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We investigate the dark matter phenomenology of a Dirac fermion together with kinetic mixing in the context
of an Lµ−Lτ model. We analyze which part of the parameter space can provide a viable dark matter candidate
and explain the B-decay anomaly, while obeying current data. Although the allowed region of parameter space,
satisfying these requirements, is still large at the moment, future direct detection experiments like XENONnT
and DARWIN will, in case of null results, significantly strengthen the limits and push the model to a corner of
the parameter space.

I. INTRODUCTION

Precise measurement of the cosmic microwave background
(CMB) radiation has greatly impacted our understanding
of the universe. In particular, it has shown that 27% of the
energy budget of our universe is comprised of dark matter
(DM) [1] whose nature remains a mystery [2–4]. The success
of the CMB and Big Bang Nucleosynthesis suggests thermal
equilibrium as a fundamental guiding principle. Therefore,
it is plausible to assume that dark matter particles were also
in thermal equilibrium with the Standard Model particles
in the early universe. This key assumption implies, for the
DM, a thermal annihilation cross section at the weak scale
which has been intensively probed via indirect detection
experiments [5–9]. In this work, we assess this thermal dark
matter production in the context of the Lµ − Lτ symmetry.

Extensions of the Standard Model (SM) involving the
difference of the lepton numbers such as the Lµ − Lτ gauge
group are automatically anomaly free [10, 11]. Since this
symmetry does not act on the the first generation of leptons,
the model can potentially explain the anomaly observed
concerning the muon anomalous magnetic moment [12, 13]
without being subject to the strong limits from the Large
Electron-Positron (LEP) collider [14]. Many other phe-
nomenological studies have been carried out in the context of
the Lµ−Lτ symmetry focusing on flavor anomalies [15–25],
neutrino [26–29] or collider physics [30–36]. In this work,
we are mainly interested in the dark matter phenomenology.
In [37] feebly interacting particles were investigated as dark
matter, while in [38, 39] Weakly Interacting Massive Particles
(WIMPs) were the candidates. In the latter, the authors
discussed a model where there was no Z −Z ′ kinetic mixing.
In [40–42] different incarnations of the Lµ − Lτ symmetry
were addressed.

Our work differs from previous studies because we in-
troduce a kinetic mixing parameter which is expected to be
present since it is gauge invariant and there is no reason for
it to be neglected. Even if one sets it to zero at tree level it
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can be generated at 1-loop [43–45]. This crucial point leads
to a different dark matter phenomenology because now the
dark matter candidate can annihilate into all SM fermions and
gauge bosons and scatter off nuclei at tree-level.

We take the opportunity to assess whether this model can
also address the anomaly observed in the LHCb data concern-
ing the rare decay of B-mesons [46] (B → K∗µ+µ−). This
anomaly observed in LHCb data by [46] has been confirmed
by several independent studies [47–49] including a new one
from LHCb [50] which also hints at new signatures such
as lepton flavor non-universality [51]. These findings are
furthermore supported by global analyses [52–59].

In summary, our model is complementary and differs from
previous works because it takes into account kinetic mixing
and tries to address the LHCb anomaly while successfully
hosting a fermionic dark matter particle (see [42, 60–63] for
attempts to address simultaneously both of these issues in
different models).

Our works is structured as follows: In Section II we de-
scribe the model, in Section III we derive the relevant inter-
actions for our phenomenology, in Section IV we address the
existing bounds on a Z ′ gauge boson arising from gauging the
Lµ−Lτ symmetry, in Section V we present our numerical re-
sults concerning dark matter and the B-decay anomaly, before
concluding.

II. THE MODEL

In this paper we investigate a kinetically mixed Lµ − Lτ
symmetry [39, 64]. In addition to the Standard Model (SM)
terms, the model includes interactions of the new Ẑ ′ gauge
boson and a kinetic mixing term

Lkin mix = − sin(ε)

2
B̂µνẐ

′µν , (1)

where the hats on the gauge fields denote that they are in the
mixed basis and the kinetic mixing parameter sin(ε) appears.
The coupling of the newU(1)′ gauge boson to the SM is deter-
mined by the covariant derivative Dα = ∂α − ig̃qLµ−Lτ Ẑ ′α,
with coupling strength g̃ and charge qLµ−Lτ of the particle
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under the U(1)Lµ−Lτ gauge group, leading to

L`Z′ = g̃
(
¯̀
2γ
α`2 − ¯̀

3γ
α`3 + µ̄Rγ

αµR − τ̄RγατR
)
Ẑ ′α,

(2)
with `2/3 denoting the left-handed lepton doublets of the sec-
ond and third generation. This can be rewritten in the useful
form

L`Z′ = q`g̃ (µ̄γαµ− τ̄ γατ + ν̄µγ
αPLνµ − ν̄τγαPLντ ) Ẑ ′α,

(3)
with the projection operator PL := 1

2 (1 − γ5) and we
included an additional factor q` accompanying the g̃ in case
the symmetry of the new U(1)′ is a multiple of Lµ − Lτ .

Dark Matter is introduced, in this setup, by considering a
new particle charged under the new U(1)

′
symmetry, which

also guarantees its stability, while being a SM singlet. One
simple possibility is to consider a vector-like Dirac fermion
χ. Its coupling to the Ẑ ′ is described by the following La-
grangian:

Ldark = qχg̃χ̄γ
µχẐ ′µ, (4)

with charge qχ of the DM under the new gauge group. While
it would be intriguing to consider a dynamical generation of
the DM mass mχ from the spontaneous breaking of the U(1)

′

symmetry, we will postpone it to future study and just regard
mχ as a free parameter here.

Transforming to the standard kinetic terms and diagonaliz-
ing the mass matrix [65, 66], we find for the relation of the
gauge fields in the mixed basis to the physical fields (using
the shorthand notation for trigonometric functions)

Ŵ+/−
µ = W+/−

µ

Âµ = Aµ − ĉW tεsαZµ − ĉW tεcαZ ′µ
Ẑµ = (cα + ŝW tεsα)Zµ + (ŝW tεcα − sα)Z ′µ

Ẑ ′µ =
sα
cε
Zµ +

cα
cε
Z ′µ.

(5)

Furthermore, the diagonalization yields for the masses

m2
Z′/Z =

1

2
m̂2
Z +

m̂2
Z ŝ

2
W s

2
ε + m̂2

Z′

2c2ε

±

√(
1

2
m̂2
Z +

m̂2
Z ŝ

2
W s

2
ε + m̂2

Z′

2c2ε

)2

− 1

c2ε
m̂2
Zm̂

2
Z′

(6)

and the relations of the mixing angle α and the masses

c2α =
m̂2
Z −m2

Z′

m2
Z −m2

Z′
and cαsα =

m̂2
Z ŝW tε

m2
Z −m2

Z′
. (7)

From these equations, we can derive the useful identities

t2α = − m̂2
Z ŝW s2ε

m̂2
Z′ − m̂2

Z(c2ε − s2ε ŝ2W )
, (8)

for the mixing angle, and

m2
Z = m̂2

Z(1 + ŝW tαtε) (9)

and

m2
Z′ =

m̂2
Z′

c2ε(1 + ŝW tαtε)
, (10)

for the physical masses. Furthermore, we can define r :=
mZ′
mZ

, in our case r > 1, and use Eqs. (7) and (9) to get

tα =
−r2 + 1 +

√
(r2 − 1)2 − 4ŝ2W t

2
εr

2

2ŝW tεr2
, (11)

where the sign in front of the square root is determined by the
fact that we want tα → 0 for ε → 0. For a realistic set of
parameters this can be approximated to an accuracy of better
than 1 ‰ by

tα ≈ −
ŝW tε
r2 − 1

. (12)

III. INTERACTIONS, CROSS-SECTIONS AND DECAY
WIDTH

Using the relations in Eq. (5), we can determine the inter-
actions of the SM states and the DM in the physical basis. In
this basis the DM features interactions both with the Z and
the Z

′
boson given by:

Ldark = gχZ χ̄γ
µχZµ + gχZ′ χ̄γ

µχZ ′µ, (13)

where we defined

gχZ :=
sα
cε
gχ,

gχZ′ :=
cα
cε
gχ,

(14)

with gχ := qχg̃.
The interaction of the SM fermions with the physical pho-

ton are left invariant by the change of basis, hence they read:

LA = êf̄γµQAµf, (15)

where we can make the identification ê = e (cf. [65]) and
Q is the electric charge of the fermion f . The same holds
true for the W , which as well has unaltered charged current
interactions. Concerning the neutral current interactions we
have:

LNC,Z = f̄γµ
(
gfZLPL + gfZRPR

)
fZµ,

LNC,Z′ = f̄γµ
(
gfZ′LPL + gfZ′RPR

)
fZ ′µ.

(16)

While for the case of quarks and first generation leptons these
couplings depend only on SM parameters as well as the mix-
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ing parameters ε and α:

gfZL :=
e

ŝW ĉW
cα[T3(1 + ŝW tεtα)−Q(ŝ2W + ŝW tεtα)],

gfZR := − e

ŝW ĉW
cαQ(ŝ2W + ŝW tεtα),

gfZ′L :=
e

ŝW ĉW
cα[T3(ŝW tε − tα) +Q(ŝ2W tα − ŝW tε)],

gfZ′R :=
e

ŝW ĉW
cαQ(ŝ2W tα − ŝW tε),

(17)

there are additional contribution from Eq. (3) in the case of
second and third generation leptons, so that:

gµ/τZL := − e

2ŝW ĉW
cα[(1 + ŝW tεtα)− 2(ŝ2W + ŝW tεtα)]

± g`
sα
cε
,

gµ/τZR :=
e

ŝW ĉW
cα(ŝ2W + ŝW tεtα)± g`

sα
cε
,

gνµ/τZL :=
e

2ŝW ĉW
cα(1 + ŝW tεtα)± g`

sα
cε
,

gνµ/τZR := 0,

(18)

for theZ, where the plus sign refers to the muon and the minus
sign to the tau, while for the Z ′ boson we have:

gµ/τZ′L := − e

2ŝW ĉW
cα[(ŝW tε − tα) + 2(ŝ2W tα − ŝW tε)]

± g`
cα
cε
,

gµ/τZ′R := − e

ŝW ĉW
cα(ŝ2W tα − ŝW tε)± g`

cα
cε
,

gνµ/τZ′L :=
e

2ŝW ĉW
cα(ŝW tε − tα)± g`

cα
cε
,

gνµ/τZ′R := 0,

(19)

where we have introduced g` := q`g̃.
Gauge self interactions can be straightforwardly deter-

mined by realizing that all terms that appear for the photon
Aµ are also there for the Zµ with an additional prefactor of
ĉW
ŝW

. This, together with

Âµ +
ĉW
ŝW

Ẑµ = Aµ +
ĉW
ŝW

cαZµ −
ĉW
ŝW

sαZ
′
µ, (20)

shows that the photon gauge interactions do not change, while
the Z ′ interactions get weighted by a factor of cα and also
appear for the Z ′ weighted by a factor of −sα. This leads for
the relevant three point interactions to

LVWW = gZWW [[ZWW ]] + gZ′WW [[Z ′WW ]], (21)

where we abbreviated [[VWW ]] ≡ −i[(∂µW+
ν −

∂νW
+
µ )W−µV ν − (∂µW

−
ν − ∂νW−µ )W+µV ν + 1

2 (∂µVν −
∂νVµ)(W+µW−ν −W−µW+ν)], and defined

gZWW :=
e

t̂W
cα,

gZ′WW := − e

t̂W
sα.

(22)

The last relevant kind of interactions are the ones with the
Higgs, represented by

LhV V =
1

2
gZZhhZµZ

µ+
1

2
gZ′Z′hhZ

′
µZ
′µ+gZZ′hhZµZ

′µ,

(23)
where we defined

gZZh :=
e

ŝW ĉ2W
c2αmW (1 + ŝW tεtα)2,

gZ′Z′h :=
e

ŝW ĉ2W
c2αmW (ŝW tε − tα)2,

gZZ′h :=
e

ŝW ĉ2W
c2αmW (ŝW tε + ŝ2W t

2
ε tα − tα − ŝW tεt2α).

(24)

This concludes the list of relevant interactions and it is worth
mentioning that we neglected four point interactions for the
Higgs and gauge self interactions, since they are not relevant
at tree level for the processes we take into account.

χ

χ̄

`

¯̀

Z ′
χ

χ̄

f

f̄

Z

χ

χ̄

Z

Z

χ

χ

χ̄

Z

h

Z ′

χ

χ̄

W

W

Z ′

Figure 1. Feynman diagrams that contribute to the relic density cal-
culation. The first diagram accounts for s-channel annihilation via
the Z′ into leptons charged under Lµ−Lτ ; the second arises via the
Z−Z′ kinetic mixing allowing dark matter to annihilate into all SM
fermions; the third represents the t-channel annihilations into Z Z,
Z Z′ or Z′Z′ pairs; the forth and fifth also resulted from the Z −Z′

mixing and deal with annihilations into W W and Z h.

With the interactions at hand we can now compute the dark
matter annihilation cross section and the decay width of the
new Z ′ boson. The Feynman diagrams for the possible dark
matter annihilation channels are depicted in Fig. 1.

For the dark matter annihilation we adopted the conven-
tional velocity expansion, 〈σv〉 ' a+ bv2, retaining only the
leading order term, thus getting relatively simple analytical
expressions:
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〈σv〉χχ→ff =
Nc
2π
m2
χ

√
1−

m2
f

m2
χ

[
(g2fL + g2fR)

(
1−

m2
f

4m2
χ

)
+

3

2
gfLgfR

m2
f

m2
χ

]
,

〈σv〉χχ→W+W− =
1

π
m2
χg

2
W

(
1− m2

W

m2
χ

) 3
2

[
m4
χ

m4
W

+ 5
m2
χ

m2
W

+
3

4

]
,

〈σv〉χχ→ZZ =
g4χZ

16πm2
χ

(
1− m2

Z

m2
χ

) 3
2
(

1− m2
Z

2m2
χ

)−2
,

〈σv〉χχ→ZZ′ =
g2χZg

2
χZ′

8πm2
χ

(
(m2

Z −m2
Z′)

2

16m4
χ

+ 1− m2
Z +m2

Z′

2m2
χ

) 3
2
(

1− m2
Z +m2

Z′

4m2
χ

)−2
,

〈σv〉χχ→Zh =
1

8π
g2h

√
1−

m2
h +m2

Z

2m2
χ

+

(
m2
h −m2

Z

4m2
χ

)2
[

1 +
1

2

m2
χ

m2
Z

(
1− m2

h −m2
Z

2m2
χ

+

(
m2
h −m2

Z

4m2
χ

))]
,

(25)

where the decay χχ → Z ′Z ′ is identical to the one to ZZ
only with everyZ replaced byZ ′ and for the decay χχ→ Z ′h
in comparison to the one to Zh one has to replace Z by Z ′ and
vice versa (also in gh). The factor Nc accounts for particle
multiplicity, i.e. the different colors of the quarks. To be able

to display the expressions in a more compact way we defined

gfL :=
gχZgfZL

4m2
χ −m2

Z

+
gχZ′gfZ′L
4m2

χ −m′2Z
,

gfR :=
gχZgfZR

4m2
χ −m2

Z

+
gχZ′gfZ′R
4m2

χ −m′2Z
,

gW :=
gχZgZWW

4m2
χ −m2

Z

+
gχZ′gZ′WW

4m2
χ −m′2Z

,

gh :=
gχZgZZh

4m2
χ −m2

Z

+
gχZ′gZ′Zh
4m2

χ −m′2Z
.

(26)

Similar calculations for the Z ′ decay width lead to

ΓZ′→χχ =
g2χZ′

6π

√
m2
Z′

4
−m2

χ

(
1 + 2

m2
χ

m2
Z′

)
,

ΓZ′→ff =
Nc
12π

√
m2
Z′

4
−m2

f

[(
g2fZ′L + g2fZ′R

)(
1−

m2
f

m2
Z′

)
+ 6gfZ′LgfZ′R

m2
f

m2
Z′

]
,

ΓZ′→W+W− =
g2ZWW

192π
mZ′

(
mZ′

mW

)4(
1− 4

m2
W

m2
Z′

) 3
2
[
1 + 20

m2
W

m2
Z′

+ 12
m4
W

m4
Z′

]
,

ΓZ′→hZ =
g2ZZ′h

48πm3
Z′

√
(m2

h +m2
Z −m2

Z′)
2 − 4m2

hm
2
Z

[
2 +

1

4

(
mZ′

mZ
+
mZ

mZ′
− m2

h

mZmZ′

)2
]
.

(27)

Now that we have derived the relevant interactions for our
model, we present the bounds on the parameter space as sum-
marized in the next section.

IV. BOUNDS ON THE MODEL PARAMETERS

In this section we will, besides the LHC bounds, address
two constraints that refer to electroweak precision and neu-

trino trident production. They restrict three key parameters
in our study namely, the kinetic mixing, the Z ′ mass and the
Lµ−Lτ gauge coupling. We begin with electroweak precision
which is imprinted on the ρ parameter.
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A. Electroweak Precision

To relate the ρ parameter to the model, however, we will
need to make a small detour and have a closer look at the
weak mixing (or Weinberg) angle first. Since it is the angle
that determines the rotation from the Ŵ 3

µ and B̂µ to the Ẑµ
and Âµ fields, it is affected by the diagonalization of the Z-
Z ′-sector. Therefore, there are two weak mixing angles. One
is the usual one from the SM defined by

ĉW =
m̂W

m̂Z
, (28)

and is denoted with a hat since it belongs to the mixed ba-
sis. The other one is the physical weak mixing angle (the one
measured in a lab), which is conventionally defined as [65]

s2W c
2
W =

πα(mZ)√
2GFm2

Z

, (29)

where α(mZ) is the weak coupling constant at the Z-pole and
GF is the Fermi constant. The Eq. (29) holds also in the mixed
basis with sW → ŝW , cW → ĉW and mZ → m̂Z , so we
get [65]

s2W c
2
Wm

2
Z = ŝ2W ĉ

2
W m̂

2
Z . (30)

Using Eq. (9) we find

s2W c
2
W =

ŝ2W ĉ
2
W

1 + ŝW tαtε
, (31)

which leads to a relation of ŝW and sW by plugging in the
approximation of Eq. (12) and c2W = 1−s2W . Since for ε→ 0
we want ŝW = sW , we get

ŝ2W ≈
1

2

1 +
s2W t

2
ε

r2 − 1
− s4W t

2
ε

r2 − 1
−

√(
1 +

s2W t
2
ε

r2 − 1
−

s4W t
2
ε

r2 − 1

)2

− 4(s2W − s4W )

 . (32)

This relation enables us to determine ŝW from the model
parameters sε and mZ′ and the experimentally determined
quantities sW and mZ . To get a better idea of how ŝW quali-
tatively behaves we can expand this expression in ε around 0
to get

ŝ2W ≈ s2W
(

1− s2W c
2
W ε

2

(c2W − s2W )(r2 − 1)

)
+O(ε4), (33)

however we will continue to work with the more exact
expression.

With this knowledge at hand we can derive a limit on the
mixing angle from the measurement of the ρ-parameter. By
definition we have

ρ =
m2
W

m2
Zc

2
W

, (34)

which can with mW = m̂W and Eq. (30) be rewritten to

ρ =
m̂2
W

m̂2
Z ĉ

2
W

s2W
ŝ2W

=
s2W
ŝ2W

(35)

because the first fraction is by definition of ĉW identical to
one (cf. Eq. (28)). Together with Eq. (32) for ŝ2W , this enables
us to determine a limit on sε depending on the value of mZ′ -
by using the PDG16 values [67]. In addition to the limit from
the ρ parameter, we can also use the limit form electroweak
precision tests (EWPT) [68](

tε
0.1

)2(
250 GeV
mZ′

)2

<∼ 1. (36)

Both of these limits are shown in Fig. 2 and one can see that
except for a small interval below mZ′ ∼ 130 GeV the bound
from EWPT is stronger.

Figure 2. Maximal possible kinetic mixing parameter depending on
the mass of the new gauge boson mZ′ . In blue the limit from the 2σ
upper bound of the ρ parameter is shown, while in red the limit from
EWPT [68] is depicted.

This already shrinks the parameter space of the model by
limiting the possible values for the kinetic mixing parameter.
We will move on to neutrino trident production, which will
allow us to constraint the Z ′ mass and the gauge coupling.
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B. Neutrino Trident Production

Neutrino trident production refers to the scattering of a neu-
trino off a heavy nucleus where a pair of muons is produced in
the final state [64, 69] (the leading Z ′ contribution is shown in
Fig. 3). If this process can, in addition to Z interactions, also
happen via Z ′ interactions to the neutrinos and muons, the
expected rate changes compared to the SM. For this reason,
neutrino trident production is a perfect laboratory to probe the
Lµ − Lτ symmetry. The process has been measured and due
to the reasonable agreement with SM predictions one can use
this observation to constrain muonic forces such as the one
present in the Lµ − Lτ model. This has been carried out
in [70], where a lower mass bound of mZ′ > 540 GeVgl
was found. The corresponding bound is shown as a hatched
region in the figures. Only one coupling appears in this lower
mass bound because the Z ′ couples with equal strength, gl, to
the leptons. Furthermore, the analysis in [70] also shows that
it is not possible for a heavy Z ′ (MZ′

>∼ 400 MeV) to explain
the muon g−2 discrepancy within an Lµ−Lτ model without
kinetic mixing. This should remain true also after including
kinetic mixing, since none of the relevant couplings is signifi-
cantly suppressed or enhanced because the mixing parameter
is restricted to be small (cf. Fig. 2).

ν ν

µ

µ

N N

Z ′

µ

γ

Figure 3. Feynman diagram for the leading Z′ contribution to neu-
trino trident production.

C. B-Anomaly and LHC bounds

Over the last few years anomalies have been observed in
rare B meson decays hinting at new physics [71]. There are
uncertainties surrounding the SM prediction for these decays,
but global fits seem to favor new physics effects in the b →
sµµ transitions [54, 55]. Describing this using effective field
theory, the data favor CNP9 ' −1.07, where the coefficient
rescales the effective Lagrangian

LNP =
−4GFαem√

24π
CNP9 [VtbV

∗
ts(s̄γαPLb)(µ̄γ

αµ)] . (37)

If we add this effective term to our model in the attempt
to explain the LHCb anomaly, we automatically also alter
the Bs − B̄s mixing amplitude as predicted by the SM and
which has been measured. Allowing the deviation from the
SM prediction to lie within 15% [72, 73], the upper bound

mZ′ < 4.9 TeVgl(−1.07/CNPp ) is found [39].

Having in mind the bound we presented stem-
ming from neutrino-trident production, we conclude
that the favored region to explain the B-anomaly is
540 GeV < mZ′/ gl < 4.9 TeV. This band is labeled
as B anomaly in the figures.

Due to the kinetic mixing, the Z ′ features couplings with
quarks and can hence be resonantly produced in proton-
proton collisions. Among the possible decay final states
the strongest constraints are provided by the searches for
dilepton final states. We have translated the limits from
most recent searches [74, 75] into excluded regions in the
two-dimensional plane (mZ′ ,mχ) for some assignations
of the parameters sε, gl, gχ. The limits are strongest for
mZ′ < 2mχ, while otherwise they are weakened by the
presence of the “invisible” decay branching fraction for the
Z ′ into DM pairs.

These are not the only relevant bounds for the model. The
other limits are related to dark matter searches, which we will
address below.

Figure 4. Exclusion plot of the Z′ mass mixing model for a kinetic
mixing parameter of sε = 0.1 and couplings of g` = 1 and gχ = 1.
The black curve marks the parameter points with the correct relic DM
density. The red area is excluded by XENON1T and the orange and
green area show the reach of XENONnT and DARWIN. The hatched
region is excluded by neutrino trident production, the gray region up
to the dashed line is ruled out by dilepton searches at the LHC and
the blue region is favored by measurements of B meson anomalies.
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Figure 5. Exclusion plot of the Z′ mass mixing model for a kinetic
mixing parameter of sε = 0.1 and couplings of g` = 0.1 and gχ =
0.1. The black curve marks the parameter points with the correct
relic DM density. The red area is excluded by XENON1T and the
orange and green area show the reach of XENONnT and DARWIN.
The hatched region is excluded by neutrino trident production, the
gray region up to the dashed line is ruled out by dilepton searches at
the LHC and the blue region is favored by measurements of B meson
anomalies.

V. DARK MATTER PHENOMENOLOGY

In this section we address the dark matter phenomenology
of our model in the presence of a fermionic dark matter
particle in the context of the WIMP miracle [76] whose
interactions are dictated by the gauge symmetry Lµ −Lτ and
the kinetic mixing parameter.

The first key observable to be discussed is the dark matter
relic density which can be computed using the thermally
averaged annihilations cross sections given in Sec. III as a
first approximation and away from the Z ′ resonance. While
the velocity expansion is very useful for illustration, it is
not valid in some potentially relevant regimes [77], like the
mχ ∼ mZ′/2 resonance region. For this reason, our results
are based on a more rigorous numerical treatment performed
by implementing the model in the micrOMEGAs package
[78]. In this way we have derived the relic density curve
shown in the figures with a solid black curve by finding the
parameter space that yields ΩDMh

2 = 0.12 as measured by
the PLANCK collaboration [1] 1.

1 We have assumed thermal freeze-out throughout and ignored any non-
standard cosmology effects [79, 80]

After checking that our fermionic DM candidate can
achieve the experimental determined abundance, we need
to asses whether it also obeys the restrictive limits from
direct detection experiments [81–94]. Regardless of the null
results, these experiments have played a crucial role in our
understanding of dark matter properties since they have ruled
out several dark matter models by limiting the maximal dark
matter nucleon scattering cross-section.

In our model, the dark fermion scatters off nuclei at tree-
level via the Z − Z ′ mixing. The Feynman diagram for this
process is the t-channel version of the second diagram in Fig. 1
with either a Z or a Z ′ as mediator. Therefore, our model
is subject to bounds stemming from direct detection experi-
ments. The relevant limits come from spin-independent (SI)
interactions and are usually expressed as upper limits on the
scattering cross section of the DM on protons, as function of
its mass. This upper limit should be compared with the theo-
retical prediction:

σSI(χp→ χp) =
1

π
µ2
χ,pf

2
p

[
Z + (A− Z) fnfp

]2
A2

. (38)

where µχ,p =
mχmp
mχ+mp

. fp and fn represent the effective cou-
plings of the DM with, respectively, protons and neutrons, and
are given by:

fp =
gχZ (2(guZL + guZR) + (gdZL + gdZR))

4m2
Z

+
gχZ′

(
2(guZ′L + guZ′R) + (gdZ′L + gdZ′R)

)
4m

′ 2
Z

fn =
gχZ ((guZL + guZR) + 2(gdZL + gdZR))

4m2
Z

+
gχZ′

(
(guZ′L + guZ′R) + 2(gdZ′L + gdZ′R)

)
4m

′ 2
Z

. (39)

Note that, while the theoretical scattering cross-section of
the DM on protons would just read 1

πµ
2
χ,Nf

2
p , we need to

introduce, for a direct comparison with the experimental limit,

the factor
[
Z + (A− Z) fnfp

]2
/A2. Indeed, once converting

the limits on the DM scattering rate on nuclei into limits
on the scattering cross-section of the DM on protons, it is
conventionally assumed that the DM interacts with the same
strength with protons and nucleons. This is assumption is
not valid for the model under consideration; consequently we
had to introduce a normalization factor for the cross-section
in order to achieve a proper comparison with experimental
constraints (see e.g. [95] for more details).

The strongest limits on the spin-independent dark matter-
nucleon scattering cross section are given by XENON1T [88],
while a slightly weaker constrained is provided by PANDA-X
[91] (all these experiments are based on Xenon detectors,
hence Z = 54, while we have adopted A = 131). Given
the similarity of the limits we will refer to them as a unique
curve labeled XENON1T. We will also present the projected
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limits from XENONnT [96] and DARWIN [97] which use
the same material and readout techniques. Notice that these
exclusion limits have been determined by assuming that the
experimental value of the DM local density is always adopted
in computing the DM scattering rate on the various detectors.
This implies the implicit assumption that the DM candidate
under consideration is the only DM component of the Uni-
verse and features the correct relic density ΩDMh

2 = 0.12
irrespective of the parameters of the theory. In other words
we are assuming that, outside the contours corresponding to
the correct relic density according to the WIMP paradigm,
the correct DM abundance is accommodated, for example,
by some non thermal production mechanism or, possibly,
modified cosmological history of the Universe.

An important observable related to the dark matter relic
density is the dark matter annihilation cross section. Indirect
detection experiments such as Fermi-LAT, AMS-02, and
H.E.S.S. and CTA provide stringent bounds on the dark
matter annihilation cross section [98–101]. However, these
bounds are generally more relevant for dark matter masses
below ∼ 100 GeV in agreement with [5, 102–105]. There-
fore, for the parameter space this work is focused on, indirect
detection is left aside.

In the following, we present exclusion plots for the model
for a variety of parameter choices. They are supposed to give
an impression of where in the parameter space the model is
still viable. The constraints are due to the fact that we want
to get the correct dark matter relic density while still being
compatible with dark matter direct detection experiments,
neutrino trident production and dilepton searches at the LHC.
In all exclusion plots the black curve shows the points in the
parameter space that reproduce the correct DM relic density -
with the area in between having a too small one and outside it
is too large - and the colored regions show the excluded area
due to the direct detection experiment limits - with the red
area being excluded by XENON1T, the orange area giving
the reach of XENONnT and the green area the projected
sensitivity of DARWIN. In blue we overlay the region in
which the B anomaly could be potentially addressed using
the effective description aforementioned. The hatched region
refers to neutrino trident production limits (ν trident) and the
dashed line to LHC dilepton searches.

There are several aspects that are apparent in the plots
shown in Figs. 4, 5 and 6. The most effective bounds are by
far the ones from XENON1T and LHC searches of dilepton
resonances. The latter, in particular, provide for sε = 0.1
the strongest exclusion limits. This can be understood
from the fact that even if the production cross section is
moderately suppressed by the kinetic mixing parameter, the
direct coupling of the Z ′ with the muons enhances its decay
branching fractions into dileptons. The production cross
section of the Z ′ becomes nevertheless rapidly suppressed as
sε decreases. For sε = 0.01 the exclusion bound becomes
indeed sub-dominant with respect to the one from neutrino
trident production.

Figure 6. Exclusion plot of the Z′ mass mixing model for a kinetic
mixing parameter of sε = 0.01 and couplings of g` = 1 and gχ = 1.
The black curve marks the parameter points with the correct relic DM
density. The red area is excluded by XENON1T and the orange and
green area show the reach of XENONnT and DARWIN. The hatched
region is excluded by neutrino trident production, the gray region up
to the dashed line is ruled out by dilepton searches at the LHC and
the blue region is favored by measurements of B meson anomalies.

Nevertheless, regions of the parameter space which can
reproduce the correct relic density, compatible with exclusion
bounds, are present. Notice that in Figs. 4 and 6 we have used
gχ = 1 while in Fig. 5 we adopted gχ = 0.1. Having that
in mind, when mχ > mZ′ and gχ is sufficiently large, the
t-channel annihilation into Z ′Z ′ drives the annihilation rate
and for this reason the relic density curves in Figs. 4 and 6
exhibit a similar behavior. This fact allows one to have Z ′

masses below 1 TeV in agreement with direct detection data
while still reproducing the correct relic density.

Furthermore, XENONnT and DARWIN will rule out sig-
nificant parts of the parameter space (XENONnT leads to a
roughly three times larger limit on the Z ′ mass for the same
DM mass and DARWIN excludes even more). A small g`
makes it harder to reproduce the correct DM relic density (one
needs to be “more resonant”), while not giving an advantage
in terms of direct detection bounds. Also, a small gχ helps to
evade direct detection bounds, but makes it harder to get the
correct DM relic density (a small kinetic mixing parameter is
better in that regard). Moreover, one can notice that in Figs. 4
and 6 one can simultaneously accommodate dark matter and
the B anomaly for TeV dark matter. When the dark matter par-
ticle is sufficiently heavy the t-channel annihilation into Z ′Z ′

opens up changing the shape of the relic density curve while
not suffering from strong limits from direct detection. For this
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reason our setup favors heavy dark matter, different to what
occurred in [39]. Anyways, it is clear that in case we continue
to observe no signal of dark matter scattering, the next gener-
ation of experiments will restrict the model to live in a corner
of the parameter space.

VI. CONCLUSION

In this work we have investigated the Dark Matter phe-
nomenology in a Lµ − Lτ extension of the SM, allowing
in addition for kinetic mixing between the new Z ′ and
the SM Z boson. We have compared the requirement of
correct relic density, according to the WIMP paradigm,
with constraints/prospects from DM direct searches and
collider searches for the new Z ′ boson. Furthermore, we have
examined whether the considered setup can account for the
B anomaly, within the allowed parameter space from DM
phenomenology.

We revisited limits on theLµ−Lτ model such as those from

neutrino trident production and concluded that the most com-
petitive constraint comes from DM direct detection, which can
probe even relatively small values of the kinetic mixing pa-
rameter. Larger values of the kinetic mixing parameter are
restricted most strongly by LHC dilepton searches. For order
1 values of the gauge coupling gl associated to the new gauge
symmetry, it is possible to account for the B anomaly compat-
ibly with the correct DM relic density and still evading limits
from DM Direct Detection. Next generation experiments, like
XENONnT and DARWIN will noticeably reduce the region
where dark matter and the B anomaly are simultaneously ac-
counted for, in case of null results.
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