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We propose a unified model of scalar particles that addresses the flavour hierarchies, solves the
strong CP problem, delivers a dark matter candidate, and provides the trigger for electroweak
symmetry breaking. Besides furnishing a unification of the recently proposed axiflavon with a
Goldstone-Higgs sector, the scenario can also be seen as adding a model of flavour (and strong CP
conservation along with axion dark matter) to elementary Goldstone-Higgs setups. In particular,
we derive bounds on the axion decay constant from the need to generate a SM-like Higgs potential
at low energies, which we confront with constraints from flavour physics and cosmology. In the
minimal implementation, we find that the axion decay constant is restricted to a thin stripe of
fa ≈ (1011 − 1012) GeV, while adding right-handed neutrinos allows to realize a heavy-axion model
at lower energies, down to fa ∼ 10 TeV.

I. INTRODUCTION

Although the Standard Model (SM) of particle physics
provides an excellent description of nature around the
weak scale, it has several shortcomings that lead us to
the conclusion that it is rather an effective low-energy
parametrization of a more fundamental theory of nature.

Amongst the most pressing issues are the missing can-
didate to generate the dark matter populating our uni-
verse, and the failure to explain large hierarchies present
in the fermion masses and mixings. Beyond that, the ap-
parent conservation of CP symmetry in strong interac-
tions is in tension with in principle unsuppressed sources
of CP violation in the QCD Lagrangian. Finally, al-
though the SM provides a successful parameterization
of electroweak symmetry breaking (EWSB) via the Higgs
mechanism, the origin of the Higgs potential is unknown.

The flavour hierarchies in the SM can be addressed via
the Froggatt–Nielsen (FN) mechanism [1], i.e. by chirally
charging the SM fermions under a U(1)H flavour sym-
metry controlling their masses and mixings. For the FN
mechanism to work, the field content of the SM has to be
augmented (at least) by a complex scalar field, Φ, spon-
taneously breaking the U(1)H, and vector-like fermions,
ξj , dubbed the FN messengers, which connect the differ-
ent SM-fermion chiralities, bridging their U(1)H charge
difference via a chain of Φ insertions. Taking the FN mes-
sengers to reside much above the electroweak (EW) scale,
they can be integrated out in the IR description. Then,
once the U(1)H is spontaneously broken by 〈Φ〉 6= 0, the
SM Yukawa couplings are effectively reproduced starting
with O(1) couplings in the UV theory.

As shown in a previous work [2] (see also Ref. [3]),
the angular component of Φ, which plays no vital role
in the original FN mechanism, can be identified with the
QCD axion [4–10], thereby addressing two more issues
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of the SM, namely the strong CP problem and the DM
puzzle [11–13], in a unified scenario. In particular, as the
axion couplings are now dictated by the flavour structure,
the predictivity of the model is increased.

In this paper, we take a further step to unify the
scalar degrees of freedom in the theory by combining
the axiflavon field, Φ, and the Higgs boson such that
the flavour, strong CP, and DM problems remain solved,
while successfully triggering EWSB. We thus embed the
Higgs, the axion, and the flavon in a single multiplet,
Σ, transforming under the enlarged symmetry group
G ⊃ U(1)H×GEW, with GEW ≡ SU(2)L×U(1)Y . Within
the FN setup, the flavon mass and the Higgs mass are hi-
erarchically different. In the unified picture, this very fact
suggests that both the axion and the Higgs boson com-
ponents should correspond to pseudo-Nambu–Goldstone
bosons (pNGBs), providing an example of axion-Higgs
unification [14] and allowing for dynamical EWSB via
the Coleman-Weinberg potential for the emerging Gold-
stone Higgs. Interestingly, the vanishing of the quartic
Higgs coupling in the SM around 1010 GeV, just about
at the natural scale for axiflavon dark matter, might hint
both to Goldstone nature of the Higgs and to a connec-
tion between these two scalar sectors.

From a different perspective, the proposed model can
be seen as adding a flavour story to the recently proposed
elementary-Goldstone-Higgs scenario [15, 16]. Including
the axiflavon can address fermion masses and mixings in
these models, while providing a solution to the strong
CP problem. This is a compelling renormalizable alter-
native to partial compositeness [17] generating flavour
hierarchies in composite-Higgs models. Furthermore, in
this way the flavour structure can be achieved without
the need of adding a new disconnected scalar or a new
symmetry-breaking mechanism. We stress that the fine-
tuning problem affecting the EW scale in this setup is not
worse than the one in the usual FN mechanism, which
already involves the tuning of the Higgs portal coupling
λ|H|2|Φ|2. At the end of the paper, we also comment on
the option to realize the model around the TeV scale.

Before working out the setup and its predictions in de-
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tail, we summarize the main model building steps. We
formulate the theory at the scale f as a linear sigma
model for the field Σ. Yukawa interactions between Σ
and the FN messengers are introduced as a microscopic
realization of the FN mechanism, and similarly for the
SM fields. The global symmetry breaking pattern is

G 〈Σ〉−−→ H ⊃ GEW, with the axion and the Higgs residing
in the G/H coset. Notice that H may or may not contain
custodial protection, as the scale f is by construction
much larger than the Higgs vacuum expectation value,
so that the custodial-breaking effects are strongly sup-
pressed. The simplest choice for G is to keep the flavour
symmetry as an abelian factor, G = G′ × U(1)H. The
minimal choice for G′ is based on SU(3) and the next-to-
minimal on SO(5) [18]. Both result in a similar structure,
and in the following we focus only on the latter. Finally,
we assume that the explicit breaking of G originates from
the SM sector only, namely from the QCD anomaly, EW
gauging, and via the SM fermions coming as G spuri-
ons. Conversely, the FN messengers always enter as full
representations.

This article is organized as follows. In Section II, we
detail the setup and main features of the model, including
the structure of the linear sigma model and the genera-
tion of mass hierarchies via the FN mechanism. Section
III contains the calculation and analysis of the Higgs po-
tential, which leads to a prediction for the axion decay
constant. Here, we also discuss the impact of includ-
ing right-handed neutrinos into the setup and potential
constraints from flavour physics and cosmology. Finally,
Section IV contains our conclusions. In two appendices
we discuss the assumptions regarding the mass spectrum
of the FN messengers as well as the contributions from
light fermions to the Higgs potential.

II. MODEL SETUP

In the following, we present the explicit model setup.
The symmetry-breaking pattern that leads to the unified
realization of the Higgs doublet and the axion as pNGBs
reads

[SO(5)×U(1)H]×U(1)X → SO(4)×U(1)X , (1)

where the U(1)X factor is introduced to reproduce the
fermion hypercharges. The pattern of Eq. (1) is obtained
within a linear σ-model for the field Σ living in the fun-
damental representation, 5, of SO(5) and having U(1)H

flavour charge HΣ = 1, with the potential

V (Σ,Σ∗) = λ1

(
Σ†Σ

)2 − λ2 ΣTΣ Σ†Σ∗ − µ2Σ†Σ . (2)

The EW gauge group is embedded in SO(5) by defining
the usual SU(2)L × SU(2)R

∼= SO(4) generators:

T aL,R
ij = − i

2

[
1

2
εabc(δbi δ

c
j − δci δbj)± (δai δ

4
j − δaj δ4

i )

]
. (3)

The SO(4)-preserving minimum is then given by 〈Σ〉 =

(0, 0, 0, 0, f/
√

2), with µ2 = (λ1 − λ2)f2, and after the
breaking, Eq. (1), the scalar sector can be parametrized
as

Σ = ei(
√

2hâT̂
â+a)/f

(
H̃

(f + σ)/
√

2

)
, (4)

where the broken generators, T̂ â, are given by

T̂ âij = − i√
2

[
δâi δ

5
j − δâj δ5

i

]
. (5)

As physical states, one finds a heavy Higgs doublet, H̃,
with mass m2

H̃
= 2λ2f

2, and a heavy flavon, σ, with mass

m2
σ = 2(λ1−λ2)f2, while the SM-like Higgs doublet, hâ,

and the axion, a, are instead pNGBs. The potential is
bounded from below if λ1 > λ2 > 0.

The FN messengers are denoted by ξj , where the sub-
script refers to the U(1)H charge, Hξj = j. Each of them
transforms in the spinorial representation, 4, of SO(5)
and is vectorial under SO(5)×U(1)H.

Similarly, the SM fermions, qiL, uiR, and diR (with i =
1, 2, 3 a flavour index), are introduced as spurions, Ψi

f ,
in the spinorial representation:

Ψi
qL = ∆T

L q
i
L, Ψi

uR
= ∆T

uu
i
R, Ψi

dR
= ∆T

d d
i
R, (6)

where

∆L =

(
1 0 0 0
0 1 0 0

)
,

∆u = (0, 0, 1, 0) , ∆d = (0, 0, 0, 1) .

(7)

The U(1)H charge of each Ψi
f is chosen such that the cor-

rect pattern of masses and mixings is reproduced. The
larger the charge difference between the left- and right-
handed components of a given fermion, the more sup-
pressed is the resulting mass term. Notice that the Ψ-
fields have to be considered only as SO(5) spurions, while
the U(1)H needs to be exact at the Lagrangian level.
For both the SM fermions and the FN messengers, the
U(1)X charge is chosen to match the correct hypercharge,
Y = T3 +X, and will be omitted in the following.

The Lagrangian of the system includes renormalizable
operators made out of Ψi

f , ξj , and Σ allowed by symme-
tries:

−L =
∑
j

(
aj ξ̄j+1 Γα Σα ξj + h.c.

)
+mj ξ̄j ξj ,

+
∑
i,f

zfi Ψ̄i
f Γα Σα ξj + z̃fi ξ̄j+2 Γα Σα Ψi

f + h.c.

+ x Ψ̄3
qL Γα Σα Ψ3

uR + h.c. ,

(8)

where Γa are the matrices defining the spinorial repre-
sentation. In the Lagrangian above, the first line con-
tains the interactions of the FN messengers with the Σ-
field and their (vector-like) mass terms, while the sec-
ond line consists of Yukawa couplings involving the SM
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fermions and the FN messengers, where f = qL, uR, dR,
and j ≡ j(f, i) = Hfi−1 is such that the terms are U(1)H

invariant. Notice that the use of the spinorial represen-
tation is particularly suitable for the purpose of building
the FN chain: both ξ-fields appear symmetrically in the
Yukawa coupling and thus only a single species of heavy
fermions is needed. Finally, the last line accounts for the
fact that the top mass features no suppression, and thus
a direct coupling of tL and tR via the Σ-field must be
allowed.

Before presenting the computation of the Higgs po-
tential, let us discuss an example to show how the FN
mechanism is explicitly realized in our setup.

A. Mass hierarchies from broken U(1)H

Consider two chiral fermions, Ψ3
qL and Ψ2

uR
for con-

creteness, as given in Eq. (6), and two FN messengers,
ξ2,3, with the mass-mixing Lagrangian

−L ⊃ z Ψ̄2
uR

Σ′ξ3 + z̃ ξ̄2Σ′Ψ3
qL + a2 ξ̄3Σ′ξ2 + h.c.

+m
(
ξ̄2ξ2 + ξ̄3ξ3

)
,

(9)

where we have defined Σ′ ≡ Γα Σα. The Lagrangian
above corresponds to the flavour charges Hq3

L
= 1 and

Hu2
R

= 4 and, as we shall see, reproduces the term in

Eq. (B1) for the tL-cR mixing. All dimensionless cou-
plings are assumed to be z ∼ z̃ ∼ a2 ∼ O(1).

By integrating out ξ2 and ξ3 at the tree level, one finds
the effective Lagrangian, Leff, which, at the leading order
in 1/m, reads1

− Leff = z z̃ a2
1

m2
Ψ̄2
uR

Σ′Σ′Σ′Ψ3
qL + h.c. (10)

Below the symmetry-breaking scale and after integrating
out the flavon and the second Higgs doublet, the Σ-field
can be written by the Goldstone parametrization in the
unitary gauge as

Σ =
f√
2
eia/f (0, 0, sinh/f, 0, cosh/f)

T
, (11)

where h represents the Higgs field, and a is the axion.
Using Eq. (11), we can single out the contribution to the
mass matrix in Eq. (10):

− Leff ⊃ m32c̄RtL + h.c. , (12)

m32 =
1√
2
z z̃ a2

f2

2m2
f sin(〈h〉/f) + . . . , (13)

1 Note that for the apparently more minimal chain between two
light fermions that differ only by ∆H = 2 units of flavour charge,
the corresponding effective Lagrangian ∼ Ψ̄3

qL
Σ′Σ′Ψ2

uR
=

q̄3L∆LΣ′Σ′∆T
u u2

R vanishes due to ΣαΣβΓαΓβ = ΣαΣα1 and

∆L∆T
u = 0.

where f sin(〈h〉/f) ≡ v is to be identified with the EW
scale and the dots stand for higher orders in f2/2m2.
Defining δij ≡ HqiL

− HqjR
, we see that the suppression

with respect to the top mass ismij/mt ∼
(
f/
√

2m
)|δij |−1

with δ32 = 3 in the present case. The addtional −1 in
the exponent, which is not present in the usual FN setup,
compensates for the Higgs carrying one unit of flavour
charge, since it is unified in the Σ-field.

One can show that this result holds in general for odd
|δij |, while for even |δij | the corresponding term vanishes
due to the properties of the Γ matrices; see footnote 1.
We thus conclude that a general entry in the fermion
mass matrix, mij , corresponding to a charge difference
of |δij | is suppressed with respect to the top mass by

mij

mt
∼
(
f2

2m2

) |δij |−1

2

, |δij | odd . (14)

Eq. (14) shows that
(
f2/2m2

)
≡ ε is the smallest building

block we can use to reproduce the flavour hierarchies, and
therefore we identify ε = sin θC ' 0.23 with θC being the
Cabibbo angle. As a final check, for the tL-cR mixing
with δ32 = 3, we see that Eq. (14) gives the correct entry
n32 = 1 in Eq. (B2).

III. HIGGS POTENTIAL AND CONSTRAINTS
ON THE AXION DECAY CONSTANT

In this section, we compute the Higgs potential gener-
ated by the interaction with the top quark and the FN
messengers which directly couple to it. A charge assign-
ment that is compatible with the top mass must satisfy
|δ33| ≡ |Hq3

L
− Hu3

R
| = 1, and we take Hq3

L
= 1, and

Hu3
R

= 2. This corresponds to

−L ⊃
(
a0e

iαξ̄1Σ′ξ0 + h.c.
)

+m(ξ̄0ξ0 + ξ̄1ξ1)

+
(
xeiζΨ̄3

qLΣ′Ψ3
uR

+ zLe
iζLΨ̄3

qLΣ′ξ0

+zRe
iζRΨ̄3

uR
Σ′ξ1 + h.c.

)
,

(15)

where zL,R ≡ zqL,uR

3 and potential phases have been
pulled out into ζL,R. Note that we are here assuming
mass degeneracy for the messenger fields, m0 = m1 ≡ m,
and we are setting to zero interactions involving other
FN messengers which have to be there to reproduce the
correct mixings (e.g., the ξ̄2Σ′Ψ3

qL term in Eq. (9)) but do
not alter the conclusion of this section. We comment on
breaking the mass degeneracy in Appendix A, while the
contribution to the Higgs potential from sectors involving
lighter fermions is discussed in Appendix B.

Let us first compute the top mass according to Eq. (15)
in the background of h.2 This can be done by solving the

2 We use the same symbol for the classical background as for the
Higgs field earlier in Eq. (11) to simplify the notation.
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characteristic polynomial for the fermion mass matrix,
or alternatively by integrating out the heavy fields at
the tree level. The expression for mt is obtained as an
expansion in f2/2m2 and h/f :

m2
t (h) =

(
α0 − α2

f2

2m2
− α4

f4

4m4

)
f2

2
sin2(h/f)

− β4
f4

4m4

f2

2
sin4(h/f) + h.o.,

(16)

where h.o. stands for higher-order contributions in
f2/2m2 and (h/f)n terms with n ≥ 6, and

α0 =x2,

α2 =x2
(
z2

L + z2
R

)
− 2x zL zR a0 cos Ω,

α4 =− x2
(
z4

L + z2
Lz

2
R + z4

R

)
+ a2

0

(
3x2z2

L + z2
R(3x2 − z2

L)
)

− 2a0xzLzR

(
a2

0 − z2
L − z2

R

)
cos Ω,

β4 =x4
(
z2

L + z2
R

)
− 6x3 zL zR a0 cos Ω,

(17)

with Ω ≡ α−ζL+ζ−ζR. The expression of Eq. (16) needs
to coincide with the SM result, m2

t = 1
2y

2
t h

2 implying
yt ' x at the leading order.

We compute the Higgs potential by matching the SM
effective potential renormalized at the scale m (where the
new physics kicks in) with the one in the axiflavon-Higgs
scenario. We work out the one-loop matching explicitly
in the following. The SM effective potential up to one-
loop level, keeping only the top contribution, reads

V
(1)
SM =

1

4
λ(m)h4 − 1

2
µ2(m)h2

− Nc
16π2

m4
t (h)

(
log

m2
t (h)

m2
− 3

2

)
,

(18)

where Nc = 3, and all the couplings are evaluated at the
scale m, including yt(m) within mt(h).

In the axiflavon-Higgs picture, the Higgs potential
arises at the loop level, and it is given in terms of the field-
dependent masses of the physical eigenstates, namely the
SM particles and the FN messengers. Considering only
the top sector in Eq. (15) yields

V
(1)
AFH =− Nc

16π2

{
m4
t (h)

(
log

m2
t (h)

m2
− 3

2

)

+
∑
j

m4
ξj (h)

(
log

m2
ξj

(h)

m2
− 3

2

) .

(19)

Then, by requiring

V
(1)
SM = V

(1)
AFH, (20)

we obtain

V4 ≡
1

4
λ(m)h4 − 1

2
µ2(m)h2

=− Nc
16π2

∑
j

m4
ξj (h)

(
log

m2
ξj

(h)

m2
− 3

2

)
.

(21)

A few comments are in order: the contribution from the
top eigenstate appears on both side of Eq. (20), and
therefore it cancels. Such cancelation takes care of the
large logarithm arising from the hierarchy between the
EW and the flavon scale. We expect this behaviour to
persist beyond the one-loop level, given that the pure
SM contribution always appears on both sides, so that
Eq. (21) gives the leading-order matching condition.

To compute the RHS of Eq. (21), we parametrize the
field-dependent FN masses as

m2
ξj (h) = m2 + fj(h), (22)

where fj(h) ∼ f ×m. By expanding the logarithm, we
see that

V4 = − Nc
16π2

∑
j

[
−2fj(h)m2 +

f3
j (h)

3m2
−
f4
j (h)

12m4

+
f5
j (h)

30m6
−
f6
j (h)

60m8
+ h.o.

]
,

(23)

where we dropped a constant term. The computation of
Fn =

∑
j f

n
j (h), n = 1, . . . , 6, can be done recursively as

F1 =
∑
j

fj(h) = Tr
[
m†(h)m(h)

]
−m2

t (h),

F2 =
∑
j

f2
j (h) = Tr

[(
m†(h)m(h)

)2]
− 2F1m

2 −m4
t (h),

(24)

and so on.
By direct inspection, the terms F5 and F6 turn out

to be higher order. We eventually find for the RHS of
Eq. (21):

V4 =
Nc

16π2
f2

(
γ0 + γ2

f2

2m2

)
f2

2
sin2(h/f)

+
Nc

16π2
f2δ2

f2

2m2

f2

2
sin4(h/f),

(25)

where

γ0 =α2,

γ2 =
1

3

(
−3x2

(
z4

L + z2
Lz

2
R + z4

R

)
+ a2

0

(
3x2z2

L + z2
R

(
3x2 − z2

L

))
+2a3

0zLxzR cos Ω
)
,

δ2 =β4.

(26)

The matching then requires

µ2(m) = − Nc
16π2

f2

(
γ0 + γ2

f2

2m2

)
, (27)

which in turn implies γ0, γ2 � 1, since these coefficients
belong to different orders in the f2/2m2 expansion. The
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Figure 1. Matching of the Higgs quartic coupling at the scale
m in the SM (red band) with the prediction of Eq. (32), con-
sidering a Yukawa coupling spread of δ = ±0.6 (light blue
band), δ = ±0.3 (light gray band), and δ = 0 (dashed black
line). The intersection corresponds to the allowed range for
m. See text for details.

result of Eq. (27) makes the tuning in the model explicit:
the natural value of µ2 is not much below the scale f2.
However, once the tuning is implemented, it is possible
to predict the value and the sign of the quartic coupling,
λ(m). In fact, since the coefficient of sin2(h/f) is nu-
merically small, the leading order for the quartic term,
1
4λ(m)h4, is given by the sin4(h/f) term:

λ(m) =
Nc
8π2

f2

2m2
δ2. (28)

The condition γ0 � 1 implies

x2(z2
L + z2

R) ' 2xzLzRa0 cos Ω , (29)

which then yields

δ2 ' −2x4(z2
L + z2

R), (30)

and finally

λ(m) = − Nc
4π2

f2

2m2
x4(z2

L + z2
R) < 0. (31)

Since λ(m) is entirely predicted in the SM below the
threshold of the FN messengers, Eq. (31) can be used to
determine the scale m at which a successful matching is
achieved. In order to do so, we recall that the goal of
the FN mechanism is to construct a model where there is
no hierarchy among the fundamental parameters. Since
we know that yt(m) ' x, the top Yukawa coupling at the
scalem fixes the overall magnitude of the other couplings.
Thus, Eq. (31) can be rewritten as

λ(m) = − Nc
2π2

f2

2m2
y6
t (m)(1 + δ)6, (32)

where we have parametrized an average Yukawa coupling
as yt(m)(1 + δ).

In Fig. 1 we show the SM running of λ(m) in red (the
band takes into account the uncertainty in the initial con-
ditions) and the RHS of Eq. (32) for δ = ±0.6 (light

blue band), δ = ±0.3 (light gray band), and δ = 0
(dashed black line). We notice that the matching is
possible only for negative values of λ(m), which selects
109 GeV . m . 1014 GeV. By recalling f2/2m2 ' 0.23,
we conclude that

7× 108 GeV . f . 7× 1013 GeV. (33)

Since the flavon expectation value, f , is related to the
axion decay constant by fa = f/N ,

N =
∑
i

2HΨiqL
−HΨiuR

−HΨidR
≈ 50, (34)

the previous bound yields

107 GeV . fa . 1012 GeV. (35)

It is useful to confront this region with constraints fol-
lowing from the flavour-violating couplings of the ax-
iflavon. In fact, limits from searches for the decay
K+ → π+a lead to fa & 7.5 × 1010 GeV at 90% C.L.
[2], leaving a relatively thin stripe 3 of

fa ≈ (1011 − 1012) GeV. (36)

Interestingly, this range will almost entirely be tested
by the NA62 experiment, which just started operation
[19, 20].

A. Including right-handed neutrinos

We now discuss the impact of including right-handed
(RH) neutrinos. Let us consider one family first. The
left-handed doublet lL and the RH neutrino NR come as
SO(5) spurions (see Eq. (6)):

ΨL = ∆T
L lL, ΨN = ∆T

uNR. (37)

One possibility is to assign flavour charge to ΨN such
that the following term is allowed:

−LN =
1√
2
yN Ψ̄NΣ′CΨ̄T

N + h.c.

=− 1

2
yNf cos(h/f)N̄RCN̄T

R e
ıa/f + h.c.,

(38)

which yields a Majorana mass

m2
NR

(h) = y2
Nf

2 cos2(h/f). (39)

The Dirac mass term, mD, is obtained by integrating out
the FN chain:

mD ∼ mtε
|δν |−1

2 , (40)

3 Note that the axion couplings to fermions differ by approximately
a factor of two with respect to the axiflavon case of [2], which
is however cancelled to good approximation by a similar factor
entering Eq. (34).
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where δν = HlL −HNR
. The light neutrino mass, mν , is

then given by

mν ∼ mtε
|δν |−1 mt

mNR

, (41)

which shows a double suppresion, originating from the
type-I seesaw [21–24] and from the FN mechanism. The
impact of Eq. (38) to the Higgs potential is

∆V
(1)
AFH =− 2

64π2
m4
NR(h)

(
log

m2
NR

(h)

m2
− 3

2

)
=− 1

32π2
y4
Nf

4 cos4(h/f)

[
log

(
y2
N

f2

m2

)
+ log

(
1− sin(h/f)2

)
− 3

2

]
'− 1

16π2
y4
N

(
1 + log

1

ε̃

)
f4sin2(h/f)

+
1

32π2
y4
N log

1

ε̃
f4sin4(h/f) ,

(42)

where we have defined (yNf/m)2 = ε̃. At the leading
order in f2/2m2, the matching conditions now read

µ2(m) =
f2

16π2

[
2y4
N

(
1 + log

1

ε̃

)
−Ncγ0

]
, (43)

and

λ(m) =
1

8π2
log

1

ε̃
y4
N . (44)

Assuming three almost degenerate RH neutrinos, with
a typical coupling yN parametrized as yN = (1 + δ)yt,
Eq. (44) becomes

λ(m) =
3

8π2
log

(
1

2y2
t (m)(1 + δ)2ε

)
(1+δ)4y4

t (m). (45)

In Fig. 2 we show the SM running of λ(m) in red and the
RHS of Eq. (45) for δ = ±0.6 (light blue band), δ = ±0.3
(light gray band) and δ = 0 (dashed black line). The
matching is now possible for smaller values of m with
respect to the case without RH neutrinos, because the
RHS of Eq. (45) is positive. The allowed region for f is:

3× 105 GeV . f . 1011GeV. (46)

Furthermore, since mNR
' yN f with yN ≈ 1, Eq. (46)

also sets the range of the RH neutrino masses. Eventu-
ally, we find:

6 TeV . fa . 2× 106 TeV . (47)

Such values of fa are excluded for the usual QCD ax-
ion, however, by disentangling the axion mass and de-
cay constant, low-fa models can become viable. Recent
concrete examples have been presented in Refs [25, 26].
Supernova cooling and flavour constraints can then be
avoided by pushing the axion mass to the GeV or TeV
scale. As a consequence, the axion cannot be a dark
matter candidate, since it is no longer stable on cosmo-
logical scales, but still solves the strong CP problem. In
addition, the RH neutrinos can provide a link to matter-
antimatter asymmetry via leptogenesis [27].

4 6 8 10 12 14 16

0.00

0.02

0.04

0.06

log10(
m

GeV
)

λ
(m

)

Figure 2. Matching of the Higgs quartic coupling at the scale
m in the SM (red band) with the prediction of Eq.(45), consid-
ering a yukawa spread of δ = ±0.6 (light blue band), δ = ±0.3
(light gray band), and δ = 0 (dashed black line). The inter-
section corresponds to the allowed range for m. See text for
details.

B. Bounds from inflation

The inflationary Hubble scale, HI , is constrained by
the CMB measurement of the tensor-to-scalar ratio as
[28]

HI

2π
≤ 1.4× 1013 GeV. (48)

Since the reheating temperature, TRH, is bounded by HI ,
one obtains TRH . 1016 GeV [29]. The expression for
TRH is model dependent and is given by [30]

TRH =

(
45

4π3g∗

)1/4

(ΓφMPl)
1/2

, (49)

where Γφ is the width of the inflaton field and g∗ is the
number of relativistic degrees of freedom.

Our aim is to extract a cosmological constraint on the
Peccei–Quinn scale when the flavon field itself plays the
role of the inflaton, φ = σ [3, 29, 31]. Note that in order
to have a successful inflation, one needs, for instance, to
introduce a non-minimal coupling to gravity.

To estimate the constraint, we compute Γσ in our
model. The flavon field couples at the tree-level to the
other scalars in the Σ-multiplet and to RH neutrinos if
the interaction in Eq. (38) is included. The potential in
Eq. (2) is stable for λ1 > λ2 > 0. We focus here in the
limit where λ1 � λ2, such that all the scalar decay chan-
nels for σ are open, and the width is thus maximised.
The width into scalars is then given by

Γ(s)
σ = Ns

1

8π2

λ1

2
mσ = Ns

1

8π2
(λ1)3/2f , (50)

where Ns = 9 is the number of scalar decay channels,
corresponding to two scalar doublets and the axion. In-
cluding RH neutrinos, which contribute

Γ(NR)
σ =

3

32π2
y2
Nmσ =

3

16π2
(λ1)1/2y2

Nf , (51)
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we arrive at an upper bound on f of

fa ·N = f ≤ 8π2(
λ1)1/2(Nsλ1 + 1

2

∑
i g

2
i

) (4π3g∗
45

)1/2

×
(

1016 GeV

MPl

)
1016 GeV.

(52)

This leads to a relevant bound only in the high-scale
model without RH neutrinos, since the one with RH neu-
trinos easily avoids this constraint due to the relatively
low scale f . Taking g∗ = O(100) and yN = 0, we find

fa . 3 (λ1)−3/2 1013 GeV . (53)

In the extreme case of λ1 = 4π (for which Γσ almost
equals mσ), fa . 1012 GeV, which is the same upper
bound as in Eq. (35).

IV. CONCLUSIONS

We presented a model framework where the flavour
puzzle, the strong CP problem, and the origin of the
observed DM abundance are solved by a single scalar
multiplet which also contains the Higgs boson. The latter
emerges as a pNGB of an enhanced global symmetry,
thereby connecting the EWSB with the origin of the SM-
fermion mass hierarchies. To achieve this, we provided a
renormalizable UV realization of the FN mechanism.

We showed that successfully reproducing the SM-like
Higgs potential at low energies fixes the axion decay con-
stant to fa ≈ (1011 − 1012) GeV for the minimal setup,
where the lower bound is driven from limits on flavour-
changing axion couplings. This lies just in a region where
axions are a very attractive DM candidate, and which is
a prime target of future searches, in particular at NA62
and ADMX [32, 33].

We also demonstrated that by including RH neutrinos,
the symmetry-breaking scale could be lowered bringing
the axion decay constant down to TeV range and com-
mented on the possibility of the flavon component to be
identified with the inflaton.
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Appendix A: The validity of the FN mass
degeneracy assumption

Let us discuss the implication of relaxing the degen-
eracy among the FN messengers. We paramatrize the

departure from the degenerate case by introducing δj pa-
rameters:

m2
ξj = m2(1 + δj) + fj(h) = m2 + (m2δj + fj(h))

≡ m2 + f̃j(h).
(A1)

The previous analysis now applies with fj(h) replaced by

f̃j(h). The condition under which the non-degeneracy
effects can be neglected then reads:

m2δj � f ×m⇒ δj � f/m =
√

2ε ∼ 0.68 (A2)

We conclude that the non-degeneracy can be neglected
as long as δj � 0.7.

Appendix B: Subleading contributions to the Higgs
potential

Similarly to the top eigenstate, the contribution of the
gauge bosons will appear on both sides of Eq. (20) and
thus do not alter the one-loop matching condition; the
same reasoning applies to the other SM eigenstates. How-
ever, an additional contribution is expected when the FN
messengers mixing with the light fermions are included.

For concreteness, let us consider the up-type quarks.
The Yukawa interactions before diagonalization read

Lu = −yijεnij q̄ iLH̃u
j
R + h.c. , (B1)

where yij = O(1), where the hierarchies

nij =

 8 4 3
7 3 2
5 1 0

 (B2)

lead to a viable spectrum [3]. Thus, by recalling the rela-
tion between U(1)H charge differences and the suppresion
factor Eq. (14), we shall require

|δij | − 1

2
= nij . (B3)

Looking at the second-third family mixing, we see that
it can be reproduced by assigning the H charges

HtL = 1, HtR = 2, HcL = −3, HcR = 4. (B4)

The charm sector can then be written in a similar way
as in Eq. (15), according to the charge assignments,
Eq. (B4). The contribution to the Higgs potential is
found to be O(f2/2m2) for the sin2(h/f) and O(f4/4m4)
for the sin4(h/f) term, which is subleading compared to
the top sector. The same reasoning applies to all light
SM fermions.
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