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ABSTRACT

Computer simulations have proven to be a powerful tool in soft matter research
since they have helped to elucidate microscopic details of many phenomena observed in
experiments that would otherwise have remained unclear. Therefore, the high demand
for computer simulations on one hand, and the emergence of very fast computational
units on the other hand, have led to development of a great variety of computational
methods. These techniques have provided the possibility to investigate phenomena
occurring within a wide range of length and time scales, from chemical reactions at
the quantum scale to self-assembly at the macroscale.

However, the computational costs of studying these phenomena in a single, highly
detailed resolution are often too expensive. Hence, provided the locality of the
phenomenon, it is advantageous to develop multi-resolution techniques. In these
approaches, the system is divided into a high resolution subregion, described by an
accurate but computationally expensive model, and a low resolution region, where
the rest of the system is treated by means of a coarse but computationally efficient
model. One of such multi-resolution techniques is the Hamiltonian Adaptive Resolution
Simulations (H-AdResS) method. In this approach, the two resolutions are smoothly
coupled through a transition layer in which compensating forces are applied on the
molecules, and a constant chemical potential throughout the resolutions is enforced.

In this work, we first explain the challenges of implementing long-ranged elec-
trostatic interactions in H-AdResS. We then propose and validate the usage of a
short-range modification of Coulomb potential, the Damped Shifted Force model, in
the context of the H-AdResS scheme. We validate this approach by reproducing the
structural and dynamical properties of liquid water. Next, we take advantage of the
constant chemical potential inherent to H-AdResS to introduce a new and efficient
method to compute the chemical potential of liquids and mixtures. The method has
been named spatially resolved thermodynamic integration (SPARTIAN). Subsequently,
we employ the same approach to compute the free energy of solids by coupling the
real crystals with their corresponding ideal Einstein crystals. Afterwards, we use the
Jarzynski equality to obtain the solvation free energy of molecules by using steered
molecular dynamics to pull the molecule from the atomistic (solvated state) into the
ideal gas (unsolvated state) region. Lastly, we discuss the spatial block analysis (SBA)
method to efficiently extrapolate thermodynamic quantities such as bulk isothermal
compressibility from finite-size computer simulations, and discuss different types of
finite-size effects in the SBA context. This study is designed to target the problems
involving sampling in grand canonical ensembles which is also crucial for the extension
and development of the SPARTIAN method into a new grand canonical molecular
dynamics framework.
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Zusammenfassung

Computersimulationen haben sich als leistungsfähiges Werkzeug zur Erforschung
weicher Materie erwiesen, da sie geholfen haben zur Aufdeckung mikroskopischer
Details vieler experimentell beobachteter Phänomene beizutragen, welche sonst un-
aufgeklärt geblieben wären. Demzufolge haben sowohl der hohe Bedarf an Computer-
simulationen, als auch die Entwicklung sehr schneller Computer zur Entwicklung einer
großen Vielfalt von Simulationsmethoden geführt. Diese Simulationstechniken haben
die Möglichkeit geschaffen Phänomene zu untersuchen, welche auf einer großen Band-
breite von Längen und Zeitskalen geschehen, angefangen bei chemischen Reaktionen
auf der Quantenskala bis hin zur Selbstanordnung auf der Makroskala.

Jedoch ist der Rechenaufwand, um diese Phänomene in einer einzigen hochdetail-
lierten Auflösung zu studieren oft zu groß. Daher ist es von Vorteil Simulationstech-
niken mit mehreren Auflösungen zu entwickeln, sofern die räumliche Abgegrenztheit des
Phänomens gegeben ist. In diesen Methoden wird das System in einen hochaufgelösten
Teilbereich, beschrieben durch ein genaues aber rechenaufwendiges Modell, und einen
niedrigaufgelösten Teilbereich, beschrieben durch ein vergröbertes recheneffizientes
Modell aufgeteilt, welcher den Rest des Systems beschreibt. Eine dieser Methoden
mit mehreren Auflösungen ist die Methode der hamiltonisch adaptiv aufgelösten
Simulationen (Hamiltonian Adaptive Resolution Simulations) (H-AdResS). In dieser
Herangehensweise werden die beiden Teilbereiche verschiedener Auflösung glatt durch
eine Übergangsschicht miteinander gekoppelt, in welcher Kompensationskräfte auf
die Moleküle wirken. Dadurch wird ein durchgehend konstantes chemisches Potential
erzwungen.

In dieser Arbeit beschreiben wir als erstes die Herausforderungen, langreichweit-
ige elektrostatische Wechselwirkungen in H-AdResS zu implementierchemen. Dann
schlagen wir die Verwendung einer kurzreichweitigen Modifikation des Coulomb Po-
tentials vor und validieren diese im Kontext des H-AdResS Schemas: das gedämpfte
verschobene Kraft-Modell (Damped Shifted Force). Wir validieren diese Herange-
hensweise durch Reproduktion der strukturellen und dynamischen Eigenschaften
von flüssigem Wasser. Als Nächstes benutzen wir das durchgehend konstante che-
mische Potential von H-AdResS, um eine neue und effiziente Methode einzufüren das
chemische Potential von Flüssigkeiten und Mischungen zu berechnen. Diese Methode
wurde räumlich aufgelöste thermodynamische Integration (spatially resolved ther-
modynamic integration) (SPARTIAN) genannt. Anschließend wenden wir die gleiche
Herangehensweise an, um die freie Energie von Festkörpern zu berechnen, in dem wir
realistische Kristallmodelle mit den korrespondierenden idealen Einstein-Kristallen
koppeln. Danach verwenden wir die Jarzynski-Gleichung, um die freie Lösungsenergie
von Molekülen mittels Molekulardynamiksimulationen zu berechnen, in denen Moleküle
gezielt vom atomistischen Teilbereich (gelöster Zustand) in den Teilbereich des ide-



xv

alen Gases (ungelöster Zustand) gezogen werden. Schließlich diskutieren wir die
räumlich aufgelöste Blockanalyse-Methode (spatial block analysis method) (SBA), um
effizient thermodynamische Eigenschaften wie die isothermische Kompressibilität aus
Computersimulationen von Systemen endlicher Größe zu extrapolieren. Wir disku-
tieren verschiedene Arten von Effekten endlicher Systemgrößen im Zusammenhang
der SBA-Methode. Dieser Teil der Arbeit ist daraufhin konzipiert, Sampling-Probleme
großkanonischer Ensembles anzugehen, was entscheidend ist für die Weiterentwicklung
der SPARTIAN-Methode im Rahmen großkanonischer Molekulardynamik-Simulationen.
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1

1. Introduction

1.1 Overview

It is difficult to imagine any modern scientific endeavour where computer simula-
tions do not play a pivotal role: from assisting and sometimes guiding experimental
investigations to identifying and predicting new materials and physical principles.
The paradigm shift associated to the use of computational models for the study of
complex systems and phenomena started more than fifty years ago [2]. The modern
Monte Carlo (MC) method was invented in the late Forties, and almost ten years later
the first molecular dynamics (MD) simulations were performed. In the early Fifties,
Enrico Fermi, John Pasta, Stanislaw Ulam and Mary Tsingou used the Los Alamos
computer MINIAC I to investigate the thermalization of a crystal. To this end, a
vibrating string has been modeled as a chain of particles interacting via both linear
and weak nonlinear terms. A first analysis of the problem using the equipartition
theorem suggested that the energy of an initial normal mode is distributed among
other modes due to the presence of the nonlinear interaction. Surprisingly, they
observed that the system exhibits a quasi-periodic behavior where, after some time,
the initial state was seemingly recovered [3, 4]. The phenomenon was later dubbed as
Fermi-Pasta-Ulam-Tsingou problem and it has been a center of focus in the field of
nonlinear and chaotic dynamics [5, 6].

The insight provided by this early computer experiments sparked the interest of
the physics community. Now a useful tool was available to investigate the connection
between the microscopic components and interactions of a system and its thermody-
namic properties as established in the foundations of statistical mechanics. Moreover,
the study of the dynamic evolution of a physical system was now a real possibility. A
pioneering work by Berni Alder using MD simulations of a small system (∼ 100 parti-
cles) of hard spheres, within the possibilities of the UNIVAC computer, demonstrated
the feasibility of such a method by comparing the obtained equation of state of the
system with previous MC results [7]. Consequently, accompanied by the emergence of
new and efficient algorithms and the boost in computing power, scientists have been
able to study large-scale and complex systems, leading to significant achievements
in both fundamental and applied studies. Further examples include the discovery
of new and efficient organic electronics materials [8, 9], the assesment of different
chemical compounds useful for drug delivery applications [10], the characterization
of protein functions [11, 12] or structural and dynamical properties of polymers in
polymer melts [13,14].

As it is shown in Figure 1.1, depending on the time and length scales of the
phenomena under examination, the approaches and methods are classified differently.
At the electronic scale, ab initio methods incorporate the quantum mechanical effects
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by solving the Kohn-Sham equations [15,16]. At the atomic scale where the dynamics of
the system is described by length and time scales much larger than the ones describing
electronic degrees of freedom, the molecular dynamics simulation method is used. In
this approach, Newton’s equations of the motion are solved by incorporating classical
force fields frequently obtained from ab initio calculations [2, 17]. At the mesoscopic
length and time scale, coarse-grained molecular descriptions and force fields are
employed [18,19]. Here, molecular internal degrees of freedom that do not significantly
affect thermodynamic quantities of interest are integrated out. And ultimately, at the
largest scale, the continuum level, the dynamics of the system is described by field
equations which are attained by the local but macro-scale conservation of quantities.
For instance, Navier-Stokes equation is the field approach toward describing the fluid
flow using the conservation of local mass and momentum [20]. Other approaches
include the theory of elasticity and Finite Element method used to study the continuum
mechanics of solids [21]. In the following, I will discuss in further detail molecular
dynamics methods since my research interests revolve around such a method.
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Figure 1.1. Multiscale nature of matter. The phenomena are described
by different approaches depending on length and time scales of interest.
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1.1.1 Atomistic molecular dynamics simulations

For the study of properties at length scales larger than those of electronic and
nuclear structures, one can assume that quantum mechanical effects have negligible
effects on the dynamics of the system. In this limit, one is allowed to use classical
MD simulations in which the quantum mechanical effects are implicitly taken into
account. In this approach, the atoms’ nuclei are described by point-like particles that
interact via classical force fields. These force fields are fitted to the data obtained
from either experiments or ab initio methods. Then, the dynamics of the system
is evolved by integrating Newton’s equation of motion over successive finite time
steps [2,17]. The mostly used integration scheme is the Velocity Verlet algorithm which
has been proven to be symplectic (time evolution follows Hamiltonian’s equations)
and energy conserving [22]. Since in standard MD the integrator of the equations
of motion is energy-conserving, the statistical ensemble of the system corresponds
to the microcanonical ensemble. It is also possible to employ different statistical
ensembles such as canonical or isobaric-isothermal ensembles [23–26]. In the canonical
ensemble, the number of particles and the volume of the system are fixed, and to
control the temperature of the system several strategies have been proposed [25–28].
In these approaches, the temperature of the system can be maintained constant locally
or globally by coupling to a heat reservoir. In the former approach, each degree of
freedom can be thermalized using Langevin or generalized Langevin equations [17, 28]
or by rescaling the particles’ velocities [26]. In the latter, a new fictitious degree of
freedom is introduced such that its dynamics controls the system temperature [25, 27].

1.1.2 Coarse-grained models

Atomistic molecular simulations have provided profound and broad insights into
molecular-scale phenomena. However, the length and time scales of many processes
occurring in liquids and biomolecular systems are still far beyond current computational
capabilities. To overcome such a difficulty, it is required to develop alternative
approaches allowing one to access larger time and length scales. Coarse-grained
(CG) simulation is one possible approach aiming at solving this problem. In such an
approach, a CG representation of the system is introduced by clustering groups of
atoms into CG sites. Figure 1.2 shows the molecular structures of water and urea
molecules and their corresponding coarse-grained single particle representations. In
the new CG scale, the molecular degrees of freedom are reduced and the CG sites
interact through more computationally efficient interactions thus allowing access to
large spatial and temporal scales. CG simulations have shown to be efficient and
effective approaches for bridging the gap between the atomistic and mesoscopic scales
as it has been demonstrated for molecular liquids [29], polymer elastic networks [30,31],
lipid membranes [32, 33] and other biomolecular systems [34,35].
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In the context of statistical mechanics, the relation bridging the atomistic and the
effective CG interactions is generally introduced by the following formula [36]

exp(−F/kBT ) = C1

∫
dxAT exp

[
−V AT (xAT )/kBT

]
(1.1)

= C2

∫
dxCGexp

[
−V CG(xCG)/kBT

]
Here, F represents the Helmholtz free energy, V (xAT ) is the interaction potential

at the atomistic level which is a function of the atomistic coordinates, xAT . T is the
temperature of the system and kB is the Boltzmann constant. C1 and C2 are constants.
As it is expressed in the second line of equation 1.1, the effective CG potential V (xCG)
is obtained by equating the free energy of the system at atomistic and coarse-grained
levels. The procedure of finding CG interaction is not straightforward, and several
different techniques have been proposed. The most commonly used coarse-graining
techniques are Force Matching [37, 38], Reverse Monte Carlo [39, 40] and Relative
Entropy [18,41].

Figure 1.2. Molecular structures of water (left) and urea (right) molecules.
The corresponding coarse-grained models are shown with transparent single
beads.

1.1.3 Dual-resolution simulations

Although using a coarse-graining technique makes it possible to characterize the
relevant properties of a system at a cheaper computational costs, it is not able to
answer the questions related to the systems in which the chemical details of a small
region have major effects on the system behavior. For example, the active site of a
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large enzyme or the electrostatic screening of ions by water molecules close to the
charged residues of a protein. In these cases, on one hand, the computational cost
increases by employing high resolution simulation (atomistic model) of all regions and,
on the other hand, the system’s properties at the region of the interest are largely
distorted or cancelled by simulating this part with low resolution (coarse-grained
model). The solution to this dilemma is given by the dual resolution models in which
both atomistic and coarse grained resolutions are concurrently employed.

One of the mostly known concurrent multiscale scheme is the quantum mechan-
ics/molecular mechanics (QM/MM) method [42–45]. In this scheme, a small region
is described with ab initio resolution while being connected to a larger region which
is treated using classical atomistic forcefields. These techniques have been widely
employed in studying enzymatic chemical reactions [46,47].

Another class of multiscale simulation methods allow to bridge the atomistic and
CG models concurrently [48–51]. The coupling strategy of these techniques relies on a
smooth spatial interpolation on the atomistic and CG force fields. Several methods
have been established and can be classified depending on the interpolation strategy:
(i) methods that interpolate forces acting on the particles (ii) methods that interpolate
the interaction potentials. The most used and popular technique of the former class
is Adaptive Resolution Simulation (AdResS) [48] while to the latter class belongs
the Hamiltonian Adaptive Resolution Simulation (H-AdResS) [49]. Both methods
have proven to be successful for dual resolution simulation of soft matter systems,
for instance, solvated proteins, fullerene, DNA and macromolecules [49,52–60] when
compared to fully atomistic simulations. Since this thesis focuses on the H-AdResS

method, a brief description is presented in the following section.

1.2 Hamiltonian Adaptive Resolution Simulation

In the H-AdResS scheme, the simulation domain is subdivided into two parts of
high and low resolution [49,50]. In the high resolution region, the accurate and more
computationally expensive model is employed, while in the low resolution region a
simpler description featuring a lower computational cost is used. The resolution of
each molecule in the system is determined by its position in space. The existence of a
transition layer (also dubbed hybrid region), which couples two resolutions through
thermodynamically consistent forces and energies, allows the molecules to diffuse
freely and change model, i.e. resolution, on the fly. Thus, the molecules in such dual
resolution scheme smoothly vary their resolutions, adapting their representations to
one model or the other in a continuous manner.

The description of the interactions between the particles in the H-AdResS scheme, is
given in terms of a global Hamiltonian functionH, which has the following form [49,61]:

H = K + V int +
∑
α

{
λαV

AT
α + (1− λα)V CG

α

}
(1.2)
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The term K is the atomistic kinetic energy, and V int consists of all the intramolecular
bonded interactions (e.g. covalent bonds or angle bending terms). The resolution of
particle α is specified by the transition function λα = λ(Rα), which is computed on
the center-of-mass coordinates Rα of the molecule. The switching function should be
continuous and smooth and it is bounded within the domain [0, 1]. Depending on
the shape of the AT region, the switching function can be defined in slab, spherical
or cylindrical coordinate systems. Figure 1.3 shows an H-AdResS simulation setup in
which the shape of AT region is rectangular.

Figure 1.3. In Hamiltonian Adaptive Resolution Simulation, the periodic
box involves three different regions: Coarse-grained (CG), Hybrid (HY),
and Atomistic (AT). (Upper panel) The switching function λ is piecewise
function between 0 (CG) and 1 (AT), defining the resolution of a molecule.
(Lower panel) A snapshot of the H-AdResS setup showing the corresponding
subdomains [61].

A molecule interacts with its neighboring particles through coarse-grained V CG

and atomistic V AT potentials. The functional form of these potentials is arbitrary,
as well as the order of the interaction (two-body, three-body...). In the Hamiltonian
Eq. 1.2 the non-bonded potential energy contribution of each molecule α is given by
a weighted sum of two terms V CG

α and V AT
α , defined as:

V AT
α ≡ 1

2

N∑
β,β 6=α

∑
ij

V AT (|rαi − rβj|), (1.3)

V CG
α ≡ 1

2

N∑
β,β 6=α

V CG(|Rα −Rβ|).
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The AT and CG terms of each molecule are weighted by λα or (1− λα), respectively.
V AT
α and V CG

α have a factor 1/2 to account for the double counting.
As it is shown schematically in Figure 1.4, the equation of state of each resolution

follows different isotherm curves in the pressure-density plane. As it has been thor-
oughly investigated [49,50,62,63], if the dynamics of the system is solely described by
equation 1.2, two states with different density and pressure are linked together (red
line). However, coupling of two resolutions at either the same pressure (blue line) or
the same density (black line) requires introducing new terms known as compensating
energies (∆H) into the Hamiltonian [49,61]:

H∆ = H −
N∑
α=1

∆H(λ(Rα)). (1.4)

Figure 1.4. Isotherm curves of equation of states for atomistic (solid line)
and corresponding coarse-grained (dashed line) model in the pressure-
density plane. The blue line connects two thermodynamic states of AT and
CG when the Hamiltonian of the system is not compensated (∆H = 0).
The blue and red lines represent respectively the cases when the pressure
and density of the two resolutions are equal [49].

To induce a uniform pressure across the resolutions, the compensation term ∆H(λ)
has to account for the Helmholtz free energy difference (∆F (λ)) which is given by

∆H(λ) =
∆F (λ)

N
=

1

N

∫ λ

0

〈[
V AT − V CG

]〉
λ

(1.5)
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While in the constant-density route, instead of imposing uniform pressure, the
two resolutions coexist at the same density which is given by the reference density
ρ∗. In this case, the compensating term is related to the Gibbs free energy difference
∆G(λ) or to the chemical potential difference ∆µ(λ) across the transition layer and it
is expressed by

∆H(λ) =
∆G(λ)

N
≡ ∆µ(λ)

=
∆F (λ)

N
+

∆p(λ)

ρ∗
(1.6)

It has been demonstrated that the compensation functions can be computed by
preforming Kirkwood thermodynamic integration (KTI) [49, 64]. In this approach,
the potential ∆H(λ) can be approximated in a mean field fashion by the Helmholtz
free energy in the constant-pressure route or Gibbs free energy difference in the
constant-density route between a system with hybrid Hamiltonian at resolution λ
and the reference (CG) system with λ = 0 [49, 62]. However, the accuracy of this
procedure can be limited when there are strong correlations within the hybrid region.

A more effective strategy is to compute the compensation energies locally and
parametrize the compensation on the fly within an iterative scheme [61,62]. In this
respect, the hybrid region (HY) is discretized in a number of bins and corresponding
compensating energies are computed and averaged over the simulation time. The
running average update continues until the compensation energies have converged to
a stable value in each bin; after this point, the update is interrupted and the resulting
compensation is given.

Having developed and generally established the H-AdResS scheme for all types of
short-ranged interactions of high and low resolutions, it is necessary to investigate the
accurate implementation of the long-ranged electrostatic interaction which is crucial
in the simulation of charged complex systems. In the following sections, we will briefly
describe the method of EWALD summation followed by an alternative short-ranged
potential known as Damped Shift Force. Afterwards, we will explain briefly the notions
of chemical potential and and non-equilibrium work-free-energy relation on which we
focused for their incorporation in the context of H-AdResS within the next chapters of
this thesis.

1.3 Coulomb interaction

The electrostatic interaction in molecular simulations is one of the most compu-
tationally demanding tasks and it is essential to treat it properly. This is due to
the long-range decay ∼ r−1 of the Coulomb interaction with respect to the charged
molecules’ pair distance r. There have been several techniques to handle the electro-
static interactions properly and accurately [65–68] which are categorized into implicit
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and explicit methods. The electrostatic interaction between the macromolecules and
solvent molecules in the methods of former category such as continuum dielectrics
method [66], is approximated by a continuum field and the resulting continuum
dielectric of the medium is used to simulate the macromolecules. However, in the
methods of latter category, such as Ewald summations [68], or interaction shifting
and truncation [67], the electrostatic interaction between all molecules is explicitly
computed. Additionally, there are methods that combine the two approaches, for
instance the reaction field [69–71] method. In the strategy of these schemes, the
electrostatic interaction is assumed short-ranged and while the solvent molecules are
explicitly simulated, a mean-field approximation is also used to improve the accuracy
of the pairwise interaction. In the following sections, we will present briefly the Ewald
summation method and its alternative short-ranged electrostatic potential known as
Damped Shift Force (DSF).

Ewald Summation

Suppose that we have a cubic simulation box of length L in a vacuum that is
composed of N ions with charges q1, q2, . . . , qN and positions r1, r2, . . . , rN ,. For the
periodic boundary conditions, we can express the total Coulomb interaction energy
between all ion pairs (i, j) and their periodic images as [17]

U =
1

4πε0

∑
S

∑
(i,j)

qiqj
|rij,S|

(1.7)

Here, rij,S = rj − ri + S and S accounts for the periodic images of the ions in
the system S = mL with m = {. . . ,−1, 0, 1, . . . }. The vacuum permittivity is
ε0 = 8.854× 10−12C2N−1m−2. The sum goes over all pairs of ions, i.e. N(N − 1)/2.

One can separate the Coulomb interaction into short-range and long-range parts:

1

r
=

erfc(αr)

r
+

erf(αr)

r
(1.8)

where erf(r) and erfc(r) are the error and complement error functions defined by

erfc(x) = 1− erf(x) =
2

π

∫ ∞
x

dte−t
2

(1.9)

The parameter α controls the range of the short term interaction.
Using the aforementioned range separation scheme, the electrostatic short-range

interaction is given by

Ushort =
1

4πε0

∑
S

∑
(i,j)

erfc(αrij,S)qiqj
|rij,S|

(1.10)
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and the long-range interaction is given by

Ulong =
1

4πε0

∑
S

∑
(i,j)

erf(αrij,S)qiqj
|rij,S|

(1.11)

The parameter α determines how fast the short-range interaction is decaying and
its value is determined by the cut-off radius rc. It is shown that α = 3.5/rc is an
appropriate value to have a good balance between short- and long-range parts. Since
erf(αr)/r behaves as 1/r for large r, evaluation of the long-range behavior is important
to accurately calculate forces and energy. However, it is computationally inefficient
to evaluate the long-ranged interaction in the real space. In this case, one can take
advantage of Fourier or reciprocal space in which a long-range function is converted
into a short-ranged one and, given the periodicity of the simulation box, it is consistent
to use Fourier expansion of the function erf(αr)/r. For the cubic simulation box of
size L and volume V = L3, the reciprocal-space vectors is given as g = 2πn/L, where
n is a vector of integers. The Fourier series of the error function is∑

S

erf(α |r + S|)
|r + S| =

1

V

∑
g

Cge
ig.r (1.12)

The Fourier coefficients are

Cg =
∑
S

∫
V

dr
erf(|r + S|)
|r + S| e−ig.r =

4π

|g|2
e−|g|

2/4α2

(1.13)

As it is evident from the last relation in equation 1.13, Cg coefficients decay in
the Fourier space and one can assume a truncation in the reciprocal space. Thus the
long-range interaction is obtained by evaluating Cg coefficients.

The computational cost of the original Ewald summation is O(N2) where N
is the number of ions in the system [17, 65]. However, by appropriate choice of
α, the computational cost reaches O(N3/2) [72]. Several methods such as particle-
particle particle-mesh (P3M) and particle-mesh Ewald (PME), have been introduced
to optimize the reciprocal summation by utilizing the fast Fourier transform [73–75],
leading to reduction in the computational cost to O(N logN).

The optimizations and developments of the Ewald summation method is based
on the intrinsic three-dimensional periodicity of the system. However, in certain
cases, for example, liquid-vapour interface and biological membranes, it is essential to
reformulate the EWALD summations for two-dimensional (2D) systems [76–78]. The
existence of the system’s replicas using Ewald sum has also been shown problematic for
the 3D systems. For example, the compact folded state of the solvated protein might
be artificially stabilized by the periodic replicas introduced by Ewald summations [79].
The existence of system’s charge neutrality is also essential for the convergence of
Ewald summation. Several studies have shown that for a system having a net charge,
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a compensating charge has to be considered in order to avoid spurious effects on the
system dynamics [80]. The discussed limitations on utilizing the Ewald summation
has led us to use an alternative short-ranged but accurate potential known as Damped
Shifted Force in the H-AdResS scheme.

Damped Shifted Force potential (DSF)

The original idea of short-ranged electrostatic potential was introduced by Wolf et
al. [81, 82]. Based on two key features of condensed phase systems that are (i) the
electrostatic interaction is effectively short-ranged and (ii) the charge neutrality is
essential for accumulation of the electrostatic interaction in a pairwise fashion within
a cut-off sphere with radius rc, they proposed a pairwise summation method

VWolf(rij) =
qiqj
4πε0

[
erfc(αrij)

rij
− lim

rij→rc

erfc(αrij)

rij

]
(1.14)

where rij ≤ rc and rc is the cut-off radius and α is a damping parameter with dimension
of inverse length. They showed that employing a distance-dependent decay function
(first term in equation 1.14) which is identical to that obtained in the real-space portion
of EWALD summation method, and the neutralizing image charges on the cut-off
sphere (second term in equation 1.14) is sufficient to obtain excellent estimates of
Madelung energies of many crystals [82]. However, because of force discontinuities at
the cutoff radius, the use of the Wolf potential is problematic in MD simulations [65].
To overcome this problem, the potential function was modified so to give continuous
potential and forces everywhere [65], thus becoming a valuable short-range alternative
to EWALD summation method. In the new potential known as Damped Shifted
Force (DSF), the electrostatic potential between two charges qi and qj separated by a
distance rij is given by the following expression:

VDSF(rij) =
qiqj
4πε0

[
erfc(αrij)

rij
− erfc(αrc)

rc

+

(
erfc(αrc)

r2
c

+
2α

π1/2

exp (−α2r2
c )

rc

)
(rij − rc)

]
,

(1.15)

The DSF method scales linearly with the system size O(N) similar to the other
pairwise cut-off methods [65]. Additionally, in situations where the periodicity of the
system has to be avoided or the system is not neutrally charged, for example the
interfacial systems [76–78, 80] and dual resolution simulations (H-AdResS) [49], the
standard Ewald sum is problematic and it requires corrections and reformulations.
However, the DSF technique can be employed normally without modifications [65].
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1.4 Chemical potential

The chemical potential of a substance determines many of its physical properties, for
instance, the thermodynamic states of the coexisting phases and crystallization [83,84].
Another example is non-equilibrium diffusio-osmotic flow in liquid mixtures where a
gradient of chemical potential of one substance in proximity to a solid interface causes
a flow [85,86].

In statistical mechanics, the chemical potential of a species is defined as a ther-
modynamic quantity showing the free energy changes upon variation of the number
of that species. To calculate the chemical potential, consider a liquid containing N
particles of the same type [2]. The introduction of a new particle into the system can
be done either at constant volume or constant pressure. By calculating the change in
corresponding free energy of the system, Helmholtz free energy (F ) in the former or
Gibbs free energy (G) in the latter, one can define the chemical potential by

µ ≡
(
∂G

∂N

)
P,T

=

(
∂F

∂N

)
V,T

(1.16)

To obtain the free energy of the system, one has to compute the partition function.
For a system containing N particles interacting with potential energy function U(r),
volume V and thermal de Broglie wavelength Λ, the classical canonical partition
function is given by

Q(N, V, T ) =
1

Λ3NN !

∫
dr1 · · · drN exp [−βU(r1, · · · , rN)] (1.17)

Where ri is the position of the ith particle. The partition function can be expressed
in terms of the coordinates which are rescaled by the system size, si = ri/L

Q(N, V, T ) =
V N

Λ3NN !

∫ 1

0

...

∫ 1

0

ds1 · · · dsN exp [−βU(s1 · · · sN ;L)] (1.18)

The Helmholtz free energy in the canonical ensemble is given by F = −kBT lnQ(N, V, T )
and, in the limit of large number of particles, the chemical potential can be derived
by ∂F/∂N as following

µ = −kBT ln

(
Q(N + 1, V, T )

Q(N, V, T )

)
(1.19)

= −kBT ln

(
V/Λ3

N + 1

)
− kBT ln

∫
dsN+1〈exp [−β∆U ]〉N

= µid(ρ) + µex

Here, the potential energy difference between (N + 1)- and N -particle system is
∆U = U(s1, · · · sN+1;L)− U(s1 · · · sN ;L). Thus, the chemical potential is ultimately
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expressed by two terms, the ideal gas contribution, µid(ρ) which can be analytically
calculated for the system of density ρ; and the excess chemical potential:

µex = −kBT ln

∫
dsN+1〈exp [−β∆U ]〉N (1.20)

Correct calculation of the integral in the highly dense liquid is challenging because
the energy cost of inserting a new particle into the system is high leading to vanishingly
small contribution 〈exp [−β∆U ]〉N . Thus, it is required to use enhanced sampling
techniques to correctly and efficiently calculate the integral in the dense regime [87–90].
However, as it was stated in equation 1.6, in the H-AdResS method, the chemical
potential difference between two resolutions is systematically computed by inducing
the uniform density profile across the system. We will describe the procedures to
compute the chemical potential using H-AdResS more in detail in chapter 3.

1.5 Nonequilibrium work-free-energy relation

In the previous section, we explained the importance of the chemical potential and
described the challenges of its accurate calculation. In this section, we describe a way
to compute the free energy difference between two equilibrium states of the system.
As it will be explained thoroughly in chapter 5, this approach will be incorporated in
the context of H-AdResS in order to compute the chemical potential of mixtures in a
very dilute concentration regime.

From the second law of thermodynamics, we know that the average amount of
work WAB to take the system from the state A to the state B is equal to or higher
than the free energy difference 〈WAB〉 ≤ ∆FAB. The equality holds only if the process
is performed reversibly. That means that, during the procedure, the system remains
close to equilibrium at the intermediate states. However, any dissipation leads to
entropy production and deviation of the work from the free energy difference.

In 1993, Chrsitopher Jarzynski introduced an ideal equality between work and free
energy which holds for out-of-equilibrium processes [91],

〈e−βWAB〉A = e−β∆FAB , (1.21)

where β = 1/kBT and the ensemble average is defined over the initial conditions x0

which are canonically sampled at state A,

〈e−βWAB〉 =
CN

QA(N, V, T )

∫
dx0e

−βHA(x0)e−βWAB(x0). (1.22)

Here, the prefactor CN = 1/N !h3N is determined by Planck’s constant h and the
number of the particles N . The canonical partition function of the canonical ensemble
is given by QA(N, V, T ) =

∫
dx0e

−βHA(x0).
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The equation 1.21 which is referred to as Jarzynski equality together with a
succeeding but more general relation known as Crook’s fluctuation theorem [92] are
considered as the foundation for the nonequilibrium free energy techniques. In the
following, we will describe how Jarzynski equality can be derived, specifically for the
isolated system.

The Hamiltonian of a N -particle system which is time-dependent due to a dynamic
interacting potential is expressed by [17]

H(r,p, t) =
N∑
i=1

p2
i

2mi

+ U(r1, . . . , rN , t) (1.23)

The phase space vector at time t is defined as xt = (r1, . . . , rN ,p1, . . . ,pN) where ri
and pi are the position and momentum vectors of the ith particle, respectively. The
integration of the time derivative of the Hamiltonian over an interval [0, T ] is given by∫ T

0

dt
dH

dt
=

∫ T

0

dt
∂H

∂t
+

∫ T

0

dt (∇xH) · xt (1.24)

It is worth mentioning that the equation 1.24 is the microscopic version of the first law
of thermodynamics, wherein the system’s change in internal energy during the time
interval (UT =

∫ T
0
dt dH/dt) is equal to summation of work (WT =

∫ T
0
dt ∂H/∂t) and

transferred heat (QT =
∫ T

0
dt ∇xH · xt). Let us assume that the initial trajectories x0

are evolved in isolation, i.e. Q = 0. Thus, equation 1.24 becomes

WT (x0) =

∫ T

0

dt
dH(x0, t)

dt
= H(xT , T )−H(x0, 0) (1.25)

If we define the system’s canonical ensemble of the initial conditions as state A, then
the ensemble averages 1.21 can be written as

〈e−βWAB〉 =
CN

QA(N, V, T )

∫
dx0e

−βHA(x0)e−β[H(xT ,T )−HA(x0)] (1.26)

=
CN

QA(N, V, T )

∫
dx0e

−βH(xT ,T ) (1.27)

As the trajectories are evolved by the Hamiltonian’s equations of motion, according to
the Cauchy-Lipshitz theorem on the uniqueness of solution of the first order differential
equation, for each initial condition x0, there is a unique solution xT . Additionally,
by Lioville’s theorem on the incompressibility of the phase space, the differential
volume along the evolving path is preserved, i.e. dx0 = dxT . Hence, recognizing
H(xT , T ) = HB(xT ) we can change variables x0 to xT and ultimately reach the
Jarzynski equality,
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〈e−βWAB〉 =
CN

QA(N, V, T )

∫
dxT e

−βHB(xT ) (1.28)

=
QB(N, V, T )

QA(N, V, T )

= e−β∆FAB

It is worth noting that in equation 1.28 we assumed that final configurations of
the system at time T are sufficiently sampled in the phase space such that the integral
CN
∫
dxT e

−βHB(xT ) is equal to the canonical partition function of the system at state
B, i.e. QB(N, V, T ).

(Solvated) State (Unsolvated)  State

Changing state of the system

A (1)

B (2)

1

A (1)

B (2)

1

Figure 1.5. Presentation of a two-state system involving a urea and water
molecules. In the solvated state A, the urea molecule is interacting with
the water molcules and forms hydration shells while in unsolvated state
B, there is no interaction between the molecules and all molecules behave
like ideal gas particles.

This approach can be employed to compute the solvation free energy of molecules.
As it is schematically shown in Figure 1.5 for the urea molecule solvated in water
molecules for instance, the two equilibrium states A and B are associated to, respec-
tively: a solvated state in which the urea interacts with the water molecules and forms
solvation shell; and an unsolvated state in which the urea loses the interaction with
water molecules and all molecules behaves like ideal gas particles. The work required
to force the system to change its state between the states A and B is related to the
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free energy difference by means of equation 1.21 which is essentially equal to the
solvation free energy of the urea molecule.

1.6 Outline

In the following we provide a brief overview over the chapters 2-6.
In chapter 2 we propose and validate the usage of a short-range modification of

Coulomb potential, the Damped Shifted Force (DSF) model, in the context of the
H-AdResS scheme. This approach, which is validated here on bulk water, ensures a
reliable reproduction of the structural and dynamical properties of liquid water. The
resulting dual-resolution setup is implemented in the LAMMPS simulation package, and
its customized version employed in the present work is made publicly available.

Following the accurate treatment of electrostatics in the H-AdResS scheme, in
chapter 3 we explain how to couple the target atomistic system (AT) to an ideal gas (IG)
bath of point-like particles. In this case, by enforcing a uniform density profile across
the simulation box, a single-molecule external potential is computed. The external
potential is identified with exactly the excess chemical potential of the target system.
The analogy with thermodynamic integration becomes evident and therefore the
method has been named spatially resolved thermodynamic integration, or SPARTIAN
for short. In the highly dense regime, the SPARTIAN method surpasses many other
popular methods which rely on the insertion of test particles into the target system.
This is because in the SPARTIAN method, increasing the density/concentration of
the liquid/components, enhances the statistics of sampling in the hybrid region and
accordingly, improves the precision of the results. From a computational efficiency
point of view, SPARTIAN surpasses particle insertion methods applied to complex
molecular systems because the ideal gas representation contributes negligibly to the
computational cost of the simulation, thus allowing one to make use of large reservoirs
at minimal expenses.

In Chapter 4 we extend the previous results to the study of solids, namely, an
atomistic crystal coupled to an ideal representation (Einstein crystal) of the system.
we show that in virtue of such a coupling, the excess Helmholtz free energy of a crystal
can be efficiently computed. This result completes the study done for liquids and
presents a promising tool for the study of solvation properties of materials.

In chapter 5 we use the Jarzynski equality to obtain the solvation free energy of
molecules in the context of Hamiltonian adaptive resolution (H-AdResS) [93]. In this
method, the solvent is concurrently simulated in the atomistic (SPC/E water molecule)
and coarse-grained (ideal gas of water molecules) resolutions. The resolutions are
coupled in a thermodynamically consistent manner such that the chemical potentials
of both become equal. Then, we use steered molecular dynamics to pull the solute
molecule from atomistic (solvated state) into the ideal gas (unsolvated state) region.
The free energy difference between the two states is obtained using either equilibrium
(umbrella sampling) or nonequilibrium (Jarzynski) method.
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In chapter 6 we discuss the spatial block analysis (SBA) method [94,95] to efficiently
extrapolate thermodynamic quantities from finite-size computer simulations. This
is accomplished by subdividing the simulation box into blocks of increasing size and
calculating volume dependent fluctuations of the number of particles. Then we show
that it is possible to extrapolate the bulk isothermal compressibility and Kirkwood-
Buff integrals in the thermodynamic limit. Furthermore, we discuss two types of
finite-size effects in the context of the SBA method: i) the statistical ensemble and ii)
the finite integration domains used in computer simulations. We consider prototypical
Lennard-Jones liquids and liquid mixtures to illustrate the aforementioned effects.
This study is relevant in the context of the SPARTIAN method as its approach will be
used to test and characterize the results of ongoing projects linked to the extended
and developed SPARTIAN method in the grand canonical simulations.
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Abstract

In adaptive resolution simulations the same system is concurrently modeled with
different resolution in different subdomains of the simulation box, thereby enabling
an accurate description in a small but relevant region, while the rest is treated with
a computationally parsimonious model. In this framework, electrostatic interaction,
whose accurate treatment is a crucial aspect in the realistic modeling of soft matter
and biological systems, represents a particularly acute problem due to the intrinsic
long-range nature of Coulomb potential. In the present work we propose and validate
the usage of a short-range modification of Coulomb potential, the Damped shifted
force (DSF) model, in the context of the Hamiltonian adaptive resolution simulation
(H-AdResS) scheme. This approach, which is here validated on bulk water, ensures
a reliable reproduction of the structural and dynamical properties of the liquid,
and enables a seamless embedding in the H-AdResS framework. The resulting dual-
resolution setup is implemented in the LAMMPS simulation package, and its customized
version employed in the present work is made publicly available.

2.1 Introduction

The definition of soft matter encompasses a broad spectrum of different systems,
from liquids composed by single atoms or simple polymer molecules [96–99] to large
and complex biomolecular assemblies [30, 100–110]. The structural and dynamical
properties of this ample variety of systems spans an equivalently wide range of length
and time scales, the interplay of which gives rise to a wealth of different properties.
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This multi-scale nature, however, poses substantial challenges to modeling and
simulation. In silico experiments are limited by the size of the system and the
duration that can be reached by the simulation. It is often the case that the process
of interest takes place in a typical time interval that is not within the reach of
present day computers. An alternative to overcome such limitation is to employ a
simpler description of the system, where the level of detail is reduced, for example
replacing a fully atomistic description and representing a group of different atoms as
a single interaction site. These coarse-grained (CG) models [111–116] have provided
an extraordinary tool to made mesoscale systems accessible by simulations over time
scales that would not be viable through an atomistic description. Nonetheless, there
are several circumstances in which it is not possible to investigate a certain system or
process by means of a CG model, for example when chemically specific interactions
play a substantial role.

In recent years several strategies have been developed to find a compromise
between model accuracy and computational efficiency. A prominent example of these
approaches are adaptive, dual-resolution simulation schemes [48–51,54–57,62,117,118].
These methods identify a specific, typically small region of the system that necessitates
modeling at full detail, e.g. atomistic (AT). This subregion is indeed described with
the high-resolution model required, while in the remainder of the system a simpler,
effective CG representation is employed. In modeling liquid systems, a crucial feature
is that the two regions at different resolutions are connected by an open boundary,
which allows the diffusion of molecules (e.g. solvent particles) from one subdomain to
the other. The instantaneous location of a molecule specifies the interactions with the
neighboring molecules, thus allowing the resolution of a molecule to change on the fly.

Adaptive resolution methods thus enable the simulation of a system whose de-
scription is not bound to be the same everywhere, rather it is more accurate where
strictly necessary, and simpler and computationally more efficient in the rest. Two
advantages can be envisaged: on the one hand, there is an obvious gain in terms of
simulation time, due to the reduced number of degrees of freedom and the simpler
interactions that are employed in the low-resolution subdomain. On the other hand,
these setups can be employed to characterize the physical properties of the system by
systematically changing the size of the high-resolution region, so to effectively probe
the locality of physical phenomena and finite size effects. This strategy enables the
controllable decoupling between the internal degrees of freedom of a chosen subregion
of the system from the rest, yet without modifying the thermodynamical equilibrium
in the high resolution domain [52,119].

Among the methods that have implemented this strategy, a notable place is occupied
by the adaptive resolution simulation (AdResS) [48, 55–57] and the Hamiltonian
adaptive resolution simulation (H-AdResS) [49,50,62,118] schemes. In these setups,
schematically represented in Fig. 4.5, the resolution of a molecule is determined by
the value of a function, usually dubbed switching function λ, that is equal to 1 in the
high-resolution or atomistic (AT) subregion, 0 in the low-resolution or coarse-grained
(CG) subregion, and smoothly interpolates between these values in an interface region,
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Figure 2.1. Setup of a Hamiltonian Adaptive Resolution Simulation. The
periodic box is partitioned into three different regions, namely: Coarse-
grained (CG), Hybrid (HY), and Atomistic (AT). Upper panel: the switch-
ing function λ takes values between 0 (CG) and 1 (AT), thus defining the
resolution of a molecule (here water). Lower panel: simulation snapshot
explicitly showing the various subdomains.

dubbed hybrid region (HY). When a molecule is in the AT or CG domains it is
treated as fully atomistic or fully coarse-grained, respectively; in the HY region the
interactions are obtained by interpolation of the AT and CG ones.

The AdResS and H-AdResS methods have been validated on various systems and
in different contexts, and have been shown to effectively and efficiently provide an
accurate description of the system in the AT region at a lower computational cost with
respect to an equivalent simulation employing the high-resolution model everywhere.
However, a fundamental problem affects these schemes and limits the range of systems
that are amenable by them, namely the treatment of long-range interactions, such
as electrostatics. Devising an efficient implementation of electrostatics in computer
simulations of systems with periodic boundary conditions is still an open problem,
due to the long-range nature of Coulomb potential. Nonetheless, well-established
techniques are presently available to deal with these interactions in a variety of
different physical contexts. In particular, the Ewald summation (ES) [68] method and
its subsequent variations provide a theoretically sound procedure to decompose the
interaction in a local term, that is treated as a conventional short-range potential, and
a non-local, long-range term that is efficiently computed in Fourier space.

This second term is the critical one, as it is intrinsically incompatible with the space-
dependent decomposition of interactions that characterizes dual-resolution simulations.
In fact, the latter approaches rely on the short-range nature of interaction potentials
in order to provide a local definition of molecular resolution. In the presence of a
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non-local term, which requires the simultaneous knowledge of the position of each
particle to compute the forces, this position-based separation of the interactions is not
anymore possible.

The strategy that has been employed so far to circumvent this problem is to locally
approximate the Coulomb interaction by the Reaction Field (RF) [69–71] potential.
The assumption underlying this approach is that beyond a fixed (short) cutoff distance
the effective long range electrostatic contribution is equivalent to that of a uniform and
homogeneous dielectric medium. The standard form of the potential is thus replaced
by a mean-field function, thereby reducing the interaction to a short-range one. The
RF method has been successfully employed in dual-resolution setups [52,120], however
it suffers from two substantial limitations. The first one is that the assumption of
a uniform and homogeneous medium beyond the cutoff distance is not always valid:
this would be the case for heterogeneous interfaces, for example, polar molecules
in proximity of a metal surface, or large biomolecules (protein, DNA filament) in
solution [121]. The second limitation is that the parametrization of the RF potential
necessitates the previous knowledge of the relative dielectric constant of the medium,
which is not always available a priori and would then have to be computed in an
independent simulation. It may also be undesirable to introduce as a parameter of the
model a quantity that is indeed an emergent property of the system. Additionally, it
has been shown that an accurate modeling of the system under examination sometimes
necessitates a specific parametrization not only of the dielectric constant, but also of
the underlying force field [71].

Here we approach the problem of electrostatic interaction in dual-resolution,
adaptive simulations making use of an alternative formulation of Coulomb potential,
namely the damped shifted force (DSF) potential [65, 82] method. This strategy
allows us to rephrase the electrostatic interaction in terms of finite-ranged, two-body
analytical potentials, as in the case of the RF. Albeit the computational cost of RF
and DSF would be identical if the same cutoff range is employed, the DSF allows us
to circumvent the limitations intrinsic in both the ES [122–124] and RF methods.

It is generally the case, when making use of adaptive resolution strategies, that
one saves simulation time at the cost of performing an accurate (and computationally
cumbersome) parametrization of the setup, in terms of CG model, approach-specific
parameters, and, as in the case just discussed, a very limited treatment of electrostatic
interaction in the high-resolution model. Here we make use of elegant solutions to
these problems that have been already developed and successfully validated, and can
therefore be seamlessly implemented and employed. In the case of DSF, for example,
the use of this technique would prove to be even advantageous over Ewald summations
for some cases of interest to the computational biochemistry community. Furthermore,
we present and discuss the DSF approach to the H-AdResS scheme in the comprehensive
framework of the implementation of the latter in the LAMMPS [125] simulation package.
The goal of this work is thus twofold: to present and validate the DSF approach
in the context of H-AdResS simulations, and to present the implementation of these
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methods in the LAMMPS package, together with some advanced features whose practical
implementation is here discussed in detail for the first time.

The manuscript is organized as follows. In Sect. 2.2 we discuss in detail the
H-AdResS scheme, with a particular focus on the implementation features; then we
briefly report the formulation of the RF method and the DSF method. In Sect. 2.3
we list and define the quantities that have been employed to validate the efficacy and
accuracy of the proposed model. In Sect. 2.4 we report the details of the setups and
the simulations, while in Sect. 2.5 we present the results of our study. The conclusions
and perspectives are discussed in Sect. 4.6. The Appendix, Sect. 2.7, provides a list
of technical details on the LAMMPS implementation of the H-AdResS method and its
usage.

2.2 Methods

In this Section we review the different computational techniques employed in
the present work. The first part is devoted to the H-AdResS scheme. Most of the
fundamental and conceptual aspects of this method have been thoroughly discussed
in previous publications [49, 50,62,118]. The focus is here given to the computational
aspects of the scheme and, in particular, of the specific implementation in the LAMMPS

[125] simulation package.
Subsequently, we summarize two of the three methods here used to treat elec-

trostatic interaction, specifically the Reaction Field and the DSF methods. The
Particle-Particle Particle-Mesh (PPPM) [73] Ewald summation method, not discussed
in detail here, is taken as the golden standard, against which the results of the other
two strategies are compared.

2.2.1 H-AdResS

In the H-AdResS scheme, the description of the interactions within a system of
particles is given in terms of a global Hamiltonian function H, which has the following
form:

H = K + V int +
∑
α

{
λαV

AT
α + (1− λα)V CG

α

}
(2.1)

The term K is the atomistic kinetic energy, and V int consists of all the intramolecular
bonded interactions (e.g. bond stretching). The resolution of particle α is specified
by the transition function λα = λ(Rα), which is computed on the center-of-mass
coordinates Rα of the molecule.

The value of the switching function is determined by the sizes dat and dhy of the
AT and HY regions, respectively, and of the specific geometry of the AT region. If the
latter is defined as a slab of the simulation box, for example as it is represented in
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Fig. 4.5, dat will correspond to the width of the atomistic subdomain; if a spherical
geometry is employed, dat will correspond to the AT region diameter. In all cases,
the value of dhy indicates the width or thickness of the HY layer embedding the AT
region.

In the present work we employ a rectangular simulation box, and the AT region is
a slab located in the middle of it. The resolution of a molecule is then determined
through the following piece-wise λ function:

λ(x) =


1 |x| ≤ dat/2

cos2
(
π(x−dat/2)

2dhy

)
dat
2
< |x| ≤ dat

2
+ dhy

0 |x| > dat + dhy

(2.2)

The mid point of the simulation box is set in the origin of the coordinate system. As
it is shown in Fig. 4.5, in all simulations the width of the AT and HY region is set to
dat = 60Å and dhy = 25Å, respectively.

A molecule interacts with its neighboring particles through coarse-grained V CG and
atomistic V AT potentials. The functional form of these potentials is arbitrary, as well
as the order of the interaction (two-body, three-body...) as long as the extension of the
interaction is finite and short-ranged. For simplicity, in the following we shall restrict
the discussion to the most common case of pairwise interactions. In the Hamiltonian
of Eq. 4.1 the non-bonded potential energy contribution of each molecule α is given
by a weighted sum of two terms V CG

α and V AT
α , defined as:

V AT
α ≡ 1

2

N∑
β,β 6=α

∑
ij

V AT (|rαi − rβj|) (2.3)

V CG
α ≡ 1

2

N∑
β,β 6=α

V CG(|Rα −Rβ|)

The AT and CG terms of each molecule are weighted by λα or (1− λα), respectively.
As the total non-bonded potential is given by the sum of this linear combination over
all molecules, V AT

α and V CG
α contain a factor 1/2 to account for the double counting.

The corresponding force acting on atom i of molecule α is given by:

Fαi = Fint
αi (2.4)

+
∑
β,β 6=α

{
λα + λβ

2
FAT
αi|β +

(
1− λα + λβ

2

)
FCG
αi|β

}
−

[
V AT
α − V CG

α

]
∇αiλα

The first term, Fint
αi , is due to the interactions with atoms in the same molecule,

and is not subject to resolution-dependent reweighting; the second term is the sum,
over all other molecules β in the interaction range, of the pairwise atomistic and
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coarse-grained forces, weighted by the average resolutions of the two molecules. This
term is antisymmetric under molecule exchange, and satisfies Newton’s Third Law by
construction. The last term emerges as a consequence of the non-uniformity of space
in the dual-resolution simulation setup, that is, the fact that different interactions are
present in different parts of the system. Because of this, translational invariance is
locally broken, and a force emerges in the hybrid region (where ∇λ 6= 0) and acts on
the molecules pushing them in one of the two subdomains, depending on the sign of
the prefactor (V AT

α − V CG
α ).

The terms V AT
α and V CG

α contain the different potentials acting on the molecules,
and in most cases they represent an atomistic potential that takes into account chemical
specificity, and and effective, coarse-grained potential, which acts on collective degrees
of freedom of the molecules (e.g. the center of mass). The CG potentials are normally
potentials of mean force that enclose entropic contributions and are parametrized
over specific thermodynamic properties, e.g. the radial distribution function (RDF),
at a specific state point. These CG interactions and the corresponding reference
system follow different equations of state, and, once coupled together via an open
boundary as in the case of H-AdResS, they exchange particles to balance the differences
in equilibrium pressure and chemical potential. As it has been already thoroughly
investigated [49, 50, 62], models that, for the same temperature and density, attain
different pressure, will determine in the dual-resolution setup a non-homogeneous
density, as the region where the pressure is higher will relax by pushing molecules
in the other region. Furthermore, in the H-AdResS setup the aforementioned drift
force term Fdr

αi = −
[
V AT
α − V CG

α

]
∇αiλα contributes to determine an imbalance in

the pressure across the HY region, as it pushes molecules in the subdomain where
Helmholtz free energy is locally lower [49,50].

To overcome these effects and enforce a uniform density profile, it is possible to
introduce a new term in the Hamiltonian:

H∆ = H −
N∑
α=1

∆H(λ(Rα)) (2.5)

This term acts separately on each molecule in the system and plays two roles: it
removes, on average, the drift force, and enforces a uniform density profile by imposing,
in each subdomain, the pressure at which each model has, separately, the correct density.
In the following we discuss the computational techniques employed to parametrize the
term ∆H(λ).
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Compensation of the drift force (pressure route)

In order to remove, on average, the effect of the drift force, the compensation term
∆H(λ) has to satisfy the relation:

d∆H(λ)

dλ

∣∣∣∣
λ=λα

=
〈[
V AT
α − V CG

α

]〉
Rα

(2.6)

If this is the case, the total drift force resulting from the modified Hamiltonian reads:

F̂
dr

α =

(
V AT
α − V CG

α − d∆H(λ)

dλ

∣∣∣∣
λ=λα

)
∇λ (Rα) (2.7)

and by construction 〈F̂dr

α 〉 = 0. It has been shown [49,62] that by compensating the
drift force the hydrostatic pressure is uniform across the whole simulation domain,
while in each of the two regions the densities may differ, as they are the equilibrium
ones at that pressure according to the equation of state of each model. To compute the
appropriate value of the compensation function it is possible to perform a Kirkwood
thermodynamic integration (KTI) [64], since, as it has been demonstrated [49,62], the
potential ∆H(λ) can be approximated in a mean field fashion by the Helmholtz free
energy difference between a system with hybrid Hamiltonian at resolution λ and the
reference (CG) system with λ = 0. However, this procedure requires a free energy
calculation just to parametrize the compensation term, and its accuracy can be limited
when the correlations within the hybrid region are too strong.

A more effective strategy is to compute and balance the drift force locally and
parametrize the compensation on the fly within an iterative scheme [62]. The HY
region is discretized according to the resolution λ in a number Nb of bins of width
δλ = 1/Nb. For each molecule α in a given bin i = floor[λ(Rα)/δλ] of the HY region,
the V CG

α and V AT
α terms are computed and accumulated in separated local variables

V CG
i and V AT

i , respectively; also variables NCG
i and NAT

i are defined to keep track
of the number of molecules present in the bin. These computations are performed
simultaneously and in the same routine where the CG and AT forces are calculated
(See 2.7.3 and 2.7.4).

This procedure is carried out for all molecules within the HY region and continues
for a time interval of duration ∆t. At the end of the n-th interval the average AT
and CG potential terms are computed, defined as V̄ R[i, n] = V R

i /N
R
i , where the index

R ∈ {AT,CG} specifies the resolution. The variables V R
i , N

R
i are emptied and the

averaging procedure continues. The average values calculated at the end of the n-th
interval ∆t are employed to compute the running average VRi,n of the terms, that is:

VRi,n+1 =
n VRi,n + V̄ R[i, n]

n+ 1
(2.8)

where n is initialized at 0 and VRi,0 = 0.
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For n > 0, the running average terms are employed to compute separately the
different components of the force needed to compensate the drift force. Specifically, at
time t such that t0 + n∆t < t ≤ t0 + (n+ 1)∆t a molecule located in bin i of the HY
region will experience the following compensation forces:

FR
α,i = s VRi,n∇λ (Rα) (2.9)

where s = +1 if R = AT and s = −1 if R = CG. At each time step this force is
spread to the atoms of the molecule proportionally to the relative mass of the atom
over the mass of the molecule (see equation 2.23).

The running average update continues until the compensation forces have converged
to a stable value in each bin i; after this point, the update is interrupted and the
resulting compensation is given by a time-independent, resolution-based force field
that can be integrated to compute the corresponding contribution ∆H(λ) to the total
energy of the system.

Compensation of the density imbalance (density route)

The application of the compensation of the drift force in the HY region enforces
a uniform pressure profile across the whole system. However, due to the different
equations of state of the AT and CG models, at equilibrium a density gradient between
the two main subdomains will arise. When one needs a uniform density profile in
the simulation box, it is necessary to modify the compensation term ∆H in order to
establish, in each subregion, the appropriate pressure at which the different models
attain the same density.

This correction can be obtained in an iterative scheme dubbed thermodynamic
force calculation [51], consisting in successively applying to the molecules in the HY
region a force proportional to the density gradient:

Fth
n+1 = Fth

n +
c∇ρn(x)

ρ∗
(2.10)

where the prefactor c has the units of energy and scales the magnitude of the force,
ρ∗ is the reference density, and ρn is the density profile computed at step n of the
iterative procedure. The calculation and application of this force has to be iterative
because a single step will not be sufficient to flatten the density profile; however, the
convergence to a uniform density is guaranteed by the fact that the scheme has a fixed
point when ∇ρ = 0. We note, in passing, that the sum of the contributions obtained
from Eqs. 4.9 and 4.10 provides a force whose integral corresponds to the difference
of the chemical potentials between the AT and CG domains. This method not only
ensures the same density in the two subdomains, but also leads to a flat density profile
also in HY region [49,51,62].
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In general, the procedure to compute the thermodynamic force consists in an
equilibration phase of the simulation setup where no compensation is applied (with
the possible exception of the drift force compensation), followed by a production run
during which an accurate density profile is computed. The latter has to be sufficiently
smooth so to employ its numerical gradient as a force in the following simulation,
which will provide the new density profile and so on. When the density is deemed to
be uniform within a pre-established tolerance, the iterations are interrupted, and the
compensation force is given by the sum of the terms computed up to that point.

As already mentioned, this scheme has the advantage of “working by default”,
since the new terms of the force systematically reduce the density imbalance and the
amplitude of the next correction with it. However, this simple approach necessitates a
possibly very large number of full simulations employed to compute the density profiles
at each iteration stage with sufficient accuracy. Here we make use of an improved
strategy to compute the appropriate density compensation, which is iterative as the
regular one but is performed on the fly, and requires substantially less time.

Also in this approach the thermodynamic force is iteratively computed as the
numerical gradient of the density and applied to the molecules in the HY region. The
difference lies in the fact that the measurement of the density profile is performed on
a very short time interval ∆T = νδt, where δt is the integration time step and ν is an
integer number of the order of ∼ 102 − 103. The force is thus obtained according to
Eq. 4.10.

The advantage of this scheme is that the small deviations of the density from a
uniform profile are immediately corrected for, and the system has no time to equilibrate
into a state of substantial density imbalance. However, it is obvious that the density
profile computed in the small time interval ∆T would be too noisy to make any use
of its numerical gradient. The solution to this problem is to convolute the position
of the center of mass of a molecule with a Gaussian function with a half-width σ/2
comparable with the typical excluded volume radius of the molecules, so that the
coordinates are spread on a wider range of bins rather than a single one. One thus
has that the density in the bin i covering the coordinate range [xi, xi+1] in a specific
simulation frame is computed as:

ρ̂i =
∑
α

1

A

∫ xi+1

xi

dy exp

[
−(y − xα)2

2σ2

]
, (2.11)

A =

∫ l

−l
dye−

y2

2σ2

The parameter l, whose appropriate value depends on the specific system under
examination, controls the range of the Gaussian function; a sensible choice is to set
l = 2.5σ.
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2.2.2 Reaction Field

An alternative method to the Ewald summation scheme, aiming at treating elec-
trostatics interactions, assumes a homogeneous polar fluid beyond a cutoff sphere
enclosing an atom i. The charge distribution within the cavity polarizes such a fluid,
and this polarization in turn influences the charge in the sphere (reaction field) [70,126].
The Coulomb potential is modified as:

VRF (rij) =
qiqj

4πε0rij

[
1 +

εRF − 1

2εRF + 1

(
rij
rc

)3
]
, (2.12)

where rij is the inter-atomic distance, q the electric charge, ε0 vacuum permittivity and
rc the cutoff distance. This expression depends on knowing beforehand macroscopic
information of the system, namely, its permittivity εRF . Discontinuous jumps in
energy occur when particles enter/leave the sphere of another particle. To tackle this
problem, expression (2.12) has to be attenuated to zero near the cutoff radius. In
particular [127]:

VRF (rij) =
qiqj

4πε0rij

[
1 +

εRF − 1

2εRF + 1

(
rij
rc

)3
]
− qiqj

4πε0rc

3εRF
2εRF + 1

. (2.13)

Finally, the force acting on atom i, derived from eq. (2.13), reads:

FRF (rij) =
qiqj
4πε0

[
1

r2
ij

− 2
1

r3
c

εRF − 1

2εRF + 1
rij

]
rij
rij

. (2.14)

The RF method has been extensively used and both its advantages and drawbacks
have been widely recognized (for a review see Ref. [121]). So far, it has been the
method of choice for adaptive resolution simulations, mostly for practical reasons.
However, we find that conditions such as the implicit homogeneity of the system
required to describe the neighborhood of every atom in terms of a dielectric function,
or the fact that it might be necessary to modify the force field to reach the desired
accuracy, limit substantially the number of systems we are able to simulate. For
such reasons, we turn our attention to a different method to deal with electrostatic
interactions.

2.2.3 Damped shifted force potential (DSF)

The idea behind the DSF method was introduced in Refs. [81,82], where it was
demonstrated that for a perfect ionic crystal the effective Coulomb interactions are short
ranged. Moreover, when comparing a straight cutoff method with Ewald calculations,
electrostatic energies are very accurate for characteristic system-dependent cutoff
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distances. This tendency is due, in addition to a damped oscillatory behavior, to an
almost exact charge neutrality for such particular cutoff spheres.

By combining short-range nature and charge neutrality, a pairwise summation
method was introduced [82] and shown to give comparable results to standard ES.
However, the use of this method is dubious for molecular dynamics simulations,
in particular because of force discontinuities at the cutoff radius. To solve this
problem, the DSF method was modified so to give continuous potential and forces
everywhere [65], thus becoming a valuable short-range alternative to ES. In DSF, the
electrostatic potential between two charges qi and qj separated by a distance rij is
given by the following expression:

VDSF(rij) =
qiqj
4πε0

[
erfc(αrij)

rij
− erfc(αrc)

rc

+

(
erfc(αrc)

r2
c

+
2α

π1/2

exp (−α2r2
c )

rc

)
(rij − rc)

]
,

(2.15)

where rij ≤ rc, ε0 is the vacuum permittivity, rc is the cut-off radius, and α is a
damping parameter with dimension of inverse length. erfc(r) is the complementary
error function that takes into account the damping proposed in [82]. The gradient of
potential (4.15) gives the force acting on atom i

FDSF(rij) =
qiqj
4πε0

[
erfc(αrij)

r2
ij

+
2α

π1/2

exp(−α2r2
ij)

rij

−erfc(αrc)

r2
c

− 2α

π1/2

exp(−α2r2
c )

rc

]
rij
rij

.

(2.16)

We emphasise here that the short range character of electrostatic interactions has been
confirmed by ab initio simulations of water [128]. Moreover, DSF has been successfully
applied in simulations where the Ewald method can introduce spurious electrostatic
effects [129]. This is the case for polarized systems when dipole-dipole interactions in
the simulation box and its replicas are artificially introduced.

2.3 Computed quantities

Our aim is to validate the effectiveness of the DFS method to accurately reproduce
the electrostatic interaction experienced by water molecules in the liquid phase, and
to show that this approach is perfectly suited to be employed in the framework of an
adaptive dual-resolution simulation.

To this end, we will perform a number of analysis of different structural, ther-
modynamical, and dynamical properties of the liquid, namely: radial distribution
functions (RDFs), tetrahedral orientation order parameter, fluctuations of the number
of molecules, and velocity autocorrelation functions (VACF). The results obtained
in the dual-resolution setup are compared with the same quantities computed in
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fully atomistic benchmark simulation. In the following, a succinct description of the
quantities under examination is provided.

The orientational order parameter is defined for oxygen atoms in water as [130]:

q = 1− 3

8

3∑
j=1

4∑
k=j+1

(
cosψjk +

1

3

)2

, (2.17)

where for a given oxygen atom i one identifies its four nearest neighbors, and computes
the angles ψjk with vertex i and segments ij and ik. For a single molecule −3 < q < 1.
By contrast, for a collection of molecules 0 ≤ 〈q〉 < 1, with 0 corresponding to the
ideal gas case and 1 to a perfect tetrahedral network.

Fluctuations of the number of molecules are calculated using the expression:

∆2(N)

〈N〉

∣∣∣∣
x

=
〈N2〉 − 〈N〉2
〈N〉

∣∣∣∣
x

(2.18)

where the subscript x indicates that the simulation box has been divided in slabs of
width 10 Å along the X axis. The average 〈N〉 and standard deviation ∆2(N) in the
number of molecules have been calculated for such slabs.

Finally, the velocity autocorrelation function (VACF) is defined as [126]:

Cvv(t) = 〈vi(t) · vi(0)〉 , (2.19)

where vi(t) is the velocity of molecule i at time t. To integrate numerically Newton’s
equations of motion, molecular dynamics simulations rely on discrete time algorithms.
Therefore, Eq. (4.17) should be estimated to take into account such discretization.
Here we use the discrete estimator described in Ref. [131] where the VACF for the
tm-th time step takes the form:

Cvv(tm) =
1

NAA

NAA∑
i=1

1

M −m
M−m−1∑
n=0

vi(tn+m) · vi(tn) , (2.20)

with M the total number of time steps and tm = mδt, where δt is the integration
time step. This expression is constructed in such a way that it includes all possible
contributions v(t + nδt) · v(t) that result from shifting the time origin by m steps.
The normalization factor 1/(M − m) ensures that the estimator is unbiased. We
implemented Eq. (4.18) following the protocol reported in Ref. [132]. Finally, NAA

is the number of molecules that always remain within a predefined region of the
simulation box. In the case of fully-atomistic simulations, NAA = N , the total number
of molecules. The error in the calculation of the VACF is given by 2tcorr/NAAttot [126],
with tcorr the correlation time and ttot the total time of the simulation.
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2.4 Simulation details

In all case studies unless otherwise stated, there are 10240 water molecules in
the simulation box. The time step for the H-AdResS as well as the fully atomistic
simulations is set to δt = 1fs. The initial configuration for every simulation setup
is extracted from the simulation results of a similar fully atomistic system which is
equilibrated for 50ps in the isothermal-isobaric ensemble at a temperature T0 = 300K
and pressure P0 = 1bar. The atomistic interactions between the atoms of water
molecules are based on the SPC/E model [133–135].

Three different methods have been used to simulate the atomistic Coulomb inter-
actions: particle-particle-particle-mesh (PPPM) Ewald summation [73], reaction field
(RF) [69, 70], and damped shifted potential (DSF) [65, 82]. For the latter, everywhere
in the present work we used the following parameters, for which the DSF potential best
reproduces the RDFs of the reference ES simulations: damping parameter α = 0.2Å−1;
cut-off radius rc = 12Å.

The Weeks-Chandler-Andersen (WCA) [136] potential is used for the interaction
of water molecules in the coarse-grained domain:

V CG(r) =

{
4ε
[
(σ/r)12 + (σ/r)6] r ≤ 21/6σ

0 r > 21/6σ
(2.21)

where ε = 1.0 kcal/mol and σ = 2.2Å, which is roughly the excluded volume diameter
of the water molecules in the fully atomistic simulations.

In all H-AdResS cases, the initial equilibrated configuration is simulated for 100
ps in the Canonical (NVT) ensemble; A uniform temperature profile at 300 K is
maintained throughout the system (data not shown) via a Nosé-Hoover thermostat
with a damping parameter of 0.1 ps. In this step, the equations of motion are integrated
according to the Hamiltonian in Eq. 4.1 in absence of the compensation terms. The
presence of the drift force in the HY region leads to a pressure imbalance between two
resolutions (see solid blue curve in Fig. 2.5). After the initial 100 ps, the on-the-fly
calculation of the drift force correction is applied. The resolution range is subdivided
in 20 bins of size ∆λ = 0.05. The drift force compensation is updated every 1 ps for
150 ps. At the end of this step, the converged compensation force ultimately cancels
out the drift force and leads to a uniform pressure across the simulation domains (see
red dashed line in Fig. 2.5), while a density gradient persists across the HY region.
To enforce a uniform density the on-the-fly density balancing method is applied for
the next 300 ps. In this step, the length of the simulation box is uniformly discretized
into slabs of size ∆x = 1.5Å and the thermodynamic force is updated every 0.5 ps.
We employed values of c = 2.0, σ = 6Å and l = 12Å for smoothing and scaling the
thermodynamic force.

All simulations are performed with the LAMMPS simulation package, with the
exception of the RF runs, that have been performed on the GROMACS [127] platform.
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2.5 Results and discussion

In this section we report the results of the validation of the DSF method for the
electrostatic interaction in the context of a H-AdResS simulation. The first part is
devoted to the comparison of the two short-range modifications of Coulomb potential
(RF and DSF) with the Ewald summation PPPM scheme, that we take here as
our golden standard. Subsequently, we focus on the DSF method and compare the
properties of water in the AT region of the H-AdResS setup with those measured in
an equivalent domain of a reference fully atomistic simulation.

2.5.1 All atom simulations

The three methods here under exam to reproduce electrostatic interactions in MD
simulations have been extensively investigated in the past. However, we consider
useful to include this simulations here to provide a self-contained validation of their
performance within the framework of the H-AdResS scheme.

From the point of view of structural properties, PPPM, DSF and RF give identical
results. In particular, RDFs for the three cases can be seen in Fig. 2.2 where the
three data sets overlap perfectly.
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Figure 2.2. Oxygen-Oxygen radial distribution function (RDF), gO−O(r),
for SPC/E water using three different approaches to compute electrostatic
interactions. Namely, particle-particle particle-mesh (PPPM), damped
shifted force potential (DSF) and reaction field (RF).
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This is also the case for the orientational order parameter q. Fig. 2.3 shows
the normalised distribution of q for the three cases considered where, as expected, a
bimodal character is observed [130]. In such a distribution, low values of q, related to
angular distorsions, indicate local disorder of water molecules. By contrast, since q is
associated to the angular ordering of first neighbours and ignore their radial ordering,
high values of q do not necessarily demonstrate a tetrahedral ordering [137].
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Figure 2.3. Normalised distribution of the orientational order parameter.
The fraction of molecules with a given value q is given by f(q)dq.

The short-time dynamics of water molecules has been investigated by means of the
oxygen VACF. In all three cases under examination we have run a 2 ps long simulation
in absence of the thermostat, with a time step of 1 fs and recording velocities every 10 fs.
The error in the VACF is ∼ 1%, and it is estimated using 2tcorr/NAAttot with tcorr = 1
ps [126]. Consistently with the structural results, also the dynamical (equilibrium)
behavior of the system is not affected by the different method employed to treat
Coulomb interaction. A subtle deviation of the RF from the other two setups is to
be attributed to numerical discrepancies due to the different software (GROMACS [127])
employed in the former case.

The reported analysis shows that the DSF scheme is capable of reproducing
quantitatively accurate structural and dynamical properties of liquid water, in addition
to ionic liquids and other complex systems [65,138–142]. The method is thus a strong
candidate to replace the RF as the “short-range alternative” to Ewald summation in
dual-resolution simulation schemes.
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Figure 2.4. Normalized velocity autocorrelation function, Cvv(t)/Cvv(0),
for SPC/E water using three different approaches to compute electrostatic
interactions, as in Fig. 2.2.

2.5.2 H-AdResS simulations

The most basic requirement of an adaptive dual-resolution simulation is that the
compensation applied to the molecules in the HY region is sufficient to enforce a
uniform density profile of the fluid across the simulation domain. That this is the case
in the water model under examination is confirmed by the data reported in Fig. 2.5,
which provide a clear picture of thermodynamic properties of the H-AdResS setup in
terms of pressure and density profiles.

Without any compensation (solid blue line Fig. 2.5) the system equilibrates in
such a way that both pressure and density (upper and lower panel, respectively)
are different in the AT and CG regions, and therefore different from the reference
values. The situation changes if the drift force is counterbalanced, or in other words, a
pressure correction is included which removes on average the drift force. The profiles
in this case show that the pressure is now the same in both subregions; the density
has improved thanks to the removal of the extra pressure exerted on the molecules in
the HY region, however it is still higher in the AT region (red dashed line Fig. 2.5).

Finally, after the application of the thermodynamic force to compensate the density
imbalance (dotted green line Fig. 2.5), we observe that in this setup the pressure is
different in the two bulk subdomains whereas the density is uniform, with a deviation
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of one percent from the reference value. In the following, we analyze our results for
the case where both compensations are applied.
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Figure 2.5. Pressure (top) and density (bottom) profiles for different
H-AdResS setup. The blue (solid) curves represent H-AdResS setup with
no compensation in the Hamiltonian. The red dashed curves illustrate the
setup with a constant-pressure route, and the results of the setup with
constant-density route are shown in green dash-dotted curves.

From the structural point of view, the fully atomistic and H-AdResS simulations
provide perfectly compatible results. This is evident from Fig. 2.6, where we report
both sets of multicomponent RDFs which exhibit an excellent overlap. The normalized
distributions of the orientational order parameter for the fully atomistic and dual-
resolution cases are shown in Fig. 2.7, and they clearly overlap with great accuracy.
The bimodal profile, observed in both cases, indicates that the tendency of water
molecules to form ordered structures is well preserved in H-AdResS simulations.

A relevant property that has to be correctly reproduced in the AT region in order
to guarantee that the thermodynamics of this subdomain is representative of the
reference simulation is the profile of fluctuations of the number of particles [51,143].
Profiles of fluctuations for fully atomistic and H-AdResS simulations, reported in Fig.
2.8, coincide in the AT subdomain. Beyond the hybrid region, as expected, the profile
of fluctuations increases, due to the different isothermal compressibility of the CG
model.

Finally, concerning short-term dynamical properties, we confirm that fully atomistic
and H-AdResS simulations display consistent VACFs. The measurement has been
performed only in the AT region in both cases, hence the error in the VACF (∼ 3%) is
higher than in the measurement performed for the fully atomistic cases with different
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Figure 2.6. RDFs of water molecules at pressure P0 = 1bar and tem-
perature T0 = 300K in two different simulation setups: fully atomistic
simulation (red line with open circles) and H-AdResS (blue line with dots).
From top to bottom, the plots show oxygen-oxygen, oxygen-hydrogen
and hydrogen-hydrogen RDFs. The DSF damping parameter is set to
α = 0.2Å−1, and the cut-off radius is Rc = 12Å.

electrostatics (Fig. 2.4). Nonetheless, differences observed in both fully atomistic
and H-AdResS cases are larger than error bars (∼ 10%) in the 0.2 - 0.4 ps interval.
To explain this aspect, let us recall that in H-AdResS simulations as presented here,
the density in the atomistic region is approximately 1% above the reference density.
Therefore, differences in VACF appear because we compare systems with slightly
different densities, as indicated by further fully atomistic simulations performed at
higher density (results not shown). Interestingly, this strong density dependence of
the VACF is the matter of recent discussion [144].

2.6 Conclusions

The appropriate treatment of electrostatic interaction in computer simulations of
soft and biological matter is still an open problem. One of the most challenging issues
is the possibility to find a balance between the accurate description of the potential
and a computationally economic implementation of the corresponding model. If, on
the one hand, the original decomposition of the interaction in short- and long-range
terms devised by Ewald has been substantially optimized, on the other hand some of
the undesired artifacts due to the unphysical periodicity implicit in this treatment are
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Figure 2.7. Normalized distribution of the orientational order parameter
for fully-atomistic and H-AdResS simulations. Only water molecules in the
interval −25Å < x < 25Å were considered for the calculation.

still cause of concern in specific systems. In the context of adaptive, dual-resolution
simulations Ewald summation-based schemes are in any case practically unviable, as
the long-range term would have to be computed on models featuring substantially
different physical properties. Alternative modifications of Coulomb potential, such as
the reaction field approach, circumvent these problems and provide a computationally
effective short-range interaction; also in this case, however, there are some limitations
originating in the underlying assumption of a uniform medium, which do not always
apply.

The DSF potential, on the other hand, has been shown to reproduce the physical
(structural and dynamical) properties of many charged systems with high accuracy,
albeit being short-range and without the necessity of a pre-parametrization based on
emergent properties of the system, e.g. the dielectric constant. This method is thus
ideally suited to be employed in the context of dual-resolution simulations, and its
validity has been here demonstrated by means simulations of liquid water. Specifically,
the region of the dual-resolution setup where the fluid was modeled with atomistic
resolution showed quantitatively consistent properties compared to a reference, fully
atomistic simulation.

The possibility to accurately reproduce the effects of Coulomb potential in the con-
text of adaptive resolution simulations without the need to parametrize the atomistic
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Figure 2.8. Profile of fluctuations of the number of molecules calculated
along the x-axis. Red circles correspond to a benchmark fully atomistic
simulation of water molecules. Blue squares correspond to an H-AdResS

simulation of a slab of water molecules enclosed by a WCA system. Fluc-
tuations are calculated using sub-volumes of size 10× 40× 40Å. Vertical
lines are guides to the eye and indicate the location of the AT, HY, and
CG regions of the H-AdResS setup.

force field, as it would be the case when employing the reaction field, thus opens the
way to the efficient modeling and simulation of complex systems in which electrostatic
interaction is known to play a primary role, for example ions in solutions, ionic liq-
uids, and nucleic acids. Additionally, the flexible and efficient implementation of the
H-AdResS method in the LAMMPS simulation package, equipped with the DSF method
for Coulomb potential, provides a broad community with an effective instrument to
investigate soft and biological matter.

2.7 Appendix: LAMMPS Implementation

We report here the basic technical details of the H-AdResS implementation in the
LAMMPS simulation package. The software as well as a more detailed documentation
can be downloaded at the web page:
http://www2.mpip-mainz.mpg.de/∼potestio/software.php or cloned from the
Git repository https://github.com/hadress/lammps/tree/USER-HADRESS. The mod-
ified LAMMPS version featuring H-AdResS is currently under review for being merged in
the main LAMMPS branch.

http://www2.mpip-mainz.mpg.de/~potestio/lammps_HAdResS_Included.zip
https://github.com/hadress/lammps/tree/USER-HADRESS
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Figure 2.9. Normalized velocity autocorrelation function for fully-
atomistic (full red line) and H-AdResS (dashed blue line) simulations
of a 2 ps trajectory with a time step of 1 fs. Water molecules in the
interval −25Å< x < 25Å were considered for the calculation.

2.7.1 H-AdResS Atom style

We introduced an atom style called full/hars in which an atom i, in addition to
LAMMPS’s indigenous atom properties (e.g. coordinates xi, velocities vi, charge qi), is
provided the following H-AdResS-specific attributes:

• λi: the resolution of the atom in the system as determined by the value of the
switching function computed on the center of mass coordinate of the molecule
to which atom i belongs

• ∇λi: the gradient of the switching function

• xCGα : the center of mass coordinate of molecule α to which atom i belongs

• Repi: the representation flag indicating which atom in the molecule carries the
information pertaining the whole molecule

• MolTypei: the molecule type index specifying the CG model parameters of
molecule when in the low resolution region

All these properties are assigned and set by the two files atom vec full hars.cpp/h.
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2.7.2 Fixing particle resolutions

As the atom passes through different resolutions, the resolution function λi and its
gradient ∇λi have to be updated at each time step. This step is carried out within a
fix file called fix lambdah calc.cpp/h: here, the center of mass coordinates of each
molecule, xCGα , is calculated and then spread to all atoms of that molecule. Depending
on the (user-specified) shape of the hybrid region, also the switching function and
its gradients are computed based on the molecule position and transmitted to the
corresponding atoms.

2.7.3 Calculating coarse-grained pairwise interaction

The generalized pairwise coarse-grained potentials and forces are computed based
on Eqs. 4.3 and 5.8. Depending on the type of potential, a specific interaction file
(with corresponding header) is introduced. For this study, the interaction between
the water molecules in the CG region is given by a WCA potential which, in turn,
is obtained by assigning a specific set of parameters to a Lennard-Jones potential;
accordingly, the two files pair lj cut hars cg.cpp/h overseeing the computation of
Lennard-Jones interaction in the CG and HY regions are employed. The computation
of the forces among neighboring molecules is restricted to the representative atoms
provided with the details about the molecule properties. Hence, for molecule α the
coarse-grained force due to the interaction with all other neighboring β molecules is
computed as:

Fα =
∑
β,β 6=α

{(
1− λα + λβ

2

)
FCG
α|β

}
(2.22)

+ V CG
α ∇αλα

The force Fαi acting on atom ith is obtained by scaling the molecular force Fα by
each atom’s mass mi divided by the whole molecule’s mass Mα:

Fαi =
mi

Mα

Fα (2.23)

2.7.4 Calculating atomistic pairwise interaction

A procedure similar to the one discussed for the CG potential is carried out for
the atomistic part of the interaction. Depending on the specific atomistic force field,
two files need to be written and added to LAMMPS’s source directory. For our study we
employed Lennard-Jones and DSF Coulomb interactions, and the files
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pair lj cut coul dsf hars at.cpp/h have been accordingly created. The pairwise
atomistic interactions between neighboring atoms are calculated through:

Fαi =
∑

j∈β,i∈α,i 6=j

λα + λβ
2

FAT
αi|βj (2.24)

Since drift forces are acting on the molecules, an additional force contribution is
added to each molecule:

Fα = −
(∑

i∈α
V AT
αi

)
∇αλα (2.25)

Afterwards, the computed molecular drift force is spread to the atoms of molecule
α based on equation (2.23). For the intra-molecular interactions, such as bond and
angle potentials, there is no need to modify the corresponding parts of the current
LAMMPS implementation.

2.7.5 Speedup

The reduced number of interactions in the CG region and their shorter range enable
a reduction of the computational cost of the simulation. In order to quantitatively
demonstrate this gain, we have performed fully atomistic as well as dual-resolution
simulations of water systems of increasing size, and compared their run time. In
Fig. 2.10 we show the time necessary to these different setups to perform the same
number of integration steps, namely 105, and the corresponding speedup, calculated
as the ratio of the time of a fully atomistic run over the corresponding dual-resolution
one. The simulated system is the same discussed in the Methods section; the AT
interactions are given by DSF and Lennard-Jones potentials with a cutoff radius of
12Å, and the CG model is a purely repulsive WCA. The widths of the AT and HY
regions are kept constant, while the size of the CG domains is systematically increased;
the probed extensions of the CG domain are thus approximately 90, 180, and 270Å.
By comparing the simulation time of fully atomistic and dual-resolution setups it is
possible to appreciate that the latter has a very weak linear growth as a function
of the CG domain size, indicating that the computational cost of the simulation is
almost completely determined by the computation of AT interactions.
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Figure 2.10. Computation time in seconds for fully atomistic simulations
(red circles) and H-AdResS (blue squares) is shown for three different
simulation box sizes. For the case of H-AdResS, the length of the atomistic
and hybrid region are kept constant as the length of the simulation box
increases. The speedup which is calculated by the computation time ratio
of fully atomistic simulation to H-AdResS is shown in onset.
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Abstract

Many popular methods for the calculation of chemical potentials rely on the
insertion of test particles into the target system. In the case of liquids and liquid
mixtures, this procedure increases in difficulty upon increasing density or concentration,
and the use of sophisticated enhanced sampling techniques becomes inevitable. In this
work we propose an alternative strategy, spatially resolved thermodynamic integration,
or SPARTIAN for short. Here, molecules are described with atomistic resolution in a
simulation subregion, and as ideal gas particles in a larger reservoir. All molecules are
free to diffuse between subdomains adapting their resolution on the fly. To enforce a
uniform density profile across the simulation box, a single-molecule external potential
is computed, applied, and identified with the difference in chemical potential between
the two resolutions. Since the reservoir is represented as an ideal gas bath, this
difference exactly amounts to the excess chemical potential of the target system.
The present approach surpasses the high density/concentration limitation of particle
insertion methods because the ideal gas molecules entering the target system region
spontaneously adapt to the local environment. The ideal gas representation contributes
negligibly to the computational cost of the simulation, thus allowing one to make use
of large reservoirs at minimal expenses. The method has been validated by computing
excess chemical potentials for pure Lennard-Jones liquids and mixtures, SPC and
SPC/E liquid water, and aqueous solutions of sodium chloride. The reported results
well reproduce literature data for these systems.
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3.1 Introduction

An accurate estimation of the chemical potential (µ) is essential to understand
many physical and chemical phenomena [145,146]. Consider the study of nucleation
processes at the nanoscale as an example: in this context, prototypical systems such as
water–alcohol mixtures [147], mineral clusters [148–150] or ions in solution [151,152]
present a challenge to existing computational methods. Even the computation of µ
for aqueous table salt is still the subject of intense discussion [153–158].

Because of this, there has been a continuous, decades long effort to compute
free energy differences and, in particular, chemical potentials [159, 160]. Given a
molecular liquid, the free energy difference between a state of N and one of N + 1
molecules yields the chemical potential of the substance. There are several methods
that implement this strategy, which can be classified [160] in expanded ensembles [161],
histogram-reweighting [162–164] and, more important for the present discussion, free
energy perturbation methods [165–169] and thermodynamic integration (TI) [64].

Figure 3.1. Simulation snapshot of a typical H-AdResS setup of a system
composed of sodium chloride in aqueous solution. Sodium, chlorine, oxygen
and hydrogen atoms are represented by blue, green, red and white spheres,
respectively. The atomistic, hybrid and ideal gas domains of the system are
separated radially from the center of the simulation box, and the following
convention is used to distinguish them in the figure: opaque (atomistic),
transparent (hybrid) and silver (ideal gas) regions. The resolution of the
molecules is determined by the switching function λ(R) (Eq. 3.2).
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Free energy perturbation methods are based on computing the Zwanzig identity
[170], which relates the target free energy difference to a canonical ensemble average
over configurations generated by the N -particle Hamiltonian. A single stage application
of Zwanzig identity results in the Widom method [165] where frequent test particle
insertions are used to calculate free energy differences. To increase the sampling
efficiency, multi-stage applications of the Zwanzig identity, e.g Bennett acceptance ratio
method (BAR) [166–169], have been developed and are routinely used for simulations
involving dense molecular fluids. Because of the necessity to sample a sufficiently
large number of trial moves, these methods require a substantial computational effort
that increases with density and/or concentration. Moreover, an adequate treatment of
systems composed of complex molecules should include several intermediate states [160]
or, in general, involve more sophisticated sampling techniques [87].

Thermodynamic integration [64] is among the most widely used methods to
compute free energy differences, which allows one to treat rather challenging systems
such as solids [171], molecular crystals [172], and molecular fluids [58]. TI relies on
the connection between the reference and the target states through a continuum of
intermediates, parametrised by a factor combining the Hamiltonians of the two systems.
The difference in free energy is obtained from ensemble averages of the appropriate
observables computed on such intermediate states. Also in this case, the accuracy
of the results depends on generating a sufficient number of system configurations –
most of them uninteresting – and on a fine grid of coupling parameter values, which,
if binned in an insufficient number of windows, could introduce a systematic bias in
the free energy estimates. These shortcomings thus hinder the overall efficiency of the
method [169,173].

It is thus fair to say that the calculation of chemical potentials of dense liquids and
complex molecular mixtures remains a challenging task. For these systems, the particle
insertion procedure is highly inefficient and in some cases becomes unfeasible. To fill
this gap, in this work we introduce a method to compute directly the excess chemical
potential of a target system based on the Hamiltonian adaptive resolution scheme
H-AdResS [49, 50]. In this version of H-AdResS, the target atomistic system (AT) is
coupled to an ideal gas (IG) bath of point-like particles [143,174]. The excess chemical
potential is obtained by integrating in space the compensation forces necessary to
ensure a uniform density profile throughout the whole AT+IG system; therefore we
dub the method spatially resolved thermodynamic integration, or SPARTIAN. SPARTIAN
is already implemented in a local version of the LAMMPS simulation package [125]
and is made freely available1.

SPARTIAN is reminiscent of methods to compute the chemical potential in which
inhomogeneities are imposed on the target system [88, 175, 176], or strategies in
which the target and reference systems are physically separated by a semi-permeable
membrane [177]. In contrast with such methods, thermodynamic equilibrium is

1A in-house version of the LAMMPS package featuring all method implementations discussed in
the present work can be freely downloaded from the webpage http://www2.mpip-mainz.mpg.de/

~potestio/software.php.

http://www2.mpip-mainz.mpg.de/~potestio/software.php
http://www2.mpip-mainz.mpg.de/~potestio/software.php
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carefully monitored and identified with a uniform density profile across the simulation
box. Moreover, finite size effects are made negligible when a substantially large
reservoir is coupled to the atomistic region without increasing the computational cost
– as it is the case with IG particles since they do not interact. A similar idea was
proposed in the context of force-based adaptive resolution simulations [117] where the
calculation of effective potential energies is based on the configurations generated by
a non-conservative dynamics. Conversely, our method relies on the same Hamiltonian
function for both the generation of the dynamics and the computation of the chemical
potential, the latter naturally emerging from the formulation of the H-AdResS method,
as discussed later on. Furthermore, SPARTIAN is particularly efficient, because it
employs IG particles in the reservoir, and it is flexible because its extension to
multicomponent systems is straightforward.

The paper is organised as follows: in the Method section, after shortly describing
H-AdResS, the theoretical basis of SPARTIAN is introduced. In the Results and Discus-
sion section, excess chemical potential calculations are presented for Lennard-Jones
liquids and liquid mixtures, as well as for SPC and SPC/E [133–135] water and for
the Joung and Cheatham (JC) sodium chloride force field in SPC/E water [178]. The
Conclusion section recapitulates the presented work.

3.2 Method

One of the biggest challenges in computational soft matter physics is, arguably,
to treat accurately and efficiently the wide range of time and length scales typically
encountered when simulating complex molecular systems. One possibility to overcome
this problem, in contrast to classical force-fields, consists of using coarse-grained models
to access time and length scales usually out-of-range for fully atomistic simulations.
However, there are situations in which it is convenient to keep a higher level of detail
in a relatively small region within the simulation box (for example when the involved
detailed chemistry is relevant) and simultaneously treat the neighbouring region using
a computationally more efficient, i.e. coarse-grained, model. Adaptive resolution
simulation methods [48–51,54–57] implemented this strategy as schematically depicted
in Fig. 3.1. Specifically, in the H-AdResS framework molecular interactions are treated
either at the atomistic level in the AT region, fully coarse-grained in the CG region,
or as an interpolation of the two in the HY region, in terms of a global Hamiltonian
of the form:

H = K + V int +
∑
α

{
λαV

AT
α + (1− λα)V CG

α

}
(3.1)

with K the total kinetic energy and V int the sum of all intramolecular bonded
interactions. The molecule α has resolution given by λα = λ(Rα) associated to the
center of mass coordinates Rα. The resolution of a molecule is thus determined by
the value of this position-dependent switching function λα, taking value 0 in the
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coarse-grained (CG) region and 1 in the fully atomistic (AT) region, which smoothly
interpolates between such values in an intermediate hybrid (HY) region. As illustrated
in Fig. 3.1, the geometry of the AT region corresponds to a sphere of radius rat,
centered at the origin of coordinates. The HY region is a spherical shell of thickness
dhy enclosing the AT region. The switching function plotted in Fig. 3.2 depends on
such a geometry, and it is defined by a function of the form:

λ(r) =


1 r ≤ rat

cos2
(
π(r−rat)

2dhy

)
rat < r ≤ rat + dhy

0 r > rat + dhy

. (3.2)
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Figure 3.2. Plot of the switching function, re-defined as F(λ(r)) =
λν(r)(ν ≥ 1) (see main text), as a function of the radial distance from
the center of a cubic simulation box. Two different exponents, ν = 1 (see
Eq. 3.2) and 7, have been considered. In Eqs. 4.1-5.13 the function λ,
hence with ν = 1, is directly employed to lighten the notation. In this plot,
the sizes of the atomistic and hybrid regions are rat = 30Å, dhy = 20Å,
respectively.
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Non-bonded molecular interactions are described at atomistic or coarse-grained
level, and the resulting potential energy contribution for a given molecule α is the
result of a weighted sum of two terms, V AT and V CG, defined as:

V AT
α ≡ 1

2

N∑
β,β 6=α

∑
ij

V AT (|rαi − rβj|) , (3.3)

V CG
α ≡ 1

2

N∑
β,β 6=α

V CG(|Rα −Rβ|) .

Note that there is no constraint regarding the use of arbitrary, e.g. many body,
potentials. However, to lighten the notation, we carry out the following discussion
making use of pairwise interactions. The total force acting on atom i of molecule α is
given by:

Fαi = Fint
αi (3.4)

+
∑
β,β 6=α

{
λα + λβ

2
FAT
αi|β +

(
1− λα + λβ

2

)
FCG
αi|β

}
−

[
V AT
α − V CG

α

]
∇αiλα

with Fint
αi the intramolecular total force on atom i of molecule α. The second term is

the sum over all molecules β 6= α within cutoff distance of AT and CG forces weighted
by the average resolution of the molecule pair (α, β). The origin of the last term in
the sum can be traced to the fact that molecules interact depending on their position
within the simulation box. This breaking of translational invariance generates a force
that acts on molecules located in the HY region, where ∇λ 6= 0, and pushes them
towards the AT or CG regions depending on the sign of (V AT

α − V CG
α ).

This drift force thus contributes to a pressure imbalance in the HY region. Fur-
thermore, by joining AT and CG representations of a system using open boundaries,
particles will diffuse to stabilise differences in pressure and chemical potential between
the two representations. Hence, a non homogeneous density profile appears as a result
of molecules being pushed to the region with lower molar Gibbs free energy [49,50].
To impose a uniform density profile, an extra term is included in the Hamiltonian:

H∆ = H −
N∑
α=1

∆H(λ(Rα)) , (3.5)

that compensates on average the drift force discussed above and imposes the pressure
at which the AT and IG models exhibit the same density. To compensate the drift
force, ∆H(λ(Rα)) should satisfy the relation:

d∆H(λ)

dλ

∣∣∣∣
λ=λα

≡ V(λα) =
〈[
V AT
α − V CG

α

]〉
Rα

, (3.6)
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in such a way that the total drift force becomes:

F̂
dr

α =
(
V AT
α − V CG

α − V(λα)
)
∇λ (Rα) (3.7)

where 〈F̂dr

α 〉 ≡ 0. The strategy introduced in Ref. 61, 62 is used to compute V(λα).
This method, whose most technical aspects are detailed in the SI, averages over short
time intervals the drift force acting upon each molecule species in the hybrid region as
a function of the resolution. In between intervals, the computed average is used to
update the drift force compensation V(λ), in such a way that correlations between
molecules with different instantaneous resolutions are explicitly taken into account.

As anticipated, the drift force is not the only source of density imbalance in the
system. The models coupled together in the same setup naturally feature different
pressures, and a non-uniform density profile emerges as a consequence of the tendency
of the system to equate the pressure imbalance between the two subdomains. To
compensate for this density gradient it is customary to introduce a force, dubbed
thermodynamic force [51,61], which, just as the aforementioned free energy compensa-
tion, acts only on the molecules in the HY region. This force is obtained through an
iterative procedure, with updates proportional to the density gradient:

Fth
n+1 = Fth

n +
c∇ρn(x)

ρ∗
. (3.8)

The parameter c modulates the force strength and has units of energy, ρ∗ is the
reference density, and ρn is the density profile computed at the n-th step of the iteration.
This procedure converges to a uniform density profile throughout the simulation box
when ∇ρ = 0. In Fig. 3.3, converged density profiles for H-AdResS simulations of
sodium chloride with the JC force field in SPC/E water [178] are presented to illustrate
this point.

The total force acting on the molecules in the hybrid region is the sum of the
compensation needed to cancel the drift force plus the thermodynamic force, hence:

d∆H(λ)

dλ

∣∣∣∣
λ=λα

= −V(λα)∇λ(Rα) + Fth
α (3.9)

from which we obtain:

∆H(Rb) = −
∫ Rb

Ra

dR
[
−V(λ)∇λ(R) + Fth(R)

]
, (3.10)

where Ra = rat + dhy and Rb = rat. Eq. 5.13 allows one to compute the free energy
compensation necessary to the system to attain a uniform density profile.



52

10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

r(Å)
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r(Å)

ρ
/
ρ
∗

 

 

H2O
Cl
Na

AT HY IG

ρ/ρ∗ + 2.0

ρ/ρ∗ + 1.0

(b)

Figure 3.3. Normalized and shifted density profiles of sodium chloride
solutions as a function of the radial distance from the origin of the spherical
atomistic region, for molalities m = 3.0 (a) and m = 7.0 (b). The increasing
error bar sizes for distances approaching the origin are consistent with the
reduced number of molecules available in small spherical shells.

The compensation term to the Hamiltonian has a simple and fundamental physical
meaning, that is, it is the difference in chemical potential between the AT and CG
regions [49,50]:

∆H(λ(R)) ≡ ∆G(R)

N
= ∆µ(R) , (3.11)

with ∆G/N being the molar Gibbs free energy. Note that all quantities appearing
in Eq. 5.2 are functions of the molecule’s position R: indeed, all free energies and
chemical potential differences are computed with respect to a reference given by
R = Ra ≡ λ = 0, that is, with respect to a CG model of arbitrary nature and
complexity. If these functions are computed for λ = 1, one obtains the free energy /
chemical potential difference between AT and CG model.

This is precisely the core of the method proposed here: in a nutshell, H-AdResS
is equivalent to a spatially resolved Kirkwood thermodynamic integration [49, 50].
Therefore, it is possible to calculate ∆µ between a target (AT) and a reference (CG)
system coexisting at the state (ρ∗,T) by varying λ, a coupling parameter of the global
Hamiltonian of the system, across the interface. However, to compute the chemical
potential of the target AT system, it is necessary to know the one of the reference
CG system. To circumvent this extra step, we couple the AT target system to a bath
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of ideal gas (IG) particles [143]. In this case, the global Hamiltonian of the system
reduces to:

H = K + V int +
∑
α

F(λα)V AT
α , (3.12)

since V CG
α ≡ 0 ∀α. We have introduced, in Eq. 3.12, a modification to the switching

function λ, which has been replaced by a function F(λ) = λν (ν ≥ 1). Similarly to
λ, F(λ) takes values between 0 and 1, however it has a faster decay to zero as it
approaches the IG region. This is required because it might happen that two molecules
come extremely close to each other when they are both located near the IG/HY
interface. The choice ν = 7 is sufficient to smooth out such divergent interactions
and avoid the systematic sampling of huge potential energy values which might affect
the calculation of free energy compensations [179]. Furthermore, as it is depicted in
Fig. 3.2, by increasing the exponent ν the effective boundary between hybrid and CG
region moves deeper towards the AT domain, leading to a more stable and controlled
thermodynamic force convergence (see Eq. 5.12). A more detailed discussion of the
properties of the switching function in the context of Hamiltonian-based adaptive
resolutions can be found in Refs. [61,143,180] as well as in the Supporting Information.

In addition to this, the potential of the high resolution region is capped at a
distance r̂ to avoid large forces resulting from overlapping molecules:

V AT (r) =

{
V AT (r̂)− ∂V AT

∂r

∣∣∣
r=r̂

(r − r̂) r < r̂

V AT (r) r ≥ r̂
. (3.13)

For the systems and simulation conditions considered here, these overlapping events
are anyways extremely rare, with the highest probability not exceeding 2 · 10−4 (a plot
showing the probability distribution of capping events as a function of the switching
function value can be found in the Supporting Information). However, for the sake of
stability, they need to be identified and removed from the simulation. We verified that
this capping does not change appreciably the thermodynamical nor the structural
properties of the system. In particular, we performed fully atomistic simulations
of SPC/E water with and without capping potentials and we do not observe any
significant difference in the RDFs (data not shown). More important for the present
discussion, capping the potential does not affect the calculated values of free energies
and chemical potentials. The high energy contributions resulting from the excluded
volume are located in the tail of the energy distribution of the system and have an
accordingly small effect.
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From the Hamiltonian given by (3.12), the total force acting on the atom i of the
molecule α whose resolution is λα is given by:

Fαi = Fint
αi (3.14)

+
∑
β,β 6=α

{F(λα) + F(λβ)

2
FAT
αi|β

}
− V AT

α

∂F
∂λ
|λ=λα∇αiλα .

In addition to the obvious computational advantage of using an IG over a standard,
i.e. interacting, CG model, by coupling an AT model with an IG bath of particles at
a thermodynamic state with density ρ∗ and temperature T it is possible to compute
automatically the excess chemical potential from ∆H(λ(Rα)). Moreover, in H-AdResS

this result can be immediately extended to multicomponent systems [50], thus:

µiex = ∆Hi(λ(Ri,α)) , (3.15)

where the index i indicates the species in the mixture. This implies that in the case
of a liquid mixture the compensations are computed for every species separately yet
simultaneously, therefore in a single H-AdResS equilibration it is possible to compute
all the µiex.

We conclude this section by pointing out that the strategy presented here to
compute the chemical potential of dense liquids stems entirely from an implicit
property of adaptive resolution approaches, and in particular of the H-AdResS method.
As a matter of fact, the procedures to calculate the free energy compensations are a
basic step and fundamental ingredient of this method, and are necessary in order to
prepare the simulation setup with a uniform density profile.

3.3 Results and Discussion

Lennard-Jones fluid and comparison with the Widom method

We first validate our method by computing the excess chemical potential µex of
a Lennard-Jones liquid. We consider systems whose interaction potential is given
by a (12,6) Lennard-Jones (LJ) potential truncated and shifted with cutoff radius
2.5σ. The units of energy, length and mass are defined by the parameters, ε, σ and
m, respectively. The results for this section are expressed in LJ units with time
τ =

√
mσ2/ε, temperature kBT = 2ε and pressure ε/σ3. Simulations were carried out

using LAMMPS [125] with a time step 5× 10−4τ . Constant temperature was enforced
by a Langevin thermostat with coupling parameter 100τ . A system of size N = 1687500
was considered in the density range ρσ3 = 0.3 · · · 1.0, with a corresponding number
of particles in the AT region ranging in the 2800 · · · 9400 interval. The radius of the
atomistic region and the thickness of the hybrid shell are both 15 σ. We performed
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equilibration runs of 105 MD steps and production runs of 106 MD steps. Furthermore,
to compare the results obtained with the method outlined here, we use the Widom
method [165] for equivalent systems but of size N = 1000 and in the range of densities
ρσ3 = 0.3 · · · 0.8
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Figure 3.4. Excess chemical potential for the pure Lennard-Jones liquid
computed with the SPARTIAN method (blue squares), the Widom method
(red circles) and TI (green squares). In all cases, the error bars are smaller
than the symbol size up to densities ρ =∼ 0.8σ−3; beyond this value,
the deviations between data obtained with the SPARTIAN method and the
conventional approaches become more visible. In particular, Widom and
TI sets show a drift from the SPARTIAN values as well as a clear increase
in the error bars, which indicate the limits of applicability of the Widom
and TI methods. The horizontal dashed line indicates the ideal gas case.

Results for µex as a function of ρ are shown in Fig. 3.4 where a remarkable agreement
between the Widom, TI and the SPARTIAN method results can be appreciated up to
densities ρ =∼ 0.8σ−3. Furthermore, and in contrast to the Widom method and TI,
the adaptive resolution calculation of µex provides consistent results for high densities.
This result is expected since SPARTIAN takes advantage of the accurate sampling made
possible by the large density of the system.
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Lennard-Jones mixture

To test the range of applicability of SPARTIAN, we compute the excess chemical
potential of simple molecular liquid mixtures. In particular, we simulate a glass-forming
binary Lennard-Jones mixture using the interaction parameters of Ref. [181]. The
mixture consists of 80% particle A and 20% particle B. All the results are expressed
in LJ units with energy ε, length σ, mass m, time σ(m/ε)1/2, temperature ε/kB and
pressure ε/σ3. The potential parameters are chosen as σAA = 1.0σ, εAA = 1.0ε,
σBB = 0.88σ, σAB = 0.8σ, εBB = 0.5ε and εAB = 1.5ε, and the cut-off radius and the
temperature are set rc = 2.5σ and kBT = 0.75ε, respectively. In this case as well, the
radius of the atomistic region and the thickness of the hybrid shell is 15 σ.

As discussed in the Method section, we can treat independently all the species
in the mixture, i.e., there is a density profile associated to species A and B and
thermodynamic forces are applied to every density profile. In this way, we can
automatically extract the excess chemical potential for every species in the mixture.

Table 3.1.
Excess chemical potentials of both particle species of the Lennard-Jones
mixture as of Ref. 181 at temperature T = 0.75/kB, computed by the
SPARTIAN method and compared to the values obtained via particle inser-
tion enhanced by means of Metadynamics [87]. The unit of all values is
εAA.

Component / model SPARTIAN Ref. 87
µAex 3.95 ± 0.02 3.99 ± 0.04
µBex -4.61 ± 0.06 -4.65 ± 0.02

Results for this system are presented in Table I, where an excellent agreement
with calculations based on Metadynamics [87] is apparent. Specifically, we observe the
deviations from the values obtained by Perego et al. [87] by the same absolute amount
(0.04ε) for both particle types. The sign of the excess chemical potential reflects that
it is more favourable to insert the small B particles in the system due to their low
concentration and relatively (with respect to A particles) weak interaction energy. An
interesting behaviour can be observed in the errors: our method, in fact, provides more
precise estimates –that is, a smaller statistical error– for the excess chemical potential
of A particles rather than B particles. This behaviour differs from that of methods
using test particle insertions, and stems from the fact that SPARTIAN substantially
relies on – and takes advantage of – accumulating statistics, which improves as the
mole fraction of solute molecules increases.
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SPC/E Water

The calculation of the chemical potential for dense liquid water is a rather chal-
lenging task. Standard methods to compute free energy differences like the Widom
insertion do not converge convincingly [159] and it is thus necessary to use more
sophisticated methods even for this system composed of relatively small molecules.

We have computed the excess chemical potential of two rather popular water
models, SPC and SPC/E [133–135]. Molecular dynamics simulations have been
carried out for 117000 water molecules. The size of the cubic simulation box is 152Å,
the radius of the AT region is 30Å and the thickness of the HY region is 20Å, which
is larger than the Bjerrum length of pure water (λB = 7.5Å). A 0.5 ns equilibration
run has been performed with time step δt = 1 fs in the NPT ensemble for a fully
atomistic system. Temperature and pressure are enforced at T=298 K and P =1 bar
using the Nosé-Hoover thermostat and barostat with damping coefficient of 100 fs
and 1000 fs, respectively. This procedure provides the initial configuration for the
subsequent SPARTIAN simulations, which have been performed in the NV T ensemble.
Here we have used the same δt and enforced the same temperature T with a Langevin
thermostat with coupling parameter 100τ .

Results are presented in Table II. For completeness, we have compared with
results obtained using thermodynamic integration (TI) (SPC [182], SPC/E [117])
and two-stage particle insertion methods, i.e. Bennett acceptance ratio method
(BAR) [166–169] (SPC [183], SPC/E [157]). Once again, our results agree reasonably
well, approximately less than 5% difference, with the values reported in the literature
in all cases. The discrepancy is particularly low for the chemical potential of the
SPC/E water model. It should be noted, however, that the value of the chemical
potential of SPC water computed via TI refers to a relatively old calculation which is
thus likely to be outdated with respect to state-of-the-art results.

Table 3.2.
Excess chemical potential of water molecules at temperature T=298 K as
computed in this work, compared to the values obtained with thermody-
namic integration [117,182] and two-stage particle insertion methods [157].
The experimental value is -26.46 kJ/mol [184]. The unit of all values is
kJ/mol.

Water model SPARTIAN TI BAR
SPC -25.68 ± 0.02 -23.9 ± 0.6 [182] -26.13 ± 0.05 [183]

SPC/E -29.01 ± 0.09 -29.53 ± 0.03 [157] -29.70 ± 0.05 [183]
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Aqueous solution of sodium chloride

Lastly, we have computed the excess chemical potentials µNaClex and µH2O
ex for

sodium chloride (NaCl) in water. For this prototypical electrolyte solution present in
biological, geological, and industrial contexts, many computational studies have been
devoted to calculate µex using various different methodologies [153–158]. This wealth
of results constitutes an excellent database to benchmark the method proposed here.
Furthermore, strong electrostatic interactions present in salt solutions provide us with
a challenging testing ground.

We have performed molecular dynamics simulations for NaCl aqueous solutions
with 117000 water molecules and in the range of molalities molsolute/kgsolvent = 0 · · · 10.
This interval includes substantially higher ion concentrations than the ones reported
recently [154, 157]. We have used the force field parameters of the Na+ and Cl− ions
from Ref. 178, truncated and shifted at rLJcutoff = 10Å (for the non–Coulombic terms),
and the SPC/E [133–135] parameters for water. This combination provides the value
of solubility closest to experimental measurements [153]. The cubic simulation box
side is 154.5Å, the radius of the AT region is 30Å, and the thickness of the HY region
is 20Å. As previously done for pure water, we first performed a 1 ns long equilibration
run for the fully atomistic system with δt = 1 fs in the NPT ensemble. We kept
temperature and pressure constant at T =298 K and P =1 bar using the Nosé-Hoover
thermostat and barostat with damping coefficient of 100 fs and 1000 fs, respectively.
The resulting equilibrated configurations have been employed as starting point for
SPARTIAN simulations which have been performed in the NV T ensemble using the
same δt and T . We have controlled the temperature with a Langevin thermostat with
coupling parameter 100τ .

The H-AdResS method relies on the use of short-range potentials and forces to treat
electrostatic interactions. In a previous study, we have implemented and validated
the damped shifted force potential [65] (DSF) in Hamiltonian adaptive resolution
simulations [61]. Following Ref. 61, the DSF parameters employed in the present
study are α = 0.2Å−1 and rDSFcutoff = 12Å. Since we expect electrostatics to influence the
accuracy of the chemical potential calculations, it is necessary to assess how different
the results might be when using either the DSF method or the standard Ewald
summation method [185]. We have performed fully atomistic NPT simulations for the
same setups previously discussed. We then compared the difference in electrostatic
potential VP3M − VDSF between the Ewald and DSF calculations for NaCl and water
molecules. The results are presented in Fig. 3.5, where a nearly constant difference
is observed for all salt concentrations considered (the fluctuations about the average
value of VP3M − VDSF across all molalities are of approximately 1% and 3% for NaCl
and water, respectively). Since the difference in potential energies when using Ewald
summation or DSF can be treated as constant, then VP3M − VDSF for every species in
the system amounts to a constant shift in the excess chemical potential. Furthermore, it
is possible to avoid doing an extra simulation using the Ewald method if we investigate
the theoretical origin of the mismatch with respect to simulations using the DSF
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Figure 3.5. Difference between the total electrostatic potential of an
aqueous solution of NaCl as computed via Ewald summation method and
DSF method, as a function of molality. For both NaCl (a) and water
(b), the difference is nearly independent of the salt concentration, and
its dominant contributions can be rationalized in terms of the sum of
self-interaction (V self) and excluded electrostatic interactions (V excl) of
the DSF potential, whose theoretical value is reported as dashed lines.
For a detailed discussion of these corrections see the SI, in particular Eqs.
(SI3) and (SI4).

method. The DSF potential includes a contribution V self that guarantees charge
neutrality at a given cutoff radius, and a contribution V excl that excludes, in the case
of rigid molecules such as SPC/E water, intramolecular electrostatic interactions (see
SI for a detailed discussion). The sum of the two contributions is force field– but
not salt concentration–dependent, as evidenced by the black horizontal lines in Fig.
3.5, and it accounts precisely, within statistical error, for the chemical potential shift
VP3M − VDSF .
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Figure 3.6. Excess chemical potential of water molecules µH2O
ex (a) and

molecular NaCl µNaClex (b) as computed for different salt concentrations.
The results obtained with the SPARTIAN and BAR [157] methods are
represented by blue squares and red circles, respectively.

Hence, after applying this corrections we have compared directly the results
computed with our method and with those reported in Ref. 157 using BAR [166–169].
It is apparent from Fig. 3.6 that our results for µNaClex and µH2O

ex are both in excellent
agreement with such reported values. Furthermore, we report here, for the first time to
our knowledge, values of excess chemical potentials for this system for molalities larger
than 7 [153]. These results show well–defined trends, indicating that upon increasing
NaCl concentration the addition of a further solute molecule becomes energetically
less favourable, roughly 10 kJ/mol in the range 6-10, whereas in the same range it is
slightly more favourable to add another water molecule to the system (1 kJ/mol).
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3.4 Conclusions

The chemical potential is of central importance for the comprehension of the
physico-chemical properties of a substance and the capacity to manipulate it for
scientific and industrial purposes. The vast majority of computational methods
devised to calculate chemical potentials rely on periodic attempts to insert a test
particle into the system. For dense liquids and highly concentrated liquid mixtures,
this procedure is inefficient, perhaps in some cases unfeasible, and the use of enhanced
sampling techniques or the design of alternative methods becomes crucial.

In this work we presented a method, spatially resolved thermodynamic integration,
or SPARTIAN, which introduces a different perspective based on the Hamiltonian
adaptive resolution framework. Here, the target system is physically separated from a
reservoir of ideal gas particles by a hybrid region where molecules change resolution,
from atomistic to ideal gas and vice versa, on the fly. To ensure a uniform density
profile of the whole system, free energy compensations are parameterised and applied
to the molecules present in the hybrid region. Under such conditions, the system
reaches thermal equilibrium and the chemical potential of both target system and
ideal gas reservoir equates. Therefore, the free energy compensations are identified
with the difference in chemical potential between the two representations, which is
precisely the excess chemical potential of the target system.

The method is efficient and of general applicability, as demonstrated by the
reported results on pure and multi-component Lennard Jones liquids, pure water, and
aqueous solutions of sodium chloride. The values of the excess chemical potential
computed for the various species under examination are consistent with the data in
the literature where available. For those regions of concentration that remain out of
the scope for most established techniques, the proposed strategy has proven especially
capable of providing results in line with the trend indicated by other methods. This
observation suggests that the increased molecular density represents a vantage point
for the method, which avoids the necessity to perform artificial particle insertions
and profits of the large number of molecules to improve the convergence of statistical
averages.

The SPARTIAN strategy reported in this work thus offers a novel, effective, and
versatile instrument to compute the excess chemical potential of liquids and liquid
mixtures. The method is particularly well-suited to use in cases where the density of
the liquid or the concentration of solute in the mixture are high. This constitutes a
significant advantage over already available techniques and paves the way for a broad
range of applications where the accurate determination of chemical potentials is of
central importance.
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3.5 Supplementary Information

3.5.1 Technical aspects of the drift force calculation

Calculation of drift and thermodynamic forces requires discretisation of the hybrid
region by bin sizes ∆λ and ∆r respectively. Force each component of the system, the
corresponding drift and thermodynamic forces are sampled at time intervals ∆tdrsmp
and ∆tthsmp and averaged over time intervals ∆tdrave and ∆tthave respectively. At each
time intervals, the program generates two separate output files: (1) the averaged
atomistic potential, 〈V AT (λ)〉 and (2) the modulus (with sign) of the thermodynamic
force Fth(r). In each file, for each component there exists corresponding column which
are listed by coordinates of each bin. Thus, for the case of spherical hybrid region,
the excess chemical potential of component i is computed as:

µiexc =

∫ 1

0

dλ
∂F
∂λ
〈V AT,i(λ)〉 (3.16)

+

∫ rat+dhy

rat

drFi
th(r) · n̂

where n̂ is the normal vector outward the atomistic region. The time intervals and
bin sizes of different systems are given in the Tables 3.3 and 3.4.

For all cases, we used c = 2.0 as the modulation parameter of the thermodynamic
force, (see main text) and the number density profile ρ is convoluted with a Gaussian
function of width three times larger than the bin size [61]. For the case of Lennard-
Jones pure fluid and mixtures, the Lennard-Jones potentials are capped at r̂ = 0.1σ;
for pure water and aqueous NaCl, the Van der Waals and the electrostatic potentials
are capped at r̂ = 0.5Å.

The compensations to obtain µiexc in Eq. (3.16) are calculated on the fly [61].
This implies that upon equilibration, the difference in chemical potential between the
atomistic and ideal gas representations converges to the excess chemical potential
of the atomistic model. Fig. 3.7 shows µiexc as a function of computation time for
NaCl in aqueous solution at different concentrations. Clearly µiexc converges in all
cases. For i=NaCl, the amplitude of the oscillations increases substantially as the
ions concentration decreases. This verifies that the SPARTIAN method becomes more
accurate as the density/mole fraction of the sample increases.
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System ∆tdrsmp ∆tthsmp ∆tdrave ∆tthave δt Iterations

LJ 200 200 20000 50000 0.0005 τ 30
LJM 10 10 5000 10000 0.001 τ 100

SPC/E 1 1 5000 20000 1.0 fs 80
AqNaCl 1 10 5000 20000 1.0 fs 140

Table 3.3.
Sampling and averaging time intervals are listed for Lennard-Jones fluid
(LJ), Lennard-Jones mixtures (LJM), SPC/E water (SPC/E) and NaCl in
aqueous solution (AqNaCl). The values are presented in number of time
steps. The second to last column shows the time step. The last column
reports the duration of the production runs of each simulation, measured
in numbers of iterations, each of which corresponds to ∆tthave simulation
steps.

System ∆λ ∆R
LJ 0.005 0.5 σ

LJMA 0.005 0.5 σ
LJMB 0.005 0.5 σ

SPC/E 0.001 1.0 Å

AqNaClNa 0.001 1.0 Å

AqNaClCl 0.001 1.0 Å

AqNaClH2O 0.001 1.0 Å

Table 3.4.
Bin sizes used for discretising the hybrid region are listed for pure Lennard-
Jones fluid (LJ), type A (LJMA) and type B (LJMB) in Lennard-Jones
mixtures, SPC/E water (SPC/E), Sodium ion (AqNaClNa), Chlorine
ion (AqNaClNa) and water molecules (AqNaClH2O) of NaCl in aqueous
solution.
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Figure 3.7. Excess chemical potential of water molecules µH2O
exc (a) and

molecular NaCl µNaClexc (b), for various concentrations, as a function of
computation time.

3.5.2 Correction to the chemical potential from the DSF treatment of
electrostatic interaction

For a system having N charged particle, the short-ranged electrostatic DSF poten-
tial is given by:

V DSF =
1

2

N∑
i=1

Ni(rc)∑
j′=1

qiqj

[
erfc(αrij)

rij
− erfc(αrc)

rc
(3.17)

+

(
erfc(αrc)

r2
c

+
2α

π1/2

exp (−α2r2
c )

rc

)
(rij − rc)

]
+ Vself − Vexcl ,
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where Ni(rc), is the number of particles which are located within the sphere of radius rc
and the center of particle i. The decay of the potential is set by the parameter α whose
dimension is an inverse length, and erfc(r) is the complementary error function [82].
Since the net charge of all Ni(rc) particles inside the truncating sphere is not zero,
a correction to the potential is needed to compensate the lack of charge neutrality.
This is done by approximating the net charge of the truncating sphere and placing
the approximated “imaginary” charge on the surface of the sphere [186,187]. For the
DSF potential, the electrostatic interaction of particle i with the imaginary charge is
expressed as [187]:

V self = −
(

erfc(αrc)

rc
+

α√
π

+
α√
π

exp(−α2r2
c )

) N∑
i=1

q2
i . (3.18)

For the case of rigid structural molecules, the intra-molecular electrostatic inter-
action has to be excluded. This is done by subtracting the corresponding Coulomb
interaction from the DSF potential. Thus, for particles i and j separated by a distance
rij in a rigid molecule, the excluded electrostatic interaction is computed as:

V excl
ij (rij) =

qiqj
rij

. (3.19)

3.5.3 Computational gain of SPARTIAN for SPC/E water

Fig. 3.8 illustrates the computational gain of an H-AdResS--SPARTIAN calculation
over a conventional all-atom simulation. This gain is evaluated as the ratio between
the run time of a fully atomistic and a SPARTIAN simulations, as a function of the
cubic box side. In all cases, the system is composed of SPC/E water molecules, in
numbers ranging from 91,124 to 342,999. The box side ranges from ∼ 140 to ∼ 220 Å,
while the spherical AT region radius of 30 Å and the HY region thickness of 20 Å are
fixed. The simulations are run on a single cpu for 1000 time steps; the neighbour list
is built every 10 time steps and the skin is set to 1 Å. The inset shows the absolute
time (in minutes) required to run the simulations: the SPARTIAN runs grows weakly
with system size, staying close to ∼ 100 minutes for 1000 steps.

3.5.4 Effect of the potential capping

The probability of capping events, i. e. that two particles get closer than the
capping radius, calculated for a LJ system at number density ρ = 1.0σ−3 is reported in
Fig. 3.9. This probability is calculated within the hybrid region during three different
time periods: initial (T ≤ 1 iteration), intermediate (T ≤ 10 iterations), and final
(T ≤ 60 iterations). The capping events are rare for the resolutions λ ≤ 0.015 and
they are zero for λ > 0.015. The capping probability over the entire hybrid region is
shown in the inset. This low probability combined with the weight provided by the
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Figure 3.8. Computational efficiency of a SPARTIAN run of SPC/E water
with respect to a reference all-atom simulation. Main figure: computational
gain. Inset: absolute run time.

gradient of the switching function F ensures that the errors introduced by the capping
events have a null contribution to the calculation of the excess chemical potential.
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3.5.5 Convergence of the chemical potential

Hereafter we provide details about the convergence of the chemical potential with
respect to various parameters of the simulation setup, specifically: number of iterations
and density (Fig. 3.10); simulation box size (Fig. 3.11); hybrid region size (Fig. 3.12);
number of iterations and box size (Fig. 3.13). These data support the assumption
that the values of µexc are insensitive, well within the statistical error, to variations of
the chosen setup parameters, and provide a guideline for selecting the values of such
parameters for the systems under examination.
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Figure 3.10. Excess chemical potentials of LJ fluids at different number
densities as the function of SPARTIAN iterations.

3.5.6 Effect of the parameter ν

The choice of the switching function F(λ) = λν , and more precisely the choice of
the exponent ν = 7, is motivated by the need to suppress the occurrence of molecule
overlaps in the hybrid region. As illustrated by Fig. 3.9, a non-zero probability
exists that particles near the HY–IG interface get arbitrarily close. This might induce
a systematic sampling of enormous potential energy values that could make the
calculation of free energy compensations unreliable. In practice, it is necessary to
smoothen the divergence 1/r12|r→0 implicit in the Lennard-Jones potential. Since
the definition of the switching function includes a cos2(r) term, and the free energy
compensations are weighted by the gradient of F , the exponent ν = 7 rigorously
smoothens the singularity in the potential. We stress that this problem, which
also affects TI-based methods, has been already identified and solved using similar



68

35 40 45 50 55 60

L [ ]

17.22

17.24

17.26

17.28

17.3

17.32

17.34

Figure 3.11. Excess chemical potentials of LJ fluid at number density
ρ = 1.0σ−3 for different simulation box sizes. In all simulations, the size of
atomistic and hybrid regions are fixed at dat = 15σ dhy = 15σ.
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Figure 3.12. Excess chemical potentials of LJ fluid at number density
ρ = 1.0σ−3 for different sizes of hybrid region (dhy). In all simulations, the
size of atomistic region and simulation box size are fixed at dat = 15σ and
L = 51.59σ, respectively.

arguments [179]. Furthermore, this choice of the switching function skews the sampling
close to the AT–HY interface where this problem no longer exists. Fig. 3.14 shows µexc

as a function of ν: this result suggests that the absolute values obtained improve for
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Figure 3.14. Excess chemical potentials of LJ fluid at number density
ρ = 1.0σ−3 for different switching function exponents (ν). In all simulations,
the size of atomistic and hybrid regions and simulation box are fixed at
dat = 15σ, dhy = 15σ and L = 59.53σ, respectively.

ν = 7. Values of µexc for ν < 5 are not available because in this interval the singularity
in the potential makes the numerical integration of the equations of motion unstable.
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Abstract

To understand the properties of a complex system it is often illuminating to
perform a comparison with a simpler, even idealised one. A prototypical application
of this approach is the calculation of free energies and chemical potentials in liquids,
which can be decomposed in the sum of ideal and excess contributions. In the same
spirit, in computer simulations it is possible to extract useful information on a given
system making use of setups where two models, an accurate one and a simpler one,
are concurrently employed and directly coupled. Here, we tackle the issue of coupling
atomistic or, more in general, interacting models of a system with the corresponding
idealised representations: for a liquid, this is the ideal gas, i.e. a collection of non-
interacting particles; for a solid, we employ the ideal Einstein crystal, a construct
in which particles are decoupled one from the other and restrained by a harmonic,
exactly integrable potential. We describe in detail the practical and technical aspects
of these simulations, and suggest that the concurrent usage and coupling of realistic
and ideal models represents a promising strategy to investigate liquids and solids in
silico.

4.1 Introduction

Since the dawn of computer-aided research, when electronic calculators were
employed to numerically solve analytical expressions, a steadily growing fraction of
scientific investigation relies on the help of machines [188–191]. This is particularly true
for the field of soft matter [2, 55,111,126], where computer simulations have enabled
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researchers to “infuse life” in models of increasing complexity and investigate the
behaviour of systems ranging from hard spheres liquids [192] to melts of polymers [112],
novel materials [193], or biomolecules such as proteins [101, 105, 109, 116, 194] and
DNA [195]. The power of the computational approach lies especially in the flexibility
and arbitrariness of the model design, where level of resolution, interaction potentials,
particle-based or continuum description, thermodynamical conditions and many other
features are left to the modeller, who has free hand in creating a world where her/his
rules apply.

Computer simulations have thus broken the chains that kept us bound to exact
results and simple approximations of even simpler models, allowing us to study strongly
interacting systems with several different types of potentials and large sizes [196].
The determination of free energy differences between states of a given system, for
example, does not require the exact calculation of its partition function or some
multi-body expansion of the latter, rather can be (often) performed by means of
standard techniques such as thermodynamic integration, umbrella sampling [2,126],
or any other enhanced sampling algorithm [102,197].

And yet, the simplicity, exact solvability, or physical intuitiveness of the simplest
models exert not only an intellectual attraction on the scientist fascinated by the
universality of the concepts and properties that these models entail; rather, they
continue to represent a pivotal element in the construction of our picture of reality, in
that they serve as bedrock, reference, and gauge for many other, more complex systems.
One example for all: the absolute values of fundamental thermodynamical properties,
such as free energies and chemical potentials, can almost always be separated in two
terms: an ideal part, originating from the exactly solvable ideal contribution, and an
excess part, which contains the effect of the interactions present in the “real” system.
Remarkable is, that these two terms are exactly additive (again, with exceptions) in a
non-perturbative fashion [2, 17]. In general, then, the calculation of important system
properties goes through the comparison between the most accurate model one can
simulate on a computer and a simpler, more tractable representation much of which is
already known. The additivity of the property under investigation does the rest.

In recent years, a peculiar class of computer simulations has emerged as a rich and
versatile tool to perform model comparison, that is, adaptive resolution simulations
[51,56,57,62,198]. These are setups in which the same systems, typically a fluid, is
represented within the same simulation by means of two different models at different
resolution. The simulation domain is subdivided in two parts: a high resolution region,
where the most accurate and computationally expensive model is employed, and a low
resolution region, where the simpler description featuring a lower computational cost is
used. Depending on its position in space, a molecule is described by one model or the
other; however, an open boundary, geometrically separating these two domains, allows
the molecules to diffuse freely and change model, i.e. resolution, on the fly. Within a
finite-sized layer located at the interface between the two main subregions, dubbed
hybrid or transition region, the molecule smoothly varies its resolution, adapting its
representation to one model or the other in a continuous manner.
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The motivations behind this setup, in which the position in space dictates a
molecule’s model, are several. The simplest and most obvious is the computational
gain: in the largest fraction of the simulation volume the computationally “cheaper”
model is employed, thus reducing the amount of resources necessary to calculate
forces and potentials; on the contrary, in a small volume –where the interesting things
happen– the system is described with high accuracy, and the smooth coupling with the
lower-resolution environment preserves its thermodynamical properties (e.g. density,
temperature, particle number fluctuations...).

Another important raison d’être of these methods is the fact that the space-
dependent coupling of two different models establishes a thermodynamical relationship
between them from which nontrivial information can be obtained. In fact, in adaptive
resolution simulations forces emerge, whose origin depends on the specific technique
employed, that steer the system towards an equilibrium state where the local densities
in the two subdomains differ. To attain the same density in all parts of the simulation
one has to impose a single-molecule potential that can be traced back to the difference
in Gibbs free energy between the two models concurrently employed to represent
the same system [49, 50]. Hence, in the process of parametrising the setup so as to
have a uniform density profile, one quantifies the liquid’s chemical potential difference
between the simple and the accurate representation [199].

It is at this point that the simplest, most fundamental models enter the scene.
With a tool at hand that “compares” the chemical potentials of two systems (more
precisely: two different representations of the same system) it is natural to think of
employing, as low resolution model, one that is as inexpensive, simple, understood,
and exactly solvable as possible. In the realm of fluids, such a model is the ideal
gas, that is, a collection of noninteracting particles (representing atoms as well as
molecules) fully described by temperature and density. All relevant thermodynamical
properties of the ideal gas are known and can be calculated exactly, and represent the
main contribution to those observables, such as free energies, that can be decomposed
into the sum of the ideal part, determined indeed by the ideal gas, and the excess part
due to the configurational partition function and the interaction potentials within it.

As adaptive resolution simulation methods enable the direct, smooth coupling of
a given model to its corresponding ideal representation, the possibility opens to a
new class of approaches to extract excess quantities. However, while for dense liquids
such as water the coupling with an ideal gas has been already performed [200], a
comparable matching has not been demonstrated in the case of a solid. In this case,
the ideal reference model is given by the Einstein crystal, that is, a collection of
point-like, noninteracting particles restrained in specified positions in space by means
of harmonic potentials. As the ideal gas, also for this model the partition function
(hence the full thermodynamics) can be computed analytically: it thus represents the
reference starting point of a non-perturbative computation of free energies and other
quantities of interest.

In this work we discuss in detail adaptive resolution simulations of liquid water,
described at the all-atom level, coupled to an ideal gas, and a Lennard-Jones solid
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coupled to an Einstein crystal, the latter being presented here for the first time.
Particular attention is given to the technical aspects of these simulations, with
thorough descriptions of the computational and algorithmic characteristics.

The manuscript is organised as follows: in section 4.2 we review the specific
approach employed here, that is, the Hamiltonian adaptive resolution simulation
scheme, or H-AdResS; in section 4.3 we illustrate the significance of the external field
required to obtain a uniform density profile, and describe in detail the algorithms
developed to efficiently parametrise; in section 4.4 we present the coupling between
an atomistic model of water and an ideal gas, and describe the treatment of the
electrostatic interaction within the H-AdResS framework; in section 4.5 we concentrate
on the Lennard-Jones crystal and its coupling with the ideal Einstein crystal model;
finally, in section 4.6 we summarise our results and provide a brief account of the
possible applications of the presented methods.

4.2 Theoretical Background

-100 -80 -60 -40 -20 0 20 40 60 80 100
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0.5

1

Figure 4.1. Setup of a Hamiltonian Adaptive Resolution Simulation.
The periodic box is partitioned into three different regions, namely: Ideal
gas (IG), Hybrid (HY), and Atomistic (AT). Upper panel: the switching
function F(λ) takes values between 0 (IG) and 1 (AT), thus defining the
resolution of a molecule (here water). Lower panel: simulation snapshot ex-
plicitly showing the various subdomains. The oxygen and hydrogen atoms
of the water molecules are represented by red and blue dots respectively.
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The H-AdResS scheme [49,50] belongs to a family of adaptive resolution simulation
methods [48,56,57] in which a small portion of the system, usually a fluid described
with atomistic resolution (AT), is embedded in a reservoir of particles of the same
system, modelled using a coarse grained (CG) representation; the coupling between
the two resolutions takes place in an open boundary region, the so-called hybrid (HY)
region. A snapshot of the simulation setup is presented in Fig. 4.1. The main feature
of the H-AdResS method is that the whole system is described in terms of a global
Hamiltonian function H of the form:

H = K + V int +
∑
α

{
λαV

AT
α + (1− λα)V CG

α

}
. (4.1)

The term K is the atomistic kinetic energy, and V int includes all the intramolecular
bonded interactions. The resolution of a particle α is specified by the transition
function λα = λ(Rα), which is computed on the centre-of-mass coordinate Rα of the
molecule.

Without loss of generality, here we employ a rectangular simulation box where the
AT is represented by a slab. The resolution of a given molecule is thus determined by
the following piece-wise function:

λ(x) =


1 |x| ≤ dAT/2

cos2
(
π(x−dAT /2)

2dHY

)
dAT

2
< |x| ≤ dAT

2
+ dHY

0 |x| > dAT/2 + dHY ,

(4.2)

with dAT and dHY the sizes of the AT and HY region, respectively. The mid-point
of the simulation box is set in the origin of the coordinate system. Concerning non-
bonded interactions, a molecule α interacts with its neighbouring particles through
coarse grained V CG and atomistic V AT potentials, defined as:

V AT
α ≡ 1

2

N∑
β,β 6=α

∑
ij

V AT (|rαi − rβj|) (4.3)

V CG
α ≡ 1

2

N∑
β,β 6=α

V CG(|Rα −Rβ|) ,

where the coordinates of an atom or a molecule are represented by vectors r and
R, respectively. The factor 1/2 accounts for the double counting of particles in
the sum since the total non-bonded potential of a molecule α is given by a sum
of AT and CG contributions weighted by λα or (1 − λα), respectively. Albeit two-
body interactions have been employed here for the sake of clarity, the extension to
multi-body, short-ranged potentials is straightforward.

The total force acting on atom i of molecule α is given by:
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Fαi = Fint
αi (4.4)

+
∑
β,β 6=α

{
λα + λβ

2
FAT
αi|β +

(
1− λα + λβ

2

)
FCG
αi|β

}
−

[
V AT
α − V CG

α

]
∇αiλα .

The forces due to intramolecular interactions, Fint
αi , are not resolution-dependent.

The second term on the r.h.s. is the sum, over all other molecules β in the interaction
range, of the pairwise atomistic and coarse-grained forces, weighted by the average
resolutions of the two molecules. Each of the terms in the sum is antisymmetric
under molecule exchange, and satisfies Newton’s Third Law by construction. The last
term emerges as a consequence of the non-uniformity of space in the dual-resolution
simulation setup, that is, the fact that different interactions are present in different
parts of the system. Because of this, translational invariance is broken, and a force
emerges in the hybrid region (where ∇λ 6= 0) and acts on the molecules pushing them
in one of the two subdomains, depending on the sign of the prefactor (V AT

α − V CG
α ).

This drift force term Fdr
αi = −

[
V AT
α − V CG

α

]
∇αiλα induces a pressure imbalance across

the HY region, as it pushes molecules in the subdomain where Helmholtz free energy
is locally lower [49,50].

In general, the AT and CG representations of the same physical system follow
different equations of state. Once coupled together via an open boundary, the AT
and CG regions exchange particles to balance the differences in equilibrium pressure
and chemical potential. This results, as it has been already thoroughly investigated
[49,50,62], in a non-homogeneous density profile. To overcome these effects and enforce
a uniform density profile, it is possible to introduce a new term in the Hamiltonian:

H → H∆ = H −
N∑
α=1

∆H(λ(Rα)) (4.5)

This term acts separately on each molecule in the system and plays two roles: it
removes, on average, the drift force, and enforces a uniform density profile by imposing,
in each subdomain, the pressure at which each model has, separately, the correct density.
In the following we discuss the computational techniques employed to parametrise the
term ∆H(λ).

4.3 Calculation of the free energy compensations

4.3.1 Compensation of the drift force

The free energy compensation term ∆H(λ) that neutralises, on average, the effect
of the drift force, has to satisfy the relation:
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d∆H(λ)

dλ

∣∣∣∣
λ=λα

=
〈[
V AT
α − V CG

α

]〉
Rα

, (4.6)

in such a way that the total drift force resulting from the modified Hamiltonian reads:

F̂
dr

α =

(
V AT
α − V CG

α − d∆H(λ)

dλ

∣∣∣∣
λ=λα

)
∇λ (Rα) , (4.7)

and, by construction, 〈F̂dr

α 〉 = 0.
Thermodynamic integration [64] has been originally proposed to compute the

compensation term (4.6). This procedure can be justified on the basis that the
potential ∆H(λ) bears a strict relationship with the Helmholtz free energy difference
between a system with a Hamiltonian H(λ) and a reference system defined by the CG
representation at λ = 0 [49,62]. This procedure, apparently the most straightforward
route to compute ∆H(λ), presents two main drawbacks: i) it requires an additional
free energy calculation, and ii) the accuracy of the obtained ∆H(λ) can be limited
when the system displays strong correlations within the hybrid region.

In a previous paper [61], some of us have shown that a more effective strategy
is to compute and locally balance the drift force and parametrise the compensation
on the fly by using an iterative scheme [62]. A given number Nb of bins is used to
discretise the hybrid region in terms of λ in such a way that the width of the bins is
δλ = 1/Nb. The index of the bins is given by i = floor[λ(Rα)/δλ]. For a molecule
α in a bin i, the contributions V CG

α and V AT
α are computed and accumulated in the

local variables V CG
i and V AT

i , respectively. Moreover, the variables NCG
i and NAT

i

are defined to monitor throughout the simulation the number of molecules in the bin.
These quantities are computed in the same routine and simultaneously with the AT
and CG forces.

For all molecules in the hybrid region, this procedure is carried out for a time
interval of duration ∆t and successive n iterations are performed. At the end of the
n-th interval, average AT and CG potentials, V̄ R[i, n] = V R

i /N
R
i with R = AT,CG,

are computed. Subsequently, the variables V R
i , N

R
i are emptied and the average

procedure continues. These average values calculated at the end of the n-th cycle are
used to compute the running average VRi,n, defined by:

VRi,n+1 =
n VRi,n + V̄ R[i, n]

n+ 1
, (4.8)

where initially n = 0 and VRi,0 = 0.
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This running average, for n > 0, is used to compute the different components of
the compensation force. Specifically, for t such that t0 + n∆t < t ≤ t0 + (n+ 1)∆t, a
molecule α in the bin i of the HY region will feel compensation forces of the form:

FR
α,i = s VRi,n∇λ (Rα) , (4.9)

with s = +1 for R = AT and s = −1 for R = CG. At each time step, this
force is distributed to the atoms in the molecule α with weights proportional to the
atom/molecule mass ratio.

The update of the running average continues until the compensation forces converge
to a steady value for every bin i. Finally, the update is interrupted and the resulting
force compensation is integrated as a time-independent resolution-based force field,
and the corresponding energy compensation ∆H(λ) can be easily computed.

The compensation of the drift force ensures that the hydrostatic pressure becomes
uniform across the simulation domain [49, 62]. The AT and CG representations
equilibrate at this reference pressure according to the equation of state of the model.
This equilibrations implies that the densities in the two regions might differ, and an
additional compensation must be applied to the system to ensure a flat density profile.

4.3.2 Compensation of the density imbalance

The uniform pressure enforced by the application of the compensation of the drift
force does not necessarily guarantee a uniform density for the whole system. A density
gradient might appear in the HY region as a result of the two representations, AT and
CG, following different equations of state. A flat density profile can be attained if the
compensation ∆H is modified in such a way that in each subregion the corresponding
model attains a pressure that gives the same reference density.

This correction can be obtained via an iterative scheme dubbed thermodynamic
force calculation [51], which consist in successively applying to the molecules in the
HY region a force proportional to the density gradient:

Fth
n+1 = Fth

n +
c∇ρn(x)

ρ∗
, (4.10)

where the prefactor c has the units of energy and scales the magnitude of the force,
ρ∗ is the reference density, and ρn is the density profile computed at step n of the
iterative procedure. The convergence to a uniform density is guaranteed by the fact
that the scheme has a fixed point when ∇ρ = 0. In addition to ensuring the same
density in the two subdomains, this method also leads to a flat density profile in the
HY region [49,51,62].

Usually, the procedure to compute the thermodynamic force consists in an equi-
libration phase of the simulation setup where no compensation is applied (with the
possible exception of the drift force compensation), followed by a production run
during which an accurate density profile is computed. The latter has to be sufficiently
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smooth so to employ its numerical gradient as a force in the following simulation. A
new density profile is thus obtained and a new force is calculated. When the density is
deemed to be uniform within a pre-established tolerance, the iterations are interrupted,
and the compensation force is given by the sum of the terms computed up to that
point.

The iterative calculation of the thermodynamic force relies on an accurate estima-
tion of the density profile, which is performed on a very short time interval ∆T = νδt,
where δt is the integration time step and ν is an integer number of the order of
∼ 102 − 103. The advantage of this procedure is that small deviations of the density
from the reference value are immediately suppressed. However, it is evident that the
density profile obtained from a small time interval ∆T is too noisy to reliably compute
its numerical gradient.

To overcome this difficulty, the position of the centre of mass of the molecules
is convoluted with a Gaussian function with a half-width σ/2, comparable with the
typical excluded volume radius of the molecules. Thus, the density in the bin i,
covering the coordinate range [xi, xi+1] in a specific simulation frame, is computed as:

ρ̂i =
∑
α

1

A

∫ xi+1

xi

dy exp

[
−(y − xα)2

2σ2

]
, (4.11)

A =

∫ l

−l
dye−

y2

2σ2 .

The parameter l, whose appropriate value is system-dependent, controls the range
of the Gaussian function. A sensible choice is to set l = 2.5σ.

4.4 Water–Ideal gas coupling

The reference, analytically solvable model of a liquid is the ideal gas (IG): in a
computer simulation, this can be implemented as a collection of particles (with or
without internal degrees of freedom) which do not interact one with the other. If
subject only to the classical equations of motion and in absence of intermolecular
potential, these particles would move along rectilinear trajectories with constant
orientation and velocity (this is, assuming that the simulation box features periodic
boundary conditions and not hard walls). To prevent this, and to be consistent with
our goal of simulating a system in the canonical ensemble, a Langevin thermostat
acts on the molecules in the ideal gas region, thereby imposing on them a stochastic,
diffusive dynamics. On the other hand, the conservative part of the Hamiltonian
becomes:

H = K + V int +
∑
α

F(λα)V AT
α , (4.12)

where only the AT part of the interaction is present. K is the kinetic energy term and
V int is the potential resulting from intramolecular interactions. Since the interactions
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are modulated by the resolution λ, and V CG
α = 0 ∀α, particles can get extremely

close at the HY/IG interface. Thus, a systematic sampling of huge potential energies
might result in unphysical ensemble averages 〈V AT 〉 needed for the calculation of the
compensations. To ensure a satisfactory statistical sampling, λ has been replaced by
F(λ) = λν with ν ≥ 1, which also takes values between 0 and 1 (See Fig. 4.1). The
value ν = 7 is sufficient to smoothen out divergent interactions. Another advantage
of using an exponent ν ≥ 1 is that the effective HY/IG interface moves closer to
the AT domain. This results in a more stable and controlled thermodynamic force
convergence. Furthermore, the AT potential is capped at a distance r̂ to suppress
large forces that might result from overlapping molecules. That is:

V AT (r) =

{
V AT (r̂)− ∂V AT

∂r

∣∣∣
r=r̂

(r − r̂) r < r̂

V AT (r) r ≥ r̂
. (4.13)

In the case of liquid water at room temperature, the overlapping events are rare
(one in 0.5 ns, approximately). Moreover, they do not affect thermodynamic or
structural properties of the system, as we have verified in the case of SPC/E water
model. Furthermore, they do not contribute significantly to the calculation of the
compensations since high energy contributions, related to substantial overlaps of the
molecules, are suppressed by the excluded volume and restricted to the tail of the
configurational probability distribution.

The total force acting on the atom i of the molecule α can be obtained from the
Hamiltonian (5.7) as:

Fαi = Fint
αi (4.14)

+
∑
β,β 6=α

{F(λα) + F(λβ)

2
FAT
αi|β

}
− V AT

α

∂F
∂λ
|λ=λα∇αiλα .

Finally, concerning electrostatic interactions, we have used an alternative to the
Ewald summation method, i. e. the damped shifted potential (DSF) [65,82]. In this
approach, two charges qi and qj separated by a distance rij follow the electrostatic
potential given by:

VDSF(rij) =
qiqj
4πε0

[
erfc(αrij)

rij
− erfc(αrc)

rc

+

(
erfc(αrc)

r2
c

+
2α

π1/2

exp (−α2r2
c )

rc

)
(rij − rc)

]
,

(4.15)

where rij ≤ rc and ε0 is the vacuum permittivity. Only two parameters, the cut-
off radius rc and the damping parameter α, need to be specified. erfc(r) is the
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complementary error function that takes into account the damping proposed in [82].
The gradient of the potential (4.15) gives the force acting on atom i

FDSF(rij) =
qiqj
4πε0

[
erfc(αrij)

r2
ij

+
2α

π1/2

exp(−α2r2
ij)

rij

−erfc(αrc)

r2
c

− 2α

π1/2

exp(−α2r2
c )

rc

]
rij
rij

.

(4.16)

This framework is employed to perform MD simulations in the canonical ensemble
for 15615 SPC/E [133–135] water molecules in a simulation box of size 188 × 50 ×
50Å. The initial fully-atomistic equilibrated configuration has been obtained from
a simulation of 100 ps in the NPT ensemble followed by a 0.1 ns equilibration run
performed with a time step of δt = 0.001 ps. The temperature and pressure are
enforced at T =298 K and P =1 bar using the Nosé-Hoover thermostat and barostat
with damping coefficient of 0.1 ps and 1 ps, respectively. The parameters for the DSF
electrostatic potential, damping coefficient α = 0.2Å−1 and cut-off radius rc = 12Å,
were chosen to reproduce the RDFs of reference simulations using the Ewald summation
method.

Once the initial configuration has been obtained, a H-AdResS simulation is per-
formed using the Hamiltonian of Eq. 5.7 without any compensation terms. After 100
ps, the on the fly calculation of the drift force compensation is applied, with updates
every 5 ps, during 1400 ps. The resolution interval is divided into 1000 bins of size
∆λ = 0.001. The on the fly density balancing method is applied simultaneously to
the drift force correction. In this case, the length of the simulation box is uniformly
discretised into slabs of size ∆x = 1.0Å and the thermodynamic force is updated

every 10 ps. We employed values of c = 8.368 kJmol−1 Å
−1

, σ = 3Å and l = 6Å for
smoothing and scaling the thermodynamic force. All simulations are performed with
the LAMMPS simulation package [61, 125], where the method is implemented, freely
available and ready to use. The results presented in Fig. 4.2 for the compensation
terms obtained with this method show a rather smooth behaviour that validates the
present approach.

The successful coupling between a dense and strongly interacting fluid, such as
water modelled at the atomistic level, and the ideal gas reference model has been
previously demonstrated [143]: it is our scope, however, to include this verification in
order to make the case for a sound and effective concurrent usage of atomistic and ideal
models of different systems. The analysis of radial distribution functions (RDFs) and
velocity autocorrelation functions (VACF) has been performed to check that the ideal
gas reservoir bears no effect on structural, thermodynamical, and dynamical properties
of the liquid in the all-atom subdomain. The results obtained in the dual-resolution
setup are compared with the same quantities computed in fully atomistic benchmark
simulation. In the case of the RDFs, Fig. 4.3 shows a remarkable agreement between
the two cases.
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Figure 4.2. Force compensations obtained from the procedure described in
the text. Upper panel: Compensation to the drift force as a function of λ.
The use of the ν = 7 coefficient guarantees that the contributions close to
the IG/HY interface (λ ∼ 0) are negligible compared to the contributions
close to the AT region. Lower panel: Thermodynamic force as a function
of the position within the simulation box.

The velocity autocorrelation function (VACF) is defined as [126]:

Cvv(t) = 〈vi(t) · vi(0)〉 , (4.17)
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Figure 4.3. RDFs of water molecules at pressure P0 = 1bar and tem-
perature T0 = 298K in two different simulation setups: fully atomistic
simulation (blue line with dots) and H-AdResS (red line with open circles).
From top to bottom, the plots show oxygen-oxygen, oxygen-hydrogen
and hydrogen-hydrogen RDFs. The DSF damping parameter is set to
α = 0.2Å−1, and the cut-off radius is Rc = 12Å.

where vi(t) is the velocity of molecule i at time t. To compute the VACF for the tm-th
time step the discrete estimator described in Ref. [131] was used:

Cvv(tm) =

=
1

NAA

NAA∑
i=1

1

M −m
M−m−1∑
n=0

vi(tn+m) · vi(tn) ,
(4.18)

with M the total number of time steps and tm = mδt, where δt is the integration
time step. NAA is the number of molecules that always remain within a predefined
region of the simulation box. In the case of fully-atomistic simulations, NAA = N ,
the total number of molecules. The error in the calculation of the VACF is given
by 2tcorr/NAAttot [126], with tcorr the correlation time and ttot the total time of the
simulation.

The results are reported in Fig. 4.4. These show that a perfect consistency exists
between the observables computed in the all-atom reference simulations and those
obtained from the H-AdResS runs.
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Figure 4.4. Normalized velocity autocorrelation function (Cvv(t)/Cvv(0))
calculated for a reference fully atomistic (blue curve) and for the H-AdResS
(red curve) simulations. In both cases only the atoms with coordinates in
the interval −20 Å < x < 20 Å have been taken into account.

4.5 Solid–Einstein Crystal coupling

The possibility of modulating the resolution of a system as a function of the
position in space of its parts can be easily extended from fluids to solids. Indeed, the
field of material science has been the cradle of adaptive resolution simulation methods,
since these were initially developed to perform computer simulations of e.g. crack
propagation [201–206].

Here we describe the coupling of two different models of crystal within the frame-
work of the H-AdResS method. Our objective, however, is not (only) to reduce the
computational resources necessary to simulate large chunks of a solid of which only
a tiny part, such as the expanding crack, is of interest; rather, we aim at two other
goals: On the one hand, we want to describe how to practically perform an adaptive
resolution simulation of a solid using, as a coarse-grained model, an extremely simple
and exactly solvable representation, expanding the atomitstic-to-ideal gas coupling
outside of the realm of liquids. On the other hand, we want to demonstrate that a
substantial advantage can come from this coupling, namely the possibility to extract
important thermodynamical information on the system’s free energy.
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Figure 4.5. Setup of a Hamiltonian Adaptive Resolution Simulation for
solids. The periodic box is divided into three different regions, namely:
ideal Einstein crystal (IEC), hybrid (HY), and real crystal (RC). Upper
panel: the switching function F(λ) takes values between 0 (IG) and 1
(AT), thus defining the resolution of a molecule. Lower panel: simulation
snapshot explicitly showing the various subdomains. The system is com-
posed of Lennard Jones particles at number density ρ = 1.28σ−3 and the
thermal energy kBT = 2.0ε.

Arguably, the most idealised particle-based representation of a solid is the ideal
Einstein crystal (IEC) where N noninteracting particles are coupled to their lattice
sites using harmonic potentials. The system’s potential energy has the form:

V E =
N∑
i=1

V E
i =

1

2

N∑
i=1

κi(ri − r0
i )

2 , (4.19)

where each particle i fluctuates around its equilibrium position r0
i with spring constant

κi. To illustrate the method, as high-resolution model we employ a Lennard-Jones
(LJ) potential V LJ , whose well depth ε and excluded volume size σ set the energy and
length scale, respectively. The corresponding H-ADResS Hamiltonian has the form:

H = K +
N∑
i=1

{F(λi)V
LJ
i + (1−F(λi))V

E
i } , (4.20)
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with K being the kinetic energy term and N the total number of particles in the
system; the switching function is F(λ) = λν with ν = 1. This Hamiltonian generates
the following total force acting on the atom i:

Fi =
N∑
j 6=i

(F(λi) + F(λj)

2
FLJ
ij

)
+ (1−F(λi))F

E
i

− [V LJ
i − V E

i ]
∂F(λ)

∂λ

∣∣∣∣
λ=λi

∇iλi .

(4.21)

Since, by construction, the density is uniform throughout the simulation box, the
only energy compensation needed is the one required to counteract the drift force, i.e.,
the Helmholtz free energy difference between the LJ and the IEC models. Therefore,
the Hamiltonian in Eq. (4.20) becomes:

H∆ = H −
N∑
i=1

∆H(F(λ(ri))) , (4.22)

with:
d∆H(F(λ(ri)))

dF(λ(ri))

∣∣∣∣
λ=λi

= 〈[V LJ
i − V E

i ]〉ri , (4.23)

Analogously to the case of fluids, we can integrate the previous expression and
obtain the Helmholtz free energy compensation:

∆H(F(λ(ri))) =

∫ λ

0

dλ′
dF(λ′)

dλ′
〈[V LJ

i − V E
i ]〉ri . (4.24)

In the upper panel of Fig. 4.5 we provide a schematic representation of the
simulation box and the different subregions: real crystal (RC), hybrid (HY), and
Einstein crystal (IEC), together with F(λ(x)). The lower panel of the same figure
shows a snapshot of the simulation setup.

Eq. (4.24) is analogous to the difference in Helmholtz free energy as obtained
from the thermodynamic integration (TI) method proposed by Frenkel and Ladd
[171,207–209]. The free energy of an IEC can be computed analytically, hence it can
be used as the reference to calculate the Helmholtz free energy of a target crystal
through a regular TI. To perform the latter, in our notation we write a Hamiltonian
of the form:

H(λ) = K + λV LJ + (1− λ)V E , (4.25)
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where in this case λ is a global coupling constant. The derivative of the free energy F
with respect to λ gives:

∂F

∂λ
= −β−1 ∂

∂λ

[
ln

∫
drN exp(−βH(λ))

]
= 〈V LJ − V E〉λ ,

(4.26)

and the free energy of a real crystal FRC is related to the free energy of the Einstein
crystal F IEC by:

F (λ = 1) = F (λ = 0) +

∫ 1

0

dλ 〈V LJ − V E〉λ , (4.27)

with F (λ = 1) = FRC and F (λ = 0) = F IEC .
To compare the results obtained employing the two methods, it is necessary to set

the value of the spring constant κ in Eq. 4.19. A sound criterion to fix this parameter
is to ensure that the mean squared displacement (MSD) of the particles in the fully
atomistic simulation equals that of the ideal Einstein crystal, i. e. [171,207]:

3

κβ
= 〈(x− x0)2〉 , (4.28)

with β−1 = kBT . For all cases, a simulation box of size 188.8σ × 49.96σ × 49.96σ is
used. Initially, the LJ particles are placed on the fcc lattice structure with number
density ρ = 1.28σ−3 and their initial positions are set as the equilibrium positions
(see Eq. 4.19). In H-AdResS, the sizes of the LJ crystal and hybrid regions are set to
be 60σ and 50σ respectively (see Fig. 4.5). The temperature kBT = 2ε is fixed by a
Langevin thermostat with damping coefficient of 10τ . The particles are thermalised
in the hybrid and IEC regions only, yet the temperature is uniform throughout the
system (data not shown). In all simulations, the LJ potential is truncated at a cutoff
radius Rc = 2.7σ and not shifted [209]. The time step is δt = 0.001τ . To obtain the
drift force, the resolution interval is divided into 20 bins of size ∆λ = 0.05, and every
50000 time steps the on the fly calculation of the drift force compensation is performed
and then updated. The duration of each simulation run is at least 2× 106 steps.

The time evolution of the MSD of the Lennard-Jones crystal is presented in
Fig. 4.6. The curve shows the characteristic behaviour for a solid, where an initial
diffusive regime is followed by a plateau, which in our case appears after 1 τ . From
the asymptote at 0.024 σ2 we obtain the spring stiffness κ = 125kBT : this value is
employed in both the H-AdResS and the TI simulations.

To validate the consistency of the method, we computed the two components of
the derivative of the Helmholtz free energy, namely 〈V LJ〉 and 〈V IEC〉, making use of
the H-AdResS method and the TI, with and without the fixed centre of mass (CoM)
constraint. These data are reported and compared in Fig. 4.7: the three data sets
agree remarkably well, with the only exception of the point λ = 1 for the regular
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Figure 4.6. Mean squared displacement (MSD) of LJ particles obtained
from a fully atomistic simulation. The curve reaches a plateau after 1 τ ,
and the asymptote is 0.024 σ2.

TI. This is expected, because in the TI without restraints the LJ crystal is kept at
a fixed position in space only through the coupling with the IEC. When λ→ 1 this
constraint relaxes, and the LJ crystal gets asymptotically free to diffuse away from
the IEC. For this reason, it is customary to include in the TI simulation a constraint
to the LJ crystal centre of mass position. Conversely, in the H-AdResS simulation the
LJ crystal cannot drift because of the explicit and permanent spatial coupling to the
IEC. This is made evident by the excellent agreement for the full range of λ between
the H-AdResS and the data obtained from a TI integration with fixed CoM.

As for the case of liquid–ideal gas coupling, also here we can monitor the consistency
of the equilibrium dynamical properties of the crystal in the high-resolution region
of the H-AdResS setup. This is done by calculating the VACF for the fully atomistic
and the dual-resolution setup, whose results are presented in Fig. 4.8. In both cases
the VACF shows the same behaviour within error bars, the latter being indicated
by the shaded regions around the solid lines. As expected for a solid, the curves
fluctuate around zero with amplitudes decreasing with time. These fluctuations
result from the incoherent vibrations of the particles at their equilibrium positions.
This is a remarkable result, since for an ideal Einstein crystal the VACF exhibits a
sinusoidal behaviour: in the dual-resolution simulation, however, the dynamics of the
LJ subdomain are not affected by the harmonic character of the IEC.
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Figure 4.7. Atomistic potential V AT (upper panel) and coarse-grained
potential V CG (lower panel) as a function of λ. In both panels, diamond,
circle, and square data points are obtained from H-AdResS, thermodynamic
integration, and fixed centre of mass (CoM) thermodynamic integration,
respectively.

4.6 Conclusions and outlook

Ideal models, in the context of soft matter, are characterised by two elements:
absence of interactions (or at least coupling) and exact integrability. This makes
them historically pivotal in the comprehension of many physical systems, as they
entail a great fraction of the complexity of the latter in spite of a bare-to-the-bones
nature. Semi-perturbative corrections can take quite far from the initial simplicity
and a lot closer to physical reality, as it is the case of van der Waals’ equation of state
for real liquids. When such a simple modification, which still leaves the integrability
of the model substantially intact, is not possible, other routes can open up, such
as the decomposition of physical quantities in ideal and excess terms: the problem
is now flipped from a perturbative modification of the ideal case to a finite, often
substantial yet additive contribution, whose calculation is made possible by analytical
or computational tools.

Adaptive resolution simulations methods are the most suitable instruments to
take advantage of the comparison between a realistic description of a system and the
corresponding ideal models: this is because such comparison is as direct as possible,
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Figure 4.8. Normalized velocity auto-correlation function (Cvv(t)/Cvv(0))
of LJ solid. The result of the fully atomistic, reference simulation is
shown with the solid blue curve. The result of the H-AdResS simulation
is shown in red dashed curve. The simulation box has dimensions of
188.8σ×49.96σ×49.96σ. In both cases, only those atoms with coordinates
such that −20σ < X < 20σ are considered for the calculation of the
VACF.

with the two models coexisting in the same simulation and in direct contact, exchanging
particles and energy. To enforce the equality of a given property in both subdomains
at different resolution implies to compute the differences that exist between them,
often in a simpler and more effective way than by means of well established techniques.
In this work we have revised the application of the Hamiltonian adaptive resolution
simulation scheme H-AdResS to the coupling of all-atom models of a liquid to an ideal
gas, and have demonstrated how an analogous setup can be constructed for a solid.
The subdomain where the system is described with an interacting, accurate model
does not suffer from the coupling, as it is shown by all structural and dynamical
quantities measured there, whose values are in excellent agreement with the fully
high resolution reference. For the solid this is particularly relevant and remarkable,
as any perturbation caused by the ideal model in the low-resolution domain cannot
be expected to decay simply because of diffusion, as it is the case in liquids. The
switch from the interacting system to the ideal one, that takes place in the hybrid
region, is smooth enough as to decouple the fine details of each model’s properties,
yet preserving the same thermodynamics throughout the simulation box.

These results provide the conceptual and technical bedrock for applications with
important consequences. The computational cost of these simulations, in fact, is
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reduced to that of the high-resolution domain, as the ideal gas/solid parts require
a negligible amount of force calculations. The size of systems that can be treated
with these technique can thus be substantially large, so as to minimise finite size
effects and enable the simulation of complex molecules. As a particularly useful
perspective application we envisage the calculation of chemical potentials of complex
molecular crystals, a topic of increasing relevance for its industrial and pharmaceutical
implications.
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5. Nonequilibrium work relations in multiscale simulations of
molecular liquids

This chapter is a draft of research paper that has been submitted in the Physical
Review Letters during the submission of the thesis.

Maziar Heidari, Robinson Cortes-Huerto, Raffaello Potestio and Kurt Kremer
Nonequilibrium work relations in multiscale simulations of molecular liq-
uids

Abstract

We verify the Jarzynski equality in multiscale simulations of soft matter by comput-
ing free energies of solvated molecules. These calculations are usually performed using
particle-insertion methods where the coupling to nonequilibrium work relations poses
major practical limitations. We approach this problem by combining steered molecular
dynamics and spatially-resolved thermodynamic integration methods. Results for
solvation free energies and chemical potentials of small molecules well agree with
literature data and pave the way to systematic studies of arbitrarily large and complex
molecules.

5.1 Introduction

Physical systems of reduced size often exhibit unexpected effects and phenomena
that challenge our understanding of well-established physical principles. The second
law of thermodynamics, for instance, imposes a strict lower bound to the amount of
work necessary to bring a macroscopic thermalized system out of equilibrium (Clausius
inequality). When a microscopic system is driven away from equilibrium, thermal
fluctuations produce a distribution of work values that includes cases where the second
law of thermodynamics breaks [210, 211]. Hence, in this context thermodynamic
results must be interpreted statistically and the Clausius inequality is rewritten in
terms of the average nonequilibrium work.
The intrinsic randomness in the thermodynamics of small systems reveals stronger
statements relating this nonequilibrium work to equilibrium free energies. In particular,
exact nonequilibrium relations such as the Jarzynski equality (JE) [91,212], and the
Crooks fluctuation theorem (CFT) [92], equate exponentials of free energy differences
and fluctuations in the work performed to drive a physical system between equilibrium
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states, independently of the speed at which this process occurs.
This remarkable result found immediate application in various single molecule pulling
experiments aiming at obtaining equilibrium free energy profiles [213–216] where many
fast pulling events, in contrast to slow ones, can be easily realized. The JE has also
captured the attention of the computer simulation community where methods to
calculate potential of mean force [217], free energy of conformational changes [218] and
even interconversion free energies [219] have been developed based on nonequilibrium
work relations.
These results offer a tantalizing prospect for nonequilibrium computational methods
aiming at calculating absolute free energies of solvated molecules. As a matter of
fact, a large majority of the soft matter community’s research efforts are devoted to
such calculations [220–227]. However, bias and error [228] in the related estimators
hinder the efficiency of nonequilibrium methods and persuade one to use optimized
equilibrium methods instead [168,229].
In this letter, we demonstrate the viability of using the JE to calculate absolute free
energies in the context of multiscale simulations of solutions. We propose to take
advantage of the smooth coupling present in the Hamiltonian adaptive resolution
method (H-AdResS) [93] between a fully atomistic and an ideal representation of the
solvent, and combine it with steered molecular dynamics simulations applied on the
solute molecule.
To illustrate the method, we focus on the calculation of absolute solvation free energies
(SFE). Nevertheless, we anticipate that the method can be easily extended to more
complex multiple-solvation states and to compute other sought-after quantities such
as binding free energies, relevant in view of drug discovery applications. The SFE is
the difference in free energy resulting from considering the solute molecule in a solvent
and in the gas phase at a given temperature and pressure. We directly compute the
SFE as a function of the work necessary to pull the molecule from a region within
the simulation box containing the solvent to another region containing an ideal gas
representation of the solvent, thus effectively isolating the solute molecule.
This procedure resembles the thermodynamic integration method, and as such, the
initial and final states needed to compute the change in free energy should correspond
to identical systems but interacting via different potentials. Since it is required that
these initial and final states are separated in space but smoothly merging one into
the other, a uniform solvent density should be enforced throughout the simulation
box. Thus, molecules can freely diffuse while changing their resolution, from interact-
ing to ideal gas, on the fly which consequently guarantees a constant chemical potential.

5.2 Method

Recently [93,143,230], this simulation setup has been achieved within the H-AdResS
[49, 50] formalism resulting in the Spatially Resolved Thermodynamic Integration
(SPARTIAN) method [93, 230]. In the following and without loss of generality, we
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write the global H-AdResS Hamiltonian of a system consisting of Ns solvent molecules
and one solute molecule σ in the form:

H = K + V int +
∑
α∈Ns

[
F(λα)V AT

α −∆Hα

]
+ V res

σ + F(λσ)V AT
σ −∆Hσ ,

(5.1)

where K is the kinetic energy and V int include all the intramolecular interactions. The
intermolecular interactions are described by the potential

V AT
α ≡ 1

2

N∑
β,β 6=α

∑
ij

V AT (|rαi − rβj|) ,

and V res
σ = κ/2(xi∈σ − x0

i∈σ)2 is a restraining potential applied to the x-coordinate of
the i-th atom of the solute molecule σ. For a given molecule with coordinates R 1,
the function F(λ), which takes values between 0 and 1, specifies its resolution. That
is, for F(λ) = 0 intermolecular interactions are set to zero and the molecules behave
as ideal gas (IG) particles and for F(λ) = 1 the molecules interact fully atomistically
(AT). In between these two cases, a hybrid (HY) region is defined where a smooth
interpolation between 0 and 1 unambiguously defines the resolution of a molecule
based on its position (schematically represented in Fig. 5.1 ).

The free energy compensation (FEC) terms ∆Hα,σ ≡ ∆H(F(λ(Rα,σ))) has been
introduced in the Hamiltonian in Eq. (5.7) for two reasons: (i) to eliminate the
spurious contribution to the dynamics of the system generated by forces proportional
to the gradient of the switching function F(λ); and (ii) to guarantee that, at a
given temperature T , the AT and IG representations of the solvent coexist in a
thermodynamic state with equal density. In this particular example and for the case
of solvent molecules, the FEC term has a simple and fundamental physical meaning: it
is the difference in chemical potential between the AT and IG regions [49, 50], namely

∆H(F(λ(R))) ≡ ∆G(R)

N
= ∆µ(R) , (5.2)

with ∆G/N being the molar Gibbs free energy. Note that all quantities appearing
in Eq. (5.2) are function of the molecule’s position R: indeed, all free energies and
chemical potential differences are computed with respect to a reference given by
R = Ra ≡ λ = 0. The procedure to compute the FEC is described in detail in the
section 5.5.

1R is a collective coordinate of the molecule, namely, the position of a given atom or the molecule’s
center of mass
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Figure 5.1. Snapshot of a typical H-AdResS setup showing the atomistic
(AT), hybrid (HY) and ideal gas (IG) regions. The blue curve represents
the switching function that smoothly interpolates the intermolecular inter-
actions from fully atomistic to non-interacting. The molecules of interest,
water and urea, are initially located in the AT region and then pulled
across the simulation box until they reach the IG region.

5.3 Results

A constant chemical potential implies that pulling a water molecule from the AT
to the IG region (or vice versa) is a barrier-less process. We illustrate this point
with simulations of pure water (see computational details in the SI) carried out by
combining umbrella sampling [231] with the SPARTIAN method. We select a water
molecule located at the centre of the AT region (schematically indicated in Fig. 5.1)
and restrain the X coordinate of its oxygen atom using the harmonic potential V res

σ

in Eq. (5.7) with κ = 209.2 kJmol−1Å
−2

. The solute molecule, i. e. the selected water
molecule, is moved sequentially by ∆x0

oxygen = 0.2Å and sampled for 20 ps to construct
the biased probability distribution of xoxygen. We perform six uncorrelated simulation
runs to calculate the solvation free energy profile. Each profile is shifted in such a way
that the average of the solute’s free energy in the ideal gas region is equal to zero.
Averages and standard deviations (error bars) are reported in Fig. 5.2 (blue points)
which show, as expected and within error bars, a flat free energy profile across the
simulation box.

The solvation free energy of a water molecule in water, i. e. the work necessary
to bring a water molecule from the bulk to the gas phase, precisely amounts to the
excess chemical potential of water. In practice, this corresponds to repeating the
same umbrella sampling calculation as described before but without applying the FEC
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Figure 5.2. Free energy profile of a water molecule transferred between
atomistic and ideal gas regions. The blue flat profile corresponds to the
case when energy compensations are applied to all molecules in the system
and indicates that there is no energy barrier for solvent molecules to freely
diffuse between regions, i. e. the chemical potential is constant. The
red curve corresponds to the case when there are no compensation forces
applied on the solute water molecule. The barrier in the HY region is
related to the particular choice of the function F(λ). However, given the
flat profile observed in both, AT and IG regions, it is possible to estimate
a net free energy difference that corresponds to the solvation free energy of
water in water, i.e. the water excess chemical potential. The uncertainty
in the calculations is indicated by the error bars.

(∆Hσ = 0 in Eq. (5.7)) to the solute water molecule. Results are also reported in Fig.
5.2 (red points) where a flat energy profile is apparent in both the AT and IG regions
and allows one to compute a difference in free energy of -31.03 ± 2.92 kJ/mol 2. This
result agrees within error bars with the excess chemical potential as reported in the
literature (-29.52 ± 0.03 kJ/mol [157], -29.18±0.16 kJ/mol 3). In this way, we have
validated the spatially-resolved thermodynamic integration as a method to compute
solvation free energies of molecular fluids.

For the second part of this study, we focus on the calculation of the solvation free
energy of one urea molecule in water. We simulate urea and water molecules using the
OPLS [232,233] and SPC/E [133–135] force fields, respectively (see the computational

2The choice of the DSF model for electrostatic interactions implies the use of a correction discussed
in the SI.
3SPARTIAN result, see the SI for details
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Figure 5.3. Free energy profile of one urea molecule transferred between
the atomistic region and the ideal gas with pulling rate (a) v = 10Å/ns
and (b) v = 50Å/ns. The blue curve in each panel is obtained by using
the umbrella sampling method. The free profiles calculated by Jarzynski
relation using the first, first and second and exponential averages of work
are represented by black, red and green curves respectively. The averages
and error bars are calculated over 6 sets of 10 independent simulation runs.

details in the SI). First, and as it has been done in the case of pure water, we use
SPARTIAN in combination with umbrella sampling. In this case, the carbon atom of
the urea molecule is restrained and pulled across the simulation box using the harmonic

potential V res
σ in Eq. (5.7) with the same spring constant κ = 209.2 kJmol−1Å

−2
. The

resulting free energy profile is shown in Fig. 5.5 (blue points). Similar to the simulation
of the water molecule, the free energy profile is flat in both atomistic and ideal gas
regions and we use it as the benchmark for the next part of the work.

We now proceed to perform steered molecular dynamics of the solute molecule to
bring it from the AT to the IG region and, by accumulating enough statistics for the
applied work, we use the JE to compute the solvation free energy. Let us suppose we
have the system initially at equilibrium at temperature T in a state A that corresponds
to having the solute molecule in the AT region. We apply the restraining potential
V res
σ = κ/2(xi∈σ(t)− x0

i∈σ − vt)2 with v the pulling speed. We use the same value of κ
as before which is high enough to neglect, within error bars, the contribution of the
restraining potential in the calculation of the free energy. In this way, we calculate
the difference in free energy for the unconstrained system [218]. External work W
on the system will bring it into a new state B that corresponds to having the solute
molecule in the IG region. The difference in free energy ∆F between the states A
and B is related to the external work on the system by the thermodynamic inequality
∆F ≤ W . The equality ∆F = W holds for quasi-static processes, which in our case
correspond to the umbrella sampling calculations. Alternatively, the JE

〈e−βW 〉 = e−β∆F , (5.3)



99

with β = 1/kBT , is valid for arbitrarily fast processes. In practice, to make use
of the JE it is possible, on the one hand, to express 〈e−βW 〉 in terms of a cumulant
expansion [228]:

∆F = 〈W 〉 − (β/2)(〈W 2〉 − 〈W 〉2) + · · · , (5.4)

with 〈W 2〉 − 〈W 〉2 the mean-squared variation of W . The previous equation is
related to the statistical expression 〈ex〉 ≥ e〈x〉. On the other hand, it is also possible
to directly use the exponential average, i. e.

∆F = −β−1 ln(〈e−βW 〉) . (5.5)

In both cases, it is necessary to compute the applied work W on the system that
we obtain as:

W = −κv
∫ τ

0

dt′
[
xi∈σ(t′)− x0

i∈σ − vt′
]
, (5.6)

where the initial position of the solute is set at x0
i∈σ = 20 Å and the simulation

total time τ is set such that the final equilibrium position x0
i∈σ + vτ is 60Å. We

pull the restrained atom in the solute molecule at two constant speeds: v = 10Åns−1

and v = 50Åns−1 (the latter being comparable to the thermal velocity of urea at
room temperature). To accumulate statistics, we generate 60 uncorrelated trajectories
and we group them into 6 blocks of 10 trajectories. The statistical analysis (first
and second orders of the cumulants as well as the exponential average) is carried
out for each block. In Fig. 5.5 (upper panel), the result of computing 〈W 〉 for a
pulling rate of v = 10Åns−1 shows a relatively small deviation with respect to the
free energy of approximately 4 kJmol−1 (black data points). Nevertheless, the use of
the JE requires to either add the contribution of higher order cumulants as in Eq.
(5.4) (red data points) or to evaluate the exponential average as in Eq. (5.5) (green
data points). In this case, both estimates increase the accuracy with respect to the
benchmark free energy curve. We report the solvation free energy of one urea molecule
as obtained from the exponential average as −52.9± 3.6 kJmol−1 in good agreement
with the result reported in Ref. [234] of the excess chemical potential of aqueous
urea (-55.13 kJmol−1) at a mole fraction of 0.0007657. Concerning the efficiency of
the method, the profiles presented in Fig. 5.5 (upper panel) obtained from the JE
effectively required to run ten times more molecular dynamics steps than the umbrella
sampling result. However, it is also apparent that the JE results are more precise since
the error bars are systematically smaller. In the SI we present free energy profiles
with reduced size of the statistical sample and we find that to obtain comparable
uncertainty in comparison with umbrella sampling, it is required to run only three
times more molecular dynamics steps. This result shows that one can confidently
use the Jarzynski equality in this context, and also suggests that the (relative) extra
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computational effort might substantially decreases upon increasing the complexity of
the solute.

The amount of non-reversible work increases significantly upon increasing the
pulling rate to 50 Å/ns, as presented in the lower panel in Fig. 5.5. The first order
cumulant 〈W 〉 (black data points) shows a difference of approximately 30 kJmol−1

with respect to the free energy as computed with the umbrella sampling method (blue
points). In this case, the second order cumulant (red points) is more accurate with
respect to the umbrella sampling calculation than the logarithmic estimator in Eq. (5.5)
(green points). However, the uncertainty in the second order cumulant calculation
is large because of the limited sampling [218, 228]. The error in the exponential
average is lower, i.e. with smaller fluctuations, but still with a considerable mean
deviation of approximately 20 kJmol−1 from the reference value, that evidences the
well-documented bias of the estimator [228]. As it has been pointed out in Ref. [218],
good statistics in block averaging does not necessarily correlate with better accuracy.
At this pulling rate we try the reverse process, namely, to transfer the urea molecule
from the ideal gas to the AT region. Results are presented in the SI (Fig. 3) showing
a consistent behaviour with the results for the forward process, thus indicating the
absence of hysteresis in the simulation setup. Furthermore, work distributions for
the forward and reverse processes are presented in the SI (Fig. 4) suggesting that in
SPARTIAN forward and reverse processes can be combined in terms of the Crooks
fluctuation theorem to also compute solvation free energies.

5.4 Conclusion

In conclusion, we have verified the Jarzynski equality in the context of multiscale
simulations of soft matter and used it to compute, rather efficiently and accurately,
the absolute solvation free energy of small molecules. In our method, the smooth
coupling enforced by the H-AdResS method between a fully atomistic model of the
solvent and the ideal gas representation allows the simultaneous presence, within
the same simulation setup, of the two end states of a thermodynamic integration
between a solvated state and a non-interacting, effectively vacuum, state. In addition
to umbrella sampling, steered molecular dynamics is used on the solute molecule and
its solvation free energy is computed as a function of the work applied on the system
via the Jarzynski equality. The most prominent advantage of this computational
strategy consists in the possibility of solvating large molecules, e.g. initially inserting
them in the ideal gas subregion and pulling them into the AT domain. In this way, the
solvation free energy of arbitrarily large and complex molecules –from novel chemical
compounds for pharmaceutical use to entire proteins– becomes accessible.
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5.5 Supplementary Information

5.5.1 Computational details

We perform all the simulations in this study using the SPC/E [133–135] water
model and the OPLS force field for urea [232, 233] implemented in the LAMMPS
Molecular Dynamics engine [125] and describe electrostatic interactions with the

Damped Shifted Force (DSF) potential [65] with damping coefficient α = 0.2 Å
−1

and
cut-off radius rc = 12 Å. The H-AdResS method is implemented in LAMMPS [61],
freely available and ready to use. We start by equilibrating a fully atomistic simulation
box for 500 ps in the NPT ensemble with a time step δt = 0.001 ps. The bonds
and angles are constrained using the SHAKE algorithm [235]. The temperature
and pressure are enforced at T = 298K and P = 1 bar using the Nosé-Hoover
thermostat and barostat with damping coefficient of 0.1 ps and 1 ps, respectively.
In all simulations, the total number of water molecules is 15614 and the dimension
of the equilibrated simulation box is 188.6× 49.93× 49.93Å. This corresponds to a
water number density of approximately 33 water molecules per nm3. The equilibrated
configuration is used as the input for the H-AdResS simulation where temperature has
been enforced by a Langevin thermostat with the same damping coefficient. Following
our previous work, SPARTIAN simulations [93] have been performed to calculate
the excess chemical potential with precision comparable to that of the most common
and accurate computational methods. In particular, sizes of the atomistic and hybrid
region have been chosen as LAT = 50Å and LHY = 30Å, respectively.

The solvent H-AdResS Hamiltonian of the system has the form [93,230]:

H = K + V int +
∑
α

F(λα)V AT
α , (5.7)

where K is the kinetic energy and V int includes all the intramolecular interactions.
For a given molecule α with coordinates Rα, the function F(λα), which takes values
between 0 and 1, specifies its resolution. That is, for F(λα) = 0 intermolecular
interactions are set to zero and the molecules behave as ideal gas (IG) particles and
for F(λα) = 1 the molecules interact fully atomistically (AT). In between these two
cases, a hybrid (HY) region is defined where a smooth interpolation between 0 and 1
unambiguously defines the resolution of a molecule based on its position.

The total force acting on an atom i of a molecule α reads:

Fαi = Fint
αi +

∑
β,β 6=α

{F(λα) + F(λβ)

2
FAT
αi|β

}
− V AT

α

∂F
∂λ

∣∣∣∣
λ=λα

∇αiλα , (5.8)

where Fint
αi contains the intramolecular forces, and the intermolecular forces FAT

αi|β
are weighted by the average resolution between the molecules α and β.
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A spurious drift force proportional to the gradient of F(λα) pushes molecules
in/out of the hybrid region depending on where the Helmholtz free energy is the
lowest. Accordingly, the Hamiltonian Eq. 5.7 should be modified to neutralize such a
force. The new Hamiltonian H∆ takes the form:

H∆ = H −
∑
α

∆H(F(λ(Rα))) . (5.9)

In the particular case of the coupling to an IG representation we have [93,230]:

d∆H(F(λ(Rα)))

dF(λ(Rα))

∣∣∣∣
λ=λα

= 〈V AT
α 〉Rα . (5.10)

The total drift force thus becomes:

F̂
dr

α =
(
V AT
α − 〈V AT

α 〉Rα

)
∇λ (Rα) , (5.11)

and 〈F̂dr

α 〉 = 0 as required. The associated compensation to the energy guarantees
that both, AT and IG regions, attain the same pressure. However, their density might
not be the same [49, 50]. To ensure a flat density profile, a thermodynamic force is
iteratively computed and applied [61]:

FTh
n+1 = FTh

n +
c∇ρn(x)

ρ∗
. (5.12)

with n the iteration step, ρ∗ the reference density and ρ the actual density. The
parameter c fine-tunes the force correction and has units of energy. The total force
acting on the molecules present in the HY region is equal to the sum of the compensation
needed to neutralize the drift force plus the thermodynamic force. The corresponding
energy compensation can be obtained upon integration.

∆H(Rb) = −
∫ Rb

Ra

dR
[
−V(λ)∇λ(R) + FTh(R)

]
, (5.13)

where Ra = rAT + dHY , Rb = rAT , with rAT and dHY the linear dimensions of the
AT and HY regions, respectively, and V(λ) ≡ 〈V AT 〉R.

The iterative calculations of the drift and thermodynamic force are simultaneously
started. The drift forces is updated every 10 ps. The resolution interval is divided
into 1000 bins of size ∆λ = 0.001. The on the fly density balancing method is
applied simultaneously to the drift force correction [61]. In this case, the length of
the simulation box is uniformly discretized into slabs of size ∆x = 1.0 Å and the
thermodynamic force is updated every 50 ps. We employed values of c = 4.148

kJ mol−1Å
−1

, σ = 3 Å, l = 6 Å and ρ∗ = 0.03Å−3 for smoothing and scaling the
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thermodynamic force. The updates of drift and thermodynamic forces are continued
for 5 ns.

Following the H-AdResS parameterization, the umbrella sampling or steered molec-
ular dynamics is performed in canonical ensembles using Langeving thermostat with
damping coefficient of 0.1 ps and temperature 298 K. In all simulations, the spring

stiffness of the restraining potential is κb = 209.2kJmol−1Å
−2

. For the umbrella sam-
pling in particular, the biased probability distribution of the restrained atom/molecule
position is constructed for each ∆xb = 0.2 Å increment along the x-axis. In each
increment, the position of the solute is sampled every 5 fs for 30000 fs long.
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Figure 5.4. Excess chemical potential of SPC/E water molecules plotted
against iterations to compute the FEC in the SPARTIAN method. The
average and standard deviation of the excess chemical potential during the
last 50 iterations are obtained as µexc = −29.18± 0.16 kJ/mol (indicated
by dashed black line). In the inset the density profiles of the system after
10 and 100 iterations are shown with blue and red lines, respectively.

The evolution of the FEC, i. e. excess chemical potential µexc, is presented in Fig.
5.4 where fluctuations around a limiting value are apparent after 50 iterations. Once
convergence has been achieved, a flat density profile evidences a constant chemical
potential throughout the simulation box. Finally, we report µexc = −29.18 ± 0.16
kJ/mol [93] that reasonably agrees with the result (29.53± 0.03 kJmol−1) obtained by
using the Bennet acceptance ratio method [157].
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5.5.2 Umbrella sampling

We use the umbrella sampling [231] technique to obtain the free energy difference
resulting from transferring the molecule from the AT to the IG region. A harmonic
potential is introduced into the Hamiltonian of the system to perform biased sam-
pling. This potential is resolution independent (similar to V int) and constrains the
x-component of an atom ”i” of the molecule (xp).

V b
i =

κ

2

(
xp − x0

i

)2
. (5.14)

The equilibrium position (x0
i ) of the harmonic potential is varied incrementally

(∆xb) along the reaction coordinate, which is set equal to the x-axis. This gives a
total number of windows Nw. For every increment, the biased probability distribution
of the position P b

i (xb) is calculated by sampling Ni number of steps in every window:

P u
i (xp) = P b

i (xp)exp
[
βV b

i (xp)
]
〈exp

[
−βV b

i (xp)
]
〉 (5.15)

where β = 1/kBT and the ensemble average is obtained using the unbiased
probability distribution,

〈exp
[
−βV b

i (xp)
]
〉 =

∫
dxpP

u(xp)exp
[
−βV b

i (xp)
]

(5.16)

=

∫
dxpexp{−β

[
∆F (xp)− V b

i (xp)
]
}

Here, ∆F (x) = −(1/β) log [P u(x)] is the free energy of the unbiased system.
Using the Weighted Histogram Analysis Method [231, 236] (WHAM), the global
unbiased probability distribution (P u) is calculated as the weighted average of unbiased
probability of each window:

P u(xp) =
Nw∑
i

αi(xp)P
u
i (xp) (5.17)

The prefactor αi which is obtained by minimizing the statistical error of P u reads:

αi(xp) =
Niexp

[
−β
(
V b
i (xp)− Fi

)]∑
j Njexp

[
−β
(
V b
j − Fj

)] , (5.18)

where Ni is the number of steps sampled for window i and Fi is given by Eq. 5.16
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exp (−βFi) = 〈exp
[
−βV b

i (xp)
]
〉 . (5.19)

Equations 5.15 to 5.17 have to be iterated until convergence. In all simulations,
we used equal number of samples at each window, i.e. Ni = Nj for all i and j, and
the convergence criteria is set to when

∑
i

∣∣F new
i − F old

i

∣∣ < 10−4.

5.5.3 Mean-squared displacement of urea molecule

We compute the mean-squared displacement (MSD) of a single urea molecule in
water. From the plot of the MSD in figure 5.5, we obtain the self-diffusion constant
D = 2.8× 10−3nm2ps−1 in good agreement with the reference value reported in [237]
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Figure 5.5. Mean-squared displacement of a single urea molecule in 15615
SPC/E water molecules (mole fraction is 6.4× 10−5). The self-diffusion
constant is obtained D = 2.8× 10−3nm2ps−1 which agrees well with the
reference [237]
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5.5.4 Increasing number of trajectories

In this section we show that by doubling the size of the statistical sample the
presented results of the solvation free energy as obtained with the JE (pulling rate
v = 50 Å/ns) do not significantly improve in terms of accuracy. This is presented
in Figure 5.6 where energy profiles obtained by the average, second order cumulant
and logaritmic average of the work, obtained over twelve blocks consisting of ten
independent simulation runs, are very similar to the ones presented in Fig. 4(b) of the
main manuscript.
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Figure 5.6. Free energy profile of a single urea molecule being transferred
between the atomistic and the ideal gas regions with pulling rate v =
50Å/ns. The free profiles calculated by the first and second and exponential
averages of work are represented by red, black and green curves respectively.
The averages and error bars are calculated over 12 sets of 10 independent
simulation runs. The shaded color around the curve indicates the error
bars.
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5.5.5 Crooks fluctuation theorem

In addition to the JE, the Crooks fluctuation theorem (CFT) also relates the work
performed on a system during a nonequilibrium transformation to the difference in
free energy between the final and initial states of the transformation. For a system,
initially at equilibrium, the CFT has the form [92]:

PF(+βW )

PR(−βW )
= e−∆F+βW , (5.20)

whereW is the work performed on the system resulting from forward (F) and reverse (R)
processes and β = 1/kBT . The difference in free energy ∆F is obtained by evaluating
the ratio of the distributions of forward and reverse work PF(+βW )/PR(−βW ).

To make use of the CFT, we perform a number of reverse equal to the number of
forward processes. Reverse in this context means to bring a urea molecule from the
IG to the AT region. Free energy profiles are presented in Figure 5.7. For this case as
well, the best estimate with respect to the umbrella sampling profile is given by the
second order cumulant expansion (red points).
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Figure 5.7. Free energy profile of a single urea molecule being transferred
from the ideal gas region into atomistic region with pulling rate v = 50 Å/ns.
The free profiles calculated by the first and second and exponential averages
of work are represented by red, black and green curves respectively. The
averages and error bars are calculated over 6 sets of 10 independent
simulation runs. The shaded color around the curve indicates the error
bars.
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Finally, we compute the work distributions P (±βW )F/R for both reverse and
forward processes and present them in Figure 5.8. To estimate the intersection of the
distributions, i. e. the point at which the W = ∆F , we fit a gaussian curve and report
∆F = 44.75 kJmol−1. It is thus clear that more statistics and data from different
pulling rates need to be collected in order to convincingly calculate ∆F from the CFT.

Figure 5.8. Work distributions for urea molecules being pulled forward
from atomistic region into ideal gas region (blue bars) and reverse (red bars).
The distributions are obtained from 120 trajectories under the pulling rate
v = 50 Å/ns. The solid curves represent the Gaussian curves fitted to each
distributions. The Gaussian curves intersect at 44.75kJ mol−1.

5.5.6 Comparing efficiency

We use the free energy profile obtained from umbrella sampling calculations as
the reference data for the nonequilibrium experiments. The error bars reported in
Figure 4(a) in the main manuscript for the nonequilibrium calculations, in particular
the ones obtained with the logarithmic estimator, are systematically smaller than the
ones of the reference profile. In order to assess the efficiency of the nonequilibrium
calculations, we should compare results with similar precision. In Figure 5.9 we
decrease the size of the statistical sample until we observe comparable error bars
between the nonequilibrium and the reference profiles. Using the information provided
here, we conclude that, at a pulling rate of v = 10 Å/ns, the nonequilibrium calculation
is only three times less efficient than the umbrella sampling calculation.
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Figure 5.9. Free energy profiles of a single urea molecule being transferred
from atomistic region into ideal gas region. The profiles are obtained using
umbrella sampling method (blue) and Jarzynski equality when the pulling
rate is v = 10 Å/ns and the number of sets in block-averaging is 6(red),
3(green) and 2(black). The maximum error bars obtained using umbrella
sampling method is comparable to that obtained using Jarzynski equality
when the second cumulant is averaged over 2 sets.

5.5.7 Work fluctuations

In theory the JE and CFT results are independent of the pulling rate. In practice,
however, the obtained value of the free energy difference depends on the distribution
of work values which strongly depends on the pulling rate. In particular for the use of
the JE, a few authors have suggested [224,238,239] that the optimal pulling rate in
terms of the efficiency of the averaging process obeys σW ≈ kBT with σW the standard
deviation of the distribution of work. Consistently with the results presented in the
main manuscript, Figure 5.10 shows the standard deviation of the work values during
the pulling process indicating that the optimal pulling rate for the use of the JE is
v = 10 Å/ns.
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Figure 5.10. Standard deviation of the work during pulling process. The
work fluctuations is often used as a measure of applicability of Jarzynski’s
equality [218]. For the case of slow pulling rate, the ultimate standard
deviation is ≈ 2kBT while this quantity rises to 5kBT for high pulling rate.

5.5.8 Correction to the chemical potential from the DSF treatment of
electrostatic interaction

For a system having N charged particle, the short-ranged electrostatic DSF poten-
tial is given by:

V DSF =
1

2

N∑
i=1

Ni(rc)∑
j′=1

qiqj

[
erfc(αrij)

rij
− erfc(αrc)

rc
(5.21)

+

(
erfc(αrc)

r2
c

+
2α

π1/2

exp (−α2r2
c )

rc

)
(rij − rc)

]
+ Vself − Vexcl ,

where Ni(rc), is the number of particles which are located within the sphere of radius rc
and the center of particle i. The decay of the potential is set by the parameter α whose
dimension is an inverse length, and erfc(r) is the complementary error function [82].
Since the net charge of all Ni(rc) particles inside the truncating sphere is not zero,
a correction to the potential is needed to compensate the lack of charge neutrality.
This is done by approximating the net charge of the truncating sphere and placing
the approximated “imaginary” charge on the surface of the sphere [186,187]. For the
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DSF potential, the electrostatic interaction of particle i with the imaginary charge is
expressed as [187]:

V self = −
(

erfc(αrc)

rc
+

α√
π

+
α√
π

exp(−α2r2
c )

) N∑
i=1

q2
i (5.22)

For the case of rigid structural molecules, the intra-molecular electrostatic inter-
action has to be excluded. This is done by subtracting the corresponding Coulomb
interaction from the DSF potential. Thus, for particles i and j separated by a distance
rij in a rigid molecule, the excluded electrostatic interaction is computed as:

V excl
ij (rij) =

qiqj
rij

. (5.23)

The value of the correction to the chemical potential of SPC/E water and urea
molecules using OPLS force field is −1.07kBT and −4.17kBT, respectively.
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Abstract

The spatial block analysis (SBA) method has been introduced to efficiently extrap-
olate thermodynamic quantities from finite-size computer simulations of a large variety
of physical systems. In the particular case of simple liquids and liquid mixtures, by
subdividing the simulation box into blocks of increasing size and calculating volume
dependent fluctuations of the number of particles, it is possible to extrapolate the bulk
isothermal compressibility and Kirkwood-Buff integrals in the thermodynamic limit.
Only by explicitly including finite-size effects, ubiquitous in computer simulations,
into the SBA method, the extrapolation to the thermodynamic limit can be achieved.
In this review, we discuss two of these finite-size effects in the context of the SBA
method due to i) the statistical ensemble and ii) the finite integration domains used in
computer simulations. To illustrate the method, we consider prototypical liquids and
liquid mixtures described by truncated and shifted Lennard-Jones (TSLJ) potentials.
Furthermore, we show some of the most recent developments of the SBA method,
in particular, its use to calculate chemical potentials of liquids in a wide range of
density/concentration conditions.

6.1 Introduction

In the last decades, computational studies of soft matter have gained ground in
the no-man’s land between purely theoretical studies and experimental investigations.
Arguably, this success is due to the use of statistical mechanics relations between
macroscopic thermodynamic properties and microscopic components and interactions



114

of a physical system in the thermodynamic limit (TL) [240, 241]. However, and
apart from few examples [242–244], computer simulations are mainly constrained to
consider closed systems with a finite and usually small number of particles N0. These
limitations introduce spurious finite-size effects, apparent in the simulation results,
that in spite of the current computing capabilities are still the subject of intense
investigations [245–252].

A meaningful comparison between computer simulations of finite systems and
experimental results has been always a difficult task. In principle, it is possible to
extrapolate the simulation data to the quantities of interest in the thermodynamic
limit by considering systems of increasing size and performing simulations for each of
them. The SBA method has been proposed as a more efficient alternative where only
one system is examined and then subdivided into blocks of different size from which
the data are extracted. The method is rather general since it was originally proposed
to study the critical behaviour of Ising systems [94,253] and then extended to study
liquids [95, 254–258] and even the elastic constants of model solids [259].

In this paper, we examine the SBA method focusing on the extrapolation of bulk
thermodynamic properties of simple liquids. We use prototypical liquids and mixtures
described by TSLJ potentials to discuss the original ideas [95, 254] and explore the
background [257,258,260–263] for the most recent developments [245,246,248] of the
method. The simple examples presented here, in addition to the results available in
the literature [245], suggest that the method is suitable for the calculation of trends
in the chemical potential of complex liquids in a wide range of density/concentration
conditions.

The paper is organised as follows: In Section 6.2 we introduce the relevant finite-
size effects present in standard computer simulations. In Section 6.3 we introduce the
finite-size integral equations for liquids and illustrate the procedure to extrapolate
thermodynamic quantities. In Section 6.4 we discuss the extension of the block analysis
method to liquid mixtures. We conclude the paper in Section 6.5.

6.2 Boundary and ensemble finite-size effects

Statistical mechanics establishes the connection between macroscopic thermody-
namic properties and the microscopic components and interactions of a physical system.
An interesting example of this relation is provided by the compressibility equation
that identifies the density fluctuations of a system in the grand canonical ensemble
with the bulk isothermal compressibility κT [265]. In the thermodynamic limit (TL),
the isothermal compressibility of a homogeneous system is related to the fluctuations
of the number of particles via the expression [240]:

χ∞T =
〈N2〉 − 〈N〉2
〈N〉 , (6.1)

with 〈N〉 the average number of particles contained in a volume V of the fluid.
The reduced isothermal compressibility χ∞T = ρkBTκT is the ratio between the bulk
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L

L 0

Figure 6.1. Snapshot of the simulation box for a system of particles
interacting via a TSLJ potential at density ρσ3 = 0.1 and temperature
kBT = 1.2ε. In this particular example, a box of linear size L0 has been
subdivided in blocks of linear dimension L = L0/5 as indicated by the
different colour shades. The figure has been rendered with VMD [264].

isothermal compressibility of the system, κT , and the isothermal compressibility of
the ideal gas (ρkBT )−1 with ρ = 〈N〉/V .

Various finite-size effects can be included in the block analysis aiming at extrapo-
lating interesting thermodynamic quantities. In practice, let us consider a system of
N0 particles where the simulation box of volume V0 = L3

0 is divided in subdomains of
volume V = L3, as illustrated in Fig. 6.1. By evaluating the fluctuations of the number
of particles in these subdomains, it is possible to obtain the distribution PL,L0(N) of
the number of particles, with k-moments given by [262]:

〈Nk〉L,L0 =

N0∑
N=0

Nk PL,L0(N) . (6.2)
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The second moment of the distribution is related to the reduced isothermal
compressibility of the finite system χT (L,L0) [94, 95,254,262]:

χT (L,L0) =
〈N2〉L,L0 − 〈N〉2L,L0

〈N〉L,L0

. (6.3)

The finite-size reduced isothermal compressibility, χT (L,L0), can be extrapolated
to the reduced isothermal compressibility in the TL, χ∞T , taking the limits L,L0 →∞.
Originally [254,262], by applying periodic boundary conditions (PBCs) to the total
linear size L0 and taking into account volumes such that L� ζ with ζ the correlation
length of the system, it has been proposed that the difference between χT (L,L0) and
χ∞T is related to boundary effects associated to the finite-size of the subdomains. This
difference takes the form [95,254]:

χT (L,L0 →∞) = χ∞T +
c

L
+O

(
1

L2

)
, (6.4)

with c a constant. Recently, Eq. (6.4) has been obtained [266] using arguments
based on the thermodynamics of small systems [267,268], underpinning the consistency
of the result.

To investigate this expression, we consider a liquid system whose potential energy is
described by a 12–6 Lennard-Jones potential truncated, with cutoff radius rc/σ = 21/6,
and shifted. The parameters ε, σ and m, define the units of energy, length and
mass, respectively. All the results are expressed in LJ units with time σ(m/ε)1/2,
temperature ε/kB and pressure ε/σ3. Various system sizes, namely N0 = 104, 105 and
106, are considered, and the density is fixed at ρσ3 = 0.864 thus defining the linear
size of the simulation box L0. The systems are equilibrated at kBT = 1.2ε, enforced
with a Langevin thermostat with damping coefficient γ(σ(m/ε)1/2) = 1.0, for 2× 106

MD steps using a time step of δt/(σ(m/ε)1/2) = 10−3. Production runs span 106

MD steps. All the simulations have been performed with the ESPResSo++ [269]
simulation package.

To use the block analysis method we compute the fluctuations of the number
of particles. In particular, we choose domains of size 1 < L/σ < L0/σ to scan
continuously the fluctuations as a function of domain size. To increase the amount of
statistics we use 100 randomly positioned subdomains per simulation frame.

In Fig. 6.2 we report χT (L,L0) as a function of σ/L. The linear behaviour
predicted in Eq. 6.4 is apparent for L� L0. There are evident deviations from the
linear behaviour which are not included in Eq. (6.4) since this equation has been
obtained for a system in the grand canonical ensemble. As a matter of fact, the
deviations from linearity are mainly related to the fixed size of the system because
when L → L0, χT (L0, L0) = 0, that is, the fluctuations of the number of particles
for a closed system are equal to zero. In principle, the isothermal compressibility in
the TL can be extracted by extrapolating a line to the y-axis, i. e. σ/L → 0, and
determining the y-intercept. This procedure, however, might lead to ambiguous and
strongly-size-dependent results as suggested by the same plot.
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Figure 6.2. Fluctuations of the number of particles χT (L,L0) as a function
of σ/L for systems described by a TSLJ potential with rc/σ = 21/6. Data
corresponding to system sizes N0 = 104, 105 and 106 are presented using
red squares, blue triangles and green circles, respectively. The vertical
lines indicate the limit σ/L0 at which fluctuations become zero. The black
horizontal dashed line indicates the value χ∞T = ρkBTκT = 0.0295 with κT
the bulk compressibility obtained with the method described in Ref. [245].

From the previous discussion, Eq. 6.4 satisfactorily describes the boundary size
effects present in a system described in the grand canonical ensemble. However,
ensemble size effects, i. e. the fact that we are computing quantities defined in the
grand canonical ensemble using information obtained from a system in a canonical
ensemble, are important even in cases where the size of the system might appear to
be enormous (L0/σ = 105 for N0 = 106 where ζ/σ ≈ 10).

It is thus clear that the isothermal compressibility of a finite-size system in the TL,
i. e. L,L0 →∞ with ρ = N0/L

3
0, should equate the bulk isothermal compressibility

κT . An elegant analysis using probabilistic arguments for the ideal gas case [270]
shows that the finite-size reduced isothermal compressibility can be written as:

χT (L,L0) = χ∞T

(
1−

(
L

L0

)3
)
. (6.5)
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Figure 6.3. Fluctuations of the number of particles χT (L,L0) as a
function of the ratio L/L0 for systems described by a TSLJ potential
with rc/σ = 21/6. Results corresponding to systems of N0 = 105 particles
with densities ρσ3 = 0.1, 0.2 and 0.3 are presented using red squares,
blue triangles and green circles, respectively. The theoretical prediction
presented in the text is plotted using the corresponding value for χ∞T ,
obtained as described in Ref. [245], and solid-line curves with the same
color code.

In spite of the simplicity of the system chosen in this study, it can not be identified
with the ideal gas. However, at very low densities and temperature kBT = 1.2ε,
the system behaves more like a real gas and a meaningful trend could be identified.
Therefore, to investigate Eq. 6.5 we consider the density range ρσ3 = 0.1 , · · · , 1.0
for systems of size N0 = 105 particles. Results are presented in Fig. 6.3 for the cases
ρσ3 = 0.1, 0.2 and 0.3. The three data sets follow the theoretical prediction in Eq.
(6.5) with deviations from this behaviour for L� L0 thus indicating the signature of
boundary finite-size effects. As expected, the data presented also suggest that upon
increasing density the deviations from the ideal gas behaviour become more evident,
as can be seen in the case ρσ3 = 0.3.

This is also seen in Fig. 6.4 where for a system with density ρσ3 = 0.864 the
deviations from the ideal gas case are much more evident. As a matter of fact, even
for the largest size considered (N0 = 106) it is not possible to convincingly reproduce
the ideal gas behaviour.
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Figure 6.4. Fluctuations of the number of particles χT (L,L0) as a
function of the ratio L/L0 for systems described by a TSLJ potential with
rc/σ = 21/6. Results corresponding to sizes N0 = 104, 105 and 106, with
density ρσ3 = 0.864, using red squares, blue triangles and green circles,
respectively. The theoretical prediction presented in the text is plotted as
the black dashed curve using χ∞T = 0.0295.
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Figure 6.5. Scaled fluctuations of the number of particles λχT (L,L0),
minus c/L0, versus the ratio λ = L/L0 for systems described by a TSLJ
potential with rc/σ = 21/6. Results corresponding to sizes N0 = 104, 105

and 106, with density ρσ3 = 0.864, using red squares, blue triangles and
green circles, respectively. The theoretical prediction Eq. 6.7 presented
in the text is plotted as the black solid curve using χ∞T = 0.0295 and
c = 0.415σ.

Nonetheless, one intuitively could imagine that the following expression:

χT (L,L0) = χ∞T

(
1−

(
L

L0

)3
)

+
c

L
+O

(
1

L2

)
, (6.6)

captures the two finite-size effects, ensemble and boundary [262]. By neglecting
the O(1/L2) terms, defining λ = L/L0 and multiplying everything times λ we obtain:

λχT (λ) = λχ∞T
(
1− λ3

)
+

c

L0

. (6.7)

Equation 6.7 is more convenient to analyse because in the limit λ→ 0, provided
that ζ < L < L0, λ3 is negligible and this expression can be approximated to a linear
function in λ with slope χ∞T and y-intercept equal to c/L0. In particular, we use a
simple linear regression in the interval 0.0 < λ < 0.3, with the fluctuations data for
N0 = 105, to find χ∞T = 0.0295(5) and c = 0.415(5)σ. Results of the scaled fluctuations
λχT (λ) minus c/L0 are presented in Fig. 6.5 where the intensive character of the
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constant c becomes clear. By replacing the calculated values χ∞T and c in Eq. (6.7)
we obtain the black curve that superimposes on the simulation data in the full range
0 < λ < 1.

In addition to the explicit finite-size effects discussed above, there is another type
of effects related to the periodicity of the simulation box. This is the case of implicit
finite-size effects that appear due to anisotropies in the pair correlation function of the
system, generated by the use of PBCs [271,272]. These effects, extremely important
for small simulation setups, appear as oscillations in λχT (λ) for λ ≈ 1 caused by short
range interactions between the system and its nearest neighbour images. However,
given the large sizes of the systems considered here, implicit finite-size effects can be
safely ignored in the present discussion.
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Figure 6.6. Ratio χ∞T = κT/κ
IG
T at kBT = 1.2ε as a function of the

density for systems described by a TSLJ potential with rc/σ = 21/6, with
κIGT = (ρkBT )−1 the isothermal compressibility of the ideal gas. The red
curve is a guide to the eye.

With the trajectories of the system with N0 = 105 particles in the density interval
0.1 < ρσ3 < 1.0 we compute the scaled fluctuations λχT (λ) and determine, as before,
the ratio χ∞T = κT/κ

IG
T as a function of the density, with κIGT = (ρkBT )−1 the

isothermal compressibility of the ideal gas (See Fig. 6.6). As expected for this system
at kBT = 1.2ε, a monotonically decreasing behaviour is observed since the system
becomes less compressible as the density increases.



122

The isothermal compressibility as a function of the density allows one to investigate
more interesting thermodynamic properties, as it has been recently demonstrated
[245,246]. For example, the isothermal compressibility can be written as:

κT =
1

ρ2

∂ρ

∂µ

∣∣∣∣
T

, (6.8)

which can be rearranged, in terms of the chemical potential µ, as:

δµ =

∫ ρ

ρ0

dρ′

ρ′2κT
(6.9)

with δµ = µ − µ0 and µ0 the chemical potential of the system at the reference
density ρ0. In practice, one usually is interested in the excess chemical potential 1:

δµex = δµ− kBT ln ρ, (6.10)

obtained by subtracting from δµ the density dependent part of the chemical
potential of the ideal gas.

To validate the results obtained using Eq. (6.10) it is necessary to use a different
computational method to evaluate µ0. For that purpose any computational method
aiming at calculating chemical potentials could be used. In particular, we use the
spatially resolved thermodynamic integration (SPARTIAN) method [93], recently
implemented by us. In SPARTIAN, the target system, described with atomistic
resolution, is embedded in a reservoir of ideal gas particles. An interface between
the two subdomains is defined such that molecules are free to diffuse adapting their
resolution on the fly. A uniform density across the simulation box is guaranteed by
applying a single-molecule external potential that is identified with the difference in
chemical potential between the two resolutions, i. e. the excess chemical potential of
the target system. This method has been validated by calculating excess chemical
potentials for Lennard-Jones liquids, mixtures, as well as for SPC, SPC/E water
and aqueous sodium chloride solutions, all in good agreement with state-of-the-art
computational methods.

For the comparison, we consider the same system at the same temperature with
densities ρσ3 =0.2, 0.4, 0.6, 0.8 and 1.0. Results for the excess chemical potential
as a function of the density are presented in Fig. 6.7 where the value of ρ0σ = 0.6
has been used as the reference value. Once δµex is rescaled, it becomes clear that
the agreement between the two methods is remarkable. This result suggest that the
simple calculation of the fluctuations of the number of particles, used in combination
with Eq. (6.7), provides us with an efficient and accurate method to compute chemical
potential of simple liquids, that can be extended to more complex fluids [245].

1In this context, the word excess should be replaced with residual. The residual chemical potential is
the difference between the chemical potential of the target system and that of an ideal gas at the
same density, temperature and composition. We misuse the expression excess chemical potential to
match the modern literature.
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Figure 6.7. Excess chemical potential µex/ε at kBT = 1.2ε as a function
of the density for systems described by a TSLJ potential with rc/σ = 21/6.
Red squares indicate the data obtained with the SPARTIAN method [93]
and the blue triangles are the data points obtained with the method
outlined in the text.

In this section, Eq. (6.7) has been introduced in a rather intuitive manner. However,
the presented results suggest that it encompasses the relevant finite-size effects of the
system and allows one to compute bulk thermodynamic quantities. In the following
section, we derive Eq. (6.7) more rigorously and explore, using a different example, its
range of validity.

6.3 Finite-size Ornstein-Zernike integral equation

Fluctuations of the number of particles are related to the local structure of a liquid.
Let us consider a molecular liquid of average density ρ at temperature T in equilibrium
with a reservoir of particles, i.e. an open system. The fluctuations of the number
of molecules are related to the local structure of the liquid via the Ornstein-Zernike
integral equation [240,273]

∆2(N)

〈N〉 = 1 +
ρ

V

∫
V

∫
V

[go(r1, r2)− 1] dr1 dr2 , (6.11)
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where ∆2(N)/〈N〉 are the fluctuations of the number of particles, ∆2(N) =
〈N2〉 − 〈N〉2 and go(r1, r2) is the pair correlation function of the open system and
r1, r2 the position vectors of a pair of fluid particles. To solve the integral in Eq. (6.11)
one assumes that the fluid is homogeneous, isotropic and that the system is in the
thermodynamic limit (TL), i.e. V →∞, 〈N〉 → ∞ with ρ = 〈N〉/V = constant. An
infinite, homogeneous and isotropic system is translationally invariant, therefore we
rewrite Eq. (6.11) as [240]:

χ∞T =
∆2(N)

〈N〉 = 1 + 4πρ

∫ ∞
0

(go(r)− 1) r2 dr , (6.12)

with χ∞T = ρkBTκT , κT being the isothermal compressibility of the bulk system.
We have replaced go(r1, r2) with go(r) the radial distribution function (RDF) of the
open system, with r = |r2 − r1|.

An alternative version of the OZ integral equation for finite systems has been
introduced [262]. For a finite system with total volume V0 with PBCs we have:

χT (V, V0) =
∆2(N ;V, V0)

〈N〉V,V0
= 1 +

ρ

V

∫
V

∫
V

[gc(r12)− 1] dr1 dr2 , (6.13)

where gc(r12), r12 = |r2 − r1|, is the pair correlation function of the closed system
with total number of particles N0, and ∆2(N ;V, V0) = 〈N2〉V,V0 − 〈N〉2V,V0 . The
fluctuations of the number of particles thus depend on both subdomain and simulation
box volumes.

For a single component fluid of density ρ at temperature T with fixed number of
particles N0 and volume V0, its RDF can be written in terms of an expansion around
N0 as [260–263,270] :

gc(r) =go(r)− χ∞T
N0

. (6.14)

As a matter of fact, the expansion includes terms that depend on the partial
derivative of go(r) with respect to the density. However, we anticipate here that for
the present analysis their contribution is negligible [245]. By replacing gc(r) in the
integral on the r.h.s of Eq. (6.13) we obtain:

ρ

V

∫
V

∫
V

(gc(r12)− 1) dr1 dr2 = IV,V −
V

V0

χ∞T , (6.15)

where

IV,V =
ρ

V

∫
V

∫
V

(go(r12)− 1) dr1 dr2 , (6.16)

and we use that ρ = N0/V0.
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Next, we include explicitly the second finite-size effect, i.e. the fact that the volume
V is finite and embedded into a finite volume V0 with PBCs. For this we rewrite IV,V
as [254]

IV,V0−V = IV,V0 − IV,V ,
with

IV,V0 =
ρ

V

∫
V

∫
V0

(go(r12)− 1) dr1 dr2

IV,V0−V =
ρ

V

∫
V

∫
V0−V

(go(r12)− 1) dr1 dr2 .

As pointed out by Rovere, Heermann and Binder [254], the two integrals IV,V and
IV,V0 are equal when r1 and r2 are both within the volume V . When r12 > ζ the
integrand (go(r12)− 1) = 0 and it does not contribute to the integrals. Close to the
boundary of the subdomain V , for r12 < ζ, and in particular when r1 lies inside and
r2 outside the volume V , there are contributions missing in IV,V which are present in
IV,V0 . Therefore, the difference between the two integrals IV,V0−V = IV,V0 − IV,V , must
be proportional to the surface volume ratio of the subdomain V [254], i. e.

IV,V0−V =
c1

L
+
(c2

L

)2

+O

(
1

L3

)
, (6.17)

with c1, c2 proportionality constants with units of length that, at this point, we
assume to be intensive .

To compute IV,V0 , we require that ζ < L < L0. Since we assume PBCs, the system
is translationally invariant. Hence, upon applying the transformation r12 → r = r2−r1,
the expression:

IV,V0 = ρ

∫
V0

(go(r)− 1) dr = χ∞T − 1 (6.18)

is obtained, where we assume that go(r > ζ) = 1 thus ignoring fluctuations of the
RDF beyond the volume V . By combining these two results we obtain

IV,V = χ∞T − 1 +
c1

L
+
(c2

L

)2

, (6.19)

and by including this result in Eq. (6.15) we arrive to the following expression:

ρ

V

∫
V

∫
V

(gc(r12)− 1) dr1 dr2 = χ∞T

(
1−

(
L

L0

)3
)
− 1 +

c1

L
+
(c2

L

)2

. (6.20)

Finally this expression becomes:
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χT (L,L0) = χ∞T

(
1−

(
L

L0

)3
)

+
c1

L
+
(c2

L

)2

, (6.21)

and by defining λ = L/L0 we write:

λχT (λ) = λχ∞T
(
1− λ3

)
+
c1

L0

+

(
c2

L0

)2
1

λ
. (6.22)

Eqs (6.22) and (6.7) differ in the c2
2/L

2
0λ term that appear from considering the

boundary finite size effects. One possible scenario in which this difference might play a
role is in the case of simulations near critical conditions where the correlation length
of the system tends to infinity.
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Figure 6.8. Reduced fluctuations as a function of λ for systems described
by a TSLJ potential with rc/σ = 2.5 with density ρσ3 = 0.3 at tempera-
tures kBT = 2.00 ε and 1.15 ε. For the latter case, it is apparent that the
contribution proportional to λ−1 is not negligible. The inset shows the full
range 0 < λ < 1. The black curves are the result of fitting the data to Eq.
(6.22).

To test this expression we perform simulations of systems with potential energy
described by the truncated, at rc/σ = 2.5, and shifted 12–6 Lennard-Jones potential.
We consider systems with N0 = 24000 particles, with densities spanning the range
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0.05 < ρσ3 < 0.70. Two temperatures were considered, kBT = 2.00 ε and 1.15 ε. The
critical point of this system has been reported at ρcσ

3 = 0.319 and kBTc = 1.086ε [274].
We report the reduced fluctuations λχT (λ) as a function of λ for ρσ3 = 0.3 in Fig.

6.8. In the case kBT = 2.00 ε the effect of the λ−1 term in Eq. (6.22) is negligible and
a linear approximation in the region λ < 0.3 seems to be well justified. However, for
the case close to the critical point, i. e. kBT = 1.15 ε, the effect of this term is evident
and should be included in the extrapolation to χ∞T .
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Figure 6.9. Bulk isothermal compressibility κT as a function of the density
ρ at kBT = 1.15ε (red circles) and kBT = 2.00ε (green squares) for systems
described by a TSLJ potential with rc/σ = 2.5. The vertical black line
indicates the location of the critical density ρσ3 = 0.319 [274].

Finally, upon extrapolating to χ∞T , an interesting behaviour is observed for the
bulk isothermal compressibility κT as a function of density (Fig. 6.9). In the case
kBT = 2.00 ε, as expected, a monotonically decreasing behaviour with increasing
density is observed. More interestingly, in the case kBT = 1.15 ε the monotonically
decreasing behaviour is interrupted by a singularity in the isothermal compressibility
in the vicinity of the critical density. This cusp in the curve is expected since the
isothermal compressibility of a fluid at the critical point is infinite.

The use of finite-size integral equations is general enough to admit generalisations
of other systems of interest. In the next section, we describe one of such possible
extensions: the study of binary mixtures.
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6.4 Mixtures

Kirkwood-Buff (KB) theory [275] is arguably the most successful framework to
investigate the properties of liquid mixtures that relates the local structure of a system
to density fluctuations in the grand canonical ensemble. These quantities are in turn
related to equilibrium thermodynamic quantities such as the compressibility, the partial
molar volumes, and the derivatives of the chemical potentials [241]. Formulated more
than sixty years ago, KB enjoys renewed interest in computational soft-matter and
statistical physics communities [245,246,248–252]. Recent works have shown promising
applications related to solvation of biomolecules [276] and potential uses to compute
multicomponent diffusion in liquids [277] and to study complex phenomena such as
self-assembly of proteins [278] and polymer conformation in complex mixtures [243,279].

For a multicomponent fluid of species i, j in equilibrium at temperature T , the
Kirkwood-Buff integral (KBI) is defined as:

Go
ij = V

(〈NiNj〉 − 〈Ni〉〈Nj〉
〈Ni〉〈Nj〉

− δij
〈Ni〉

)
=

1

V

∫
V

∫
V

[go
ij(r12)− 1] dr1 dr2 , (6.23)

with δij the Kronecker delta. The superscript (o) indicates that this definition holds
for an open system, i.e. a system in the grand canonical ensemble. In practice, we
compute fluctuations of the number of particles in a subdomain of volume V embedded
in a reservoir whose size goes to infinity. Thus, 〈Ni〉 is the average number of i-particles
inside V , or ρi = 〈Ni〉/V . go

ij(r12) is the multicomponent radial distribution function
(RDF) of the infinite system, with r12 = r2 − r1.

Let us recall that in computer simulations one considers systems with total fixed
number of particles N0 and volume V0 with PBCs. In this case we have [272]:

Gij(L,L0) = V

(〈NiNj〉′ − 〈Ni〉′〈Nj〉′
〈Ni〉′〈Nj〉′

− δij
〈Ni〉′

)
=

1

V

∫
V

∫
V

[gc
ij(r12)− 1] dr1 dr2 .

(6.24)
The finite-size KBI Gij(L,L0) is evaluated by computing fluctuations of the number

of particles in finite subdomains of volume V inside a simulation box of volume V0.
The average number of i-particles 〈Ni〉′ ≡ 〈Ni〉V,V0 depends on both subdomain and
simulation box volumes. Moreover, the integral on the r.h.s. of Eq. (6.24) should be
evaluated for the RDF of the finite system gc

ij(r12) with volume V0 by using a finite
integration domain V .

As has been done for the single component case, we include in this example both,
ensemble and boundary, finite-size effects. For the former the following correction has
been suggested [280]:

gc
ij(r) = go

ij(r)−
1

V0

(
δij
ρi

+G∞ij

)
, (6.25)
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based on the asymptotic limit gc
ij(r � ζ) = 1 − (δij/ρi + G∞ij )/V0 discussed in

Ref. [241]. As expected, when the total volume V0 → ∞ we recover gc
ij(r) = go

ij(r).
By including Eq. (6.25) in the integral on the r.h.s. of Eq. (6.24) and evaluating the
finite-size integral as for the single component case, we finally obtain:

λGij(λ) = λG∞ij
(
1− λ3

)
− λ4 δij

ρi
+
αij
L0

, (6.26)

with λ ≡ L/L0 and αij an intensive parameter with units of length. In the limit
L0 →∞ the following expression is obtained:

Gij(L,L0 →∞) = G∞ij +
αij
L
, (6.27)

that describes the finite-size effects on the KBIs for a system in the grand canonical
ensemble. Consistent with this limiting case in Eq. (6.26), Eq. (6.27) has been obtained
from the thermodynamics of small systems [281,282].

For the investigation of Eq. (6.26), we perform simulations for binary mixtures
(A,B) of Lennard-Jones (LJ) fluids. We use a purely repulsive 12-6 LJ potential
truncated and shifted with cutoff radius 21/6σ. The potential parameters are chosen as
σAA = σBB = σAB = σ, and εAA = 1.2ε, εBB = 1.0ε with εAB = (εAA + εBB)/2 = 1.1ε.
All the results are expressed in LJ units with energy ε, length σ, mass mA = mB = m,
time σ(m/ε)1/2, temperature ε/kB and pressure ε/σ3. As before, simulations are
carried out using ESPResSo++ [269] with a time step of δt/(σ(m/ε)1/2) = 10−3.
Constant temperature kBT = 1.2ε is enforced through a Langevin thermostat with
damping coefficient γ(σ(m/ε)1/2) = 1.0. The size of the system is N0 = 23328 in
the range of mole fractions of A-molecules xA = 0.1, · · · , 1.0. The pressure is fixed
at Pσ3/ε = 9.8 by adjusting the number density of the system at values around
ρσ3 ≈ 0.86 (or L0/σ ≈ 30). We perform equilibration runs of 64 · 106 MD steps and
production runs of 2 · 106 MD steps. To compute Gij(λ), we select 800 frames per
trajectory and for each frame identify 1000 randomly positioned subdomains with
linear sizes ranging from 2 < L/σ < L0/σ.

In Fig. 6.10, results for finite-size KBIs are presented for four mole fractions,
namely (a) xA = 0.20, (b) xA = 0.30, (c) xA = 0.50 and (d) xA = 0.80. Plots of GAB

(green circles) tend to zero when λ→ 1, as indicated by the horizontal green lines. By
contrast, GAA → 1/ρA (indicated by horizontal red lines) when λ → 1. The region
λ < 3, indicated by vertical black lines, is where simple linear regression is used to
find G∞ij and αij . By replacing such values in Eq. (6.26), we obtained the black curves
that, in all cases, superimpose on the simulation data for the full interval 0 < λ < 1.

The bulk KBIs are related to various thermodynamic quantities. For example, the
isothermal compressibility is given by [275]

κT =
1 + ρAGAA + ρBGBB + ρAρB(GAAGBB −G2

AB)

kBT (ρA + ρB + ρAρB(GAA +GBB − 2GAB))
, (6.28)

with ρA,B the number density of the corresponding species.



130

Article

Fluctuations, finite-size effects and the
thermodynamic limit in computer simulations:
revisiting the spatial block analysis method

Maziar Heidari 1, Kurt Kremer 1, Raffaello Potestio 1 and Robinson Cortes-Huerto 1,*
1 Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
* Correspondence: corteshu@mpip-mainz.mpg.de

Academic Editor: name
Version January 5, 2019 submitted to Entropy

0.0 0.2 0.4 0.6 0.8 1.0
-6.00

-4.00

-2.00

0.00

λ
G

ij
(λ
)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
-6.00

-4.00

-2.00

0.00

(b)

0.0 0.2 0.4 0.6 0.8 1.0
λ

-6.00

-4.00

-2.00

0.00

λ
G

ij
(λ
)

(c)

0.0 0.2 0.4 0.6 0.8 1.0
λ

-6.00

-4.00

-2.00

0.00

(d)

Figure 1. Scaled finite-size Kirkwood-Buff integrals λGij(λ) as a function of λ for different mole
fractions: (a) xA = 0.20, (b) xA = 0.30, (c) xA = 0.50 and (d) xA = 0.80, for mixtures described by a
TSLJ potential with rc/σ = 21/6. For clarity, only the cases GAA (red squares) and GAB (green circles)
are plotted. In the asymptotic case λ → 1, GAB → 0 and GAA → 1/ρA, as indicated by the horizontal
green and red lines, respectively. The black curves correspond to Eq. (??) with G∞

ij and αij obtained
from a simple regression analysis in the interval λ < 0.3.
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Figure 6.10. Scaled finite-size Kirkwood-Buff integrals λGij(λ) as a function
of λ for different mole fractions: (a) xA = 0.20, (b) xA = 0.30, (c)
xA = 0.50 and (d) xA = 0.80, for mixtures described by a TSLJ potential
with rc/σ = 21/6. For clarity, only the cases GAA (red squares) and GAB

(green circles) are plotted. In the asymptotic case λ → 1, GAB → 0
and GAA → 1/ρA, as indicated by the horizontal green and red lines,
respectively. The black curves correspond to Eq. (6.26) with G∞ij and αij
obtained from a simple regression analysis in the interval λ < 0.3.

Results for the isothermal compressibility obtained from the G∞ij values are pre-
sented in Fig. 6.11. Single component cases corresponding to systems composed by
only type-A and type-B particles are indicated by the horizontal black lines. As
expected, the system composed by strongly interacting particles, i. e. the type-A, has
a lower compressibility. The behaviour of the isothermal compressibility is nearly ideal
since it follows closely the relation κT = (1− xA)κBT + xAκ

A
T , with κAT ε/σ

3 = 0.012(1)
and κBT ε/σ

3 = 0.0281(8), as indicated by the solid black line.
Finally, the extrapolated KBIs have been used to compute the derivative of the

chemical potential of type-A particles with respect to the number density ρA using
the expression [275]:
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Figure 6.11. Isothermal compressibility at kBT = 1.20ε and Pσ3/ε = 9.8
as a function of the mole fraction of type-A particles xA for mixtures
described by a TSLJ potential with rc/σ = 21/6. The horizontal black
lines indicate the compressibility for a pure system of type-A particles
κAT ε/σ

3 = 0.012(1) and for a pure system of type-B particles κBT ε/σ
3 =

0.0281(8). The red line is a guide to the eye. The ideal case corresponds
to κT = (1− xA)κBT + xAκ

A
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1

kBT

(
∂µA
∂ρA

)
P,T

=
1

ρA
+

GAB −GAA

1 + ρA(GAA −GAB)
, (6.29)

that, as it has been done for the single component case, can be integrated to
obtain [245]:

δµA = kBT

∫ ρA

ρ0A

[
1

ρ′A
+

GAB −GAA

1 + ρ′A(GAA −GAB)

]
dρ′A . (6.30)

This is the chemical potential shifted by a reference chemical potential computed
at density ρ0

A [243, 279]. By removing the density and concentration terms of the
chemical potential of an ideal mixture, the excess chemical potential can be written
as:

δµexA = δµA − kBT ln(xA)− kBT ln(ρA) . (6.31)
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Figure 6.12. Excess chemical potential of type-A particles as a function
of the mole fraction xA for mixtures described by a TSLJ potential with
rc/σ = 21/6 at kBT = 1.2ε and Pσ3/ε = 9.8. Data points obtained with
the method in Ref. [93], in particular for xA = 0.3, are used as a reference
for the data points obtained with Eqs 6.30 and 6.31.

We compare the results obtained using Eqs 6.30 and 6.31 with the results obtained
with the SPARTIAN method [93] and use the excess chemical potential result from
xA = 0.3 to find the reference value. We present the results in Fig. 6.12 where a good
agreement between the two data sets is apparent. To conclude this section, it has
been shown that the block analysis method constitutes a robust strategy to compute
chemical potentials of liquids and mixtures in a wide range of density/concentration
conditions.

6.5 Summary and Concluding Remarks

In general, a direct comparison between a real system and a finite-size simulation is
prevented by the fixed and relatively small number of particles used in the latter. As it
has been encoded in the title of the paper, the spatial block analysis method employs a
clever combination of finite-size effects, ensemble and boundary, and density fluctuations
to extrapolate bulk isothermal compressibilities and Kirkwood-Buff integrals in the
thermodynamic limit.
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In this work, we have illustrated with prototypical Lennard-Jones liquids and liquid
mixtures the working mechanisms of the method. Upon identifying the relevant finite-
size effects and assessing their impact on the simulation results, we have intuitively
introduced an analytical expression connecting the fluctuations measured in a small
subdomain of the simulation box with the bulk isothermal compressibility for a single
component fluid.

Subsequently, the same analytical expression has been rigorously obtained from
a finite-size version of the Ornstein-Zernike integral equation. Using a challenging
system close to critical point conditions, we have tested the range of validity of the
method and obtained results in line with theoretical expectations.

Then, for a multicomponent system, we have applied the same protocol to the
Kirkwood-Buff integrals. Using the corresponding analytical expression it is possible
to obtain the Kirkwood-Buff integrals in the thermodynamic limit. In both, single and
multicomponent systems, the method allows one to compute the chemical potential
of a liquid/mixture for a wide range of density/concentration conditions, provided a
single reference chemical potential has been determined using a different computational
method. These results contribute to establish the spatial block analysis method as a
powerful tool to investigate systems where the accurate computation of the chemical
potential is of paramount importance.
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7. Conclusion

7.1 Summary

When I joined the theory group lead by Prof. Kremer in 2015, the Hamiltonian
adaptive resolution method had just been recently introduced. At the time, nearly two
years after the first H-AdResS publication, all the physical basis of the method were
fully established. However, there were two major technical aspects whose solution
became my project’s first goal. The first aspect concerns the treatment of electrostatic
interactions within H-AdResS. Before my thesis and for practical reasons, the method of
choice for the description of electrostatic interactions in adaptive resolution simulations
was the reaction field method. However, the strong requirement of a well-defined
dielectric constant around every charge centre and the daunting possibility of having
to modify the force field to reach the desired accuracy made us consider a more
robust method to describe electrostatics. The second aspect lies at the core of
the method, namely, concerns the possibility to efficiently calculate on-the-fly the
free energy compensations that otherwise required an additional, often cumbersome,
thermodynamic integration calculation.

The solution to both issues is the subject of Chapter 2. There, we have introduced
the damped shift force (DSF) potential as an accurate treatment of electrostatics in the
context of Adaptive Resolution Simulations. Compared with the long-ranged EWALD
summation-based scheme, the short-ranged DSF potential has been shown to accurately
reproduce the physical (structural and dynamical) properties of many charged systems.
Compared with other short-ranged representations such as Reaction Field (RF), the
DSF potential does not need to be pre-parametrized based on emergent properties of
the system, e.g. the dielectric constant, but contains only two free parameters instead.
Another limitation of the RF is that the dielectric constant is calculated under the
assumption that the medium is homogeneous, which does not always apply. Thus, we
have shown that the DSF method is ideally suited for dual-resolution simulations, and
we have demonstrated the validity of its implementation by performing simulations
of liquid water and comparing the structural and dynamic properties to a reference,
fully atomistic simulation. The accurate treatment of the Coulomb potential in the
context of adaptive resolution simulations without the need to re-parametrize the
atomistic force field paves the way to the efficient simulation of complex systems in
which electrostatic interaction is known to play a primary role, for instance ions in
solutions, ionic liquids, and nucleic acids. Finally, we have implemented the H-AdResS

method, with an on-the-fly calculation of the free energy compensations, in the LAMMPS
simulation package. Supplemented with the DSF method for Coulomb potential and
equipped with a detailed user guide, the new package provides a broad community
with an effective instrument to investigate soft and biological matter.
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Once these major technical points were addressed, I devoted my research efforts
to investigate and exploit the more fundamental analogy between H-AdResS and
thermodynamic integration methods. In the original H-AdResS papers, the free energy
compensation has been identified with the Gibbs (Helmholtz) free energy, provided
the density (pressure) of the whole system remains uniform throughout the simulation
box. By coupling a target atomistic system with a reservoir of thermalized, non-
interacting particles (ideal gas) it is possible to extract the excess (or residual) free
energy of the target system. This is the subject of Chapter 3, where we have presented
a method, spatially resolved thermodynamic integration, or SPARTIAN, aiming at
computing the chemical potential of liquids and liquid mixtures. First, we have
implemented a thermodynamically consistent coupling between the target system and
a reservoir of ideal gas particles using the hybrid region as an interface. In this hybrid
region, compensating free energies are computed and applied iteratively leading to a
uniform density profile for the whole system. Upon convergence of the free energy
compensations, the system reaches thermal equilibrium and the chemical potential
of both target system and ideal gas reservoir equate. Therefore, the free energy
compensations are identified with the difference in chemical potential between the two
representations, which is precisely the excess chemical potential of the target system.
We demonstrated the efficiency and general applicability of the SPARTIAN method by
computing the chemical potential of different liquids and mixtures such as pure and
multi-component Lennard Jones liquids, pure water, and aqueous solutions of sodium
chloride. The computed values of the excess chemical potential for all systems under
examination were consistent with the data reported in the literature. For dense liquids
and highly concentrated mixtures, the SPARTIAN method exceeds standard methods
based on test particle insertion algorithms. This is due to the fact that our approach
benefits from the larger statistical population of molecules in the hybrid region that
helps the convergence of statistical averages.

In chapter 4 we have demonstrated that within the context of the H-AdResS

framework it is possible to couple all-atom models to their corresponding ideal repre-
sentations not only for liquids but also for solids, i.e. ideal gas for liquids and ideal
Einstein crystal for solids. We have shown that such a coupling does not affect the
physical properties of the fully atomistic subdomain. As a matter of fact, we have
reported the excellent agreement of structural and dynamical quantities as computed
in both H-AdResS and fully atomistic simulations. The proposed coupling scheme
provides the conceptual and technical foundation for applications with important
consequences. Additionally, the computational cost of these simulations is reduced to
that of the high-resolution domain since the ideal gas/solid parts require a negligible
amount of force calculations. The size of the system can substantially increase thus
minimizing finite size effects and enabling the calculation of free energies for systems
composed of complex molecules. A particularly useful application of this solid and
liquid coupling to ideal representations concerns the calculation of chemical potentials
of complex molecular crystals, a topic of increasing relevance for its industrial and
pharmaceutical applications.
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In chapter 5, we have verified the Jarzynski equality in the context of multiscale
simulations of soft matter and used it to compute the absolute solvation free energy
of small molecules. In the proposed method, we have used the SPARTIAN method to
enforce a thermodynamically consistent coupling between an atomistic model of the
solvent and its ideal gas representation. We have shown that the smooth coupling
between the atomistic and ideal gas representations provides two end states obtained
through a thermodynamic integration path, i.e. the state in which the molecule is in the
atomistic region (solvated state) or in the non-interacting ideal gas region (unsolvated
state). We have used umbrella sampling and steered molecular dynamics on the solute
molecule and computed its solvation free energy using both equilibrium statistics
and non-equilibrium work-free-energy relations (Jarzynski equality, Crooks theorem).
The advantage of this strategy might become more prominent when it is intended to
compute the solvation free energy of large molecules. This can be accomplished, for
instance by initially inserting them in the ideal gas subregion and pulling them into
the atomistic domain. In this way, the solvation free energy of arbitrarily large and
complex molecules –from novel chemical compounds for pharmaceutical use to entire
proteins– becomes accessible.

Finally, in Chapter 6 we have presented the results of a side project that started
as a first approximation to perform simulations in the grand canonical ensemble
using the H-AdResS method. Following ideas developed from the Sixties until the late
Nineties, we have revisited the spatial block analysis method and used it to obtain
isothermal compressibilities and Kirkwood-Buff integrals in the thermodynamic limit
from relatively small-sized molecular dynamics simulations. By using thermodynamic
relations and comparing with our own SPARTIAN results, we have used such quantities
to calculate chemical potentials in a wide range of density/concentration conditions.

7.2 Outlook

In this thesis, we have presented the Hamiltonian adaptive resolution method in
a different light. Instead of focusing on the obvious computational advantage of the
method, we have introduced to the community an efficient and versatile method to
compute free energy differences for a large variety of systems. The method resembles
the thermodynamic integration method without the disadvantages resulting from test
particle insertion procedures. More advantages and drawbacks of the method will
be apparent only through a thorough application in many different and challenging
conditions.

One potential application revolves around the extension of the method to perform
molecular dynamics at constant chemical potential or to perform open boundary
molecular dynamics (grand canonical) simulations. There are various physical-chemical
processes in liquid solutions such as self-assembly, crystallization and growth which
are the subject of intense investigation in view of their wide spectrum of applications.
However, due to the limited computational resources, we are constrained to study
the small time and length scales of such processes thus dramatically impacting the
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obtained results. In the example of crystal growth, following the crystallization, the
solution is depleted and this substantially affects the growth process, because the
ensembles of solutions around the growing faces of the crystal are no longer at constant
chemical potential. In these situations, one can include a particle exchange algorithm
in H-AdResS to control the density of the component or equivalently the corresponding
chemical potential. Given the advances presented in this thesis, this could be an easy
and accessible task.

Another area for future research is to use the H-AdResS method to perform non-
equilibrium molecular dynamics in the presence of gradients of chemical potential.
Recently, the subject of diffusio-osmotic flows in liquid mixtures has received great
attention. These phenomena occur in proximity to a fluid-solid interface, when
gradients in the local solute concentration are induced. In the region far from the
interface, i.e. in a bulk fluid, a diffusion-based mechanism leads to a diffusive flux of
both components. However, close to an interface, due to the solute-wall interaction
which can adsorb or deplete the solute particles, the solute concentration is perturbed
and differs from that in the bulk. As a result, near the interface, the force balance
between the solvent and solute is broken and consequently the driving force results in
diffusio-osmotic flow [85, 86]. The molecular dynamics simulations of such phenomena
for the molecular liquids and dense regimes is challenging because as explained
thoroughly in chapter 3, performing particle exchange mechanism so as to change the
concentration and the local chemical potential in the fluid is very difficult. However,
one can take advantage of coupling fluid mixtures to ideal gas particles in the H-AdResS
scheme. Then, the desired value of the chemical potential can be easily imposed via a
particle exchange mechanism.
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SYMBOLS

m Mass
v Velocity
t Time
ps Pico-second
fs Femto-second
Å Angstrom
µ Micro
q Charge
kB Boltzmann constant
T Temperature
H Hamlitonian
K Kinetic energy
∆H Compensating energy
H∆ Compensated Hamlitonian
U Interacting potential
VAT Atomistic potential
VCG Coarse-grained potential
λ Switching function
F Helmholtz free energy
G Gibbs free energy
µex Excess chemical potential
µid Ideal chemical potential
Fth Thermodynamic force
Fdr Drift force
Q Canonical partition function
p Momenta in phase space
r Coordinates in phase space
W Work
ρ Density
ρ∗ Reference density
P Pressure
ε0 Vacuum permittivity
εRF Medium permittivity
Cvv Velocity auto-correlation function
σ Lennard-Jones length scale
ε Lennard-Jones energy scale
χT Isothermal compressibility
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ABBREVIATIONS

Abbreviation Meaning

AdResS Adaptive Resolution Simulation
AT Atomistic
BAR Bennett acceptance ratio
CFT Crooks fluctuation theorem
CG Coarse-grained
DSF Damped Shifted Force
FEC Free energy compensation
KB Kirkwood-Buff
KBI Kirkwood-Buff integral
HY Hybrid
H-AdResS Hamiltonian Adaptive Resolution Simulation
IEC Ideal Einstein crystal
IG Ideal gas
JC Joung and Cheatham
JE Jarzynski equality
LJ Lennard-Jones
MD Molecular Dynamics
MC Monte Carlo
MSD Mean-squared displacement
P3M Particle-Particle-Particle Mesh
PBC Periodic boundary condition
RC Real Crystal
RDF Radial distribution function
RF Reaction Field
SBA Spatial Block Analysis
SFE Solvation free energy
SPARTIAN Spatially resolved thermodynamic integration
TI Thermodynamic integration
TSLJ Truncated and shifted Lennard-Jones
VACF Velocity auto-correlation function
WCA Weeks-Chandler-Andersen
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CONTRIBUTIONS

The chapters 2, 3, 4 and 6 have been published as scientific research papers and
chapter 5 is a draft that has been submitted at the time of submission of this thesis.
These works are carried out in collaborations with colleagues from the Max Planck
Institute for Polymer Research, Mainz and the University of California, Davis. In the
following, we present in detail the individual contributions.

Chapter 2

The simulation setups were conceived by Maziar Heidari, Robinson Cortes-Huerto,
Davide Donadio and Raffaello Potestio. Maziar Heidari implemented H-AdResS in
the LAMMPS simulation package. Maziar Heidari and Robinson Cortes-Huerto ran
simulations and conducted the data analysis. The paper was written by Maziar
Heidari, Robinson Cortes-Huerto, Davide Donadio and Raffaello Potestio.

Chapter 3

The original idea was developed by Kurt Kremer, Robinson Cortes-Huerto, and
Raffaello Potestio. The simulation setups were conceived by Maziar Heidari, Kurt
Kremer, Robinson Cortes-Huerto, and Raffaello Potestio. Maziar Heidari performed
all SPARTIAN simulations and analyzed data and Robinson Cortes-Huerto ran TI
and Widom insertion simulations. The paper was written by Robinson Cortes-Huerto,
and Raffaello Potestio, incorporating critical comments from Kurt Kremer.

Chapter 4

The original idea of concurrent coupling of solids with ideal Einstein crystal
was developed by Maziar Heidari, Robinson Cortes-Huerto, Kurt Kremer, and Raf-
faello Potestio. The simulation setups were conceived by Maziar Heidari, Kurt
Kremer, Robinson Cortes-Huerto, and Raffaello Potestio. Maziar Heidari performed
all H-AdResS simulations and analyzed data. The paper was written by Maziar Heidari,
Robinson Cortes-Huerto, and Raffaello Potestio. Kurt Kremer provided insightful
ideas and help.
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Chapter 5

The original idea was developed by Raffaello Potestio and Kurt Kremer. The
simulation setups were conceived by Maziar Heidari, Kurt Kremer, Robinson Cortes-
Huerto, and Raffaello Potestio. Maziar Heidari performed all H-AdResS simulations
and analyzed the results of work distribution and umbrella sampling method. The
paper was written by Maziar Heidari, Robinson Cortes-Huerto, Raffaello Potestio and
Kurt Kremer.

Chapter 6

The study was conceived by Robinson Cortes-Huerto. Kurt Kremer, Raffaello
Potestio and Robinson Cortes-Huerto planned the computer simulations. Maziar
Heidari, Kurt Kremer, Robinson Cortes-Huerto, and Raffaello Potestio discussed the
results, helped with their interpretation and contributed to the final manuscript.
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[158] F. Moučka, I. Nezbeda, and W. R. Smith. Molecular simulation of aqueous elec-
trolytes: Water chemical potential results and gibbs-duhem equation consistency
tests. J. Chem. Phys., 139(12):124505, 2013.

[159] K. B. Daly, J. B. Benziger, P. G. Debenedetti, and A. Z. Panagiotopoulos.
Massively parallel chemical potential calculation on graphics processing units.
Comp. Phys. Comm., 183(10):2054 – 2062, 2012.

[160] D. A. Kofke and P. T. Cummings. Quantitative comparison and optimization
of methods for evaluating the chemical potential by molecular simulation. Mol.
Phys., 92(6):973–996, 1997.

[161] I. Nezbeda and J. Kolafa. A new version of the insertion particle method
for determining the chemical potential by Monte Carlo simulation. Mol. Sim.,
5(6):391–403, 1991.

[162] A. M. Ferrenberg and R. H. Swendsen. New Monte Carlo technique for studying
phase transitions. Phys. Rev. Lett., 61:2635–2638, Dec 1988.

[163] A. M. Ferrenberg and R. H. Swendsen. Optimized Monte Carlo data analysis.
Phys. Rev. Lett., 63:1195–1198, Sep 1989.

[164] A. M. Ferrenberg, D. P. Landau, and R. H. Swendsen. Statistical errors in
histogram reweighting. Phys. Rev. E, 51:5092–5100, May 1995.

[165] B. Widom. Some topics in the theory of fluids. J. Chem. Phys., 39(11):2808–2812,
1963.

[166] C. H. Bennett. Efficient estimation of free energy differences from Monte Carlo
data. J. Comput. Phys., 22(2):245 – 268, 1976.

[167] M. R. Shirts, E. Bair, G. Hooker, and V. S. Pande. Equilibrium free energies
from nonequilibrium measurements using maximum-likelihood methods. Phys.
Rev. Lett., 91:140601, Oct 2003.

[168] M. R. Shirts and V. S. Pande. Comparison of efficiency and bias of free
energies computed by exponential averaging, the Bennett acceptance ratio, and
thermodynamic integration. J. Chem. Phys., 122(14):144107, 2005.



156

[169] H. Paliwal and M. R. Shirts. A benchmark test set for alchemical free energy
transformations and its use to quantify error in common free energy methods.
J. Chem. Theory Comput., 7(12):4115–4134, 12 2011.

[170] R. W. Zwanzig. High-temperature equation of state by a perturbation method.
i. nonpolar gases. J. Chem. Phys., 22(8):1420–1426, 1954.

[171] D. Frenkel and A. J. C. Ladd. New Monte Carlo method to compute the free
energy of arbitrary solids. application to the fcc and hcp phases of hard spheres.
J. Chem. Phys., 81(7):3188–3193, 1984.

[172] M. Rossi, P. Gasparotto, and M. Ceriotti. Anharmonic and quantum fluctuations
in molecular crystals: A first-principles study of the stability of paracetamol.
Phys. Rev. Lett., 117:115702, Sep 2016.

[173] Z. Sun, X. Wang, and J. Song. Extensive assessment of various computational
methods for aspartate’s pka shift. J. Chem. Inf. Model, 57(7):1621–1639, 07
2017.

[174] M. Grünwald and C. Dellago. Ideal gas pressure bath: a method for applying
hydrostatic pressure in the computer simulation of nanoparticles. Mol. Phys.,
104(22-24):3709–3715, 2006.

[175] J. G. Powles, B. Holtz, and W. A. B. Evans. New method for determining
the chemical potential for condensed matter at high density. J. Chem. Phys.,
101(9):7804–7810, 1994.

[176] S. G. Moore and D. R. Wheeler. Chemical potential perturbation: Extension
of the method to lattice sum treatment of intermolecular potentials. J. Chem.
Phys., 136(16):164503, 2012.

[177] R.L. Rowley, T.D. Shupe, and M.W. Schuck. A direct method for determination
of chemical potential from osmotic molecular dynamics simulations. Fluid Phase
Equilib., 104:159 – 171, 1995.

[178] I. S. Joung and T. E. Cheatham. Determination of alkali and halide monovalent
ion parameters for use in explicitly solvated biomolecular simulations. J. Phys.
Chem. B, 112(30):9020–9041, 2008.

[179] T. C. Beutler, A. E. Mark, R. C. van Schaik, P. R. Gerber, and W. F. van
Gunsteren. Avoiding singularities and numerical instabilities in free energy
calculations based on molecular simulations. Chem. Phys. Lett., 222(6):529 –
539, 1994.

[180] M. Heidari, R. Cortes-Huerto, K. Kremer, and R. Potestio. Concurrent coupling
of realistic and ideal models of liquids and solids in Hamiltonian adaptive
resolution simulations. In Press.

[181] W. Kob and H. C. Andersen. Scaling behavior in the β-relaxation regime of a
supercooled Lennard-Jones mixture. Phys. Rev. Lett., 73:1376–1379, Sep 1994.

[182] J. Quintana and A. D. J. Haymet. The chemical-potential of water - molecular-
dynamics computer-simulation of the cf and spc models. Chem. Phys. Lett.,
189(3):273–277, Feb 1992.



157

[183] J. Sauter and A. Grafmüller. Predicting the chemical potential and osmotic
pressure of polysaccharide solutions by molecular simulations. J. Chem. Theory
Comput., 12(9):4375–4384, 2016.

[184] A. Ben-Naim and Y. Marcus. Solvation thermodynamics of nonionic solutes. J.
Chem. Phys., 81:2016–2027, 1984.

[185] K. Z. Takahashi. Truncation effects of shift function methods in bulk water
systems. Entropy, 15(8):3249–3264, 2013.

[186] D. Zahn, B. Schilling, and S. M. Kast. Enhancement of the
Wolf Damped Coulomb potential: Static, dynamic, and dielectric properties
of liquid water from molecular simulation. J. Phys. Chem. B, 106(41):10725–
10732, 2002.

[187] G. Fanourgakis. An extension of wolf’s method for the treatment of electrostatic
interactions: Application to liquid water and aqueous solutions. J. Phys. Chem.
B, 119(5):1974–1985, 2015.

[188] R. P. Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21(6):467–488, Jun 1982.

[189] D. Frenkel and J. P. Hansen. Understanding liquids: a computer game? Physics
World, 9(4):35, 1996.

[190] W. F. van Gunsteren and A. E. Mark. Validation of molecular dynamics
simulation. J. Chem. Phys., 108(15):6109–6116, 1998.

[191] W. G. Hoover. 50 Years of Computer Simulation – a Personal View. ArXiv
e-prints, December 2008.

[192] A. Mulero, editor. Theory and Simulation of Hard-Sphere Fluids and Related
Systems, volume 753 of Lecture Notes in Physics. Springer, Berlin, Heidelberg,
2008.

[193] R. E. Caflisch, G. Ceder, K. Kremer, T. Pollock, M. Scheffler, and E. G. Wang,
editors. Focus on Novel Materials Discovery. Focus on collections. New J. Phys.,
2014.

[194] M. Karplus. Molecular dynamics simulations of biomolecules. Accounts of
Chemical Research, 35(6):321–323, 2002. PMID: 12069615.

[195] A. Prez, F. J. Luque, and M. Orozco. Frontiers in molecular dynamics simulations
of DNA. Accounts of Chemical Research, 45(2):196–205, 2012. PMID: 21830782.

[196] P. Ballone. Modeling potential energy surfaces: From first-principle approaches
to empirical force fields. Entropy, 16(1):322–349, 2014.

[197] U. R. Pedersen, F. Hummel, G. Kresse, G. Kahl, and C. Dellago. Computing
gibbs free energy differences by interface pinning. Phys. Rev. B, 88:094101, Sep
2013.
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