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Multidimensional Cross-Recurrence Quantification Analysis (MdCRQA) – A
Method for Quantifying Correlation between Multivariate Time-Series

Sebastian Wallot

Department of Language and Literature, Max Planck Institute for Empirical Aesthetics

ABSTRACT
In this paper, Multidimensional Cross-Recurrence Quantification Analysis (MdCRQA) is intro-
duced. It is an extension of Multidimensional Recurrence Quantification Analysis (MdRQA),
which allows to quantify the (auto-)recurrence properties of a single multidimensional time-
series. MdCRQA extends MdRQA to bi-variate cases to allow for the quantification of the
co-evolution of two multidimensional time-series. Moreover, it is shown how a Diagonal Cross-
Recurrence Profile (DCRP) can be computed from the MdCRQA output that allows to capture
time-lagged coupling between two multidimensional time-series. The core concepts of these
analyses are described, as well as practical aspects of their application. In the supplementary
materials to this paper, implementations of MdCRQA and the DCRP as MatLab- and R-func-
tions are provided.
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Introduction

Cross-Recurrence Quantification Analysis (CRQA) is a
nonlinear correlational analysis technique that has
become increasingly prominent in psychological
research. What makes it attractive is, that it can be used
to analyze nominal and interval-scale data (Dale,
Warlaumont, & Richardson, 2011), that it makes very
few assumptions (i.e., no assumptions about linearity or
distribution type), and is very robust against outliers
(Fusaroli, Konvalinka, & Wallot, 2014; Marwan,
Romano, Thiel, & Kurths, 2007; Shockley, 2005).
Additionally, CRQA results in multiple output variables
that allow a detailed description of the co-evolution of
two signals (Marwan et al., 2007; Webber & Zbilut,
2005). Accordingly, CRQA has become a prominent tool
to assess correlation – or coupling – in research settings
that investigate variables with complex dynamics.

Particularly, applications of CRQA have been very
prominent in joint action research, investigating cou-
pling of behavioral and physiological measures
between interacting participants over longer stretches
of time or in complex task setups. For example,
CRQA has been used to investigate behavioral (Abney,
Paxton, Dale, & Kello, 2015; Fusaroli & Tyl�en, 2016)

and physiological markers (Mønster, Håkonsson,
Eskildsen, & Wallot, 2016) during group action, joint
physiological arousal during fire ritual performance
(Konvalinka et al., 2011), facial movements and gesture
(Louwerse, Dale, Bard, & Jeuniaux, 2012), eye move-
ments (Dale, Kirkham, & Richardson, 2011; Richardson
& Dale, 2005; Warlaumont et al., 2010), and postural
sway during conversation and interpersonal coordination
(Shockley, Baker, Richardson, & Fowler, 2007; Shockley,
Santana, & Fowler, 2003), speech properties of infants
and care givers (Abney, Warlaumont, Oller, Wallot, &
Kello, 2017), interlocutors during conversation (Coco,
Dale, & Keller, 2018; Fusaroli & Tyl�en, 2016), or joint
gaze behavior of mothers and infants (Nomikou,
Leonardi, Rohlfing, & Rączaszek-Leonardi, 2016).

However, some behaviors are inherently multivariate –
such as position measurements of eye movements, hand
and arm movements, or facial muscle movements, for
example. All of these have been investigated using
CRQA, but conventional Cross-Recurrence Quantification
Analysis can only be used to compute coupling of one-
dimensional time-series. Thus far, this limited the analysis
of inherently multivariate time-series to the analysis of
coupling of their individual components.
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For example, Louwerse et al. (2012) measured 15
features of hand and face movements (such as laugh-
ing, tightening of lips, raising eye brows, etc.) to
investigate coupling of facial movements during con-
versation, but due to the constraints of CRQA, ana-
lysis needed to be restricted to coupling of individual
features, and computation of whole-face-movement
coupling across multiple features was not possible.

In this paper, I present an extension of CRQA –
Multidimensional Cross-Recurrence Quantification
Analysis (MdCRQA) – that generalized CRQA to the
application of multivariate time-series. In effect,
MdCRQA is the cross-recurrence version of
Multidimensional Recurrence Quantification Analysis
(MdRQA – Wallot, Roepstorff, & Mønster, 2016).
Particularly, the strength of the method is to provide a
unified quantification for two time-series with multiple,
potentially interacting dimensions. Moreover, it allows to
properly assess follow-leader dynamics between two mul-
tidimensional time-series particularly in contexts where
changes in one dimension of the leading time-series are
responded to by changes in another dimension of the fol-
lowing time-series, or where changes are distributed over
multiple dimensions simultaneously in both time-series.

In the following sections, the concepts of recur-
rence and cross-recurrence are introduced, which are
at the heart of the analysis technique. Then, estima-
tion of parameters in recurrence analyses is briefly
introduced. Finally, MdCRQA and its application to
model systems and empirical data are described. In
the Appendix to this paper, Matlab and R functions
implementing MdCRQA are provided. These

languages were chosen, because two well-developed
toolboxes exist to conduct CRQA - the “crqa” package
in R (Coco & Dale, 2014) and the “CRP-Toolbox” in
Matlab (Marwan, 2017), and are supposedly the most
widely used languages for these applications.

Recurrence and cross-recurrence

As the name implies, the core-concept of recurrence-
based analyses is recurrence – repetition of elements
or patterns in a sequence. The core tool of these anal-
yses is the recurrence plot or recurrence matrix, which
is a means of displaying and charting repetitions in a
sequence. As we will see further in the following sec-
tions, the analyses are usually not performed on the
original one-dimensional sequence or time-series, but
on its phase-space portrait. However, how the recur-
rence plot (RP) captures recurrences in a sequence
can be easily shown using a simple one-dimensional
nominal sequence, “ABCDDABCDD” (Figure 1a).

Similarly, we can examine cross-recurrences between
two sequences with each other, as in Figure 1b. While the
RP in Figure 1a possesses a diagonal of recurrent points
(which simply means that every element in the sequence
is recurrent with itself at lag 0), the cross-recurrence plot
(CRP) in Figure 1b does not possess such a diagonal.
Moreover, while the RP is fully symmetrical about its
main diagonal, this is not the case for the CRP.

The CRP is not just a useful tool to display the
sequential properties of a series, but can be used to
quantify these properties. For example, counting the
recurrent points (i.e., the black squares in Figure 1b)
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Figure 1. Illustration of recurrence of letters in the sequence “ABCDDABCDD” (a), and cross-recurrence of letters in the sequence
“ABCDDABCDD” with “DDEFGABCDD” (b). The black dots in the matrices indicate the recurrence of a letter, and white spaces indi-
cate the absence of recurrence. The distribution of recurrent points on the recurrence plot can be quantified to yield statistics of
the repetitive patterns in a sequence.
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in a CRP tells us something about how many individ-
ual elements between two sequences are shared, and
we refer to this quantity as percent recurrence (REC).
Counting all recurrent points that have diagonally
adjacent recurrent points and dividing them by REC
tells us something about the degree to which elements
between the two sequences repeat in terms of larger,
connected patterns, which is referred to as percent
determinism (DET). Counting the average length of
all diagonally adjacent lines of recurrent points tells us
something about the average size of the repeated pat-
terns (Average Diagonal Line, ADL).

There are many ways to quantify recurrence structure
on a CRP, and Table 1 charts only the most common
measures and their definition. Concretely, calculating
cross-recurrence measures from the CRP in Figure 1b is
done as follows: We observe 22 instances of recurrence
(i.e., where a letter in the sequence on the x-axis is
repeated in the sequence on the y-axis) out of 100 possi-
ble (i.e., the size of the CRP matrix). Hence, REC¼ 22/
100¼ 0.22¼ 22%, indicating that individual values
cross-recur in 22%. For DET, we find that 14 out of our
22 recurrences form diagonally adjacent recurrence pat-
terns (i.e., two diagonal lines of length 5, and two diag-
onal lines of length 2). Hence, DET¼ 14/
22¼ 0.64¼ 63.6%. This tells us, that a disproportional
amount of the individual cross-recurrences between the
two series are actually shared in terms of longer trajecto-
ries of values. Finally, ADL and MDL provide further
information on the length of these trajectories, where
average length is ADL¼ (2þ 2þ 5þ 5)/4¼ 3.5, and
maximum length is MDL¼ 5. In general, the higher the
values on each of these measures, the stronger the cou-
pling between the two time-series.

In the following section, we will apply the basic con-
cept of recurrence and the CRP to multidimensional
time-series, where the correlation of the common
dynamics of two (or more) dimensional time-series are
of interest. Before that, however, we will introduce the
basic steps of parameter estimation that are necessary to
conduct recurrence-based analyses, using simple CRQA
as an example of how to reconstruct the multidimen-
sional phase-space of a one-dimensional time-series, on
which the CRP is computed.

Parameter estimation

For continuous data, particularly for time-series with
strong deterministic dynamics, CRPs are usually not
computed based on the values of the (one-dimensional)
time-series per se (as the example in Figure 1), but on
the so-called phase-space portrait of the time-series.
Calculation of the phase-space portrait is performed to
mitigate distortions in the recurrence patterns resulting
from projection of the data from a potentially high-
dimensional system onto the one-dimensional measure-
ment – that is, the autocorrelation structure of a meas-
ured time-series can potentially hold information about
other latent variables that determine the dynamics of
the time-series (Takens, 1981).

One-way reconstruction of a multidimensional
phase-space from a one-dimensional time-series is the
method of time-delayed embedding (Packard,
Crutchfield, Farmer, & Shaw, 1980). If the dynamics
of latent variables that co-determine the dynamics of
an observed one-dimensional time-series are coupled,
then one can reconstruct the dynamics of these latent
dimensions from the observed one-dimensional time-
series by effectively plotting the values of that time-
series (multiple times) against itself at a certain lag.
The resulting coordinates in higher dimensional
phase-space approximate the phase-space of the actual
multidimensional system from which the original
time-series was recorded.

In order to apply the method of time-delayed
embedding, two parameters are needed: the delay
parameter s, which is the lag at which the time-series
is plotted against itself, and the embedding dimension
parameter D, where D – 1 is the number of times that
the time-series is plotted against itself. If these two
parameters are known, the original phase-space from
which one-dimensional data were sampled can be
approximately reconstructed. However, these parame-
ters are usually unknown for empirical time-series
data and have to be estimated.

Two standard methods to estimate these parame-
ters in one-dimensional time-series are the computa-
tion of the Average Mutual Information (AMI)
function and the False Nearest Neighbor (FNN) func-
tion, where the first local minima of those functions

Table 1. The most common CRQA measures.
Variable name Definition Quantifies…

Percent recurrence (REC) Sum of recurrent points in CRP / Size of CRP Repetitiveness of the elements
between sequences.

Percent determinism (DET) Sum of diagonally adjacent recurrent points / Sum
of recurrent points in CRP

How many of cross-repetitions occur in connected
trajectories.

Average diagonal line length (ADL) Average diagonal lines in CRP How long the average cross-repeating trajectory is.
Maximum diagonal line length (MDL) Length of longest diagonal line in CRP How long the longest cross-repeating trajectory is.

Further RQA measures exist, and others are being developed – for the description of additional measure, see for example Marwan et al. (2007).
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(or the point at which those functions level-off) are
indicative of the delay and embedding dimension
(Abarbanel, 1996; Kennel et al., 1992).

To estimate these parameters, the following proce-
dure has been advocated (Marwan et al., 2007): first, in
order to estimate the delay parameter s, the AMI-func-
tion for each of the two time-series is computed over a
range of lags. The lag of the first local minimum of that
function is used as an estimate for the delay parameter
s for each time-series. Because one has to choose a sin-
gle value s for both time-series to conduct CRQA, the
usual approach is to take the average lag at the first local
minima of the two time-series (rounded to the next
integer value) or the bigger lag of the two, because
higher parameter values usually do not substantially
impact the results.

Then, the embedding dimension D is estimated by
subjecting the two time-series – again separately – to
the FNN-function, and investigate their FNN-func-
tions over a range of embeddings. Similarly, the esti-
mation of the delay parameter s, one uses the first
local minimum – or the first point at which the FNN-
function becomes stable – as an estimate for D.
Again, because one can only set a single value for D
in CRQA, one has to take the average (or higher)
value of the two estimates. Figure 2 graphically illus-
trates the process of parameter estimation using a sine
wave and a trending sine wave as examples.

For non-categorical data, one also has to estimate a
threshold parameter r that is the size of the neighbor-
hood in phase-space, which effectively provides a tol-
erance range within with similar, but not identical,

Figure 2. Illustration of the parameter estimation process with Average Mutual Information (AMI) and False Nearest-Neighbors
(FNN) using a sine wave (a) and a sine wave with a linear trend (b) as an example. The data of the sine wave (a) is first subjected
the AMI-function, examining the change in AMI for the first 50 lags. The first local minimum of the function is around 15, hence
s¼ 15 would be the estimate for the delay parameter for the first time-series (a). Then, the data is subjected to the FNN-function
using s¼ 15 and examining the first 10 embedding dimensions. Here, the first local minimum – or more precisely, the point at
which the function becomes stable is clearly 2. Hence, D¼ 2 would be the estimate for the embedding dimension parameter.
Thereafter, these steps are separately taken for the second time-series (d). Here, the AMI- and FNN-functions suggest parameter
estimates of s¼ 22 and D¼ 2 or 3. Hence, to subject these time-series to CRQA, the parameter combination of s¼ 18 and D¼ 2
(average) or s¼ 22 and D¼ 3 (maximum) seem reasonable choices.
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coordinates in phase-space are counted as recurrent.
This is necessary, because empirical data – due to
endogenous fluctuations or measurement error – are
never perfectly repetitive. The higher the value for r,
the higher the percentage of recurrence points (REC –
see Table 1). Hence, r must be selected to yield lower
than 100%, but more than 0% REC, because otherwise
the recurrence measures cannot be sensibly computed.
As a rule of thumb, Webber and Zbilut (2005) recom-
mend an average REC of �1% for well-sampled phys-
iological data with a high signal-to-noise ratio, and
REC¼ 2–5% for behavioral data, thought certain kinds
of data (i.e., inter-event-times such as time-series of
reaction times) might warrant REC �20% (Wallot,
O’Brien, and Van Orden, 2012).

There are also algorithmic methods for choosing
“optimal” parameters (Coco & Dale, 2014), but the
author advises users to also inspect the AMI- and
FNN-functions as briefly described above in order to
check for the sensibility of such solutions.

Figure 3 provides a schematic overview over the
embedding procedure and the application of the
threshold parameter r to transform a phase-space into
a CRP. It is beyond the scope of the current paper to
discuss all potential pitfalls and special cases of the
parameter estimation procedure. However, the param-
eter estimation procedures and best practice have
been described elsewhere in detail, and readers are
referred to practical introductions for existing software
packages that provide estimation methods using R
(Wallot, 2017; Wallot & Leonardi, 2018) or Matlab
(Wallot & Grabowski, 2018).

Before we proceed to the introduction of
Multidimensional Cross-Recurrence Quantification
Analysis (MdCRQA), one last note is in order about
parameter selection for time-series with multiple
dimensions, as we will be dealing with using
MdCRQA. If we are interested in analyzing the cross-
recurrence properties of two time-series with more
than one dimension each, such a set of measured
dimensions could boast yet-higher dimensional
dynamics than the two (or more) measured dimen-
sions at hand. Then, it would still be necessary to
infer the appropriate dimensionality and reconstruct
the phase-space by the method of time-delayed
embedding (Takens, 1981). Here, one can start by
assessing the delay and embedding parameters from
the individual dimensions of the time-series that are
eventually fed to MdCRQA using the methods of
parameter estimation for one-dimensional time-series
and apply them to each constituent dimension of each
time-series.

That is, before running MdCRQA between two
time-series, one can test each time-series’ individual
dimension’s embedding parameters. If the average
estimated dimensionality D – using the FNN method
– of the individual dimensions for each time-series is
estimated to be equal or lower to the dimensionality d
of the multidimensional time-series, then potentially
no further embedding is necessary. If the average esti-
mated dimensionality D is substantially higher than d,
one could embed the multidimensional time-series
before computing the MdCRP (Wallot, Roepstorff, &
Mønster, 2016).

For example, if one wants to cross-recur two three-
dimensional time-series (i.e., MdCRQA3), then the
dimensionality of these time-series is already d¼ 3. If
the average dimensionality of the individual dimensions
of each time-series is estimated to be close to D¼ 3 as
well, no embedding might be necessary. If, D is esti-
mated to be substantially bigger, for example D¼ 6,
then one could embed the three-dimensional time-ser-
ies once to achieve an overall phase-space dimensional-
ity of 6 (i.e., d � D/d¼D; here: 3 � 6/3¼ 6).

Note, however, that the estimates for s and D when
based on the average of the individual dimensions of
the multidimensional time-series might not be the
same as estimates of s and D that are based on the
multidimensional time-series. However, a first solu-
tion to the problem of parameter estimation based on
multidimensional time-series has recently been pro-
vided by Wallot, & Mønster (2018).

Multidimensional Cross-Recurrence
Quantification Analysis (MdCRQA)

Multidimensional Cross-Recurrence Quantification
Analysis (MdCRQA) is an extension of CRQA, which
can be used for one-dimensional time-series, to time-
series with arbitrary dimensionality. It yields recur-
rence measures that capture the strength and type of
coupling – or correlation – between two multidimen-
sional time-series, and can also be used to quantify
time-delayed coupling between these time-series using
the Diagonal Cross-Recurrence Profile (DCRP). In the
next sections, we will describe how a CRP is com-
puted for the case of one-dimensional time-series, and
then show how this can be extended to multidimen-
sional time-series. Then, we will describe how the
Diagonal Cross-Recurrence Profile (DCRP) can be
computed for multidimensional time-series, as well as
issues of parameter estimation for the multidimen-
sional case.
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50 100 150 200 250

-0.5

0

0.5

50 100 150 200 250

-0.5

0

0.5

50 100 150 200 250

-0.5

0

0.5

1

50 100 150 200 250

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1

1.5

(a)

(b)

(c)

(d)

(e)

(f)

(g) (h)

First time-series

Se
co
nd
tim
e-
se
rie
s

Figure 3. Schematic of the application of the embedding parameters and the extraction of a CRP. The delay parameter s¼ 18 is
applied to the data of the first original time-series (a) to yield its time-delayed surrogate series (b). When the first original time-ser-
ies is plotted against its surrogate, this yields the reconstructed phase-space profile (c). Similarly, the delay parameter s¼ 18 is
applied to the data of the second original time-series (d) to yield its time-delayed surrogate series (e). Again, when the original
and surrogate series are plotted against each other, this results in their phase-space portrait (f). Because we only applied the delay
parameter s once to create a single surrogate series for each original time-series, the dimensionality of the phase-space is D¼ 2
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Computation of Multidimensional Cross-Recurrence Quantification Analysis (MdCRQA)

MdCRQA is an extension of CRQA to assess coupling between multidimensional time-series. A CRP is computed
by comparing all possible combinations of the values of two time-series x ¼ ðx1; x2; x3; :::xmÞ
and y ¼ ðy1; y2; y3; :::ymÞ, or the values of the coordinates of the reconstructed phase-space profiles from those
two time-series V (Equation (1)) and W (Equation (2)), given some value for the delay parameter s and the
embedding dimension D, which must the same for both time-series:

V ¼

V1

V2

V3

..

.

Vm

0
BBBBB@

1
CCCCCA

¼

x1 x1þs x1þ2s ::: x1þ D�1ð Þs
x2 x2þs x2þ2s ::: x2þ D�1ð Þs
x3 x3þs x3þ2s ::: x3þ D�1ð Þs
..
. ..

. ..
. ..

.

xm� D�1ð Þs xm� D�2ð Þs xm� D�3ð Þs ::: xm

0
BBBBBB@

1
CCCCCCA

(1)

and

W ¼

W1

W2

W3

..

.

Wm

0
BBBBB@

1
CCCCCA

¼

y1 y1þs y1þ2s ::: y1þ D�1ð Þs
y2 y2þs y2þ2s ::: y2þ D�1ð Þs
y3 y3þs y3þ2s ::: y3þ D�1ð Þs
..
. ..

. ..
. ..

.

ym� D�1ð Þs ym� D�2ð Þs ym� D�3ð Þs ::: ym

0
BBBBBB@

1
CCCCCCA

(2)

Now, a cross-recurrence (CR – see Equation (3)) can be defined by applying a threshold r to the distances between
all possible pairs of values for the time-series x and y, or their reconstructed phase-space profiles V and W, where
distances �r are counted as recurrent instances, and distances >r are counted as non-recurrent instances:

CRX;Y
i;j rð Þ ¼ H r� k Xi�Yj k

� �
; i ¼ 1; :::;m; j ¼ 1; :::; n (3)

Here, H is the Heaviside step function and r is some arbitrary threshold distance. Multidimensional cross-
recurrence plots extend this by starting with two multidimensional time-series V (Equation (4)) and W
(Equation (5)), which have a dimensionality d of d> 1:

X ¼

X1

X2

X3

..

.

Xm

0
BBBBB@

1
CCCCCA

¼

x1;1 x1;2 x1;3 ::: x1;d
x2;1 x2;2 x2;3 ::: x2;d
x3;1 x3;2 x3;3 ::: x3;d
..
. ..

. ..
. ..

.

xm;1 xm;2 xm;3 ::: xm;d

0
BBBBBB@

1
CCCCCCA

(4)

and

Y ¼

Y1

Y2

Y3

..

.

Ym

0
BBBBB@

1
CCCCCA

¼

y1;1 y1;2 y1;3 ::: y1;d
y2;1 y2;2 y2;3 ::: y2;d
y3;1 y3;2 y3;3 ::: y3;d
..
. ..

. ..
. ..

.

ym;1 ym;2 ym;3 ::: ym;d

0
BBBBBB@

1
CCCCCCA

(5)

The analysis can either be performed on the unembedded time-series (Equations (4) and (5)), or they can be fur-
ther embedded by the method of time-delayed embedding as described above – again, using a delay parameter s
and an embedding dimension D to re-construct phase-space portraits of coordinates of the multi-dimensional
time-series X and Y (analogously to Equations (1) and (2)):

as a result of embedding the original time-series D-1 times. Then, the coordinates of the two phase-space profiles are plotted in
the same phase-space (g) and a threshold parameter of r¼ 0.25 (of the maximum distance between coordinates in the phase-
space) is applied to identify cross-recurrent coordinates between the two profiles (gray circle with black border in the lower-right).
Charting cross-recurrences for all possible coordinate pairs results in the cross-recurrence plot of the two time-series (h).
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V ¼

V1

V2

V3

..

.

Vm

0
BBBBB@

1
CCCCCA

¼

X1 X1þs X1þ2s ::: X1þ D�1ð Þs
X2 X2þs X2þ2s ::: X2þ D�1ð Þs
X3 X3þs X3þ2s ::: X3þ D�1ð Þs
..
. ..

. ..
. ..

.

Xm� D�1ð Þs Xm� D�2ð Þs Xm� D�3ð Þs ::: Xm

0
BBBBBB@

1
CCCCCCA

(6)

and

W ¼

W1

W2

W3

..

.

Wm

0
BBBBB@

1
CCCCCA

¼

Y1 Y1þs Y1þ2s ::: Y1þ D�1ð Þs
Y2 Y2þs Y2þ2s ::: Y2þ D�1ð Þs
Y3 Y3þs Y3þ2s ::: Y3þ D�1ð Þs
..
. ..

. ..
. ..

.

Ym� D�1ð Þs Ym� D�2ð Þs Ym� D�3ð Þs ::: Ym

0
BBBBBB@

1
CCCCCCA

(7)

Now, to define multidimensional cross-recurrences
MdCRs (Equation (8)) of a multidimensional MdCRP,
one simply substitutes phase-space portraits of the
one-dimensional time-series, V and W, in Equation
(5) with the multidimensional time-series X and Y (or
their embedded phase-space portraits V and W):

MdCRX;Y
i;j rð Þ ¼ H r� k Xi�Yj k

� �
; i ¼ 1; :::; n;

j ¼ 1; :::;m (8)

The resulting MdCRP can now be quantified the
same way as any other recurrence or cross-recurrence
plot, for example, using the measures presented in
Table 1 [for additional measures that can be com-
puted from (cross-)recurrence plots, see for example,
Marwan et al. (2007)]. These measures reflect the
overall coupling dynamics of the underlying (multi-
variate) time-series (Shockley, Butwill, Zbilut, &
Webber, 2002). However, CRPs can also be used to
quantify the direction of coupling, such as leader-fol-
lower relationships, by examining the diagonal cross-
recurrence features (Dale et al., 2011). This is of
course also possible for MdCRPs, as will be shown in
the next section.

Computation of the Diagonal Cross-Recurrence
Profile (DCRP)

Cross-recurrence plots cannot only be used to assess
overall coupling between two time-series, but they can
also be used to quantify leader-follower relationships,
that is lagged cross-recurrences between two time-ser-
ies. Dale and colleagues (2011) showed that CRQA
generalizes lagged sequential analysis by quantifying
the amount of cross-recurrences at and around the
central diagonal of a CRP. For example, let us take
CRPs of the stationary sine-wave and the sine-wave
with a linear trend from Figure 3. If we sum-up all
cross-recurrence points around þ/�50 diagonals of

the central diagonal and divide them by the length of
the diagonal, then we get a measure of RECt for each
of these 101 diagonals (i.e., from –50 to 50, see
Figure 4a). Note that 50 is an arbitrary time-window
size – window size should be selected to cover the
range of lags that one is interested in analyzing. For
the plot from Figure 3h, this shows that most recur-
rences fall at and around the central diagonal, indi-
cating that both time-series are mostly correlated at
lag 0. This is called the Diagonal Cross-Recurrence
Profile (DCRP).

If we shift the phase of the stationary time-series a
little, and compute the CRP and RECt for the þ/�50
diagonals around the central diagonal again, then we
see that the peak in RECt now shifts towards the diag-
onals j¼ –6, where j is an index of the diagonals run-
ning from –50 to þ50 in our example. This then
indicates that the dynamics of the first time-series fol-
lows (i.e., recurs with) the dynamics of the second
time-series with an average distance of six lags (Figure
4b). Hence, by picking the number of diagonals to
compute the DCRP, we define a window of lags
around lag 0 (i.e., the central diagonal) that we exam-
ine for potentially time-delayed cross-recurrences.

To compute the DCRP, one needs a CRP, which is
a square l�l matrix, where l is the length of underlying
(embedded) time-series, l¼m-(D-1)�s¼ n-(D-1)�s.
Then, one needs to choose window size w of lags that
should be investigated. Here, w indicates the number
of lags – that is, diagonals of the CRP around the cen-
tral diagonal, for which time-lagged recurrence RECt

should be computed. The computation is the summa-
tion of all elements e for each diagonal j around the
central diagonal, where j¼�w,-wþ 1,�wþ 2,… ,w.
Then, the sum of elements for each diagonal needs to
be divided by the length of the respective diagonal,
which is l-jjj to get the percentage of recurrences in
that diagonal (Equation (7)):
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RECt jð Þ¼

Xl� jj j

i¼1

e iþ jj jð Þ;i

l� wj j if j �0

Xl� jj j

i¼1

ei; iþ jj jð Þ

l� wj j otherwise

; j¼�w;�wþ1;:::;w

8>>>>>>>>>><
>>>>>>>>>>:

(7)
While RECt for negative values of j indicates that

time-series y (or Y) follows x (or X), RECt for positive
values of j indicates that the time-series x (or X) fol-
lows y (or Y) – see Figure 4(b). High values of RECt

at j¼ 0 (i.e., the central diagonal) indicate synchro-
nous behavior of the two time-series at lag 0.

In the current example, a window size, w, of þ/–50
around the central diagonal (i.e., lag 0) has been chosen.
This choice is arbitrary. For empirical time-series, the
choice of the w depends on the time-window of interest,
within which one want to investigate leader-follower
relationships. However, it is always advisable to initially
investigate a larger number of w in order to get an
overview over lags that might yield time-lagged recur-
rences, if there are no particular a-priori hypothesis
which range of lags ought to be theoretically significant.

To assess the statistical significance of RECt values
(i.e., the correlation at some lag), several methods

have been proposed, such as comparing the DCRP of
a pair of time-series to REC (i.e., the average amount
of recurrences across the whole plot), to a DCRP of
the shuffled time-series, or to false-pair surrogates
(Richardson & Dale, 2005; Wallot & Leonardi, 2018).

Example I: Using MdCRQA to capture common
dynamics of multidimensional dynamic systems
In the following, we will apply MdCRQA to assess
similarities in the dynamics between two multidimen-
sional dynamic systems – the Lorenz system (Lorenz,
1963) and the R€ossler system (R€ossler, 1976). Both are
systems of three coupled differential equations that
each result in three-dimensional dynamics, which for
the Lorenz-system (Equation (8)) are defined by:

_x ¼ r y � xð Þ
_y ¼ q� zð Þ�y

_z ¼ xy�bz (8)

and for the R€ossler system (Equation (9)) by:

_x ¼ �y�z

_y ¼ xþ ay

_z ¼ bþ z x�cð Þ (9)

For the Lorenz system, we will use the common
parameter settings r¼ 10, q¼ 28, and b¼ 8/3, and for

50
100
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50
100
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200

Peak-RECt at central diagonal(a)

50
100

150
200

50
100
150
200

Peak-RECt off central diagonal(b)
(j = 0)

(j = -6)

5500
100

150
200

50
0

Figure 4. Illustration of the computation of the DCRP and leader-follower relationships. For the two sine waves with the same
phase and frequency, peak-RECt is at j¼ 0, indicating synchronous dynamics at lag 0 (a). When the phase of the first time-series is
shifted, peak-RECt moves away from the central diagonal to j¼ –6, indicating that the dynamics of first time-series follow the
dynamics of the second time-series with lag 6.
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the R€ossler system, we use the common parameter
settings a¼ 0.2, b¼ 0.2, and c¼ 5.7. The resulting
dynamics for both systems are displayed in Figure 5.
Because the dynamics are three-dimensional, examin-
ing temporal correlations between the two systems
can be done using MdCRQA3 – that is, a cross-recur-
rence plot between two time-series with three con-
stituent dimensions each. Conventionally, an integer
number d behind the abbreviation MdCRQA (i.e.,
MdCRQAd) indicates the unembedded dimensionality
d of the underlying time-series (Wallot et al., 2016).
Because we know that both systems are three dimen-
sional, and because we know that we have captured
each of these three dimensions properly, no embed-
ding is necessary (i.e., D¼ 1), and thus the delay
parameter is irrelevant and can be set to an arbitrary
value (e.g., s¼ 1), as it will not be applied to recon-
struct a phase-space.

Note, that when using MdCRQA, the order in
which the dimensions of the two multidimensional
time-series of interest are entered into the analysis can
matter for the results. For example, if one were inter-
ested in capturing joint emotional arousal between
two people, A and B, captured by multidimensional
physiological measures using heart-rate, skin-conduct-
ance, and electromyography (e.g., Mønster et al.,
2016), then it would be necessary to enter the dimen-
sions of the time-series in the same order (i.e., for the
first time-series: 1. heart-rate of person A, 2. skin-con-
ductance of person A, 3. electromyography of person
A; and for the second time-series 1. heart-rate of per-
son B, 2. skin-conductance of person B, 3. electro-
myography of person B).

However, the relation between the dimensions of
the two systems is arbitrary (i.e., the dimension x in
the Lorenz system is a-priori not in any particular
way more an equivalent to the dimension x in the
R€ossler system compared to the dimension y in the

R€ossler system). Hence, there is no reason to match
them in a particular way. Changing the order in
which the dimensions of the time-series from the
Lorenz and R€ossler systems are entered into MdCRQA
corresponds to a rotation of the phase-space profile in
the coordinate system. Hence, by systematically
changing the order in which the dimensions are
entered allows us to investigate potential effects of rel-
ative rotation on the similarity of the joint dynamics
of the two systems.

If you want to follow this example, you can find
the respective Matlab- and R-functions in the
Appendix to this manuscript, together with the com-
mands used to generate the following results. The
data for the R€ossler and Lorenz system – together
with .m- and .R-files are also available on GitHub:
https://github.com/Wallot/MdCRQA.git.

Now, we can go through all possible permutations
of relative pairings of the axis x, y, and z for the
Lorenz and R€ossler systems, and investigate their
potential effects on the resulting MdCRPs and recur-
rence measures. Figure 6 presents the multidimen-
sional recurrence plot and some of the recurrence
measures (REC, DET, ADL, MDL) for the six possible
combinations of relative rotation (i.e., order of enter-
ing the constituent dimensions of each time-series).
As can be seen, throughout those different rotations,
cross-recurrence plots look qualitatively similar, and
the resulting cross-recurrence measures are of rela-
tively similar magnitude as well.

Now we can compare the solutions of the three-
dimensional MdCRQA3 with cross-recurrence results
when only individual dimensions of the two systems
would be used together with phase-space reconstruc-
tion (as in conventional one-dimensional CRQA,
equaling MdCRQA1). To perform phase-space recon-
struction, the parameters s and D need to be esti-
mated. As described above, the average mutual

Figure 5. Three-dimensional dynamics of the Lorenz system (parameter settings: r¼ 10, q¼ 28, and b¼ 8/3) (a) and the R€ossler
system (parameter settings: a¼ 0.2, b¼ 0.2, and c¼ 5.7) (b).
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Figure 6. Multidimensional cross-recurrence between the three-dimensional Lorenz system and the three-dimensional R€ossler sys-
tem across all possible relative rotations (i.e., order in which the different dimensions of the time-series are entered into MdCRQA):
For the Lorenz system, this is x, y, z (a), for the R€ossler system these are x, y, z (b), x, z, y (c), y, x, z (d), y, z, x (e), z, x, y (f), z, y, x
(g). Displayed are the resulting MdCRPs and four cross-recurrence measures (REC, DET, ADL, MDL). Parameter settings: s¼ 1, D¼ 1,
Euclidean phase-space normalization, r¼ 0.5.
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information function is used to estimate s for each
individual dimension and picked a value that would
be a local (or absolute) minimum fitting both, time-
series dimensions from the Lorenz and the R€ossler
system that are entered into the analysis, resulting in

s¼ 120. The embedding dimension was set to D¼ 3,
because both systems are known to be three-dimen-
sional. The phase-space normalization and threshold
parameter (r) were kept the same as above.

As can be seen in Figure 7, when the joint dynam-
ics of the two systems are assessed using pairs of the
individual dimensions, CRPs appear more variable in
terms of recurrence density, but also type of dynamics
(while some feature a dominant strip or checkerboard
pattern, others show more diagonal recurrences).
Finally, examining the resulting recurrence measures
for these analysis in Table 2 confirms that cross-recur-
rence estimates using pairs of one-dimensional time
series is more variable. This suggests that MdCRQA
indeed provides more informative estimation of recur-
rence properties, allowing to investigate the full,
three-dimensional dynamics. It allows examine the
degree of temporal correlation between two multidi-
mensional systems, where higher RQA-measures

Figure 7. Individual dimensions of the Lorenz and R€ossler systems, and cross-recurrence plots between the individual dimensions.
Comparing the cross-recurrence plots from Figure 5 with Figure 6 shows that the estimation of cross-recurrences between the indi-
vidual dimensions is more variable compared to the estimation of cross-recurrences between the complete, three-dimensional
time-series in different relative rotations. Parameter settings: s¼ 120, D¼ 3, Euclidean phase-space normalization, r¼ 0.5. s was
chosen to be 120 after estimating an optimal delay parameter for both time-series using the mutual average information function.
D was chosen to be 3 because both systems are known to be three-dimensional.

Table 2. Cross-recurrence measures for the different combina-
tions of dimensions of the Lorenz and R€ossler systems from
Figure 6.

Lorenz x Lorenz y Lorenz z

R€ossler x REC¼ 6.9% REC¼ 7.31% REC¼ 0.1%
DET¼ 99.9% DET¼ 99.8% DET¼ 99.9%
ADL¼ 16.18 ADL¼ 12.55 ADL¼ 13.23
MDL¼ 96 MDL¼ 87 MDL¼ 30

R€ossler y REC¼ 6.6% REC¼ 7.08 REC¼ 0.1%
DET¼ 99.9% DET¼ 99.8% DET¼ 99.9%
ADL¼ 16.24 ADL¼ 12.51 ADL¼ 12.07
MDL¼ 98 MDL¼ 84 MDL¼ 30

R€ossler z REC¼ 1.73% REC¼ 3.19% REC¼ 0.1%
DET¼ 99.9% DET¼ 99.6% DET¼ 99.5%
ADL¼ 9.62 ADL¼ 11.20 ADL¼ 10.98
MDL¼ 35 MDL¼ 37 MDL¼ 36
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indicate stronger correlation for individual states (i.e.,
REC) or trajectories (i.e., DET, ADL, MDL).
Moreover, it provides more stable estimates for cross-
recurrence properties of multidimensional time-series
[for example, comparing the standard deviation for
the cross-recurrence measures for the univariate and
multidimensional cases shows lower dispersion for in
the multidimensional case for REC (SDCRQA¼ 3.28 vs.
SDMdCRQA¼ 0.54), DET (SDCRQA¼ 0.13 vs. SDMdCRQA

¼ 0.08), ADL (SDCRQA¼ 2.24 vs. SDMdCRQA¼ 0.21),
and MDL (SDCRQA¼ 30.76 vs. SDMdCRQA¼ 8.33)].

Example II: Using DCRP of MdCRPs to capture
leader-follower dynamics in multidimensional
time-series
Besides calculating MdCRPs to capture overall similarity
of the dynamics of two multidimensional time-series,
MdCRQA also allows the calculation of leader-follower
dynamics using the Diagonal Cross-Recurrence Profile
(DCRP). We will exemplary re-analyze a couple of data
sets from Louwerse et al. (2012), that measured multiple
facial movements and types of gesture during conversa-
tion. Here, we will analyze three types of facial move-
ments (smiling, nodding, raising the eye-brows) from
two dyads over a range of conversation.

As mentioned in the introduction, in their original
study Louwerse et al. (2012) used one-dimensional
CRQA to assess leader-follower relations among the
individual features and found coupling among those
during conversation (i.e., if one interlocutor nodded,
this likely lead the other interlocutor to nod as well at
a certain delay). In the study, both participants of a
dyad were given maps, but one participant received a
detailed map, while the other received a map where
some of the details (the color-coding of objects) was
partly removed. The participant with the fully intact
map (the instruction “giver”) had to describe a path
through the objects on the map to the participant
with the degraded map (the instruction “follower”) to
reproduce the path, and participants could talk about
the information on the maps in order to successfully
solve this problem.

However, because CRQA is a one-dimensional cor-
relation technique, only individual features could be
analyzed, not groups of features of whole-face (or ges-
ture) coupling during conversation. A study by
Wallot, Mitkidis, McGraw, and Roepstorff (2016),
similarly collected multidimensional data, investigating
hand movements of the left and right hand of partici-
pants that built model cars together in dyads. They
used MdRQA to analyze those data, but because this
analysis technique treads different multivariate time-

series as constituents of a single time-series, leader-
follower relationships between measures cannot be
computed with it (Wallot, Roepstorff, et al., 2016),
and hence the method would have been unsuitable for
the data in Louwerse et al. (2012). However,
MdCRQA can do so.

The example data for each dyad and session from
Louwerse et al. (2012) are organized similarly to the
data from the Lorenz and R€ossler systems presented
earlier in the text. For each participant, we have a
three-dimensional time-series about nodding, smiling,
and movement of eye-brows, which are the three col-
umns of each multidimensional time-series. However,
the data are binary-categorical, where a “1” indicates
the presence of a feature at a certain time point and
“0” indicates its absence.

This simplifies the parameter selection, because the
categorical data are usually not embedded, hence s¼ 1
and D¼ 1, even though this can be useful depending
on the nature of the data, especially when more when
two categories are present (cf. Orsucci et al., 2006).
Moreover, the threshold parameter r needs to be set
to an arbitrarily tiny value (e.g., r¼ 0.00001), because
for categorical data, we only want to have exact cross-
recurrences between categories.

Also, no phase-space normalization performed,
because normalizing the phase-space does not make
sense for categorical data as in our example. Finally,
because we are not interested in the overall pattern of
cross-recurrences, but in leader-follower relationships,
we apply the DCRP-functions (see Appendix) to the
resulting CRPs, using þ/– 20 lags (i.e., diagonals
around the central diagonal).

The resulting DCRP based on the multidimensional
CRP of the three features (nodding, raising eye-brows,
and smiling) as a function of j (the lag) across eight
sessions with two dyads is presented in Figure 8a.
Here, it can be seen that the common smiling, nod-
ding, and eye-brow behavior is coupled across a range
of lags across the diagonal (i.e., lag 0) and that there
is a peak in RECt at lag þ5, indicating that on aver-
age, the facial expression of the instruction giver pre-
ceded that of the instruction follower by 5 lags.
Because the data has not been embedded, and because
coding of the facial movements was done in 250ms
intervals (Louwerse et al., 2012), this tells us that the
facial expression of the instruction “follower” followed
the facial expression of the instruction “giver” most
often with a delay of 1250ms. Also, note that the sum
of RECt across the 20 lags is higher on the side the
“follower” lagging the “giver”, another indicator of
asymmetric coupling.
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If we compare the DCRP of the multidimensional
analysis with the average of the DCRPs of the individ-
ual expressions (Figure 8b), we see that the coupling
activity is much more evenly stretched out across the
lags and provides less clear evidence for the instruc-
tion “follower” reacting to the instruction “giver”.
This is because the “follower” reactions to the facial
expression of the instruction “giver” not only by mim-
icking the expression, but also by reacting with other,
complementary repressions (e.g., smiling in response
to raising eye-brows) – an interaction that is not cap-
tured by the individual plots. Finally, as one would
expect, the DCRPs of the individual behaviors provide
the least clear picture for a leader-follower relation-
ship, because they do not capture interactions between
different facial expressions, but also because individual
facial expression might not occur only a few times
during a conversation.

Note again, that it is, of course, important that the
order of the dimensions of each time-series are the
same. If data of one participant are entered in the
order “nodding, smiling, moving eye-brows” and
“smiling, nodding, moving eye-brows”, then phase-
space profiles of the time-series are wrongly oriented
with regard to each other, and this will lead to faulty
results, because in this case the dimensions have
meaning relative to each other.

Further, note that we coded the presence and
absence of features the same way for both participants
(i.e., for both participants, a “1” indicates the presence
of nodding, for example, and “0” the absence). Hence,
RECt is based on similarities of the simultaneous (or
time-lagged) presence and absence of the features
smiling, nodding, and moving eye-brows, which leads
to very high values of RECt for binary data of com-
paratively low dimensionality. If one is interested in

Figure 8. DCRP of the three-dimensional time-series with the dimensions nodding, raising eye-brows and smiling (a), average of
the individual DCRPs of nodding, raising eye-brows and smiling, and individual DCRP of nodding (c), raising eye-brows (d), and
smiling (e). Negative lags indicate that the behavior of the instruction “giver” followed those of the instruction “follower”, positive
lags indicate that the behavior of the instruction “giver” preceded those of the instruction “follower”. As can be seen, the DCRPs of
the individual behaviors do not show clear evidence for the instruction “follower’s” behavior being led by the behavior of the
instruction “giver”. The average suggests that such behavior is happening, but leading and following behavior is relatively broadly
stretched out across many lags, with a noticeable bi-modal component. In contrast, the DCRP based on the multidimensional ana-
lysis shows a much clearer peak at the positive lags, indicating that the behavior of the instruction “follower” is led by the behav-
ior of the instruction “giver”.
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specifically basing cross-recurrences only of the occur-
rences of a complex, such as the facial expression
smiling plus nodding plus moving eye-brows, one
would need to code the absence of those features dif-
ferently (e.g., as “0” for one participant, and as “–1”
for the other participant), which eliminates cross-
recurrences due to the simultaneous absence of the
complex, and usually leads to very low values of RECt
(cf. Louwerse et al., 2012).

Finally, one issue pertains to significance of a
RECt-value at a specific lag, i.e., to decide whether a
certain amount of recurrences at a specific lag indicate
significant (time-lagged) coupling. Several methods
have been proposed to assess significance. All involve
the comparison of the original DCRPs to DCRPs of
those surrogate data. A liberal criterion can be defined
by shuffling the original data and perform the analysis
again on the shuffled data. Contrasting this surrogate
with the original DCRPs shows significant RECt values
compared to a baseline where all temporal correla-
tions have been removed. A more conservative criter-
ion can be defined by using false-pairs – i.e., pairing
participant 1 of dyad 1 with participant 2 of dyad
two, which performed the same tasks, but with a dif-
ferent partner, which leaves the overall dynamics due
to task effects intact, and only shows similarities
between the original time-series that are due to online
interaction (e.g., Richardson & Dale, 2005).

A final note on requirements and possible
applications of MdCRQA

The MdCRQA is an analysis technique for quantifying
the correlation or coupling between two multidimen-
sional time-series. However, it is important to under-
stand that the analysis actually contains two
conceptual variants that users can chose between –
depending on the nature of the data and the goals
of the analysis. One variant starts by assessing the
need for embedding the time-series into a higher-
dimensional phase-space (see the Section “Parameter
estimation”). This may invite theoretical and practical
problems. That is, one needs to have a certain prior
understanding of the dimensions of a multidimen-
sional time-series – for example, if one is interested in
measuring the physiological dynamics of arousal, one
needs to know the relevant physiological characteris-
tics that form valid dimensions of a multidimensional
arousal time-series (e.g., heart rate, breathing, body
temperature… ) and one needs to be able to distin-
guish them from unrelated variables that should not
be counted toward the dimensions of a time-series.

Because the estimation of embedding parameters cur-
rently proceeds on the basis of the individual esti-
mates for each dimension of a time-series, one needs
to be aware that just adding variables to the dimen-
sions of a time-series can only decrease the need for
embedding if they really capture a valid dimension of
the multidimensional system.

Alternatively, MdCRQA can be applied as a
straight-forward correlational analysis technique for
multidimensional time-series if no embedding is per-
formed (e.g., Example II). Here, MdCRQA simply pro-
vides measures of the correlation strength between
two multidimensional time-series. Whether one choses
to embed or not does not rule out that the results of
the two types of analysis would not be similar, but it
may be that they are not. Hence, users of the method
need to be aware of this distinction.

Related to the issue of whether to embed or not is
the question of data point requirements on a time-ser-
ies. Technically, all that the analysis requires is a series
of data points, i.e., two. Practically, this depends on
sufficiently capturing the important dynamics of inter-
est in the data. Hence, sufficient length of a time-ser-
ies is not so much a matter of a specific number of
data points, but rather of sampling fast enough as to
correctly capture the fastest relevant time-scales, and
measuring long enough for the important dynamics to
unfold. However, embedding a time-series costs data
points (see again the Section “Parameter estimation”),
and if one choses to embed, one needs to have suffi-
cient data points to “pay” for the embedding process
plus sufficient data points left for the actual analysis.
Often, nominal time-series require less data points
that continuously sampled ones, and applications for
CRQA have ranged from using less than 40 data
points to more than 10,000.

Finally, this brings us to a last question of how var-
ied the composition of a time-series in MdCRQA can
be. As has been noted above, recurrence-based ana-
lysis can be used on nominal sequences, inter-event
times, or continuously sampled time-series. However,
not all of these data types can be combined.
Obviously, combining inter-event times with continu-
ously sampled data mandates a continuous transfor-
mation of the inter-event times to match the sampling
frequency of the continuously sampled data (such as
converting RR-intervals to beats-per-minute – for spe-
cific suggestions on how to do such a conversion opti-
mally for the purposes of recurrence analysis, see
Wallot, Fusaroli, Tyl�en, & Jegindø, 2013). However,
nominal data are not readily combinable with inter-
event times or continuously sampled time-series
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within the framework of MdCRQA. This is, because
the proper definition of recurrences of nominal
sequences requires exact identification of each value,
where the threshold parameter needs to be set to very
tiny value. The consequence of this would be a low
number of recurrences for the continuous data, and
even if it would yield sufficient recurrences to calcu-
late reliable values for the recurrence measures, the
result would reflect merely a weighted average of the
continuous dynamics by categorical data.

Conclusions

In the present paper, I presented a new method for
correlating multidimensional time-series:
Multidimensional Cross-Recurrence Quantification
Analysis (MdCRQA). Note that such a multivariate
extension is also be possible via multiple joint recur-
rence plots (Marwan et al., 2007). However, joint
recurrence plots have a special limitation in this con-
text, because they are always “dominated” by the
smallest recurrence structures of the individual plots,
which might not allow to capture multivariate dynam-
ics appropriately (for a discussion of the issue, see
Wallot et al., 2016). MdCRQA does not have such
limitations. The technique can be used to assess
correlation and coupling among multidimensional
time-series, and it works with interval-scale as well as
categorical data. Besides providing overall measures of
the common dynamics of two multidimensional time-
series, it also allows to capture leader-follower rela-
tionships (i.e., time-lagged coupling) between the
time-series. Potential applications in psychological
research are coupling between effectors during action
coordination (motion capture), between multiple
(neuro-)physiological measures that capture emotional
or cognitive states or between multiple groups of
item-response or scales that capture change of a psy-
chological state or construct over time (such as per-
sonality characteristics and mental disorders). The
analysis is very well suited to applications of multidi-
mensional joint action analysis, such as joint gaze-
positions, body movements, or categorically
coded data.
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Appendix 1: Abbreviations and notation

– The dot (as in _x) denotes the time derivative.
ADL – Average Diagonal Line length, a recur-

rence measure.
AMI – Average mutual information.
CR – Cross-recurrence point.
CRP – Cross-Recurrence Plot (plot of cross-recurrence

structure between two single one-dimensional time-series).
CRQA – Cross-Recurrence Quantification Analysis (ana-

lysis based on a CRP).
d – dimensionality of a multivariate time-series.
D – Embedding parameter for phase-space

reconstruction.
DCRP – Diagonal Cross-Recurrence Profile to analyze

follower-leader dynamics.
DET – Percent determinism, a recurrence measure.
FNN – False-nearest neighbor(s).
MdCR – Cross-recurrence obtained from multidimen-

sional time-series.
MdCRP – Multidimensional Cross-Recurrence Plot (plot

of cross-recurrence structure between two multidimensional
time-series).

MdCRQA – Multidimensional Cross-Recurrence
Quantification Analysis (analysis based on a MdCRP).

MDL – Maximum Diagonal Line length, a recur-
rence measure.

MdRP – Multidimensional Recurrence Plot (plot of
auto-recurrence structure of a single multidimensional
time-series).

MdRQA – Multidimensional Recurrence Quantification
Analysis (analysis based on a MdRP)

r – Threshold parameter (also known radius parameter)
that defines the neighborhood size in phase-space within
which coordinates are counted to be recurrent.

REC – Percent recurrence, a recurrence measure.
RP – Recurrence Plot (plot of auto-recurrence structure

of a single one-dimensional time-series).
RQA – Recurrence Quantification Analysis (analysis

based on an RP).
s – Delay parameter (tau) for phase-space

reconstruction.
H(x) – Heaviside step function of x.

Appendix 2: R€ossler and Lorenz example

The following text provides a brief walk-through on how to
compute the results in Example I for Matlab and R. The
.m- and .R-files – as well as the data – can be found as
online supplements to this paper at the webpage of
Multivariate Behavioral Research. If you are fluent in R as
well as Matlab, it is recommended to use Matlab for run-
ning MdCRQA for longer time-series. While R and Matlab
perform similarly for time-series with up to 5000 data

points (the average difference in processing time is at about
1 s), Matlab outperforms R with larger time-series of more
than 5000 data points (i.e., the average difference in proc-
essing time is at about 26 s) – see Figure 9.

Assuming that we have stored the data of the Lorenz
and R€osser systems in two matrices or data frames,
“lorenzData” and “rosslerData”, and with three columns
representing the three dimensions (x, y, z) of the of these
systems, and rows equal to the number of data points, we
can now compute the first MdCRQA using the Matlab and
R functions presented in this paper as follows:

[CRP, RESULTS, PARAMETERS]¼MdCRQA
(lorenzData, roesslerData, 1, 1 , ‘euc’ , 0.5)

or
results <- mdcrqa(lorenzData, roesslerData, 1, 1,

‘euc’, 0.5)
Note, that if you have saved your data in individual vari-

ables, you will need to convert them to a matrix using, for
example, “as.matrix(bind_cols(lorenzDataX, lorenzDataY,
lorenzDataZ))” or similar expressions to enter the multivari-
ate time-series as matrices in R, e.g.:

results <- mdcrqa(as.matrix(bind_cols(lorenzDataX, lorenz
DataY, lorenzDataZ)), as.matrix(bind_cols(rosslerDataX,
rosslerDataY, rosslerDataZ)), 1, 1, ‘euc’, 0.5, 2, 2, 0,
metric¼ ‘euclidean’)

For in both languages, the first argument of the mdcrqa-
function is the variable that contains the data of time-series
1 (here: the Lorenz data), the second argument is the varia-
ble that contains the data of time-series 2 (here: the R€ossler
data), the third argument is the value for the embedding
dimension D (here: 1), the fourth argument is the value for
the delay parameter s (here: 1), the fifth argument is the

Figure 9. Average processing time for the R- and Matlab-func-
tions with different time-series length. The solid line shows
processing time for Matlab, the dottet line for R. The error
bars show the standard deviation. The functions were run for
sample sizes of 50, 100, 500, 1000, 5000, and 10000, each 10
times. The computer was a MacBook Pro (2.8 GHz Intel Core i7,
16GB ram, OS C 10.11.6). The R version was 3.4.0, the Matlab
version was 2015b.
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value for the phase-space normalization procedure (here:
Euclidean), the sixth argument is the value for the threshold
or radius parameter r (here: 0.5), the seventh argument is
the value for the minimum of the diagonal lines (here: 2),
the eighth argument is the value for the minimum length of
the vertical lines (here: 2), and the ninth argument is the
value for z-scoring the data (here: 0, i.e., no z-scoring). For
the R-function, there is also a tenth argument for setting
the distance metric for the distance matrix, because this is
done using the R-function cdist (here: metric¼ ‘euclidean’).
Because the data for the two systems are already correctly
scaled with regard to each other, we do not need to z-score
them or apply another standardization technique on the
individual dimensions of each time-series, which might
often be recommendable for empirical data where differen-
ces in magnitude between participants or different measures
would otherwise mask differences or similarities in the
sequential properties of the data that we are interested in
(Shockley, 2005).

To view the resulting MdCRPs in Matlab and R, type:

im2bw((CRP-1)�-1)
or
image(results$CRP)

To view the resulting MdCRQA measures in Matlab and
R, type:

RESULTS
or
results$RESULTS
To perform the analysis for the x-dimension of the Lorenz

system and the x-dimension of the R€ossler system (i.e., upper-
left CRP in Figure 7), type the following in Matlab or R:

[CRP, RESULTS, PARAMETERS]¼MdCRQA(lorenz
Data(:,1),roesslerData(:,1), 120, 3 , ‘euc’ , 0.5)

and
results <- mdcrqa(lorenzData[,1], roesslerData[,1], 120,

3, ‘euc’, 0.5)
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