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ABSTRACT
To study the cooling behavior and the glass transition of polymer melts in bulk and with free surfaces, a coarse-grained weakly semi-flexible
polymer model is developed. Based on a standard bead spring model with purely repulsive interactions, an attractive potential between
non-bonded monomers is added such that the pressure of polymer melts is tuned to zero. Additionally, the commonly used bond bending
potential controlling the chain stiffness is replaced by a new bond bending potential. For this model, we show that the Kuhn length and the
internal distances along the chains in the melt only very weakly depend on the temperature, just as for typical experimental systems. The glass
transition is observed by the temperature dependency of the melt density and the characteristic non-Arrhenius slowing down of the chain
mobility. The new model is set to allow for a fast switch between models, for which a wealth of data already exists.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5089417

Polymer materials are omnipresent in our daily life with appli-
cations in medicine and technology, as well as “simple” commodities
to name a few. Very often these materials are in the glassy state.1 In
the liquid, more rubbery state, the viscosity dramatically increases
close to the glass transition temperature Tg in a non-Arrhenius
way.2–5 This slowing down of the chain mobility is of both high
scientific and technological interest. Experimentally, Tg of polymers
can be determined as such by observing the change in the heat capac-
ity of polymers using differential scanning calorimetry (DSC)6 or by
measuring the thermal expansion coefficient using thermo mechan-
ical analysis (TMA).7 However, the nature of the glass transition is
still not fully understood.8–13 It is the purpose of this communica-
tion to present a most simple, efficient bead spring model (BSM),
which allows us to study these effects and which can make contact
with the huge body of simulation data available in the literature.

Computer simulations play an important role in investigating
the structure and molecular motion (viscosity) of polymeric systems
under a variety of different conditions. For studying glassy polymers,
both atomistic and coarse-grained models are widely used in the lit-
erature.10,11 The structure and thermal behavior of fluid mixtures
can also be analyzed by tuning relative resolution in a recently devel-
oped hybrid model combining the fine-grained and coarse-grained
models.14 Our aim is to eventually study generic properties of large

and highly entangled polymer melts in bulk, in confinement, and
with free surfaces as a function of temperature within accessible
computing times. For this, we adopt a highly efficient coarse-grained
model.15 Usually in these models, the excluded volume interaction
is taken care of by a purely repulsive Lennard-Jones (LJ) poten-
tial, the Weeks-Chandler-Andersen (WCA) potential,15 which pre-
vents the study of surfaces16,17 and displays a rather high pressure
(P ≈ 5.0ε/σ3, T = 1.0ε/kB, density ρ = 0.85σ−3 in standard Lennard-
Jones (LJ) units of energy and length, and kB being the Boltzmann
factor). To reduce the pressure, the cutoff of the WCA potential for
non-bonded pairs of monomers is often doubled from rcut = 21/6σ
to rc = 2rcut, resulting in P = 1.0ε/σ3.18–23 The two main shortages
of this setting are as follows: (1) There is a small discontinuity in
the force at the cutoff making microcanonical runs impossible and
(2) the pressure is still not very close to zero. Furthermore, chain
stiffness usually is taken into account by a bond bending poten-
tial,24–26 which tends to stretch the chains out with decreasing tem-
peratures.27 As will be shown below, this leads to rather artificial
chain conformations upon cooling, while in experiments, chain con-
formations only very weakly depend on the temperature.28,29 Our
new coarse-grained model is set to overcome these shortages.

Our starting point is the standard bead spring model (BSM)15
with a weak bending elasticity24 (the bending strength kθ = 1.5ε)

J. Chem. Phys. 150, 091101 (2019); doi: 10.1063/1.5089417 150, 091101-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5089417
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5089417
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5089417&domain=aip.scitation.org&date_stamp=2019-March-4
https://doi.org/10.1063/1.5089417
https://orcid.org/0000-0003-1842-9369
mailto:hsu@mpip-mainz.mpg.de
mailto:kremer@mpip-mainz.mpg.de
https://doi.org/10.1063/1.5089417


The Journal
of Chemical Physics COMMUNICATION scitation.org/journal/jcp

for which a huge body of data already exists (see, e.g., Refs. 25
and 30–34). While focusing on kθ = 1.5ε, our approach easily applies
to other bending constants as well. At the standard melt density of
0.85σ−3 (σ being the unit of length), the weak bending elasticity
combined with the chain packing result in an entanglement length
of only Ne = 28 monomers. Ne = 28 is small enough to allow for
extremely efficient simulations of highly entangled, huge polymeric
systems, while at the same time, the subchain of length Ne is already
well described by a Gaussian chain. The purpose of this communi-
cation is to replace/extend the WCA excluded volume interaction
potential to arrive at a pressure of P = 0.0ε/σ3, which allows us
to study free surfaces in interaction with gases, liquids, and par-
ticles, for example, and to replace the standard bending potential
U(old)

BEND(θ) = kθ(1−cos θ) by a new modifiedUBEND(θ), which should
lead to the typical very weak temperature dependence of chain con-
formations in melts. The close resemblance to the standard semiflex-
ible bead spring model will allow to switch “on the fly” between the
models and to make use of the already broadly available data.

In a first step, we add an attractive well to the WCA ex-
cluded volume in order to reduce the pressure in the system from
P = 5.0ε/σ3 to P = 0.0ε/σ3. For this, we add UATT(r) [see Fig. 1(a)]

UATT(r) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

α[cos(π(
r
rcut

)

2
)], rcut ≤ r < rac

0, otherwise

(1)

between all non-bonded monomers. UATT(r) is set to not alter the
local bead packing. It is chosen to have zero force at the cutoff as
well as at the contact point between the two parts of the poten-
tial at rc = 21/6σ, which is needed in case microcanonical simula-
tions are performed. As illustrated in Fig. 2(a), adding this term to
the standard model equilibrates and reduces the pressure to zero
in less than 5τ (τ being the standard LJ unit of time). This time
corresponds to a small, local bead displacement of about 1σ, for
which the characteristic time is32 τ0 ≈ 2.89τ. Furthermore, since
the number of particles Z in the interaction range rac = 1.5874σ is
≈15 instead of ≈45 at rc = 2.25σ (P = 1.0ε/σ3) or ≈60 at r = 5.0
(P = 0.0ε/σ3) using the standard LJ potential, the present
model is computationally significantly more efficient. In the next
step, we replace the standard bond bending potential U(old)

BEND(θ)
= kθ(1 − cos θ) which would lead to a rod-like chain in the ground
state at T = 0.0ε/kB by a new bending potential UBEND(θ) with the
goal to (1) match the chain conformations at T = 1.0ε/kB and (2) to

approximately preserve them upon cooling. Thus, it should satisfy
the condition that the mean square end-to-end distance of chains,
⟨R2

e⟩, does not (preferably) or only very weakly depend on the tem-
peratureT. The new bond bending potentialUBEND(θ) [see Fig. 1(b)]
is chosen as

Ubend(θ) = −aθ sin2
(bθθ), 0 < θ < θc, (2)

with the bond angle θ defined by θ = cos−1
(

⃗bj ⋅⃗bj+1

∣
⃗bj∥⃗bj+1 ∣

), where ⃗bj
= r⃗j − r⃗j−1 is the bond vector between monomers j and (j − 1)
along the chain. The fitting parameters aθ and bθ, and the cutoff
θc = π/bθ where the force ∣F⃗(θ = θc)∣ = 0 are adjusted such that the
estimates of the mean square internal distance ⟨R2(s)⟩ for all chemi-
cal distance s between two monomers along the same chain follow
the same curve as obtained from the model using UBEND(θ) with
kθ = 1.5ε. Comparing to the reference data for a polymer melt of
nc = 2000, N = 50 shown in Fig. 2(b), we find that aθ = 4.5ε,
bθ = 1.5 lead to an almost perfect match of the two systems. Our
data are also in perfect agreement with the theoretical prediction
described by a freely rotating chain (FRC) model.32,35

Compared to the original model, the profiles of the pair distri-
bution function g(r) of all, inter, and intra pairs of monomers for
polymer melts show that the two potentials UBEND(θ) and UATT(r)
only have very small effects on the local packing of monomers
[Fig. 2(c)]. The results of the collective structure factor S(q) also
show that using the new model, the occurrence of the first peak
remains at q = q∗ ≈ 6.9σ−1, indicating the same mean distance
between monomers in the first neighbor shell of the polymer melt.
The peak itself is slightly higher, indicating a slightly more structured
local environment, in agreement with the observed weakly enhanced
bead friction.

We now turn to the temperature dependency and compare
melts of the new model to the standard semiflexible polymer
model. For this, we perform molecular dynamics (MD) simula-
tions (Hoover barostat with Langevin thermostat36,37 implemented
in ESPResSo++38) at constant temperature T by a stepwise cool-
ing,20 and constant pressure P = 0.0ε/σ3 (P = 5.0ε/σ3 for the old
model), i.e., in the isothermal-isobaric ensemble (NPT), for two
polymer melts of nc = 2000, N = 50 and nc = 1000, N = 500,
respectively. The temperature is reduced in steps of ∆T = 0.05ε/kB
with a relaxation time between each step of ∆t = 60 000τ result-
ing in a cooling rate of Γ = ∆T/∆t = 8.3 × 10−6ε/(kBτ). ∆t corre-
sponds to ≈8.3τR ,N=50 ≈ 0.083τR ,N=500 (τR ,N being the Rouse time

FIG. 1. (a) Non-bonded and short-range
repulsive potential UWCA(r) and attrac-
tive potential UATT(r) with α = 0.5145ε
[Eq. (1)] plotted as a function of distance
r. (b) Standard and new bond bend-
ing potentials U(old)

BEND(θ) with kθ = 1.5ε
and UBEND(θ) with aθ = 4.5ε, bθ = 1.5
[Eq. (2)], plotted as a function of bond
angle θ. In (a) and (b), the cutoff values
are pointed by arrows.
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FIG. 2. (a) Pressure P plotted versus
the relaxation time t. (b) Rescaled mean
square internal distance, ⟨R2(s)⟩/s, plot-
ted versus the chemical distance s
between two monomers along the same
chain. (c) Radial distribution function g(r)
plotted as a function of r for all, inter, and
intra pairs of monomers, as indicated.
(d) Collective structure factor S(q) plot-
ted versus the wave factor q. Polymer
melts at T = 1.0ε/kB described by the
standard BSM with additional potentials
U(old)

BEND(θ), UATT(r), and UBEND(θ) are
shown, as indicated.

of the chains at T = 1.0ε/kB for the old model). The results of the
mean square internal distances ⟨R2(s)⟩ and the bond angle prob-
ability distribution, P(θ), are shown in Figs. 3 and 4, respectively.

First, let us focus on the standard weakly semiflexible model. As the
temperature decreases, the chains stretch out as displayed in Fig. 3(a)
for N = 50. While for N = 50 the cooling rate is slow enough to allow

FIG. 3. Rescaled mean square internal
distance, ⟨R2(s)⟩/s, plotted as a func-
tion of chemical distance s for polymer
melts described by the standard BSM
with the original and new bond bending
potentials U(old)

BEND(θ) [(a) and (c)] and
UBEND(θ) [(b) and (d)], respectively, at
P = 0.0ε/σ3. The theoretical prediction
for FRC with32 ⟨cos θ⟩ = 0.4846 esti-
mated for fully equilibrated polymer melts
of nc = 1000, N = 2000 is also shown for
comparison.
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FIG. 4. Probability distribution of bond
angle θ for polymer melts described by
the standard BSM with the original and
new bond bending potentials U(old)

BEND(θ)
(a) and UBEND(θ) (b), respectively.

for equilibration over a wide temperature range, for longer chains
[N = 500, Fig. 3(c)], the system cannot equilibrate anymore even on
short length scales (s ≤ 50), leading to a characteristic maximum in
⟨R2(s)⟩/s. For long chain simulations, it will not be possible to avoid
this artefact. Also the strong increase in ⟨R2(s)⟩ of the standard semi-
flexible polymer model is an artefact of the model when compared
to experiments. This increase in the chain stiffness is related to the
shift of the probability distribution P(θ) towards smaller angles as
revealed in Fig. 4(a) and which directly connects to the shape of
the standard bending potential.22 In contrast, the new excluded vol-
ume and bending potential not only leads to a conformational very
close match with the old one at T = 1.0ε/kB, but it also avoids a
significant temperature shift. Figure 4(b) demonstrates for N = 50
that ⟨R2(s)⟩/s becomes independent of T within the error bars. As a
consequence, we also do not observe the maximum in ⟨R2(s)⟩/s for
N = 500 as a function of temperature [Fig. 3(d)]. These observations

fit to the T dependence of the distribution P(θ) [Fig. 4(b)], which
only becomes somewhat sharper but does not reveal any shift in the
maximum.

Finally, we report some preliminary results for our new model
in the glass transition region. As we are not interested here in details
of the transition itself, we focus on N = 50 (nc = 2000) and one
cooling rate (Γ = 8.3 × 10−6ε/(kBτ)), which, however, allows for a
full relaxation of the system up to the region very close to Tg , the
observed glass transition temperature. Tg can be determined from
the change in density ρ or volume V as a function of tempera-
ture.20 The intersection of linear extrapolation of lnV(T) between
the liquid branch (lnV liquid = aliquid + αliquidT) and the glass branch
(lnVglass = aglass + αglassT) gives a good estimate of Tg . Here, αliquid
and αglass are thermal expansion coefficients for polymer melts in
the liquid state and the glass state, respectively. The results of lnV
plotted versus T are shown in Fig. 5(a). The glass transition occurs

FIG. 5. (a) Logarithm of volume of the
system, ln V /σ3, plotted versus temper-
ature kBT /ε. The two linear lines give the
best fit of our data along the liquid branch
(aliquid = 11.37, αliquid = 0.30kB/ε) and
the glass branch (aglass = 11.49, αglass
= 0.10kB/ε). (b) Time evolution of mean
square displacement of inner monomers,
g1(t) at various chosen temperatures T.
The predicted scaling laws by the Rouse
model are shown by straight lines. (c)
Common logarithm of the inverse of
the rate constant W estimated from (b),
log10(1/W ), plotted versus Tg/T. Data for
kBT /ε > 1.0 are also included here. The
temperature dependence of the fragility
parameter m(T) = 4.7(Tg/T)6.0 + 0.8
is shown by a dashed curve, and the
VFT equation log10(1/W ) = A + B/(T −
T0) with A = 0.24, B = 0.45ε/kB, and
T0 = 0.56ε/kB is shown by a solid curve.
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around Tg = 0.64ε/kB. To investigate the mobility of chains at T > Tg ,
we perform additional NVT MD simulations with a weak coupling
Langevin thermostat for polymer melts at kBT/ε = 1.0, 0.95, 0.90,
0.85, 0.80, 0.75, 0.70, and 0.65. The initial configuration and vol-
ume of the polymer melt at each temperature T are taken from
the last configuration of the NPT run in the cooling process.
According to the Rouse model,39 the mean square displacement
(MSD) of monomers, g1(t), is expressed in terms of the Rouse rate
W = 12kBT/(πζσ2) as g1(t) = σ2(Wt)1/2. Here, ζ(∝D−1

∝ η) being
the monomeric friction coefficient is related to the self-diffusion
coefficient D = kBT/(Nζ) and the viscosity η using the Stokes-
Einstein relation. The results of g1(t) obtained from the average
MSD of inner 12 monomers are shown in Fig. 5(b). We also include
the data at T = 1.0ε/kB for the old model for comparison. The Rouse
rate W depending on the temperature is determined by the best fit
of a straight line with slope 1/2 going through our data on log-log
scales. AtT = 1.0ε/kB, the Rouse rate for the old model (W = 0.20τ−1)
is faster than the new model (W = 0.09τ−1). From the well-known
Vogel-Fulcher-Tammann (VFT) equation40–42 log10 η = A + B

T−T0
,

where A, B, and T0 are constants and T is the absolute tempera-
ture, Angell8,9 has proposed the fragility parameter m, defined by43
m = d(log10 η)/d(Tg/T) ∣T=Tg . Thus, plotting log10(1/W) versus
Tg/T in Fig. 5(c), we obtain the characteristic behavior of a polymer
approaching the glass transition.

In summary, based on the standard BSM, we have introduced a
new non-bonded short range attractive potential UATT(r) and bond
bending potential UBEND(θ) for studying polymer melts subject to
cooling. The functional form of these two new interaction poten-
tials also is directly applicable to other standard BSM models with
different stiffness25 just by adjusting the coefficients. By keeping
α = 0.5145ε, which results in a density of 0.85σ−3 for all longest
(N = 2000) systems within the error bars, we get aθ = 4.5ε for 0 ≤ kθ/ε
≤ 2.0, and bθ = 1.32, 1.40, 1.50, and 1.70 for kθ/ε = 0.5, 1.0, 1.5, and
2.0, respectively. The new coarse-grained model captures the major
features of glass-forming polymers and preserves the Kuhn length as
well as internal distances and can also be used to study systems with
free surfaces. By construction, it can directly take advantage of the
available simulation data of standard BSM models at T = 1.0ε/kB and
can be applied to the available large deformed polymer melts33,34
and for understanding the viscoelastic behavior of these polymeric
systems.
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