
segmented R 0.355 0.365 | 0.031 | 0.139 +0.003 | 100%
tempotron R | 2.20e—06 0.000 0.180 | 0.023 | 0.057 £0.006 | 41%
margin R | 2.24e—06 0.33 0.490 0.269 | 0.024 | 0.096 £0.005 | 69%
segmented S 0.274 0.628 | 0.013 | 0.438 +£0.004 | 100%
tempotron S | 4.21e—07 0.000 0.273 | 0.030 | 0.098 £0.010 | 22%
margin S | 5.92e—06 0.99 0.597 0.539 | 0.017 | 0.327 £0.016 | 75%
segmented T 0.383 0.382 | 0.023 | 0.158 £ 0.004 | 100%
tempotron T | 2.84e—06 0.000 0.104 | 0.020 | 0.035+0.011 | 22%
margin T | 1.97e—06 1.10 0.421 0.282 | 0.019 | 0.11240.008 | 70%

HTK (single/tri-phone): AY 0.522/0.514, R 0.231/0.469, S 0.249/0.671, T 0.008/0.557

against another. Our neural classifiers work completely independent
and only output singular time points of likely target phoneme ap-
pearance. Additionally during training of the hidden-markov-model
the system directly uses the sequence of phonemes in the training sen-
tences while the tempotron and margin learning algorithms only have
access to the aggregate label. The proficiency results for the four tar-
get phonemes are listed below the table (also see figure 6.1 in the dis-
cussion for a comparison between tri-phoneme and single-phoneme
performance).

For all four phonemes the segmented learning algorithm has a non
zero training error. It is unable to learn to correctly fire for all targets
in the training sentences. Since the training error already stopped
improving before the simulations abortion criterion was reached the
most likely explanation is that the auditory front-end is the limiting
factor. This increases the difficulty of the task for tempotron and mar-
gin learning since there does not seem to be a solution to find that
correctly elicits one spike for each target phoneme. The learning rules
will have to cope with classification errors on the training data set.

Still tempotron learning achieves a zero training error for all four
phonemes. Its low generalization performance means that the model
overfitted the trainings data to decrease the training error to zero and
did not learn to reliably detect the target feature.

The margin learning algorithm is only able to improve the gen-
eralization performance for AY over tempotron learning by a small
amount but manages to increase proficiency for R, S and T more

82

APPLICATION TO SPEECH RECOGNITION

significantly, tripling the proficiency for S and T, and recovering
over 69% of the segmented learning performance for these three
phonemes.

5.3 GENERALIZATION PERFORMANCE AND FRONT-END DIMEN-
SION

To characterize how well the tempotron and margin learning rule are
able to generalize under different conditions we measured their per-
formance under changing trainings data availability and input space
dimensionality.

We trained with 60, 125, 250, 500, 1000, 2000 and then the full 3700
training sentences and measured the average generalization perfor-
mance for 100 initial random seeds. This random seed was used to
randomly draw the subset of training patterns, or in the case of the
full dataset to shuffle their order.

For 60 training patterns tempotron and margin learning result in
similarly low proficiency, both unable to generalize from the limited
amount of information available to them. To achieve about 50% of
the segmented learning performance for T the margin learning rule
requires only 500 training patterns while the tempotron rule requires
the full dataset. For the phoneme S margin learning already reaches
close to its peak performance at 500 patterns and even with the full
trainings dataset tempotron learning is unable to reach the same per-
formance. With the availability of all trainings sentences margin learn-
ing for the phoneme T is able to exceed the generalization perfor-
mance of segmented learning. This is possible since the segmented
learning rule does not incorporate margin learning. The difference
between proficiency on training (0.30) to test (0.19) is likely to im-
prove when margin learning is also applied to segmented learning.
The proficiency drop for margin learning is small (0.25 on training to
0.24 on test).

To measure the effect of input space dimensionality we kept the
size of the trainings pool fixed to 500 and changed the front-end con-
figuration. The front-end configuration directly corresponds to the
amount of input synapses of the neuron. We measured for 41, 21, 11
and 2 output spike generating blocks in the auditory front-end. With
32 channels and 15 threshold levels per block this results in 19680,
10080, 5280 and 960 input synapses. We used the following front-end
configurations: 21 (2x all on-/offsets, 7x long-, 6x short- and 6x band-
pass), 11 (2x all on-/offset, 3x long-, 3x short- and 3x band-pass), and
2 (2x all on-/offset). The individual blocks chosen as all being a strict

5.3 GENERALIZATION PERFORMANCE AND FRONT-END DIMENSION 83

T

segmented
= tempotron
m—Margin

°© o o o o o
(@] = = N N w
9] o] o (S;] o
1 1 1 1 1 1

Proficiency on Test Sentences

0.00 “—— T ——————r T
102 103
Training Patterns
b S
[}
g 0.4 segmented
g tempotron
§ m—Margin
» 0.3 1
n
(0]
|_
S 0.2 4
>
(9]
[
2 0.1 4
O
=
o
% 0.0 ——
102 103

Training Patterns

Figure 5.10: (a+b) Phoneme recognition performance under increasing availability of training data
for the phonemes T and S. Vertical thin line represents 500 training patterns for which
the parameters of the learning rules were optimized.

subset of the front-end with the next higher block count. Due to the
change in synapse count we optimized the learning parameters for
each front-end size individually.

Already with 5280 synapses the tempotron reaches a zero training
error and the generalization performance starts to degrade (figure
5.11). The multi-spike tempotron learning rule is unable to use the ad-
ditional synapses to improve generalization. Instead it uses the higher
dimensionality to overfit the training data resulting in solutions that
offer worse phoneme detection performance.

The margin learning rule is able to use the added information
about temporal structures provided by the additional auditory front-
end blocks to increase its phoneme detection performance.

84 APPLICATION TO SPEECH RECOGNITION

0.35 A
= tempotron

0.30 1 = margin
0.25 A

0.20

0.15 ~

0.10 ~

0.05 ~

Proficiency on Test Sentences

0.00

1 1 1 1
960 5280 10080 19680
Frontend Size (# Synapses)

T

1.0 7

0.8 A

0.4

Training Label Error

0.2

OO T I I I
960 5280 10080 19680

Frontend Size (# Synapses)

Figure 5.11: (a) Tempotron and margin learning performance for the phoneme ‘'S’ for different
auditory front-end sizes.
(b) Corresponding fraction of misclassified training patterns.

The results for both experiments, reducing the available trainings
data and increasing input space dimensionality, demonstrate that the
tempotron learning rule with margin allows studying of complex fea-
ture detection tasks and is able to operate in high dimensional input
spaces by preventing overfitting.

5.4 GENERAL PERFORMANCE IMPROVEMENT 85

0.40 A
s tempotron
0-35 7 margin

© o
N w
9] o
1 1

Proficicency
o
N
o
1

iy ehaeaoaaeyayoyawer | el r w fdhz sshjhchb pdt g khhgq

Figure 5.12: Proficiency on the TIMIT test sentences for tempotron and margin learning. Shown
are all 29 phonemes for which one of the two learning rules exceeded a proficiency of
0.05. The average relative improvement in proficiency is 135%.

5.4 GENERAL PERFORMANCE IMPROVEMENT

Since the four phonemes AY, R, S, T may not be representative for
the usefulness of margin learning and its performance improvement
across all phonemes in the TIMIT data we trained phoneme detec-
tors for all of them. We used all available training sentences, set 77 to
7 = 3e—6, a value near the optimized values for both tempotron and

margin learning and fr'zlargm =1.0.

The average relative proficiency improvement of margin learning
over tempotron learning is 102%. Since many of the phonemes have
very low average proficiency for both margin and tempotron learn-
ing we also calculated the average improvement limited to phonemes
for which one of the two learning rules exceeded a proficiency of
0.05. For these 29 phonemes the average proficiency improvement
over tempotron learning is 135%. The hit-rate is increased by 84%
while the false-positive rate also increases by an average of 10%. Fig-
ure 5.12 shows the proficiency of tempotron and margin learning for
these 29 phonemes. The results for all phonemes can be found in the
appendix.

86 APPLICATION TO SPEECH RECOGNITION

,e%* ==== AY tempotron
L84 .
- ’.::"",0’ =AY margin
*
%5 R R S tempotron
ot e o .
€ 100 4 RS S margin
o] % ot -
S] Joteett et ==== R tempotron
v'e® . .
c A APt = R margin
© “t “‘
[8 et ==== T tempotron
o ¢ «** .
= ““ g =T margin
-
i .um‘-‘-'"
(1
—_—————
Te—
— —r —
102 103

Training Patterns

Figure 5.13: Euclidean norm of synaptic efficacies after learning. Compare with figure 4.7 which
shows the Euclidean norm for the embedded feature task.

5.5 WEIGHT VECTOR REGULARIZATION

As demonstrated with the synthetic embedded feature task the addi-
tion of weight decay to reduce the weight vector norm is crucial. It
suppresses irrelevant components of the weight vector and improves
generalization performance. The components that are left with a sig-
nificant strength are important for performing the feature detection
task. This allows for interpretation of the functional role of these
synapses.

Since we constructed the auditory front-end and know the exact
functionality of every output channel we can look at the synaptic
efficacies and get an understanding of which parts of the auditory
front-end are used. Figure 5.15 shows the synaptic weights split up
by front-end block, frequency channel and threshold level for tem-
potron and margin learning for the phoneme S. Figure 5.14 shows an
example spectrogram for a TIMIT sentence as well as output spike
triggered spectrograms for these weights. We used the weights of the
best performing, with regard to proficiency on test data, random seed
for each learning rule.

This visual representation of the synaptic efficacies for each block
of output channels can be seen as a spectro-soundlevel receptive field
of the neuron, similar to spectro-temporal receptive fields (STRF) but
with the time domain being split up across the front-end block types.

Visually comparing the weights of tempotron and margin learning
shows some apparent differences. The weights from tempotron learn-
ing look noisier, unstructured, strong efficacies can be found across

5.5 WEIGHT VECTOR REGULARIZATION

all types of front-end blocks. The weights from margin learning look
more smooth and more sensitive to broad features in the frequency,
threshold and time domain. It can be clearly seen how onsets in the
high frequency longpass filters contribute excitatory while interme-
diate frequencies contribute inhibitory. This is augmented with ex-
citatory input from the offset detectors for low frequencies. We can
compare this with how the signal of an S phoneme is typically rep-
resented in the spectrogram of a sentence and with the output spike
triggered spectrogram. The spike triggered spectrograms show that
the neuron trained with the margin learning rule learned to elicit out-
put spikes shortly after onset of signals in high frequency channels
(>4kHz) and after offset of signals in the lower frequencies (<2kHz).
The spike triggered spectrogram of the tempotron learning neuron
is less clear about its preference. It seems to react to the end of the
phoneme S where the high frequency noise turns off.

87

88

APPLICATION TO SPEECH RECOGNITION

8k - he = may try to phone us
~N
<
> -~
=] |
[on
o |
w -
0- ——
h# hhiy m ey tcl t r ay dxix f ow n ah s h#
I 1 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)
b tempotron c margin
8k 8k 1.0
0.8
N ~N
= =
> > 0.6
§ 4k § 4k
> > 0.4
() (O]
i fr
0.2
0 T T T 1 T T 1 00
-0.2 -0.1 0.0 0.1 -0.2 -0.1 0.0 0.1
Offset (s) Offset (s)

Figure 5.14: (a) The phoneme S has a characteristic high-pitched hissing sound. In the spectrogram
we can see that the S consists of a high frequency noise portion that lasts for its dura-
tion while signals in lower frequencies that are part of phonemes before and after it
are quiet. Signal intensity increases from blue to yellow to red.
(b+c) Output spike triggered spectrograms of phoneme S for tempotron and margin
learning. They are generated by calculating the average signal strength in the spectro-
gram around output spikes across all available TIMIT sentences.

5.5 WEIGHT VECTOR REGULARIZATION 89

onset long pass

@ 31 1
c
2
@) b
o i
(]
c O "'-l" T T T T T T T T T T T T T T
o 00 .07'00 .0300 0 A‘0() .0500 .0600 ol 00 .0600 .0900 .XOOQ .\:7'00 .XA‘OQ .\ﬁgg ‘\/800 200
c
'c offset short pass
£ _
© g 31
(]
—~ &
C e
o] @]
s g
o 1]
g‘ I-IL_ 0 I I I I I I I I I I I I I ..I
9 0 o0n® W) 020 0 e W) 040 0 020 W) 000 0 080 0 100 0 A2° 0 180 0 160 0 180 0 200 a\\—oﬁ
K _ offset band pass
o g 3t i
c
2
(©]
o
g
[T 0 T T T T T T T T T T T T
0_0\,0—(?010—0030 A0 050000 080 40042001 A0 D1 6004 807"
_ onset long pass
g 31 L | R &R |R R
C
2
@]
g
I.IL_ 0 I I I I I I I I I I I I I I I
2000295 030 080G 050 060 019 080 0904 100G 120 180 160180, 200
2 offset short pass
c g3l
[(v] C
L 2
e 9
o g
g L 0 I I I I I I I I I I I I I I
. 00300 0200 020 080 050 060 080 1000 120 1804 160 180 200 y.off
) offset band pass
= T 31
c
©
<
©]
O'_
o
(I 0 T T T T T T T T T T T T
000 0o, 0030 0 AT 50 0e0 080§ 100G xlo Ox’*o 16054800

Figure 5.15: Synaptic efficacies for tempotron and margin learning split up by auditory front-end
blocks that correspond to different temporal filters. The target phoneme is S. White
equals zero, red is excitatory and blue inhibitory strength of the efficacy. The x-axis
separates different spike generator blocks and inside of each the 15 threshold levels
(increasing from the left).

DISCUSSION

6.1 MARGIN LEARNING FOR SPIKING NEURON MODELS

In this thesis we introduced the tempotron with margin, a learn-
ing rule for spiking neural classifiers that enables learning in high
dimensional input spaces and offers robust generalization perfor-
mance from limited training data. The algorithm is based on the
multi-spike tempotron introduced by Giitig, 2016. He introduced a
novel aggregate-label learning rule that solves the temporal credit-
assignment problem using a continuous objective function called the
spike-threshold-surface. It maps virtual threshold values to output
spike counts given an input pattern and current synaptic efficacies.
The margin learning rule extends this algorithm by continuing learn-
ing after a pattern is already correctly classified. Inspired by concepts
from machine learning we introduce a margin definition based on
the spike-threshold-surface and use gradient learning steps to widen
these margins. This learning rule is complemented by adding weight
decay that suppresses irrelevant components of the weight vector and
improves generalization performance.

Using a synthetic task of features embedded in a sensory input
stream we show that increasing the margins strengthens the robust-
ness of the classifier against noise. Weight decay on its own leads to
an improvement of generalization performance. We demonstrate that
by combining both aspects, margin learning and weight decay, the
resulting classifiers offer the best performance with regards to both
generalization as well as robustness even when the amount of train-
ing data is limited.

By comparing the margin learning algorithm to a simple learning
rule that uses noise on the firing threshold as a means to increase
robustness we could also show that our gradient based approach is
not only orders of magnitudes faster but also more robust. It has
the advantage that margin parameter tuning is less critical. Stochastic
margin learning requires tuning of the margin parameter as a trade
off between margin width and convergence time.

We show that using the margin instead of the amount of correctly
classified training patterns as a measure for learn progress allows for

91

92

DISCUSSION

parameter optimization and improved generalization performance
even without access to test data.

Testing the margin learning rule with a phoneme detection task re-
quired the development of two additional tools. First we developed
an auditory brain-stem model by extending an existing one with addi-
tional output channels sensitive to certain temporal structures in the
sound input. This auditory front-end imitates responses to tones with
different frequencies, loudness and temporal structures measured in
neurons of the inferior colliculus. Its spike pattern output can then be
used as input for neural classifiers.

To get a bound for the achievable performance of a neural classi-
fier with this auditory front-end we introduced a learning rule, seg-
mented learning, that uses knowledge about time intervals in the in-
put pattern at which the target feature is present. This learning rule it-
eratively updates the synaptic efficacies using gradient learning steps
until the neuron correctly elicits one spike inside of every target fea-
ture occurrence.

We applied segmented learning, multi-spike tempotron learning
and margin learning to a phoneme detection task. Using sentences
from the TIMIT speech corpus as input for the auditory front-end
and the resulting spike patterns as training and test data for the neu-
ral classifiers. Only segmented learning had access to the times of
target feature appearance while tempotron and margin learning only
used the count of target features in the input sentence as their teach-
ing signal. We show that margin learning improves the phoneme de-
tection performance on average by a factor of two over multi-spike
tempotron learning. With increasing size of the auditory front-end
the performance of multi-spike tempotron learning decreases. It is
unable to use the additional information available and overfits the
training data. In contrast margin learning is able to improve phoneme
detection performance when the size of the auditory front-end is in-
creased.

Due to the margin learning rules property to suppress irrelevant
synaptic efficacies and the reinforcement of important ones it allows
for qualitative interpretation of the neural classifiers efficacies. This
could prove helpful with understanding how neurons solve certain
feature detection tasks and which input synapses play a crucial role
for robust detection and generalization.

With these successful applications of the introduced margin learn-
ing rules to both a synthetic and a human speech recognition task we
demonstrated their potential for studying neural processing of high-
dimensional inputs with spiking neurons.

6.1 MARGIN LEARNING FOR SPIKING NEURON MODELS

6.1.1 Biological Plausibility

While it is unlikely that a neuron has knowledge about the exact
shape of its spike-threshold-surface it is possible that it has means
to track, through some sort of eligibility trace, how close it came to
eliciting an additional spike. Based on this information it could de-
crease the synaptic strength of the synapses leading to a local voltage
maximum and increase the neurons robustness.

But even without knowledge about its current margins there is
a process that could implement margin learning in neurons. Spike
timing dependent plasticity (STDP) (Markram et al., 1997) learning
could be a process to produce a margin learning like effect. By rein-
forcing synapses that contributed with input spikes directly before
output spike generation and weakening synapses whose input spikes
arrived immediately after an output spike it strengthens the corre-
lation between output spikes and synapses important to elicit them.
Similar to how our margin learning rule continues to change efficacies
corresponding to the nearest critical threshold values after it already
learned to elicit the correct output spike count. In this framework
spike timing dependent plasticity could augment a neurons learning
process by reinforcing already learned correlations.

The weakening of non-contributing input synapses in spike timing
dependent plasticity can also be seen as a weight decay that slowly
pushes their influence to zero. But research shows that spike timing
dependent plasticity typically works in time frames of +40ms around
the output spikes (Bi and Poo, 1998). Synapses contributing to sub-
threshold maxima outside this time window would be unaffected by
it.

While long-term potentiation (LTP) of synaptic strength can last a
long time (Bear, Connors, and Paradiso, 2007) its effect slowly decays.
In combination with the spike timing dependent plasticity reinforce-
ment of important efficacies and weakening of unimportant ones,
such a slow general decay across all synapses should suffice to reduce
the strength of irrelevant synaptic efficacies and improve the neu-
rons generalization performance. Additionally, recent research sug-
gests that LTP decay is regulated by active processes (Villarreal et al.,
2002) so one could argue the possibility that the decay could be ac-
tively controlled by the neuron to improve its learning capabilities
and robustness.

93

94

DISCUSSION

6.2 LIMITATIONS AND OUTLOOK

The segmented learning rule can be improved by combining it with
margin learning. When segmented learning stops due to all output
spikes being inside the given target features margin learning can be
used to continue learning and increase the robustness of the found
solution. This should increase the generalization performance in the
phoneme recognition task even further and decrease the drop in pro-
ficiency between the training and test dataset (current proficiency for
AY on training sentences 0.79, on test 0.27).

A current limitation of the segmented learning rule is that its LTP
step requires a relative time point « inside the target feature interval
that needs to be optimized for every task. The aggregate label learn-
ing rule of the multi-spike tempotron solves the problem of learning
without knowledge about the optimal time point. Equivalently, us-
ing the spike-threshold-surface and selecting a ¢ for which its corre-
sponding time point #; lies inside the target interval would remove
this additional parameter. Similarly the LTD step can be based on
the spike-threshold-surface too and be used to directly target the ¢
responsible for an erroneous output spike. This implements a multi-
spike tempotron learning rule limited to only operate inside a given
time interval that is embedded inside a larger input spike pattern.
This learning rule allows for defining overlapping target feature in-
tervals and the possibility to study learning with no, partial or full
information about target feature timing. Full information: each target
interval corresponds to one target feature, partial information: target
intervals are larger than the actual features and can overlap, no infor-
mation: all target intervals are as long as the input spike pattern, the
learning rule is then equivalent to multi-spike tempotron learning.

The auditory front-end used in the phoneme recognition task only
includes output channels that elicit a single spike for every appear-
ance of a specific temporal structure in the sound input. While some
neurons react to stimulus offset or onset, others are observed to elicit
a sustained stream of output spikes during stimulus presence (Faure
et al., 2003; Kasai, Ono, and Ohmori, 2012). The current front-end
is only sensitive to changes in the spectrogram and sustained firing
channels would augment the output with information about the cur-
rent signal strength across all frequencies and loudness levels. The in-
clusion of sustained firing output channels in the auditory front-end
should improve detection performance for phonemes that include pe-
riods of constant signal strength in some frequency channels. The
average output spike rates of these sustained channels can be up to
an order of magnitude higher than for the on- and offset detectors,
up to 50Hz (Brand, Urban, and Grothe, 2000; Faure et al., 2003; Kasai,

6.2 LIMITATIONS AND OUTLOOK

Ono, and Ohmori, 2012) instead of around o.5-2Hz. While prelimi-
nary tests that incorporated sustained channels in the front-end were
promising the stark differences in the input statistics of the synapses
caused problems with tempotron learning as well as margin learning.
The tempotron learning rules were historically designed for classifi-
cation tasks of sparse spike patterns (Giitig, 2016; Glitig and Haim
Sompolinsky, 2006). In the neuron model spikes that arrive at the
same synapse shortly after another contribute to the membrane po-
tential exactly the same as if they were arriving at different synapses.
This linearity means that the effect of a synaptic efficacy change di-
rectly scales with the amount of input spikes arriving at a synapse.
Different normalization schemes, ranging from per synapse learning
step sizes to synaptic short term plasticity, could be used to counter-
act the effects of different input statistics.

In addition to the sustained firing output channels other improve-
ments to the auditory front-end could be explored in future research.
Measurements in the auditory cortex of awake marmosets show level
invariant representations of sounds (Sadagopan and Wang, 2008). In-
cluding level as well as pitch invariant representations in the auditory
front-end could result in advantages for speech recognition since vo-
cal tracts of different sizes, mainly depending on age and sex, have
different resonant frequencies that form the basis of many speech
sounds (Hillenbrand et al., 1995).

Directly training phoneme detectors with the output of the au-
ditory front-end might also not be a good model for studying hu-
man speech processing. Direct cortical surface recordings in humans
revealed phonetic representations in the superior temporal gyrus
(Mesgarani et al., 2014). Those recordings do not show local selec-
tivity to single phonemes but instead the findings suggest a multi-
dimensional feature space for encoding acoustic parameters of speech
sounds. An intermediate layer that specializes on the detection of
these acoustic speech sounds could be added to the model. This in-
termediate layer could be trained unsupervised, as in Giitig, 2016, to
serve as a feature map for the phoneme detection in the following
layer.

The introduction of tri-phone context modeling in hidden markov
model based speech recognition machines lead to notable perfor-
mance improvements (Lopes and Perdigao, 2011; Young, 1992, also
see figure 6.1). Switching from single phonemes to training for tran-
sitions between phonemes might also lead to performance improve-
ments in our model. Additionally, modern speech recognition sys-
tems incorporate grammar models and word context information
(Lei et al., 2013) in their process, both aspects that our simple neu-
ral model lacks and would need to be implemented in a multi-layer

95

96 DISCUSSION

0.8

0.7 A

0.6 - JRy iy f

Proficicency HTK with phoneme context
o
N
1

uh

0.0&e T T T T T T T 1
00 01 02 03 04 05 06 07 0.8

Proficicency HTK without phoneme context

Figure 6.1: Proficiency results generated using the HTK speech recognition toolkit. We trained
the system with and without modeling of tri-phone contexts in the underlying hidden
markov models. The introduction of these context dependent HMMs lead to notable
improvements of speech recognition systems.

neural network to construct a system that goes further than single
phoneme detection.

Implementing spike timing dependent plasticity (STDP) as a means
to increase the margin and comparing it with the margin learning rule
could offer insight in the biological plausibility of the concept.

The margin learning rule uses only the nearest critical threshold
values 9; and ¢, in its gradient learn steps. The spike-threshold-
surface allows for many more approaches that could increase robust-
ness. One of them is the idea to not only widen the plateau of the
current output spike count but also of its multiples i.e. ¢35, and 95 ;.
The intuition being that those higher order plateaus in the spike-
threshold-surface should, if the plateau around the current spike
count is already wide, correspond to multiple spikes being elicited
for the current target feature. Initial test with these learning rules
motivate further research.

Margin learning has also prospect for unsupervised learning. Its
capability to pick up on a feature even when only limited amounts
of training examples are available and its property to increases the
detection robustness for the found feature could be a building block
for self-supervised networks. Making it a promising tool to study the
development of feature maps for sensory input streams.

6.2 LIMITATIONS AND OUTLOOK

There are some remaining issues with the margin learning rule
that require further research. How to properly include null-patterns
in the margin definition and learning rule is an open question. Also
directly using the margin distance to steer optimization does not lead
towards the optimal parameter sets with regard to generalization per-
formance. Penalizing correct and incorrectly classified training pat-
terns differently might improve the reached performance. This could
be important in situations where no solution exists that correctly clas-
sifies all training patterns. For example in the case of wrongly labeled
input data or an auditory front-end that does not provide enough in-
formation to distinguish all phonemes from each other.

97

6.2 LIMITATIONS AND OUTLOOK 99

APPENDIX

This is a list of the ARPABET used in the DARPA TIMIT Acoustic-
Phonetic Continuous Speech Corpus (TIMIT). The examples are from
the documentation of dataset (Garofolo et al., 1993).

Stops

b bee BCL B iy

d day DCL D ey

g gay GCL G ey

p pea PCL P iy

t tea TCL T iy

k key KCL K iy

dx muddy, dirty | m ah DX iy, dcl d er DX iy
q bat bcl b ae Q
Affricates ‘

jh joke | DCL JH ow kel k
ch choke | TCL CH ow kel k
Fricatives

s sea Siy

sh she SH iy

z zone | Zown

zh azure | ae ZH er

f fin Fihn

th thin TH ih n

v van Vaen

dh then | DHen

101

a

102 APPENDIX

Nasals

m mom MaaM

n noon N uw N

ng sing s ih NG

em bottom b aa tcl t EM

en button b ah q EN

eng washington | w aa sh ENG tcl t ax n
nx winner w ih NX axr
Semivowels and Glides

| lay Ley

r ray R ey

w way W ey

y yacht | Yaatclt
hh hay HH ey

hv ahead | ax HV eh dcl d
el bottle | bcl b aa tcl t EL
Vowels

iy beet bcl b IY tcl t

ih bit bcl b IH tcl t

eh bet bcl b EH tcl t

ey bait bcl b EY tcl t

ae bat bcl b AE tcl t

aa bott bcl b AA tcl t

aw bout bcl b AW tcl t

ay bite bcl b AY tcl t

ah but bcl b AH tcl t

ao bought | bcl b AO tcl t

oy boy bcl b OY

oW boat bcl b OW tcl t

uh book bcl b UH kel k

uw boot bcl b UW tcl t

ux toot tcl t UX tcl t

er bird bcl b ER dcl d

ax about AXbcl b aw tcl t

ix debit dcl d eh bel b IX tcl t

axr butter | bcl b ah dx AXR

ax-h suspect | s AX-H s pcl p eh kel k tcl t

APPENDIX 103

phoneme | hit-/fp-rate tempotron | hit-/fp-rate margin | proficiency tempotron | proficiency margin Y%
Iy 0.177/0.022 0.139/0.029 0.067 £ 0.005 0.029 £ 0.002 43%
IH 0.116/0.024 0.138/0.022 0.026 £ 0.002 0.034 £0.003 | 132%
IX 0.162/0.040 0.127/0.041 0.042 £ 0.002 0.020 £ 0.003 46%

EH 0.108/0.021 0.175/0.020 0.024 £ 0.002 0.055+£0.009 | 231%
AE 0.170/0.012 0.236/0.013 0.078 £ 0.006 0.098 £0.010 | 125%
AX 0.107/0.024 0.106/0.026 0.024 £ 0.002 0.019 £0.003 78%
AH 0.095/0.016 0.059/0.016 0.025 £ 0.003 0.011 £ 0.004 45%
AXH 0.027/0.002 0.053/0.003 0.011 £0.003 0.021 £0.006 | 200%
uw 0.042/0.003 0.042/0.004 0.015 £ 0.003 0.012 £0.003 81%
UX 0.090/0.008 0.046/0.014 0.028 £ 0.005 0.007 £ 0.003 26%
UH 0.012/0.003 0.042/0.004 0.003 4 0.001 0.012+£0.002 | 356%
AO 0.161/0.010 0.193/0.011 0.069 £ 0.006 0.074£0.009 | 108%
AA 0.152/0.010 0.258/0.010 0.066 + 0.005 0.127+£0.015 | 192%
EY 0.181/0.012 0.306/0.013 0.075 £ 0.005 0.1494+0.014 | 197%
AY 0.224/0.009 0.410/0.012 0.1144+0.011 0.2104+0.012 | 185%
oy 0.093/0.001 0.154/0.001 0.050 £ 0.009 0.085+£0.012 | 170%
AW 0.065/0.004 0.145/0.005 0.024 £ 0.004 0.056 £0.008 | 236%
ow 0.097/0.011 0.110/0.011 0.029 £ 0.004 0.033£0.005 | 113%
ER 0.159/0.010 0.191/0.011 0.063 £ 0.006 0.074+£0.007 | 116%
AXR 0.092/0.016 0.060/0.016 0.022 £ 0.002 0.012 £0.003 53%
L 0.159/0.022 0.204/0.024 0.056 £ 0.003 0.0624+0.005 | 111%
EL 0.084/0.005 0.162/0.005 0.032 £ 0.005 0.075+£0.006 | 237%
R 0.185/0.025 0.301/0.023 0.074 £ 0.007 0.1294+0.007 | 173%
W 0.221/0.011 0.218/0.009 0.107 £0.011 0.102 £ 0.006 95%
Y 0.032/0.006 0.118/0.008 0.009 % 0.002 0.040 £0.006 | 448%
M 0.136/0.017 0.107/0.022 0.045 £ 0.003 0.022 £ 0.003 49%
EM 0.000/0.001 0.000/0.001 0.000 £ 0.000 0.000 4 0.000 | 200%
N 0.163/0.037 0.120/0.035 0.043 £ 0.002 0.019 £0.003 43%
EN 0.017/0.003 0.029/0.006 0.005 £ 0.002 0.010 £0.004 | 198%
NX 0.041/0.004 0.068/0.004 0.012 £ 0.002 0.023 £0.004 | 193%
NG 0.007/0.008 0.007/0.009 0.001 £ 0.000 0.001 +£ 0.000 82%
ENG 0.000/0.000 0.000/0.000 0.000 £ 0.000 0.000 £0.000 | 237%
A% 0.073/0.013 0.038/0.014 0.016 £ 0.002 0.004 + 0.001 27%

F 0.269/0.009 0.458/0.011 0.156 +0.013 0.258 £0.011 | 164%
DH 0.097/0.018 0.260/0.013 0.024 £ 0.005 0.108 £0.005 | 445%
TH 0.034/0.004 0.101/0.006 0.012 £0.004 0.036 £0.007 | 292%
4 0.235/0.017 0.344/0.017 0.117+0.013 0.158 £0.011 | 135%

S 0.364/0.017 0.577/0.014 0.243 £0.013 0.366 £0.016 | 150%
ZH 0.011/0.001 0.074/0.001 0.006 £ 0.004 0.035+£0.009 | 541%
SH 0.437/0.003 0.462/0.003 0.323 £0.018 0.318 £ 0.006 98%
JH 0.182/0.005 0.379/0.005 0.103 +0.021 0.2214+0.021 | 213%
CH 0.249/0.003 0.460/0.004 0.158 £0.019 0.303£0.019 | 191%
B 0.268/0.011 0.542/0.008 0.155 £ 0.021 0.3494+0.012 | 225%

P 0.284/0.012 0.498/0.009 0.155 £ 0.021 0.304 £0.014 | 195%

D 0.069/0.016 0.212/0.020 0.014 £0.003 0.065+0.005 | 478%
DX 0.072/0.012 0.033/0.012 0.016 £ 0.002 0.009 + 0.003 53%
T 0.258/0.020 0.417/0.015 0.111 £ 0.008 0218 £0.013 | 195%

G 0.039/0.008 0.234/0.008 0.009 £ 0.002 0.120+0.019 | 1376%

K 0.198/0.020 0.390/0.018 0.078 £0.012 0.1854+0.012 | 238%
HH 0.066/0.005 0.154/0.006 0.022 £ 0.004 0.066 £0.009 | 304%
HV 0.064/0.004 0.101/0.005 0.023 £ 0.004 0.038 £0.006 | 167%
Q 0.126/0.018 0.229/0.021 0.034 4 0.003 0.073£0.004 | 215%

BIBLIOGRAPHY

Bear, Mark F, Barry W Connors, and Michael A Paradiso (2007). Neu-
roscience. Vol. 2. Lippincott Williams & Wilkins.

Bi, Guo-qiang and Mu-ming Poo (1998). “Synaptic modifications
in cultured hippocampal neurons: dependence on spike timing,
synaptic strength, and postsynaptic cell type.” In: Journal of neu-
roscience 18.24, pp. 10464-10472.

Block, Hans-Dieter (1962). “The perceptron: A model for brain func-
tioning.” In: Reviews of Modern Physics 34.1, p. 123.

Brand, Antje, Reas Urban, and Benedikt Grothe (2000). “Duration tun-
ing in the mouse auditory midbrain.” In: Journal of Neurophysiol-
08y 84.4, pp. 1790-1799.

Brent, Richard P. (1971). “An algorithm with guaranteed convergence
for finding a zero of a function.” In: The Computer Journal 14.4,
Pp- 422-425.

Casseday, JH and Ellen Covey (1992). “Frequency tuning properties
of neurons in the inferior colliculus of an FM bat.” In: Journal of
Comparative Neurology 319.1, pp. 34—50.

Casseday, JH, D Ehrlich, E Covey, et al. (1994). “Neural tuning for
sound duration: role of inhibitory mechanisms in the inferior col-
liculus.” In: Science 264.5160, pp. 847-849.

Chen, Guang-Di (1998). “Effects of stimulus duration on responses of
neurons in the chinchilla inferior colliculus.” In: Hearing research
122.1, pp. 142-150.

Churchland, PS. and TJ. Sejnowski (1988). “Perspectives on cognitive
neuroscience.” In: Science.

Cortes, Corinna and Vladimir Vapnik (1995). “Support-vector net-
works.” In: Machine learning 20.3, pp- 273—297.

Cristianini, Nello and John Shawe-Taylor (2000). An introduction to
support vector machines and other kernel-based learning methods. Cam-
bridge university press.

Dayan, Peter and Laurence F Abbott (2001). Theoretical neuroscience.
Vol. 806. Cambridge, MA: MIT Press.

Dekker, T] (1969). “Finding a zero by means of successive linear in-
terpolation.” In: Constructive aspects of the fundamental theorem of
algebra, pp. 37-51.

Egorova, Marina, Giinter Ehret, Inna Vartanian, and Karl-Heinz Esser
(2001). “Frequency response areas of neurons in the mouse infe-
rior colliculus. I. Threshold and tuning characteristics.” In: Exper-
imental brain research 140.2, pp. 145-161.

105

106

BIBLIOGRAPHY

Ehrlich, Daphna, John H Casseday, and Ellen Covey (1997). “Neu-
ral tuning to sound duration in the inferior colliculus of the big
brown bat, Eptesicus fuscus.” In: Journal of Neurophysiology 77.5,
pp- 2360-2372.

Faure, Paul A, Thane Fremouw, John H Casseday, and Ellen Covey
(2003). “Temporal masking reveals properties of sound-evoked
inhibition in duration-tuned neurons of the inferior colliculus.”
In: Journal of Neuroscience 23.7, pp. 3052-3065.

Florian, Razvan V (2012). “The chronotron: a neuron that learns to
fire temporally precise spike patterns.” In: PloS one 7.8, e40233.

Fuzessery, ZM and JC Hall (1999). “Sound duration selectivity in the
pallid bat inferior colliculus.” In: Hearing research 137.1, pp. 137-
154.

Fuzessery, Zoltan M (1994). “Response selectivity for multiple dimen-
sions of frequency sweeps in the pallid bat inferior colliculus.” In:
Journal of neurophysiology 72.3, pp. 1061-1079.

Galazyuk, Alexander V and Albert S Feng (1997). “Encoding of sound
duration by neurons in the auditory cortex of the little brown bat,
Myotis lucifugus.” In: Journal of Comparative Physiology A 180.4,
pp- 301-311.

Garofolo, J. S., L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett,
and N. L. Dahlgren (1993). DARPA TIMIT Acoustic Phonetic Con-
tinuous Speech Corpus CDROM. URL: http://www.ldc.upenn.edu/
Catalog/LDC93S1.html.

Ghosh-Dastidar, Samanwoy and Hojjat Adeli (2009). “A new super-
vised learning algorithm for multiple spiking neural networks
with application in epilepsy and seizure detection.” In: Neural
networks 22.10, pp. 1419-1431.

Giitig, Robert (2016). “Spiking neurons can discover predictive fea-
tures by aggregate-label learning.” In: Science 351.6277. 1SSN: 0036-
8075. DOI: 10.1126/science. aab4113. eprint: http://science.
sciencemag.org/content/351/6277/aab4113. full. pdf. URL:
http://science.sciencemag.org/content/351/6277/aab4113.

Giitig, Robert, Tim Gollisch, Haim Sompolinsky, and Markus Meister
(2013). “Computing complex visual features with retinal spike
times.” In: PLoS One 8.1, €53063.

Giitig, Robert and Haim Sompolinsky (2006). “The tempotron: a neu-
ron that learns spike timing-based decisions.” In: Nature neuro-
science 9.3, p. 420.

Giitig, Robert and Haim Sompolinsky (2009). “Time-warp—invariant
neuronal processing.” In: PLoS biology 7.7, €1000141.

Harrison, Robert V (2001). “Age-related tonotopic map plasticity in
the central auditory pathways.” In: Scandinavian Audiology 30.2,
pp. 8-14.

Hebb, D.O. (1949). The Organization of Behavior. Wiley.

http://www.ldc.upenn.edu/Catalog/LDC93S1.html
http://www.ldc.upenn.edu/Catalog/LDC93S1.html
https://doi.org/10.1126/science.aab4113
http://science.sciencemag.org/content/351/6277/aab4113.full.pdf
http://science.sciencemag.org/content/351/6277/aab4113.full.pdf
http://science.sciencemag.org/content/351/6277/aab4113

BIBLIOGRAPHY

Hertz, John A, Anders S Krogh, and Richard G Palmer (1991). Intro-
duction to the theory of neural computation. Vol. 1. Basic Books.
Hillenbrand, James, Laura A Getty, Michael] Clark, and Kimber-
lee Wheeler (1995). “Acoustic characteristics of American English
vowels.” In: The Journal of the Acoustical society of America 97.5,

Pp- 3099-3111.

Hinton, G. E., J. L. McClelland, and D. E. Rumelhart (1986). “Dis-
tributed representations.” In: Parallel distributed processing: explo-
rations in the microstructure of cognition, vol. 1 (MIT Press).

Hopfield, J. J. (1982). “Neural networks and physical systems with
emergent collective computational abilities.” In: Proceedings of the
national academy of sciences 79.8.

Hopfield, John J and Carlos D Brody (2000). “What is a moment? "Cor-
tical" sensory integration over a brief interval.” In: Proceedings of
the National Academy of Sciences 97.25, pp. 13919—-13924.

Jen, PH-S and RB Feng (1999). “Bicuculline application affects dis-
charge pattern and pulse-duration tuning characteristics of bat
inferior collicular neurons.” In: Journal of Comparative Physiology
A 184.2, pp. 185-194.

Jones, Eric, Travis Oliphant, Pearu Peterson, et al. (2001). SciPy: Open
source scientific tools for Python. URL: http://www.scipy.org/.
Kasai, Masatoshi, Munenori Ono, and Harunori Ohmori (2012). “Dis-
tinct neural firing mechanisms to tonal stimuli offset in the in-
ferior colliculus of mice in vivo.” In: Neuroscience research 73.3,

Pp- 224-237.

Le Mouel, Charlotte, Kenneth D Harris, and Pierre Yger (2014). “Su-
pervised learning with decision margins in pools of spiking neu-
rons.” In: Journal of computational neuroscience 37.2, pp- 333—344-

Lei, Xin, Andrew W Senior, Alexander Gruenstein, and Jeffrey
Sorensen (2013). “Accurate and compact large vocabulary speech
recognition on mobile devices.” In: Interspeech. Vol. 1.

Lopes, Carla and Fernando Perdigao (2011). “Phoneme recognition
on the TIMIT database.” In: Speech Technologies. InTech.

Markram, Henry, Joachim Liibke, Michael Frotscher, and Bert Sak-
mann (1997). “Regulation of synaptic efficacy by coincidence of
postsynaptic APs and EPSPs.” In: Science 275.5297, pp. 213-215.

McCulloch, Warren S and Walter Pitts (1943). “A logical calculus of
the ideas immanent in nervous activity.” In: The bulletin of mathe-
matical biophysics 5.4, pp. 115-133.

Memmesheimer, Raoul-Martin, Ran Rubin, Bence P Olveczky, and
Haim Sompolinsky (2014). “Learning precisely timed spikes.” In:
Neuron 82.4, pp. 925-938.

Mesgarani, Nima, Connie Cheung, Keith Johnson, and Edward F
Chang (2014). “Phonetic feature encoding in human superior tem-
poral gyrus.” In: Science 343.6174, pp. 1006—1010.

107

http://www.scipy.org/

108

BIBLIOGRAPHY

Novikoff, A. B.]. (1962). “On convergence proofs for perceptrons.”
In: Proceedings of the Symposium on the Mathematical Theory of Au-
tomata, pp. 615-620.

Perez-Gonzalez, David, Manuel S Malmierca, Jodan M Moore, Olga
Hernandez, and Ellen Covey (2006). “Duration selective neurons
in the inferior colliculus of the rat: topographic distribution and
relation of duration sensitivity to other response properties.” In:
Journal of neurophysiology 95.2, pp. 823-836.

Perrett, DI, Edmond T Rolls, and W Caan (1982). “Visual neurones
responsive to faces in the monkey temporal cortex.” In: Experi-
mental brain research 47.3, pp. 329-342.

Phillips, Dennis P, SE Hall, and SE Boehnke (2002). “Central auditory
onset responses, and temporal asymmetries in auditory percep-
tion.” In: Hearing research 167.1, pp. 192—205.

Pinheiro, A Daniel, Min Wu, and Philip H-S Jen (1991). “Encoding
repetition rate and duration in the inferior colliculus of the big
brown bat, Eptesicus fuscus.” In: Journal of Comparative Physiology
A 169.1, pp. 69-85.

Ponulak, Filip and Andrzej Kasifiski (2010). “Supervised learning in
spiking neural networks with ReSuMe: sequence learning, classi-
fication, and spike shifting.” In: Neural Computation 22.2, pp. 467-
510.

Potter, H David (1965). “Patterns of acoustically evoked discharges
of neurons in the mesencephalon of the bullfrog.” In: Journal of
Neurophysiology 28.6, pp. 1155-1184.

Press, William H (2007). Numerical recipes 3rd edition: The art of scientific
computing. Cambridge university press.

Quiroga, R Quian, Leila Reddy, Gabriel Kreiman, Christof Koch, and
Itzhak Fried (2005). “Invariant visual representation by single
neurons in the human brain.” In: Nature 435.7045, pp. 1102-1107.

Rosenblatt, Frank (1958). “The perceptron: A probabilistic model for
information storage and organization in the brain.” In: Psycholog-
ical review 65.6, p. 386.

Rubin, R., L. F. Abbott, and H. Sompolinsky (May 2017). “Balanced
Excitation and Inhibition are Required for High-Capacity, Noise-
Robust Neuronal Selectivity.” In: ArXiv e-prints. arXiv: 1705 .
01502 [g-bio.NC].

Rubin, Ran, Rémi Monasson, and Haim Sompolinsky (2010). “Theory
of spike timing-based neural classifiers.” In: Physical review letters
105.21, p. 218102.

Ruggero, Mario A (1992). “Physiology and coding of sound in the
auditory nerve.” In: The mammalian auditory pathway: Neurophysi-
ology. Springer, pp. 34-93.

Rumelhart, David E, Geoffrey E Hinton, Ronald] Williams, et al.
(1988). “Learning representations by back-propagating errors.”
In: Cognitive modeling 5.3, p. 1.

https://arxiv.org/abs/1705.01502
https://arxiv.org/abs/1705.01502

BIBLIOGRAPHY

Sadagopan, Srivatsun and Xiaoqin Wang (2008). “Level invariant rep-
resentation of sounds by populations of neurons in primary au-
ditory cortex.” In: Journal of Neuroscience 28.13, pp. 3415—3426.

Schwartz, Eric L, Robert Desimone, Thomas D Albright, and Charles
G Gross (1983). “Shape recognition and inferior temporal neu-
rons.” In: Proceedings of the National Academy of Sciences 80.18,
pp- 5776-5778.

Seung, H Sebastian (2003). “Learning in spiking neural networks
by reinforcement of stochastic synaptic transmission.” In: Neuron
40.6, pp. 1063-1073.

Shannon, Claude E and Warren Weaver (1998). The mathematical theory
of communication. University of Illinois press.

Shore, S. E. (2010). “Auditory/Somatosensory Interactions.” In:
Encyclopedia of Neuroscience. Elsevier Ltd, pp. 691-699. ISBN:
9780080450469. DOI: 10.1016/B978-008045046-9.00268- 0.

Stevens, Stanley Smith, John Volkmann, and Edwin B Newman (1937).
“A scale for the measurement of the psychological magnitude
pitch.” In: The Journal of the Acoustical Society of America 8.3,
pp- 185-190.

Theil, Henri (1970). “On the estimation of relationships involv-
ing qualitative variables.” In: American Journal of Sociology 76.1,
pp- 103-154-

Vapnik, Vladimir N and Alexey] Chervonenkis (1974). “Theory of
pattern recognition.” In: Statistical Learning Problems.

Vapnik, Vladimir and Alexey Chervonenkis (1964). “A note on one
class of perceptrons.” In: Automation and remote control 25.1, p. 103.

Villarreal, Desiree M, Viet Do, Evelyn Haddad, and Brian E Der-
rick (2002). “NMDA receptor antagonists sustain LTP and spatial
memory: active processes mediate LTP decay.” In: Nature neuro-
science 5.1.

Wright, Stephen] (2015). “Coordinate descent algorithms.” In: Mathe-
matical Programming 151.1, pp. 3—34-

Xu, Yan, Xiaogin Zeng, and Shuiming Zhong (2013). “A new super-
vised learning algorithm for spiking neurons.” In: Neural compu-
tation 25.6, pp. 1472—1511.

Young, Steve] (1992). “The general use of tying in phoneme-based
HMM speech recognisers.” In: Acoustics, Speech, and Signal Process-
ing, 1992. ICASSP-92., 1992 IEEE International Conference on. Vol. 1.

IEEE, pp. 569-572.

109

https://doi.org/10.1016/B978-008045046-9.00268-0

ACKNOWLEDGMENTS

Without the support and help from quite a lot of people this thesis
would have not been possible. Here is my attempt at an incomplete
list:

First of all I have to thank my supervisor Robert Giitig for tak-
ing me into his research group and always pushing me to strive for
deeper understanding and more clarity.

Then my thesis committee members Theo Geisel and Fred Wolf.
Both of which always offered constructive criticism and discussions.
I especially want to thank Theo for supporting me through all these
years and encouraging me to continue towards a PhD.

Christian and Denny for keeping the desktop computers and com-
pute clusters alive and running while I tried my best to test their lim-
its. Without their care for the infrastructure I would still be waiting
for my simulations to finish.

Julia for making the research group more social and for the many
needed breaks, discussions and non-research related activities. The
chocolate and ice-coffee consumption severely dropped after you left
- which is never a good sign.

Dennis, Manuel, Ali and Liam for countless lunch breaks, conver-
sations, discussions and diverse other nerdy enterprises.

Jan, Sebastian and Peter for always having an open ear for me,
giving me advice and offering distractions.

My family. Especially my parents, for always supporting, encour-
aging and believing in me. I would not be here without all of you.

And finally my girlfriend Nadine. Without you at my side, your
mental support, survival packages and the prospect of spending more
time with you all of this would have been much harder.

CURRICULUM VITAE

RAFAEL BRUNE

18.09.1983 Born in Géttingen, Germany

EDUCATION

8/2003-7/2008 Studies in Physics
at Georg-August-University Gottingen, Germany

7/2008 Graduated with Diplom in physics
“A Stochastic Model for Panic Behaviour in Disease Dynamics’

from Georg-August-University Gottingen, Germany

7/2008-3/2012 Research scholar in the group on complex systems (RoCS)

at Northwestern University, Evanston, IL, USA

4/2012-11/2013 Scientific programmer
with Dr. Robert Giitig
at MPI for Experimental Medicine

since 11/2013 PhD student
with Dr. Robert Giitig
in the program Theoretical and Computational Neuroscience

at Georg-August-University Gottingen, Germany

PUBLICATIONS

2010 "The structure of borders in a small world."
Thiemann, C., Theis, E, Grady, D., Brune, R. and Brockmann, D.
PloS one, 5(11), p.e15422

2012 "Modularity maximization and tree clustering: Novel ways to
determine effective geographic borders."
Grady, D., Brune, R., Thiemann, C., Theis, F. and Brockmann, D.
In Handbook of optimization in complex networks (pp. 169-208), Springer US

	Declaration
	Abstract
	Contents
	List of Figures

	1 Introduction
	1.1 Classification Tasks and Neuron Model Framework
	1.2 Thesis Structure

	2 Methods
	2.1 Neuron Models
	2.1.1 McCulloch-Pitz Model
	2.1.2 Integrate-and-Fire Neuron

	2.2 Perceptron Learning
	2.3 Linear Support Vector Machines
	2.3.1 Soft-Margin

	2.4 Aggregate-Label Learning
	2.4.1 Spike-Threshold-Surface
	2.4.2 Multi-Spike Tempotron Learning Rule
	2.4.3 * Gradient
	2.4.4 Neuron Parameters and Momentum Term
	2.4.5 Pre-Training of the Neuron

	2.5 Feature Detection Tasks
	2.5.1 Synthetic Embedded Features Task
	2.5.2 Phoneme Detection Task

	2.6 Phoneme Recognition Test Evaluation
	2.6.1 Proficiency

	2.7 Parameter Optimization

	3 Learning from Segmented Input Patterns
	3.1 Limitations of Existing Learning Rules
	3.2 A Novel Learning Rule for Segmented Training Data
	3.3 Voltage Gradient

	4 Tempotron Learning with Margin
	4.1 Margin in the Spike-Threshold-Surface
	4.2 Comparison with Stochastic Margin Learning
	4.3 Noise Robustness
	4.4 Weight Decay and Rescaling
	4.5 Generalization Performance under Optimal Margin Learning Parameters
	4.6 Margin Based Optimization

	5 Application to Speech Recognition
	5.1 Auditory Brain-Stem Model
	5.1.1 Typical Responses of Auditory Neurons
	5.1.2 Auditory Front-End

	5.2 Phoneme Recognition Task
	5.3 Generalization Performance and Front-End Dimension
	5.4 General Performance Improvement
	5.5 Weight Vector Regularization

	6 Discussion
	6.1 Margin Learning for Spiking Neuron Models
	6.1.1 Biological Plausibility

	6.2 Limitations and Outlook

	a Appendix
	Bibliography
	Acknowledgments
	Curriculum Vitae

