The β -function for Yukawa theory at large N_f

Tommi Alanne, Simone Blasi

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany E-mail: tommi.alanne@mpi-hd.mpg.de, simone.blasi@mpi-hd.mpg.de

ABSTRACT: We compute the β -function for a massless Yukawa theory in a closed form at the order $\mathcal{O}(1/N_f)$ in the spirit of the expansion in a large number of flavours N_f . We find an analytic expression with a finite radius of convergence, and the first singularity occurs at the coupling value K = 5.

Contents

1	Introduction	2
2	The framework and definitions	2
3	Renormalization constants	4
4	Resummation	6
	4.1 The vertex	6
	4.2 The fermion self-energy	7
	4.3 The scalar self-energy	8
5	The β -function	10
6	Conclusions	11
\mathbf{A}	Loop integrals	11
	A.1 The vertex and the fermion self-energy	12
	A.2 The scalar self-energy	12

1 Introduction

The success of the Standard Model in describing the electroweak scale phenomena notwithstanding the apparent problems with the high-energy behaviour have lead to revival of interest in better understanding the UV properties of general gauge-Yukawa theories, see e.g. Refs [1–3]. In particular, gauge-Yukawa theories with a large number of fermion flavours, N_f , provide interesting candidates within the asymptotic-safety framework as opposed to the traditional asymptotic-freedom paradigm [4, 5].

The groundwork for these considerations was laid few decades ago with the computation of the leading large- N_f behaviour of the gauge β -functions [6–8] for N_f fermion charged under the gauge group; see also Refs [9, 10]. The leading $1/N_f$ contribution to the β -function is obtained by resumming the gauge self-energy diagrams with ever increasing chain of fermion bubbles constituting a power series in $K = \alpha N_f/\pi$. It was noticed that this series has a finite radius of convergence; in the case of U(1) gauge group K = 15/2. Furthermore, the leading $1/N_f$ contribution to the U(1) β -function has a negative pole at K = 15/2, thereby suggesting that this behaviour could cure the Landau-pole behaviour of the SM U(1) coupling, see e.g. Refs [9, 11, 12].

Recently, a further step towards a more complete understanding of these models was achieved by working out the leading $1/N_f$ contribution from the gauge sector to a Yukawa coupling [13]; an extension to semi-simple gauge groups was discussed in Ref. [14]. However, only a single fermion flavour was assumed to couple to the scalar, and the scalar self-energy remained uneffected by the N_f fermion bubbles. Our work is the first step to bridge this remaining gap: we provide the leading $1/N_f \beta$ -function for pure Yukawa theory, where N_f flavours of fermions couple to the scalar field via Yukawa interaction. We leave the more detailed study within a general gauge-Yukawa framework for future work. Interestingly, the pure Yukawa model is closely related to the Gross-Neveu-Yukawa model, whose critical exponents have been recently computed up to $1/N_f^2$ [15, 16]; see also the earlier studies on the Gross-Neveu model e.g. Refs [17, 18].

The paper is organized as follows: In Sec. 2 we introduce the framework and notations and in Sec. 3 give the expressions for the renormalization constants. In Sec. 4 we perform the resummations of the bubble chains and give closed form expressions for the renormalization constants. In Sec. 5 we collect the results, and write down the final expression for the β -function, and in Sec. 6 we conclude. Explicit formulas for the loop integrals are given in Appendix A.

2 The framework and definitions

We consider the massless Yukawa theory for a real scalar field, ϕ , and a fermionic multiplet, ψ , consisting of N_f flavours interacting through the usual Yukawa interaction:

$$\mathcal{L}_{\text{Yuk}} = g\bar{\psi}\psi\phi. \tag{2.1}$$

We define the rescaled coupling,

$$K \equiv \frac{g^2}{4\pi^2} N_f, \tag{2.2}$$

Figure 1: Scalar self-energy, fermion self-energy, and vertex corrections due to a chain of fermion bubbles.

which is kept constant in the limit $N_f \to \infty$. The β -function of the rescaled coupling, K, can then be expanded in powers of $1/N_f$ as

$$\beta(K) \equiv \frac{\mathrm{d}K}{\mathrm{d}\ln\mu} = K^2 \left[F_0 + \frac{1}{N_f} F_1(K) \right] + \mathcal{O}\left(1/N_f^2\right).$$
(2.3)

The purpose of this paper is to compute F_0 and $F_1(K)$. The former is entirely fixed at the one-loop level and can be derived just by rescaling the well-known result for the β -function at that order, while the evaluation of $F_1(K)$ requires the resummation of diagrams in Fig. 1 involving all-order fermion-bubble chains.

The β -function can be obtained from

$$\beta = K^2 \frac{\partial G_1(K)}{\partial K},\tag{2.4}$$

where G_1 is defined by

$$\ln Z_K \equiv \ln \left(Z_S^{-1} Z_F^{-2} Z_V^2 \right) = \sum_{n=1}^{\infty} \frac{G_n(K)}{\epsilon^n},$$
(2.5)

and Z_S , Z_F , and Z_V are the renormalization constants for the scalar wave function, the fermion wave function, and the 1PI vertex, respectively. The scalar wave function renormalization constant is determined via

$$Z_S = 1 - \operatorname{div}\{Z_S \Pi_0(p^2, Z_K K, \epsilon)\},$$
(2.6)

where $\Pi_0(p^2, K_0, \epsilon)$ is the scalar self-energy divided by p^2 , where p is the external momentum. Here and in the following, divX denotes the poles of X in ϵ . The self-energy can be written as

$$\Pi_0(p^2, K_0, \epsilon) = K_0 \Pi^{(1)}(p^2, \epsilon) + \frac{1}{N_f} \sum_{n=2}^{\infty} K_0^n \Pi^{(n)}(p^2, \epsilon), \qquad (2.7)$$

where $\Pi^{(1)}$ gives the one-loop result, and $\Pi^{(n)}$ the *n*-loop part containing n-2 fermion bubbles in the chain, and summing over the topologies given in Fig. 1a. Other contributions are of higher order in $1/N_f$ and are thus omitted.

For the fermion self-energy and vertex renormalization constants, the lowest non-trivial contributions are already $\mathcal{O}(1/N_f)$, and we, therefore, have

$$Z_F = 1 - \operatorname{div}\left\{\Sigma_0(p^2, Z_K K, \epsilon)\right\}, \qquad (2.8)$$

$$\Sigma_0(p^2, K_0, \epsilon) = \frac{1}{N_f} \sum_{n=1}^{\infty} K_0^n \Sigma^{(n)}(p^2, \epsilon), \qquad (2.9)$$

where $\Sigma^{(n)}$ is depicted in Fig. 1b with n-1 fermion bubbles. Similarly,

$$Z_V = 1 - \text{div} \{ V_0(p^2, Z_K K, \epsilon) \}, \qquad (2.10)$$

$$V_0(p^2, K_0, \epsilon) = \frac{1}{N_f} \sum_{n=1}^{\infty} K_0^n V^{(n)}(p^2, \epsilon), \qquad (2.11)$$

where $V^{(n)}$ again contains n-1 fermion bubbles and is shown diagrammatically in Fig 1c.

Finally, we briefly comment on the scalar three-point and four-point functions, assuming that they are generated via fermion loops: the former exactly vanishes for massless fermions, while the latter is found to be already $\mathcal{O}(1/N_f)$ at the lowest order. Therefore, they can be neglected for the purpose of our analysis.

3 Renormalization constants

In this section our goal is to extract the contributions to the renormalization constants that are $\mathcal{O}(1/N_F)$ and relevant for the computation of the β -function.

Our starting point for Z_S is Eq. (2.6). Using the expansion of the scalar self-energy, Eq. (2.7), we obtain

$$Z_S = 1 - \operatorname{div} \left\{ Z_S Z_K K \Pi^{(1)}(p^2, \epsilon) + \frac{1}{N_f} \sum_{n=2}^{\infty} Z_S (Z_K K)^n \Pi^{(n)}(p^2, \epsilon) \right\}.$$
 (3.1)

Recalling that $Z_K \equiv Z_S^{-1} Z_F^{-2} Z_V^2$ and substituting Eqs (2.8) and (2.10), the first term between brackets can be written as

$$\operatorname{div}\left\{Z_{S}Z_{K}\Pi^{(1)}(p^{2},\epsilon)K\right\} = K\operatorname{div}\left\{\Pi^{(1)}\right\} + \frac{1}{N_{f}}\operatorname{div}\left\{2K\operatorname{div}\left\{\Sigma_{0}(p^{2}, Z_{K}K,\epsilon) - V_{0}(p^{2}, Z_{K}K,\epsilon)\right\}\Pi^{(1)}(p^{2},\epsilon)\right\}.$$
 (3.2)

The $\Pi^{(1)}$ part corresponds to the one-loop diagram and is given by

$$\Pi^{(1)}(p^2,\epsilon) \equiv \operatorname{div}\left\{\Pi^{(1)}\right\} + \Pi_{\mathrm{F}}^{(1)}(p^2,\epsilon) = \frac{1}{(4\pi)^{d/2-2}} \frac{G(1,1)}{2} (-p^2)^{d/2-2}$$

$$= \frac{1}{\epsilon} + \Pi_{\mathrm{F}}^{(1)}(p^2,\epsilon), \qquad (3.3)$$

where $d = 4 - \epsilon$, the loop function, G(1, 1), is defined in Eq. (A.2) in Appendix A.1, and we have introduced the notation $\Pi_{\rm F}^{(1)}$ to indicate the finite part of $\Pi^{(1)}$. Then,

$$\operatorname{div}\left\{Z_{S}Z_{K}\Pi^{(1)}(p^{2},\epsilon)K\right\}$$

$$=\frac{K}{\epsilon}+\frac{1}{N_{f}}\operatorname{div}\left\{2K\operatorname{div}\left\{\Sigma_{0}(p^{2},Z_{K}K,\epsilon)-V_{0}(p^{2},Z_{K}K,\epsilon)\right\}\right\}$$

$$\times\left(\operatorname{div}\left\{\Pi^{(1)}\right\}+\Pi_{\mathrm{F}}^{(1)}(p^{2},\epsilon)\right)\right\}$$

$$=\frac{K}{\epsilon}+\frac{1}{N_{f}}\operatorname{div}\left\{2K\Pi_{\mathrm{F}}^{(1)}(p^{2},\epsilon)\left[\Sigma_{0}(p^{2},Z_{K}K,\epsilon)-V_{0}(p^{2},Z_{K}K,\epsilon)\right]\right\}$$

$$+\frac{1}{N_{f}}\times\text{ higher poles,}$$

$$(3.4)$$

where the higher poles, i.e., higher than $1/\epsilon$, arise from the product of two divergent parts and will be omitted because they play no role in what follows. Then, at the lowest order in $1/N_f$,

$$Z_S = 1 - \frac{K}{\epsilon} + \mathcal{O}\left(1/N_f\right). \tag{3.5}$$

Therefore, every time $Z_K K$ appears in the argument of Σ_0 and V_0 , it can be replaced by $K\left(1-\frac{K}{\epsilon}\right)^{-1}$; the additional contributions are higher order in $1/N_f$. For Eq. (3.4), we arrive at

$$\operatorname{div}\left\{Z_{S}Z_{K}\Pi^{(1)}(p^{2},\epsilon)K\right\}$$

$$=\frac{K}{\epsilon}+\sum_{n=1}^{\infty}K^{n+1}\operatorname{div}\left\{2\Pi_{\mathrm{F}}^{(1)}(p^{2},\epsilon)\left(1-\frac{K}{\epsilon}\right)^{-n}\left[\Sigma^{(n)}(p^{2},\epsilon)-V^{(n)}(p^{2},\epsilon)\right]\right\}.$$
(3.6)

Similarly, the second term of Eq. (3.1) reads

$$\frac{1}{N_f} \operatorname{div}\left\{\sum_{n=2}^{\infty} Z_S(Z_S^{-1}K)^n \Pi^{(n)}(p^2,\epsilon)\right\} = \frac{1}{N_f} \sum_{n=2}^{\infty} K^n \operatorname{div}\left\{\left(1 - \frac{K}{\epsilon}\right)^{1-n} \Pi^{(n)}(p^2,\epsilon)\right\}.$$
 (3.7)

Altogether, we can write Z_S as

$$Z_{S} = 1 - \frac{K}{\epsilon} - \frac{1}{N_{f}} \sum_{n=2}^{\infty} K^{n} \left\{ \left(1 - \frac{K}{\epsilon} \right)^{1-n} \left(2\Pi_{\mathrm{F}}^{(1)} \left[\Sigma^{(n-1)} - V^{(n-1)} \right] + \Pi^{(n)} \right) \right\}, \quad (3.8)$$

where the explicit functional dependence on (p^2, ϵ) has been omitted to lighten the notation. Using the binomial expansion,

$$\left(1 - \frac{K}{\epsilon}\right)^{1-n} = \sum_{i=0}^{\infty} \binom{n+i-2}{i} \frac{K^i}{\epsilon^i}$$
(3.9)

and performing a shift in the summation, $n \to n - i$, we find our final expression for Z_S :

$$Z_{S} = 1 - \frac{K}{\epsilon} - \frac{1}{N_{f}} \sum_{n=2}^{\infty} K^{n} \operatorname{div} \left\{ \sum_{i=0}^{n-2} \binom{n-2}{i} \frac{1}{\epsilon^{i}} \left(2\Pi_{\mathrm{F}}^{(1)} \left(\Sigma^{(n-i-1)} - V^{(n-i-1)} \right) + \Pi^{(n-i)} \right) \right\}.$$
(3.10)

We notice that Eq. (3.10) differs essentially from its counterpart in the QED [7] because of the contribution from the fermion self-energy and the vertex, which exactly cancel in QED because of the Ward identity.

The expression for Z_F can be derived from Eq. (2.8) in a similar manner:

$$Z_{F} = 1 - \frac{1}{N_{f}} \sum_{n=1}^{\infty} \operatorname{div} \left\{ (Z_{K}K)^{n} \Sigma^{(n)}(p^{2}, \epsilon) \right\}$$

= $1 - \frac{1}{N_{f}} \sum_{n=1}^{\infty} K^{n} \operatorname{div} \left\{ \left(1 - \frac{K}{\epsilon} \right)^{-n} \Sigma^{(n)}(p^{2}, \epsilon) \right\}$
= $1 - \frac{1}{N_{f}} \sum_{n=1}^{\infty} K^{n} \operatorname{div} \left\{ \sum_{i=0}^{n-1} \binom{n-1}{i} \frac{1}{\epsilon^{i}} \Sigma^{(n-i)}(p^{2}, \epsilon) \right\},$ (3.11)

where we have again performed the same shift $n \to n - i$ in the last line. The derivation of Z_V is completely analogous, and we can readily write the expression for Z_V :

$$Z_V = 1 - \frac{1}{N_f} \sum_{n=1}^{\infty} K^n \text{div} \left\{ \sum_{i=0}^{n-1} \binom{n-1}{i} \frac{1}{\epsilon^i} V^{(n-i)}(p^2, \epsilon) \right\}.$$
 (3.12)

4 Resummation

In this section we provide closed formulas for Eqs (3.10), (3.11), and (3.12).

4.1 The vertex

By explicit computation, the *n*-loop contribution to V_0 is

$$V^{(n)}(p^2,\epsilon) = \frac{(-1)^n}{4} \left(\frac{1}{(4\pi)^{d/2-2}}\right)^n \left(\frac{G(1,1)}{2}\right)^{n-1} (-p^2)^{n(d/2-2)} \times G\left(1,1-(n-1)(d/2-2)\right),$$
(4.1)

where $G(n_1, n_2)$ is defined in Eq. (A.2). We notice that, as in Ref. [7], Eq. (4.1) allows for the following expansion:

$$V^{(n)}(p^2,\epsilon) = (-1)^n \frac{1}{n\epsilon^n} \frac{v(p^2,\epsilon,n)}{2},$$
(4.2)

where

$$v(p^2, \epsilon, n) = \sum_{j=0}^{\infty} v_j(p^2, \epsilon)(n\epsilon)^j, \qquad (4.3)$$

and $v_j(p^2, \epsilon)$ are regular in the limit $\epsilon \to 0$ for all j. In particular, $v_0(\epsilon)$ is independent of p^2 and is explicitly given by

$$v_0(\epsilon) = \frac{2\Gamma(2-\epsilon)}{\Gamma\left(1-\frac{\epsilon}{2}\right)^2 \Gamma\left(2-\frac{\epsilon}{2}\right) \Gamma\left(\frac{\epsilon}{2}\right) \epsilon}.$$
(4.4)

Substituting Eqs (4.1) and (4.2) in Eq. (3.12), we find:

$$Z_V = 1 - \frac{1}{N_f} \sum_{n=1}^{\infty} (-K)^n \operatorname{div}\left\{\sum_{j=0}^{n-1} \frac{1}{\epsilon^{n-j}} \sum_{i=0}^{n-1} \binom{n-1}{i} (-1)^i (n-i)^{j-1} \frac{v_j(p^2,\epsilon)}{2}\right\}.$$
 (4.5)

Then, by using the result of Ref. [7],

$$\sum_{i=0}^{n-1} \binom{n-1}{i} (-1)^i (n-i)^{j-1} = -\delta_{j,0} \frac{(-1)^n}{n}, \ j = 0, \dots, n-1,$$
(4.6)

Eq. (4.5) gets simplified to

$$Z_{V} = 1 + \frac{1}{2N_{f}} \sum_{n=1}^{\infty} \frac{K^{n}}{\epsilon^{n}} \frac{v_{0}(\epsilon)}{n}.$$
(4.7)

Expanding $v_0(\epsilon)$ as

$$v_0(\epsilon) = \sum_{j=0}^{\infty} v_0^{(j)} \epsilon^j$$
(4.8)

and keeping only the $1/\epsilon$ pole of Eq. (4.7), we find the closed formula for Z_V :

$$Z_V = 1 + \frac{1}{2\epsilon N_f} \sum_{n=1}^{\infty} \frac{K^n}{n} v_0^{(n-1)} = 1 + \frac{1}{2\epsilon N_f} \int_0^K v_0(t) \mathrm{d}t.$$
(4.9)

4.2 The fermion self-energy

The *n*-loop contribution to Σ_0 is found to be

$$\Sigma^{(n)}(p^2,\epsilon) = -\frac{(-1)^n}{8} \left(\frac{1}{(4\pi)^{d/2-2}}\right)^n \left(\frac{G(1,1)}{2}\right)^{n-1} (-p^2)^{n(d/2-2)} \times \left[G(1,1-(n-1)(d/2-2)) - G(1,-(n-1)(d/2-2))\right].$$
(4.10)

Similarly to Eq. (4.1), Eq. (4.10) can be expanded as

$$\Sigma^{(n)}(p^2,\epsilon) = -(-1)^n \frac{1}{n\epsilon^n} \frac{\sigma(p^2,\epsilon,n)}{4}, \qquad (4.11)$$

where

$$\sigma(n,\epsilon,p^2) = \sum_{j=0}^{\infty} \sigma_j(p^2,\epsilon)(n\epsilon)^j, \qquad (4.12)$$

and $\sigma_j(p^2,\epsilon)$ are regular for $\epsilon \to 0$. Again, $\sigma_0(\epsilon)$ is independent of p^2 , and it is given by

$$\sigma_0(\epsilon) = -\frac{2^{5-\epsilon}\Gamma\left(\frac{3}{2} - \frac{\epsilon}{2}\right)}{\sqrt{\pi}(4-\epsilon)\Gamma\left(-\frac{\epsilon}{2}\right)\epsilon} \frac{\sin\left(\frac{\pi\epsilon}{2}\right)}{\pi\epsilon}.$$
(4.13)

Using the same procedure as in the previous section, we find that only $\sigma_0(\epsilon)$ contributes to Z_F . Keeping only the $1/\epsilon$ pole, the closed formula for Z_F is

$$Z_F = 1 - \frac{1}{4\epsilon N_f} \int_0^K \sigma_0(t) \mathrm{d}t.$$
(4.14)

4.3 The scalar self-energy

The evaluation of the bubble diagrams in Fig. 1a is quite cumbersome and is discussed in Appendix A.2. Here, we notice that the expression for $\Pi^{(n)}(p^2, \epsilon)$, $n \ge 2$, allows for the following expansion:

$$\Pi^{(n)} = -\frac{3}{2} \frac{(-1)^n}{n(n-1)\epsilon^n} \pi(p^2, \epsilon, n), \qquad (4.15)$$

where

$$\pi(p^2, \epsilon, n) = \sum_{j=0}^{\infty} \pi_j(p^2, \epsilon)(n\epsilon)^j, \qquad (4.16)$$

and $\pi_j(p^2, \epsilon)$ are regular for $\epsilon \to 0$. Similarly to the previous cases, $\pi_0(\epsilon)$ is independent of p^2 .

In view of Eq. (3.10), we define

$$2\Pi_{\rm F}^{(1)}(p^2,\epsilon) \left(\Sigma^{(n-1)}(p^2,\epsilon) - V^{(n-1)}(p^2,\epsilon)\right) + \Pi^{(n)}(p^2,\epsilon) \equiv \frac{(-1)^n}{n(n-1)\epsilon^n} \xi(p^2,\epsilon,n), \quad (4.17)$$

where

$$\xi(p^{2},\epsilon,n) \equiv n\epsilon \Pi_{\rm F}^{(1)} \left(\frac{\sigma(p^{2},\epsilon,n-1)}{2} + v(p^{2},\epsilon,n-1) \right) - \frac{3}{2}\pi(p^{2},\epsilon,n), \tag{4.18}$$

and

$$\xi(p^2, \epsilon, n) = \sum_{j=0}^{\infty} \xi_j(p^2, \epsilon)(n\epsilon)^j, \qquad (4.19)$$

with $\xi_j(\epsilon, p^2)$ regular for $\epsilon \to 0$ for all j. In particular, $\xi_0(\epsilon)$ is independent of p^2 and is explicitly given by

$$\xi_0(\epsilon) = -\frac{(1-\epsilon)\Gamma(4-\epsilon)}{\Gamma\left(2-\frac{\epsilon}{2}\right)\Gamma\left(3-\frac{\epsilon}{2}\right)\pi\epsilon}\sin\left(\frac{\pi\epsilon}{2}\right)$$
(4.20)

Then, using the above definitions, Eq. (3.10) can be written as

$$Z_{S} = 1 - \frac{K}{\epsilon} - \frac{1}{N_{f}} \sum_{n=2}^{\infty} K^{n} \operatorname{div} \left\{ \sum_{i=0}^{n-2} \binom{n-2}{i} \frac{1}{\epsilon^{i}} \frac{(-1)^{n-i}}{(n-i)(n-i-1)\epsilon^{n-i}} \xi(p^{2},\epsilon,n-i) \right\}$$
$$= 1 - \frac{K}{\epsilon} - \frac{1}{N_{f}} \sum_{n=2}^{\infty} (-K)^{n} \operatorname{div} \left\{ \sum_{j=0}^{n-1} \frac{1}{\epsilon^{n-j}} \xi_{j}(p^{2},\epsilon) \sum_{i=0}^{n-2} \binom{n-2}{i} (-1)^{i} \frac{(n-i)^{j-1}}{(n-i-1)} \right\}.$$
(4.21)

Moreover, we find that

$$\sum_{i=0}^{n-2} \binom{n-2}{i} (-1)^i \frac{(n-i)^{j-1}}{(n-i-1)} = \begin{cases} \frac{(-1)^n}{n} & j=0\\ \frac{(-1)^n}{n-1} & j=1,\dots,n-1 \end{cases},$$
(4.22)

and therefore the expression for Z_S can be significantly simplified:

$$Z_{S} = 1 - \frac{K}{\epsilon} - \frac{1}{N_{f}} \sum_{n=2}^{\infty} K^{n} \operatorname{div} \left\{ \frac{1}{\epsilon^{n}} \left(\frac{\xi_{0}(\epsilon)}{n} + \frac{1}{n-1} \sum_{j=1}^{n-1} \xi_{j}(p^{2}, \epsilon) \epsilon^{j} \right) \right\}$$

$$= 1 - \frac{K}{\epsilon} - \frac{1}{N_{f}} \sum_{n=2}^{\infty} K^{n} \operatorname{div} \left\{ \frac{1}{\epsilon^{n}} \left(\frac{\xi_{0}(\epsilon)}{n} + \frac{1}{n-1} \sum_{j=1}^{\infty} \xi_{j}(p^{2}, \epsilon) \epsilon^{j} \right) \right\}$$

$$= 1 - \frac{K}{\epsilon} - \frac{1}{N_{f}} \sum_{n=2}^{\infty} K^{n} \operatorname{div} \left\{ \frac{1}{\epsilon^{n}} \left(\frac{\xi_{0}(\epsilon)}{n} + \frac{\xi(p^{2}, \epsilon, 1) - \xi_{0}(\epsilon)}{n-1} \right) \right\},$$

$$(4.23)$$

where in the second line we extended the sum over j up to ∞ without affecting the result, since all the terms for j > n - 1 are finite. The function $\xi(p^2, \epsilon, 1)$, corresponding to

$$\xi(p^2,\epsilon,1) \equiv \sum_{j=0}^{\infty} \xi_j(p^2,\epsilon)\epsilon^j, \qquad (4.24)$$

can be evaluated by taking in Eq. (4.18) the limit $n \to 1$, although the latter is formally defined for $n \ge 2$. We find the following expression:

$$\xi(p^2,\epsilon,1) = -\frac{\Gamma(4-\epsilon)}{\Gamma\left(2-\frac{\epsilon}{2}\right)\Gamma\left(3-\frac{\epsilon}{2}\right)\pi\epsilon}\sin\left(\frac{\pi\epsilon}{2}\right) \equiv \xi(\epsilon,1).$$
(4.25)

Few comments are in order: Eq. (4.25) ensures that Z_S is independent of the external momentum p^2 , as it should. This result comes from an exact cancellation among the different contributions of the scalar self-energy, the fermion self-energy, and the vertex in Eq. (4.18). In particular, we find that

$$\pi(p^{2},\epsilon,1) = \frac{2}{3} \left(\frac{\sigma(p^{2},\epsilon,0)}{2} + v(p^{2},\epsilon,0) \right) \left[1 + 1 \cdot \epsilon \,\Pi_{\rm F}^{(1)}(p^{2},\epsilon) \right] = \frac{2}{3} \left(\frac{\sigma_{0}(\epsilon)}{2} + v_{0}(\epsilon) \right) \left[1 + \epsilon \,\Pi_{\rm F}^{(1)}(p^{2},\epsilon) \right],$$
(4.26)

and therefore

$$\xi(\epsilon, 1) = -\frac{\sigma_0(\epsilon)}{2} - v_0(\epsilon), \qquad (4.27)$$

which is equivalent to Eq. (4.25). Interestingly, Eq. (4.26) only holds for n = 1. All in all, the p^2 independence of Eq. (4.25) provides a non-trivial check for our computation. Moreover, we see that

$$\xi_0(\epsilon) = (1 - \epsilon)\xi(\epsilon, 1). \tag{4.28}$$

We are now ready to resum the series in Eq. (4.23). By expanding $\xi_0(\epsilon)$ as

$$\xi_0(\epsilon) = \sum_{j=0}^{\infty} \xi_0^{(j)} \epsilon^j,$$
(4.29)

the $\frac{1}{n}$ term in Eq. (4.23) is given by

$$\sum_{n=2}^{\infty} \frac{K^n}{\epsilon^n} \frac{\xi_0(\epsilon)}{n} = \frac{1}{\epsilon} \sum_{n=2}^{\infty} \frac{K^n}{\epsilon^n} \frac{\xi_0^{(n-1)}}{n} + \text{higher poles}$$
$$= \frac{1}{\epsilon} \left(\sum_{n=0}^{\infty} K^{n+1} \frac{\xi_0^{(n)}}{n+1} - K\xi_0^{(0)} \right) + \text{higher poles}$$
$$= \frac{1}{\epsilon} \int_0^K [\xi_0(t) - \xi_0(0)] \, \mathrm{d}t + \text{higher poles}.$$
(4.30)

As for the $\frac{1}{n-1}$ term, using $\xi_0(\epsilon) = (1-\epsilon)\xi(\epsilon, 1)$ and expanding $\xi(\epsilon, 1)$ as

$$\xi(\epsilon, 1) = \sum_{j=0}^{\infty} \tilde{\xi}^{(n)} \epsilon^j, \qquad (4.31)$$

we find

$$\sum_{n=2}^{\infty} \frac{K^n}{\epsilon^n} \frac{\epsilon \xi(\epsilon, 1)}{n-1} = \frac{K}{\epsilon} \sum_{n=0}^{\infty} \frac{K^{n+1}}{n+1} \tilde{\xi}^{(n)} + \text{higher poles}$$

$$= \frac{K}{\epsilon} \int_0^K \xi(t, 1) dt + \text{higher poles.}$$
(4.32)

Finally, the closed formula for \mathbb{Z}_S reads

$$Z_S = 1 - \frac{K}{\epsilon} - \frac{1}{\epsilon N_f} \int_0^K \left[\xi_0(t) - \xi_0(0) + \xi(t, 1)K\right] \mathrm{d}t.$$
(4.33)

5 The β -function

Using the results of the previous section together with Eq. (2.5), we can finally proceed to evaluating the β -function. First, we find that

$$G_1(K) = K + \frac{1}{N_f} \int_0^K \left(\xi_0(t) - \xi_0(0) + \xi(t, 1)K + \frac{\sigma_0(t)}{2} + v_0(t)\right) dt.$$
(5.1)

Now, it is straightforward to compute the β -function:

$$\beta(K) = K^2 + \frac{K^2}{N_f} \left\{ -\xi_0(0) + \xi(K, 1) + \frac{\sigma_0(K)}{2} + v_0(K) + \int_0^K \xi(t, 1) dt \right\}.$$
 (5.2)

Recalling Eq. (4.27) and using $\xi_0(0) = -\frac{3}{2}$, Eq. (5.2) can be further simplified to

$$\frac{\beta(K)}{K^2} = 1 + \frac{1}{N_f} \left\{ \frac{3}{2} + \int_0^K \xi(t, 1) dt \right\}.$$
(5.3)

Finally, by comparison with Eq. (2.3), we see that $F_0 = 1$ and

$$F_1(K) = \frac{3}{2} + \int_0^K \xi(t, 1) \mathrm{d}t.$$
 (5.4)

Figure 2: The function $\xi(t, 1)$.

We plot the integrand, $\xi(t, 1)$, in Fig. 2. We have checked that our β -function agrees at the leading order in N_f up to four-loop level by comparing with the result of Ref. [19], and with the result extracted from the critical exponents in Gross–Neveu–Yukawa model computed using a different technique [15].

Finally, let us comment on the pole structure: the integrand, $\xi(t, 1)$, has the first pole occuring at t = 5, which results in a logarithmic singularity for $F_1(K)$ around K = 5. Due to the sign of $\xi(t, 1)$, we see that $F_1(K)$ approaches large negative values for $K \to 5^-$. This suggests the existence of a UV fixed point at $K_{\rm UV} \leq 5$ such that $F_1(K_{\rm UV}) = -N_f$.

6 Conclusions

We have computed the leading $1/N_f$ contribution for the β -function in Yukawa theory with N_f fermion flavours coupling to a real scalar. We obtained a closed form expression for the β -function up to order $\mathcal{O}(1/N_f)$. This expression has a finite radius of convergence, and the first singularity occurs at K = 5.

The present result adds an interesting ingredient to models with a large number of fermions, and makes a contribution to better understand the UV behaviour of gauge-Yukawa theories.

Acknowledgments

We are grateful to John Gracey for bringing our attention the connection to the Gross– Neveu model. We thank Florian Goertz and Valentin Tenorth for discussions and valuable comments.

A Loop integrals

We here provide some explicit formulas. We follow closely the notations of Ref. [20].

A.1 The vertex and the fermion self-energy

As shown in Eqs (4.1) and (4.10), the 1PI vertex and the fermion self-energy involve only the function $G(n_1, n_2)$, independently of the number of bubbles. This corresponds to the one-loop integral

$$\int \frac{d^d k}{(2\pi)^d} \frac{1}{D_1^{n_1} D_2^{n_2}} = i \frac{1}{(4\pi)^{d/2}} (-p^2)^{d/2 - n_1 - n_2} (-1)^{n_1 + n_2} G(n_1, n_2),$$
(A.1)

where $D_1 = (k+p)^2$ and $D_2 = k^2$. Explicitly,

$$G(n_1, n_2) = \frac{\Gamma(-d/2 + n_1 + n_2)\Gamma(d/2 - n_1)\Gamma(d/2 - n_2)}{\Gamma(n_1)\Gamma(n_2)\Gamma(d - n_1 - n_2)}.$$
 (A.2)

A.2 The scalar self-energy

Unlike the 1PI vertex and the fermion self-energy, the *n*-loop contribution to the scalar self-energy, Π_0 , indicated by $\Pi^{(n)}$, cannot be written in terms of $G(n_1, n_2)$ functions only. In fact, $\Pi^{(n)}$ is given by $(n \ge 2)$:

$$p^{2}\Pi^{(n)}(p^{2},\epsilon) = -(4\pi^{2})^{2}(-1)^{n} \left(\frac{1}{(4\pi)^{d/2-2}} \frac{G(1,1)}{2}\right)^{n-2} (-1)^{\alpha} \int \frac{d^{d}k_{1}}{(2\pi)^{d}} \int \frac{d^{d}k_{2}}{(2\pi)^{d}} \\ \left\{ \frac{6}{(p+k_{1})^{2}k_{2}^{2}((k_{1}-k_{2})^{2})^{1-\alpha}} - \frac{2}{k_{1}^{2}(p+k_{1})^{2}k_{2}^{2}((k_{1}-k_{2})^{2})^{-\alpha}} - \frac{2p^{2}}{k_{1}^{2}(p+k_{1})^{2}k_{2}^{2}((k_{1}-k_{2})^{2})^{1-\alpha}} + \frac{2p^{2}}{k_{1}^{4}(p+k_{1})^{2}k_{2}^{2}((k_{1}-k_{2})^{2})^{-\alpha}} - \frac{2p^{2}}{k_{1}^{2}(k_{1}+p)^{2}(k_{2}+p)^{2}k_{2}^{2}((k_{1}-k_{2})^{2})^{-\alpha}} \right\},$$
(A.3)

where $\alpha = (n-2)(d/2-2) = -(n-2)\epsilon/2$. Eq. (A.3) requires two-loop integrals which can be performed according to the formula in Ref. [20]:

$$\int \frac{d^d k_1}{(2\pi)^d} \int \frac{d^d k_2}{(2\pi)^d} \frac{1}{D_1^{n_1} D_2^{n_2} D_3^{n_3} D_4^{n_4} D_5^{n_5}} = (-1)^{1+\sum n_i} \frac{\pi^d (-p^2)^{d-\sum n_i}}{(2\pi)^{2d}} G(n_1, n_2, n_3, n_4, n_5),$$
(A.4)

where $D_1 = (k_1 + p)^2$, $D_2 = (k_2 + p)^2$, $D_3 = k_1^2$, $D_4 = k_2^2$, $D_5 = (k_1 - k_2)^2$. The functions $G(n_1, n_2, n_3, n_4, n_5)$ are symmetric with respect to the following index exchanges: $(1 \leftrightarrow 2, 3 \leftrightarrow 4)$ and $(1 \leftrightarrow 3, 2 \leftrightarrow 4)$. Moreover, they reduce to a product of $G(n_1, n_2)$ if at least one of the entries is zero:

$$G(n_1, n_2, n_3, n_4, 0) = G(n_1, n_3)G(n_2, n_4),$$
(A.5)

$$G(0, n_2, n_3, n_4, n_5) = G(n_3, n_5)G(n_2, n_3 + n_4 + n_5 - d/2).$$
(A.6)

It turns out that the first four integrals in Eq. (A.3) can always be written in terms of $G(n_1, n_2)$ making use of Eqs (A.5) and (A.6).

However, the last integral in Eq. (A.3) involves $G(1, 1, 1, 1, (n-2)\epsilon/2)$ and, for n > 2, its expression can be obtained in terms of hypergeometric functions ${}_{3}F_{2}$ by means of the Gegenbauer technique [21]. We have evaluated the function $G(1, 1, 1, 1, (n-2)\epsilon/2)$ recursively according to Eqs (2.19) and (2.21) in Ref. [20].

References

- D. F. Litim and F. Sannino, Asymptotic safety guaranteed, JHEP 12 (2014) 178, [arXiv:1406.2337].
- [2] O. Antipin and F. Sannino, Conformal Window 2.0: The large N_f safe story, Phys. Rev. D97 (2018), no. 11 116007, [arXiv:1709.02354].
- [3] A. Eichhorn, A. Held, and J. M. Pawlowski, Quantum-gravity effects on a Higgs-Yukawa model, Phys. Rev. D94 (2016), no. 10 104027, [arXiv:1604.02041].
- [4] D. J. Gross and F. Wilczek, Asymptotically Free Gauge Theories I, Phys. Rev. D8 (1973) 3633–3652.
- [5] H. D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30 (1973) 1346–1349. [,274(1973)].
- [6] D. Espriu, A. Palanques-Mestre, P. Pascual, and R. Tarrach, The γ Function in the 1/N_f Expansion, Z. Phys. C13 (1982) 153.
- [7] A. Palanques-Mestre and P. Pascual, The 1/N_F Expansion of the γ and Beta Functions in QED, Commun. Math. Phys. 95 (1984) 277.
- [8] J. A. Gracey, The QCD β-function at O(1/N_f), Phys. Lett. B373 (1996) 178–184, [hep-ph/9602214].
- [9] B. Holdom, Large N flavor beta-functions: a recap, Phys. Lett. B694 (2011) 74–79, [arXiv:1006.2119].
- [10] R. Shrock, Study of Possible Ultraviolet Zero of the Beta Function in Gauge Theories with Many Fermions, Phys. Rev. D89 (2014), no. 4 045019, [arXiv:1311.5268].
- [11] R. Mann, J. Meffe, F. Sannino, T. Steele, Z.-W. Wang, and C. Zhang, Asymptotically Safe Standard Model via Vectorlike Fermions, Phys. Rev. Lett. 119 (2017), no. 26 261802, [arXiv:1707.02942].
- [12] G. M. Pelaggi, A. D. Plascencia, A. Salvio, F. Sannino, J. Smirnov, and A. Strumia, Asymptotically Safe Standard Model Extensions?, Phys. Rev. D97 (2018), no. 9 095013, [arXiv:1708.00437].
- [13] K. Kowalska and E. M. Sessolo, Gauge contribution to the 1/N_F expansion of the Yukawa coupling beta function, JHEP 04 (2018) 027, [arXiv:1712.06859].
- [14] O. Antipin, N. A. Dondi, F. Sannino, A. E. Thomsen, and Z.-W. Wang, Gauge-Yukawa theories: Beta functions at large N_f, arXiv:1803.09770.
- [15] J. A. Gracey, Critical exponent ω in the Gross-Neveu-Yukawa model at O(1/N), Phys. Rev. **D96** (2017), no. 6 065015, [arXiv:1707.05275].
- [16] A. N. Manashov and M. Strohmaier, Correction exponents in the Gross-Neveu-Yukawa model at 1/N², Eur. Phys. J. C78 (2018), no. 6 454, [arXiv:1711.02493].
- [17] J. A. Gracey, Calculation of exponent eta to O(1/N**2) in the O(N) Gross-Neveu model, Int. J. Mod. Phys. A6 (1991) 395–408. [Erratum: Int. J. Mod. Phys.A6,2755(1991)].
- [18] A. N. Vasiliev, S. E. Derkachov, N. A. Kivel, and A. S. Stepanenko, The 1/n expansion in the Gross-Neveu model: Conformal bootstrap calculation of the index eta in order 1/n**3, Theor. Math. Phys. 94 (1993) 127–136. [Teor. Mat. Fiz.94,179(1993)].

- [19] N. Zerf, L. N. Mihaila, P. Marquard, I. F. Herbut, and M. M. Scherer, Four-loop critical exponents for the Gross-Neveu-Yukawa models, Phys. Rev. D96 (2017), no. 9 096010, [arXiv:1709.05057].
- [20] A. G. Grozin, Lectures on multiloop calculations, Int. J. Mod. Phys. A19 (2004) 473–520, [hep-ph/0307297].
- [21] A. V. Kotikov, The Gegenbauer polynomial technique: The Evaluation of a class of Feynman diagrams, Phys. Lett. B375 (1996) 240–248, [hep-ph/9512270].