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Abstract: We compute the β-function for a massless Yukawa theory in a closed form at

the order O(1/Nf ) in the spirit of the expansion in a large number of flavours Nf . We find

an analytic expression with a finite radius of convergence, and the first singularity occurs

at the coupling value K = 5.
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1 Introduction

The success of the Standard Model in describing the electroweak scale phenomena notwith-

standing the apparent problems with the high-energy behaviour have lead to revival of in-

terest in better understanding the UV properties of general gauge-Yukawa theories, see e.g.

Refs [1–3]. In particular, gauge-Yukawa theories with a large number of fermion flavours,

Nf , provide interesting candidates within the asymptotic-safety framework as opposed to

the traditional asymptotic-freedom paradigm [4, 5].

The groundwork for these considerations was laid few decades ago with the compu-

tation of the leading large-Nf behaviour of the gauge β-functions [6–8] for Nf fermion

charged under the gauge group; see also Refs [9, 10]. The leading 1/Nf contribution to the

β-function is obtained by resumming the gauge self-energy diagrams with ever increasing

chain of fermion bubbles constituting a power series in K = αNf/π. It was noticed that

this series has a finite radius of convergence; in the case of U(1) gauge group K = 15/2.

Furthermore, the leading 1/Nf contribution to the U(1) β-function has a negative pole at

K = 15/2, thereby suggesting that this behaviour could cure the Landau-pole behaviour

of the SM U(1) coupling, see e.g. Refs [9, 11, 12].

Recently, a further step towards a more complete understanding of these models was

achieved by working out the leading 1/Nf contribution from the gauge sector to a Yukawa

coupling [13]; an extension to semi-simple gauge groups was discussed in Ref. [14]. However,

only a single fermion flavour was assumed to couple to the scalar, and the scalar self-energy

remained uneffected by the Nf fermion bubbles. Our work is the first step to bridge this

remaining gap: we provide the leading 1/Nf β-function for pure Yukawa theory, where Nf

flavours of fermions couple to the scalar field via Yukawa interaction. We leave the more

detailed study within a general gauge-Yukawa framework for future work. Interestingly,

the pure Yukawa model is closely related to the Gross–Neveu–Yukawa model, whose critical

exponents have been recently computed up to 1/N2
f [15, 16]; see also the earlier studies on

the Gross–Neveu model e.g. Refs [17, 18].

The paper is organized as follows: In Sec. 2 we introduce the framework and notations

and in Sec. 3 give the expressions for the renormalization constants. In Sec. 4 we perform

the resummations of the bubble chains and give closed form expressions for the renormal-

ization constants. In Sec. 5 we collect the results, and write down the final expression for

the β-function, and in Sec. 6 we conclude. Explicit formulas for the loop integrals are given

in Appendix A.

2 The framework and definitions

We consider the massless Yukawa theory for a real scalar field, φ, and a fermionic multiplet,

ψ, consisting of Nf flavours interacting through the usual Yukawa interaction:

LYuk = gψ̄ψφ. (2.1)

We define the rescaled coupling,

K ≡ g2

4π2
Nf , (2.2)
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(a) Scalar self-energy corrections.

(b) Fermion self-energy correction. (c) Vertex correction.

Figure 1: Scalar self-energy, fermion self-energy, and vertex corrections due to a chain of

fermion bubbles.

which is kept constant in the limit Nf →∞. The β-function of the rescaled coupling, K,

can then be expanded in powers of 1/Nf as

β(K) ≡ dK

d lnµ
= K2

[
F0 +

1

Nf
F1(K)

]
+O

(
1/N2

f

)
. (2.3)

The purpose of this paper is to compute F0 and F1(K). The former is entirely fixed at the

one-loop level and can be derived just by rescaling the well-known result for the β-function

at that order, while the evaluation of F1(K) requires the resummation of diagrams in Fig. 1

involving all-order fermion-bubble chains.

The β-function can be obtained from

β = K2∂G1(K)

∂K
, (2.4)

where G1 is defined by

lnZK ≡ ln (Z−1S Z−2F Z2
V ) =

∞∑
n=1

Gn(K)

εn
, (2.5)

and ZS , ZF , and ZV are the renormalization constants for the scalar wave function, the

fermion wave function, and the 1PI vertex, respectively. The scalar wave function renor-

malization constant is determined via

ZS = 1− div{ZSΠ0(p
2, ZKK, ε)}, (2.6)

where Π0(p
2,K0, ε) is the scalar self-energy divided by p2, where p is the external momen-

tum. Here and in the following, divX denotes the poles of X in ε. The self-energy can be
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written as

Π0(p
2,K0, ε) = K0Π

(1)(p2, ε) +
1

Nf

∞∑
n=2

Kn
0 Π(n)(p2, ε), (2.7)

where Π(1) gives the one-loop result, and Π(n) the n-loop part containing n − 2 fermion

bubbles in the chain, and summing over the topologies given in Fig. 1a. Other contributions

are of higher order in 1/Nf and are thus omitted.

For the fermion self-energy and vertex renormalization constants, the lowest non-trivial

contributions are already O(1/Nf ), and we, therefore, have

ZF = 1− div
{

Σ0(p
2, ZKK, ε)

}
, (2.8)

Σ0(p
2,K0, ε) =

1

Nf

∞∑
n=1

Kn
0 Σ(n)(p2, ε), (2.9)

where Σ(n) is depicted in Fig. 1b with n− 1 fermion bubbles. Similarly,

ZV = 1− div
{
V0(p

2, ZKK, ε)
}
, (2.10)

V0(p
2,K0, ε) =

1

Nf

∞∑
n=1

Kn
0 V

(n)(p2, ε), (2.11)

where V (n) again contains n− 1 fermion bubbles and is shown diagrammatically in Fig 1c.

Finally, we briefly comment on the scalar three-point and four-point functions, assum-

ing that they are generated via fermion loops: the former exactly vanishes for massless

fermions, while the latter is found to be already O(1/Nf ) at the lowest order. Therefore,

they can be neglected for the purpose of our analysis.

3 Renormalization constants

In this section our goal is to extract the contributions to the renormalization constants

that are O(1/NF ) and relevant for the computation of the β-function.

Our starting point for ZS is Eq. (2.6). Using the expansion of the scalar self-energy,

Eq. (2.7), we obtain

ZS = 1− div

{
ZSZKKΠ(1)(p2, ε) +

1

Nf

∞∑
n=2

ZS(ZKK)nΠ(n)(p2, ε)

}
. (3.1)

Recalling that ZK ≡ Z−1S Z−2F Z2
V and substituting Eqs (2.8) and (2.10), the first term

between brackets can be written as

div
{
ZSZKΠ(1)(p2, ε)K

}
= Kdiv

{
Π(1)

}
+

1

Nf
div
{

2K div
{

Σ0(p
2, ZKK, ε)− V0(p2, ZKK, ε)

}
Π(1)(p2, ε)

}
. (3.2)
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The Π(1) part corresponds to the one-loop diagram and is given by

Π(1)(p2, ε) ≡div
{

Π(1)
}

+ Π
(1)
F (p2, ε) =

1

(4π)d/2−2
G(1, 1)

2
(−p2)d/2−2

=
1

ε
+ Π

(1)
F (p2, ε),

(3.3)

where d = 4 − ε, the loop function, G(1, 1), is defined in Eq. (A.2) in Appendix A.1, and

we have introduced the notation Π
(1)
F to indicate the finite part of Π(1). Then,

div
{
ZSZKΠ(1)(p2, ε)K

}
=
K

ε
+

1

Nf
div

{
2K div

{
Σ0(p

2, ZKK, ε)− V0(p2, ZKK, ε)
}

×
(

div
{

Π(1)
}

+ Π
(1)
F (p2, ε)

)}
=
K

ε
+

1

Nf
div
{

2KΠ
(1)
F (p2, ε)

[
Σ0(p

2, ZKK, ε)− V0(p2, ZKK, ε)
]}

+
1

Nf
× higher poles,

(3.4)

where the higher poles, i.e., higher than 1/ε, arise from the product of two divergent parts

and will be omitted because they play no role in what follows. Then, at the lowest order

in 1/Nf ,

ZS = 1− K

ε
+O (1/Nf ) . (3.5)

Therefore, every time ZKK appears in the argument of Σ0 and V0, it can be replaced by

K
(
1− K

ε

)−1
; the additional contributions are higher order in 1/Nf . For Eq. (3.4), we

arrive at

div
{
ZSZKΠ(1)(p2, ε)K

}
=
K

ε
+

∞∑
n=1

Kn+1div

{
2Π

(1)
F (p2, ε)

(
1− K

ε

)−n [
Σ(n)(p2, ε)− V (n)(p2, ε)

]}
. (3.6)

Similarly, the second term of Eq. (3.1) reads

1

Nf
div

{ ∞∑
n=2

ZS(Z−1S K)nΠ(n)(p2, ε)

}
=

1

Nf

∞∑
n=2

Kndiv

{(
1− K

ε

)1−n
Π(n)(p2, ε)

}
. (3.7)

Altogether, we can write ZS as

ZS = 1 − K

ε
− 1

Nf

∞∑
n=2

Kn

{(
1− K

ε

)1−n (
2Π

(1)
F

[
Σ(n−1) − V (n−1)

]
+ Π(n)

)}
, (3.8)

where the explicit functional dependence on (p2, ε) has been omitted to lighten the notation.

Using the binomial expansion,(
1− K

ε

)1−n
=

∞∑
i=0

(
n+ i− 2

i

)
Ki

εi
(3.9)
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and performing a shift in the summation, n→ n− i, we find our final expression for ZS :

ZS = 1−K
ε
− 1

Nf

∞∑
n=2

Kndiv

{
n−2∑
i=0

(
n− 2

i

)
1

εi

(
2Π

(1)
F

(
Σ(n−i−1) − V (n−i−1)

)
+ Π(n−i)

)}
.

(3.10)

We notice that Eq. (3.10) differs essentially from its counterpart in the QED [7] because of

the contribution from the fermion self-energy and the vertex, which exactly cancel in QED

because of the Ward identity.

The expression for ZF can be derived from Eq. (2.8) in a similar manner:

ZF = 1− 1

Nf

∞∑
n=1

div
{

(ZKK)n Σ(n)(p2, ε)
}

= 1− 1

Nf

∞∑
n=1

Kndiv

{(
1− K

ε

)−n
Σ(n)(p2, ε)

}

= 1− 1

Nf

∞∑
n=1

Kndiv

{
n−1∑
i=0

(
n− 1

i

)
1

εi
Σ(n−i)(p2, ε)

}
,

(3.11)

where we have again performed the same shift n → n − i in the last line. The derivation

of ZV is completely analogous, and we can readily write the expression for ZV :

ZV = 1− 1

Nf

∞∑
n=1

Kndiv

{
n−1∑
i=0

(
n− 1

i

)
1

εi
V (n−i)(p2, ε)

}
. (3.12)

4 Resummation

In this section we provide closed formulas for Eqs (3.10), (3.11), and (3.12).

4.1 The vertex

By explicit computation, the n-loop contribution to V0 is

V (n)(p2, ε) =
(−1)n

4

(
1

(4π)d/2−2

)n(G(1, 1)

2

)n−1
(−p2)n(d/2−2)

×G (1, 1− (n− 1)(d/2− 2)) ,

(4.1)

where G(n1, n2) is defined in Eq. (A.2). We notice that, as in Ref. [7], Eq. (4.1) allows for

the following expansion:

V (n)(p2, ε) = (−1)n
1

nεn
v(p2, ε, n)

2
, (4.2)

where

v(p2, ε, n) =
∞∑
j=0

vj(p
2, ε)(nε)j , (4.3)
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and vj(p
2, ε) are regular in the limit ε→ 0 for all j. In particular, v0(ε) is independent of

p2 and is explicitly given by

v0(ε) =
2Γ(2− ε)

Γ
(
1− ε

2

)2
Γ
(
2− ε

2

)
Γ
(
ε
2

)
ε
. (4.4)

Substituting Eqs (4.1) and (4.2) in Eq. (3.12), we find:

ZV = 1− 1

Nf

∞∑
n=1

(−K)ndiv


n−1∑
j=0

1

εn−j

n−1∑
i=0

(
n− 1

i

)
(−1)i(n− i)j−1 vj(p

2, ε)

2

 . (4.5)

Then, by using the result of Ref. [7],

n−1∑
i=0

(
n− 1

i

)
(−1)i(n− i)j−1 = −δj,0

(−1)n

n
, j = 0, . . . , n− 1, (4.6)

Eq. (4.5) gets simplified to

ZV = 1 +
1

2Nf

∞∑
n=1

Kn

εn
v0(ε)

n
. (4.7)

Expanding v0(ε) as

v0(ε) =

∞∑
j=0

v
(j)
0 εj (4.8)

and keeping only the 1/ε pole of Eq. (4.7), we find the closed formula for ZV :

ZV = 1 +
1

2εNf

∞∑
n=1

Kn

n
v
(n−1)
0 = 1 +

1

2εNf

∫ K

0
v0(t)dt. (4.9)

4.2 The fermion self-energy

The n-loop contribution to Σ0 is found to be

Σ(n)(p2, ε) =− (−1)n

8

(
1

(4π)d/2−2

)n(G(1, 1)

2

)n−1
(−p2)n(d/2−2)

× [G(1, 1− (n− 1)(d/2− 2))−G(1,−(n− 1)(d/2− 2))] .

(4.10)

Similarly to Eq. (4.1), Eq. (4.10) can be expanded as

Σ(n)(p2, ε) = −(−1)n
1

nεn
σ(p2, ε, n)

4
, (4.11)

where

σ(n, ε, p2) =

∞∑
j=0

σj(p
2, ε)(nε)j , (4.12)

and σj(p
2, ε) are regular for ε→ 0. Again, σ0(ε) is independent of p2, and it is given by

σ0(ε) = −
25−εΓ

(
3
2 −

ε
2

)
√
π(4− ε)Γ

(
− ε

2

)
ε

sin
(
πε
2

)
πε

. (4.13)
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Using the same procedure as in the previous section, we find that only σ0(ε) contributes

to ZF . Keeping only the 1/ε pole, the closed formula for ZF is

ZF = 1− 1

4εNf

∫ K

0
σ0(t)dt. (4.14)

4.3 The scalar self-energy

The evaluation of the bubble diagrams in Fig. 1a is quite cumbersome and is discussed in

Appendix A.2. Here, we notice that the expression for Π(n)(p2, ε), n ≥ 2, allows for the

following expansion:

Π(n) = −3

2

(−1)n

n(n− 1)εn
π(p2, ε, n), (4.15)

where

π(p2, ε, n) =

∞∑
j=0

πj(p
2, ε)(nε)j , (4.16)

and πj(p
2, ε) are regular for ε→ 0. Similarly to the previous cases, π0(ε) is independent of

p2.

In view of Eq. (3.10), we define

2Π
(1)
F (p2, ε)

(
Σ(n−1)(p2, ε)− V (n−1)(p2, ε)

)
+ Π(n)(p2, ε) ≡ (−1)n

n(n− 1)εn
ξ(p2, ε, n), (4.17)

where

ξ(p2, ε, n) ≡ nεΠ
(1)
F

(
σ(p2, ε, n− 1)

2
+ v(p2, ε, n− 1)

)
− 3

2
π(p2, ε, n), (4.18)

and

ξ(p2, ε, n) =

∞∑
j=0

ξj(p
2, ε)(nε)j , (4.19)

with ξj(ε, p
2) regular for ε → 0 for all j. In particular, ξ0(ε) is independent of p2 and is

explicitly given by

ξ0(ε) = − (1− ε)Γ(4− ε)
Γ
(
2− ε

2

)
Γ
(
3− ε

2

)
πε

sin
(πε

2

)
(4.20)

Then, using the above definitions, Eq. (3.10) can be written as

ZS = 1− K

ε
− 1

Nf

∞∑
n=2

Kndiv

{
n−2∑
i=0

(
n− 2

i

)
1

εi
(−1)n−i

(n− i)(n− i− 1)εn−i
ξ(p2, ε, n− i)

}

= 1− K

ε
− 1

Nf

∞∑
n=2

(−K)ndiv


n−1∑
j=0

1

εn−j
ξj(p

2, ε)
n−2∑
i=0

(
n− 2

i

)
(−1)i

(n− i)j−1

(n− i− 1)

 .

(4.21)

Moreover, we find that

n−2∑
i=0

(
n− 2

i

)
(−1)i

(n− i)j−1

(n− i− 1)
=

{
(−1)n
n j = 0

(−1)n
n−1 j = 1, . . . , n− 1

, (4.22)
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and therefore the expression for ZS can be significantly simplified:

ZS = 1− K

ε
− 1

Nf

∞∑
n=2

Kn div

 1

εn

ξ0(ε)
n

+
1

n− 1

n−1∑
j=1

ξj(p
2, ε)εj


= 1− K

ε
− 1

Nf

∞∑
n=2

Kn div

 1

εn

ξ0(ε)
n

+
1

n− 1

∞∑
j=1

ξj(p
2, ε)εj


= 1− K

ε
− 1

Nf

∞∑
n=2

Kn div

{
1

εn

(
ξ0(ε)

n
+
ξ(p2, ε, 1)− ξ0(ε)

n− 1

)}
,

(4.23)

where in the second line we extended the sum over j up to ∞ without affecting the result,

since all the terms for j > n− 1 are finite. The function ξ(p2, ε, 1), corresponding to

ξ(p2, ε, 1) ≡
∞∑
j=0

ξj(p
2, ε)εj , (4.24)

can be evaluated by taking in Eq. (4.18) the limit n → 1, although the latter is formally

defined for n ≥ 2. We find the following expression:

ξ(p2, ε, 1) = − Γ(4− ε)
Γ
(
2− ε

2

)
Γ
(
3− ε

2

)
πε

sin
(πε

2

)
≡ ξ(ε, 1). (4.25)

Few comments are in order: Eq. (4.25) ensures that ZS is independent of the external

momentum p2, as it should. This result comes from an exact cancellation among the

different contributions of the scalar self-energy, the fermion self-energy, and the vertex in

Eq. (4.18). In particular, we find that

π(p2, ε, 1) =
2

3

(
σ(p2, ε, 0)

2
+ v(p2, ε, 0)

)[
1 + 1 · εΠ

(1)
F (p2, ε)

]
=

2

3

(
σ0(ε)

2
+ v0(ε)

)[
1 + εΠ

(1)
F (p2, ε)

]
,

(4.26)

and therefore

ξ(ε, 1) = −σ0(ε)
2
− v0(ε), (4.27)

which is equivalent to Eq. (4.25). Interestingly, Eq. (4.26) only holds for n = 1. All in

all, the p2 independence of Eq. (4.25) provides a non-trivial check for our computation.

Moreover, we see that

ξ0(ε) = (1− ε)ξ(ε, 1). (4.28)

We are now ready to resum the series in Eq. (4.23). By expanding ξ0(ε) as

ξ0(ε) =

∞∑
j=0

ξ
(j)
0 εj , (4.29)
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the 1
n term in Eq. (4.23) is given by

∞∑
n=2

Kn

εn
ξ0(ε)

n
=

1

ε

∞∑
n=2

Kn

εn
ξ
(n−1)
0

n
+ higher poles

=
1

ε

( ∞∑
n=0

Kn+1 ξ
(n)
0

n+ 1
−Kξ(0)0

)
+ higher poles

=
1

ε

∫ K

0
[ξ0(t)− ξ0(0)] dt+ higher poles.

(4.30)

As for the 1
n−1 term, using ξ0(ε) = (1− ε)ξ(ε, 1) and expanding ξ(ε, 1) as

ξ(ε, 1) =
∞∑
j=0

ξ̃(n)εj , (4.31)

we find

∞∑
n=2

Kn

εn
εξ(ε, 1)

n− 1
=
K

ε

∞∑
n=0

Kn+1

n+ 1
ξ̃(n) + higher poles

=
K

ε

∫ K

0
ξ(t, 1)dt+ higher poles.

(4.32)

Finally, the closed formula for ZS reads

ZS = 1− K

ε
− 1

εNf

∫ K

0
[ξ0(t)− ξ0(0) + ξ(t, 1)K] dt. (4.33)

5 The β-function

Using the results of the previous section together with Eq. (2.5), we can finally proceed to

evaluating the β-function. First, we find that

G1(K) = K +
1

Nf

∫ K

0

(
ξ0(t)− ξ0(0) + ξ(t, 1)K +

σ0(t)

2
+ v0(t)

)
dt. (5.1)

Now, it is straightforward to compute the β-function:

β(K) =K2 +
K2

Nf

{
−ξ0(0) + ξ(K, 1) +

σ0(K)

2
+ v0(K) +

∫ K

0
ξ(t, 1)dt

}
. (5.2)

Recalling Eq. (4.27) and using ξ0(0) = −3
2 , Eq. (5.2) can be further simplified to

β(K)

K2
= 1 +

1

Nf

{
3

2
+

∫ K

0
ξ(t, 1)dt

}
. (5.3)

Finally, by comparison with Eq. (2.3), we see that F0 = 1 and

F1(K) =
3

2
+

∫ K

0
ξ(t, 1)dt. (5.4)
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Figure 2: The function ξ(t, 1).

We plot the integrand, ξ(t, 1), in Fig. 2. We have checked that our β-function agrees at

the leading order in Nf up to four-loop level by comparing with the result of Ref. [19],

and with the result extracted from the critical exponents in Gross–Neveu–Yukawa model

computed using a different technique [15].

Finally, let us comment on the pole structure: the integrand, ξ(t, 1), has the first pole

occuring at t = 5, which results in a logarithmic singularity for F1(K) around K = 5. Due

to the sign of ξ(t, 1), we see that F1(K) approaches large negative values for K → 5−. This

suggests the existence of a UV fixed point at KUV . 5 such that F1(KUV) = −Nf .

6 Conclusions

We have computed the leading 1/Nf contribution for the β-function in Yukawa theory with

Nf fermion flavours coupling to a real scalar. We obtained a closed form expression for the

β-function up to order O(1/Nf ). This expression has a finite radius of convergence, and

the first singularity occurs at K = 5.

The present result adds an interesting ingredient to models with a large number of

fermions, and makes a contribution to better understand the UV behaviour of gauge-

Yukawa theories.
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A Loop integrals

We here provide some explicit formulas. We follow closely the notations of Ref. [20].
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A.1 The vertex and the fermion self-energy

As shown in Eqs (4.1) and (4.10), the 1PI vertex and the fermion self-energy involve only

the function G(n1, n2), independently of the number of bubbles. This corresponds to the

one-loop integral∫
ddk

(2π)d
1

Dn1
1 Dn2

2

= i
1

(4π)d/2
(−p2)d/2−n1−n2(−1)n1+n2G(n1, n2), (A.1)

where D1 = (k + p)2 and D2 = k2. Explicitly,

G(n1, n2) =
Γ(−d/2 + n1 + n2)Γ(d/2− n1)Γ(d/2− n2)

Γ(n1)Γ(n2)Γ(d− n1 − n2)
. (A.2)

A.2 The scalar self-energy

Unlike the 1PI vertex and the fermion self-energy, the n-loop contribution to the scalar

self-energy, Π0, indicated by Π(n), cannot be written in terms of G(n1, n2) functions only.

In fact, Π(n) is given by (n ≥ 2):

p2Π(n)(p2, ε) =− (4π2)2(−1)n
(

1

(4π)d/2−2
G(1, 1)

2

)n−2
(−1)α

∫
ddk1
(2π)d

∫
ddk2
(2π)d{

6

(p+ k1)2k22((k1 − k2)2)1−α
− 2

k21(p+ k1)2k22((k1 − k2)2)−α

− 2p2

k21(p+ k1)2k22((k1 − k2)2)1−α
+

2p2

k41(p+ k1)2k22((k1 − k2)2)−α

− 2p2

k21(k1 + p)2(k2 + p)2k22((k1 − k2)2)−α

}
,

(A.3)

where α = (n−2)(d/2−2) = −(n−2)ε/2. Eq. (A.3) requires two-loop integrals which can

be performed according to the formula in Ref. [20]:∫
ddk1
(2π)d

∫
ddk2
(2π)d

1

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5

= (−1)1+
∑
ni
πd(−p2)d−

∑
ni

(2π)2d
G(n1, n2, n3, n4, n5),

(A.4)

where D1 = (k1 + p)2, D2 = (k2 + p)2, D3 = k21, D4 = k22, D5 = (k1 − k2)
2. The

functions G(n1, n2, n3, n4, n5) are symmetric with respect to the following index exchanges:

(1 ↔ 2, 3↔ 4) and (1 ↔ 3, 2↔ 4). Moreover, they reduce to a product of G(n1, n2) if at

least one of the entries is zero:

G(n1, n2, n3, n4, 0) = G(n1, n3)G(n2, n4), (A.5)

G(0, n2, n3, n4, n5) = G(n3, n5)G(n2, n3 + n4 + n5 − d/2). (A.6)

It turns out that the first four integrals in Eq. (A.3) can always be written in terms of

G(n1, n2) making use of Eqs (A.5) and (A.6).

However, the last integral in Eq. (A.3) involves G(1, 1, 1, 1, (n − 2)ε/2) and, for n >

2, its expression can be obtained in terms of hypergeometric functions 3F2 by means of

the Gegenbauer technique [21]. We have evaluated the function G(1, 1, 1, 1, (n − 2)ε/2)

recursively according to Eqs (2.19) and (2.21) in Ref. [20].
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