
ar
X

iv
:1

80
6.

02
07

5v
1 

 [
cs

.C
R

] 
 6

 J
un

 2
01

8

Extended Diffix

Paul Francis† Sebastian Probst-Eide§ Paweł Obrok§

Cristian Berneanu§ Saša Jurić§ Reinhard Munz†

†Max Planck Institute for Software Systems (MPI-SWS), Germany
§Aircloak GmbH, Germany

{francis, munz}@mpi-sws.org, {sebastian, sasa, pawel, cristian}@aircloak.com

Abstract

A longstanding open problem is that of how to get

high quality statistics through direct queries to databases

containing information about individuals without reveal-

ing information specific to those individuals. Diffix is a

new framework for anonymous database query that adds

noise based on the filter conditions in the query. A pre-

vious paper described Diffix for a simplified query se-

mantics. This paper extends that description to include

a wide variety of common features found in SQL. It de-

scribes attacks associated with various features, and the

anonymization steps used to defend against those attacks.

This paper describes the version of Diffix used for bounty

program sponsored by Aircloak starting December 2017.

1 Introduction

Diffix is a new approach to anonymized database query

that adds noise to answers, but does so in a way that takes

into account the filter conditions of the query. In doing

so, it minimizes the amount of noise needed to strongly

protect the anonymity of individuals in the database, and

eliminates the need for the budget that is found in sys-

tems based on differential privacy. A previous paper [10]

motivated and described Diffix as applied to a simple

query language: one that allowed only the query condi-

tions WHERE column = value and WHERE NOT column =

value in a simple SQL SELECT.

This paper extends the query semantics in [10] to

include a wide variety of SQL features including sub-

queries, JOIN, GROUP BY and HAVING, LIKE, IN, and a va-

riety of math, string, and datetime functions. In so do-

ing, this paper substantially increases the utility of the

system, but also substantially increases the size of the at-

tack vector. This paper describes many new attacks that

are possible because of the expanded semantics, and the

subsequent defenses.

For the most part, this paper does not require knowl-

edge of [10]. On occasion this paper uses text from [10]

without attribution.

Note that this paper descibes the version of Diffix that

was used for the bounty program sponsored by Aircloak

and described at challenge.aircloak.com. This paper was

previously distributed at that URL in December of 2017.

This ArXiv reference may in particular be used by au-

thors who wish to publish their attacks.

2 A brief history of anonymization

As early as the mid-1800’s, confidentiality of individuals

in the U.S. census became a concern [11]. The census bu-

reau for instance started removing Personally Identifying

Information (PII) like names and addresses from publicly

available census data. Over the ensuing decades, the bu-

reau increasingly used a variety of techniques to mitigate

the possibility that micro-data or tabulated data would

allow individuals in the data to be identified. These tech-

niques include rounding, adding random noise to values,

aggregation, cell suppression, cell swapping, and sam-

pling among others [11].

In the 1950’s, the bureau started using computers to

tabulate data, and by the 1960’s anonymization tech-

niques like those described above were being auto-

mated [11]. Computers introduced the ability for analysts

to ”cross-tabulate” data (set filter conditions on queries).

This tremendously increased an analyst’s ability to ana-

lyze the data, but also opened the possibility that an an-

alyst could isolate an individual by specifying a set of

query conditions that uniquely identify that individual.

For instance, suppose that an analyst happens to know

the birthday, zip code, and gender of someone (the vic-

tim). Using SQL as our working query language, the an-

alyst could generate for instance the following query:

1

http://arxiv.org/abs/1806.02075v1


Intersection Attack Section 2
Averaging Attack Sections 2, 6.9

Chaff Attack Section 2, 5.2.4, 6.7, 6.9, 6.11, 6.14

Equations Attack Sections 2, 5.2.3

Split Averaging Attack Section 5.2.1

Difference Attack Section 5.1, 6.9, 6.10, 6.11

Backdoor Attack Section 6

Figure 1: Summary of Attacks

SELECT count(*)

FROM table
WHERE bday = ’1994-02-05’ AND

gender = ’M’ AND

zip = 12345

If the answer is 1, then the analyst knows that the vic-

tim is indeed the only individual in the dataset with those

attributes. Given this, the analyst can learn anything else

about the individual. For instance, to learn salary the an-

alyst could make the following query:

SELECT salary, count(*)

FROM table

WHERE bday = ’1994-02-05’ AND

gender = ’M’ AND

zip = 12345

GROUP BY salary

which would return the salary of the victim.

The basic defense against this, deployed in the 1960’s,

was to set thresholds which required that a certain num-

ber K of individuals must be present in aggregated data

for the aggregate to be released. This K-threshold mech-

anism, however, does not prevent individuals from being

isolated.

The central problem is the intersection attack. By way

of example, imagine a database that only returns answers

that pertain to more than K = 4 individuals. Suppose that

an analyst makes two queries, one for the number of peo-

ple in the CS department, and one for the number of men

in the CS department:

SELECT count(*) SELECT count(*)

FROM table FROM table
WHERE dept = ’CS’ AND WHERE dept = ’CS’

gender = ’M’

Suppose that there are 34 people in the CS department

and 33 of them are men. Since both of these numbers are

greater than K = 4, the database returns the answers. The

analyst can trivially conclude that there is one woman

in the CS department even though the database would

have refused to provide that answer directly. Armed with

this knowledge, the analyst can then learn more about the

woman. For instance, the analyst can query for the sum

of salaries of all people in the CS department and the sum

of salaries of all men in the CS department, and by taking

the difference determine the salary of the woman:

SELECT sum(salary) SELECT sum(salary)

FROM table FROM table

WHERE dept = ’CS’ AND WHERE dept = ’CS’

gender = ’M’

The earliest publication we could find that identifies

the intersection attack is by the statistician Fellegi in

1972 [9]. In 1979, it was shown that even an analyst with

no prior knowledge about the contents of a K-threshold

database that gives exact answers can infer substantial

information about individual users using the intersection

attack [4]. It was also shown that one way to prevent the

intersection attack is to distort answers unpredictably, for

instance by randomly rounding user counts up or down

to a value divisible by five [9, 8] or removing random

rows from the set of rows returned by the database [3].

One problem with this approach arises if the analyst

has the ability to make an unlimited number of queries

to the database. If so, the analyst can remove the noise

through averaging: causing a given answer to be re-

peated, each with a new noise sample, and taking the

average value. We refer to this attack as the averaging

attack.

To defend against this, Denning et.al. proposed seed-

ing the random number generator with values taken from

the query itself. The idea here is that the same query

would then produce the same noise. We refer to this gen-

eral concept of causing noise to repeat as sticky noise.

The problem with this particular sticky noise solution,

which indeed the authors recognized, is that the ana-

lyst can still average out the noise by generating mul-

tiple different queries that all produce the same result,

for instance by adding conditions that don’t effect the

answer like WHERE age < 1000. Systems that rely on in-

terpretation of the query syntax, of which Diffix is one,

must defend against this sort of attack. We refer to syntax

changes that do not result in a change of answer as chaff,

and refer to this kind of attack as a chaff attack.

Even in cases where answers cannot be repeated, how-

ever, noise may be removed from data. In 2003, Dinur

and Nissim showed that the true values of cells in a

database may be determined with high confidence even

where no query is repeated [5]. They do so by formulat-

ing a set of queries where each query selects a different

but overlapping set of rows from the database, and com-

putes a noisy sum. They then generate a set of simultane-

ous equations from the queries, and solve for the values.

We refer to this attack as an equations attack.

Two big ideas in data anonymity research are K-

anonymity [12] and differential privacy [6]. Neither pro-

vides enough utility to be generally and practically us-

able. The idea behind K-anonymity is that data values

are aggregated to the point where any given combination

of attributes has at least K distinct individuals sharing

the attribute values. Thus any given individual is “hid-

2



den” in a group of at least K individuals. The problem

is that applying K-anonymity to all columns destroys

the value of the data [2]. Applying K-anonymity to only

some columns (i.e. those that can be used to identify the

individual), as envisioned by Sweeney, still leaves much

data unprotected.

Differential privacy, in a nutshell, protects data by

adding random noise. Ultimately it defends against av-

eraging and equations attacks by limiting the number of

noisy answers that may be reported to an analyst. This

noise budget severely limits the utility of differential pri-

vacy. The only two operational deployments of differ-

ential privacy that we are aware of, by Google [7] and

Apple [13], both effectively operate with unbounded pri-

vacy loss.

3 Definition and measure of anonymity

The EU Article 29 opinion on anonymity [1], which

serves as the basis for evaluating anonymity in the EU

GDPR (General Data Protection Regulation), defines

three essential risks to anonymization: singling out, link-

ability, and inference. Article 29 defines these three risks

as follows:

Singling out: which corresponds to the possi-

bility to isolate some or all records which iden-

tify an individual in the dataset;

Linkability: which is the ability to link, at

least, two records concerning the same data

subject or a group of data subjects (either in the

same database or in two different databases). If

an attacker can establish (e.g. by means of cor-

relation analysis) that two records are assigned

to a same group of individuals but cannot sin-

gle out individuals in this group, the technique

provides resistance against “singling out” but

not against linkability;

Inference: which is the possibility to deduce,

with significant probability, the value of an at-

tribute from the values of a set of other at-

tributes.

We base our definition of anonymity on these risks,

not just because these definitions are used by practition-

ers, but also because 1) we find them to make sense in-

tuitively, and 2) we can formulate tests that measure the

risks. These definitions, however, imply an anonymiza-

tion system that retains the notion of a “record”. Dif-

fix does not anonymize the dataset per se, but rather

anonymizes answers to queries on the dataset: the analyst

does not have direct access to the dataset and its records

(Figure 2). We therefore modify these definitions to fit

Diffix’s operational model as follows.

�������� �����	


���

���������


���

����� ���������

����

������

������

Figure 2: Diffix acts as an SQL proxy to an unmodified

database

We define singling out as occurring when an analyst

correctly makes a statement of the form “There is exactly

one user that has these attributes.” For instance, the ana-

lyst may claim that there is a single user with attributes

[gender = ’male’, age = 48, zipcode = 48828, lastname

= ’Ng’]. If this is true, then the analyst has correctly sin-

gled out that user. The attributes dont need to be per-

sonal attributes as in this example. If the analyst correctly

claims that there is a single person with the geo-location

attributes [long = 44.4401, lat = 7.7491, time = ’2016-

11-28 17:14:22’], then that person is singled out.

We define linkability in the context of a second dataset

(the linkability dataset) that has some users in common

with the dataset behind Diffix (the protected dataset). In

other words, for some fraction of rows in the linkability

dataset, there are rows in the protected dataset that be-

long to the same user.

Assuming that the analyst has full access to the link-

ability dataset, linkability occurs when an analyst cor-

rectly makes a statement of the form “this user or set of

users in the linkability dataset also exist in the protected

dataset.”

We define inference in the context of a second dataset

(the inference dataset) which is identical to the protected

dataset, but where one or more cells in the inference

dataset are masked (the values are unknown to the ana-

lyst). Other than this masking, the analyst has full access

to the inference dataset.

Inference occurs when an analyst correctly makes a

statement of the form “the value of this masked cell in

the inference dataset is X”.

Of course, some fraction of an analyst’s claims may be

incorrect. This leads to the notion of confidence, which is

defined as the ratio of correct claims to all claims. If 95%

of an analysts claims are correct, then the confidence of

the attack is 95%. Confidence improvement (or just im-

provement for short) is the improvement in the analysts

confidence over a statistical guess.

By way of example, suppose that roughly 90% of the

users in the database have zipcode = 48828, and that the

analyst knows this. Suppose also that the analyst has ex-

ternal knowledge that there is a single user with the at-

3



tributes [gender = ’male’, age = 48, lastname = ’Ng’].

The analyst could simply claim that this users zipcode =

48828, and the analyst would have 90% confidence in the

claim. But this does not improve on a statistical guess,

and so Diffix has not leaked additional information with

respect to the inference. The improvement is therefore

zero.

We measure confidence improvement as κ = (C −
S)/(1− S), where C is the analysts confidence, and S is

the statistical probability. So for example if the analyst

were, through some attack on Diffix, to improve their

confidence from 90% to 95%, then the confidence im-

provement would be κ = 0.5 (or 50%).

The inference and linkability datasets imply some

amount of externally derived prior knowledge. Our mea-

sure of the quality of Diffix’ anonymity accounts for this

prior knowledge. Prior knowledge may be gained from

external data sources, or the analyst may literally know

portions of the database, for instance because a database

that the analyst has full access to has been joined with

other databases to form the protected database.

We define P as the number of cells an analyst knows

as prior knowledge, where a cell is a single value in

the database (the value at a single column and row). Of

course a cell may itself be a complex object with mul-

tiple values, but for our purposes we don’t worry about

that. For singling out and inference attacks, we define L

as the number of cells an analyst learns. For linkability

attacks, we define L as the number of row linkages the

analyst learns.

This allows us to define α = L/(P+ 1) as a value that

expresses the strength of Diffix’ anonymization (or that

of any anonymization scheme) with respect to the ana-

lyst’s prior knowledge. 1 is added to the denominator to

avoid divide-by-zero.

Of course when an analyst “learns” something, it is

with a certain confidence improvement κ . Therefore, we

characterize the strength of an anonymization scheme

with both parameters (α,κ). This strikes us as a reason-

able though still flawed way for a privacy stakeholder, for

instance a Data Protection Officer (DPO), to think about

the value of an anonymization scheme. For instance, sup-

pose that a given system has (α = 10e− 6,κ = 0.9). This

means that an attacker must know a million things in or-

der to learn one thing with a 90% confidence improve-

ment. The DPO might or might not regard this as an ac-

ceptable risk, but at least the DPO will have some rea-

sonable sense of the risk.

The reality of course is more complex. It may well be

that knowing certain cells makes the system more attack-

able than knowing other cells. For instance, knowing all

of a column that on its own isolates many users may be

better for an attacker than knowing all of a column that

isolates no users. It may also be that, given certain prior

knowledge, certain cells are easier to learn than others.

The sensitivity of the easier-learned cells may also be a

factor.

What’s more, an (α,κ) score can only really be mea-

sured with respect to some specific attack. A DPO might

therefore know be told something like “if an analyst

knows columns A and B, and does a foobar attack,

then he can learn things about column C with (α =
10e− 7,κ = 0.85)”.

Note that our immediate purpose for defining (α,κ) is

in order to assign monetary payoffs in a bug bounty chal-

lenge. With respect to this paper at least, (α,κ) conveys

a sense of how we think about measuring anonymity.

3.1 Limitations on GDPR anonymity crite-

ria

Singling out: By our definition, a user is singled out even

if an analyst makes a claim about a single cell value, as

long as that value isolates the user and is not prior knowl-

edge. There are cases, however, where the analyst may

exploit specific patterns in the column data to make suc-

cessful claims without in fact violating privacy in any

meaningful way.

Common among these is the case where uid’s are as-

signed sequentially. Since the analyst knows that each

uid is distinct, it is quite easy using Diffix to deter-

mine that the uid’s have been sequentially assigned, and

roughly what the low and high uid values are. Given this,

the analyst could make a series of singling out claims that

there is one user with uid = 1, one user with uid = 2, and

so on. Intuitively, we regard this as not violating privacy

because it tells us nothing specific about the singled out

user—one user could have a given uid as easily as the

next.

We have no precise definition of when exploiting such

predictable patterns in data are and are not privacy vio-

lating. For now we have to take these on a case-by-case

basis.

Exposure of strings (security versus privacy):

It may be a security violation that any string in a

database is revealed. For instance, if a column contains

passwords, then it would likely be a security violation

that any password is revealed, even if many users hap-

pen to have the same password. Neither Diffix nor the

GDPR criteria for anonymity account for this require-

ment. If such a column exists in a database, then it must

be removed or made inaccessible by Diffix.

4 Assumptions and terminology

Our system setup consists of an analyst that queries a

database via Diffix (Figure 2). The database is concep-

tually a single table organized as rows and columns. The

4



columns may be of any type, so long as there are equal-

ities and inequalities defined for the type (e.g. column =

value or column < value) returning TRUE or FALSE.

The database holds “raw” data: no perturbation on the

values in the database is assumed, and no columns need

be removed1, for instance those containing personally

identifying information like names.

We refer to the entity whose privacy is being protected

as the user. The user may well be a device like a smart-

phone or a vehicle or even an organization. We require

that each database table with individual user data has a

column containing user identifiers. This is typically noth-

ing more than the Primary Key or Foreign Key in the re-

lational database. By convention we call this column the

uid. We assume that every distinct user has one and only

one distinct uid. A user may of course have more than

one row.

The database may change over time. However, to pro-

tect anonymity in the face of changes, all changes to the

database must be timestamped, and all queries must have

a time range associated with the query. Note that as of

this writing, our implementation of Diffix does not have

mechanisms to ensure this.

Diffix must be configured to know 1) which column

contains the timestamps, and 2) which column contains

the uid’s. No other data-specific configuration is re-

quired. Critically, the system operator need not under-

stand the semantics or sensitivity of any other columns.

This paper assumes that each database table has only

a single uid column, and that any given row contains in-

formation only about the user identified by the uid. This

precludes certain data structures for social network data.

For instance a row identifying both the sender and recip-

ient of a message is disallowed. Rather, such a message

would have to be encoded as two rows, one for the sender

and one for the recipient.

Diffix has no specific mechanisms to deal with perfect

correlations between columns among groups of users. If

such correlations exist, and there is a risk that an ana-

lyst knows of the correlation, then the amount of noise

must be increased in proportion to the size of the corre-

lated group. For instance, if 10 people in a geolocation

database travel together as a group, then to protect the

privacy of all users in the group the noise must be in-

creased 10x. The noise amount is statically configured

and applies to all answers.

An analyst may make an unlimited number of queries.

This paper does not address timing or other side-

channel attacks.

1 The exception is columns that are a security risk as opposed to a

privacy risk, as with the password column example.

5 Basic Design

A query may have zero or more filter conditions (or just

conditions). The conditions determine which rows of the

database comprise a given answer. A query may have

one or more anonymizing aggregation functions. In our

current implementation, these include count, sum, avg,

stddev, min, max, and median.

The query produces a response that consists of one or

more columns, and zero or more rows or buckets. For

example, the following query has two conditions (dept

and salary), and one anonymizing aggregation function

(count(*)). The response has two columns (salary and

count(*)), and multiple buckets (response rows), where

each bucket corresponds to a given salary. The dept con-

dition excludes any database rows that don’t have a de-

partment of ’CS’, and the salary condition excludes any

database rows from each bucket that do not have the

salary corresponding to that bucket.

SELECT salary, count(*)

FROM hrtable

WHERE dept = ’CS’

GROUP BY salary

Diffix distorts responses it two ways:

1. It may change the aggregation function’s true value.

2. It may suppress buckets.

The change in aggregation function value is normally

due in part to added pseudo-random noise taken from

a Gaussian distribution. It may also in part be because

of other mechanisms such as removing outliers from the

input data (where input data here refers to the input of

the aggregation function, see Figure 3). Bucket suppres-

sion happens when the input data for any given bucket

has too few distinct users. For example, a bucket for the

salary $100K that has a true value of 20 users may report

a noisy value of 22 users. A bucket for the salary $450K

that has only a single user will be completely suppressed.

5.1 Sticky Layered Noise

The key concept in Diffix is that of sticky layered noise.

Diffix’ noise is layered in that a bucket is not distorted by

a single noise sample, but rather by the sum of multiple

noise samples, where each sample is related to a condi-

tion.

Diffix controls how a noise sample is generated

by how it seeds the Pseudo-Random Noise Generator

(PRNG): the same seed produces the same noise sam-

ple. Exactly how a seed is produced depends on the type

of condition, but the general idea is to take aspects of the

condition itself (the column name, the value, the opera-

tor), combine them with a secret salt, and use that as the

seed.

5



�����

����	


������
�������

��������������

���������

�����������

�������

����������

���������

�����


���

������

�������

 ���!���������

��������

�����

�����


���

�"����!��

������

�����������

������

����

Figure 3: An analyst query selects data from a database

based on filter conditions in the query. The database out-

put serves as the input data to an anonymizing aggre-

gation function. Noise is computed based on input from

both the query and the input data.

In fact Diffix has two ways of seeding, or said differ-

ently, Diffix has two types of noise. We refer to these as

static and dynamic noise. Static noise defends against av-

eraging attacks, and dynamic noise defends against dif-

ference attacks (described further in this section).

As an example, the seed for the static noise layer asso-

ciated with the condition WHERE dept=’CS’ in the above

query is generated as2:

static_seed =

XOR(hash(concat(’hrtable’,’dept’,’CS’)),salt)

The difference between static and dynamic noise lay-

ers is that dynamic noise layers additionally include the

distinct set of uid’s for the users whose rows comprise

a given bucket. As such, the seed for the dynamic noise

layer for the same condition would be:

dynamic_seed =

XOR(static_seed,hash(uid1),hash(uid2),...)

Thus static noise layers are static in the sense that the

same condition generates the same noise no matter what

query it appears in, whereas a dynamic noise layer for

a given condition will differ as long as the set of users

in the bucket differ. For example, the static noise lay-

ers for dept=’CS’ in the following two queries are the

same, while the dynamic noise layers will differ from

each other so long as there are CS members younger than

30 or older than 40.

SELECT count(*) SELECT count(*)

FROM hrtable FROM hrtable

WHERE dept = ’CS’ AND WHERE dept = ’CS’

age BETWEEN 30 AND 40

2This is slightly simplified, see Section 6.5.

SELECT count(*) SELECT count(*)
FROM table FROM table

WHERE dept = ’CS’ AND WHERE dept = ’CS’ AND

age = 20 age <> 20

Figure 4: One pair of queries from a split averaging at-

tack to learn exact count of people in the CS dept. Sub-

sequent query pairs use age=21,22,...

For queries that count distinct users, the standard de-

viation of each noise layer is σ = 1. As a result, a single

noise layer taken alone introduces a fair amount of un-

certainty as to the exact value of a distinct user count,

and multiple noise layers even more so.

5.2 Attacks

With sticky layered noise, the simple averaging attack of

Section 2 doesn’t work because the noise doesn’t change

with each repeated bucket. The following sections ex-

plore additional attacks.

5.2.1 Split Averaging Attack

At this point one might suppose that noise needs to be

sticky to prevent the averaging attack, but not necessarily

layered. Here we describe a more sophisticated variant

of the averaging attack, called the split averaging attack

that justifies the need for layers.

In the split averaging attack, the analyst produces the

pair of queries shown in Figure 4.

The sum of the counts of the two queries gives the

number of users in the CS department, plus noise (here

assuming that there is one row per distinct uid). Now

repeat the pair of queries, this time using age=21 and

age<>21. This produces the same sum, but with different

queries. The pairs can be repeated with age=22,23,24,

and so on.

If noise were sticky but not layered, then each indi-

vidual query would have a different noise sample be-

cause each query is different. With enough samples, the

noise could be averaged away and a high-confidence ex-

act count produced. Given exact counts, the analyst could

then for instance carry out an intersection attack [4].

With static noise layers, however, the attack doesn’t

work. Each query has two static noise values: one based

on the condition dept=’CS’, and one based on the age

condition (age=XX or age<>XX). The age-based noise

value changes with each query, and so could be averaged

away. The dept=’CS’ static noise, however, is always the

same and is not averaged away. The final averaged count

would be perturbed by the dept=’CS’ static noise layer.

6



SELECT salary, count(*) SELECT salary, count(*)
FROM table FROM table

WHERE dept = ’CS’ AND WHERE dept = ’CS’

gender = ’M’ GROUP BY salary

GROUP BY salary

Figure 5: Difference attack to learn the isolated woman’s

salary

5.2.2 Difference Attack

The split averaging attack explains the need for static

noise layers, but not for dynamic noise layers. Indeed in

the split averaging attack, all of the dynamic noise layers

differ, even the one for dept=’CS’, because each bucket

has a different uid set. Therefore they can also be av-

eraged away and so don’t help defend against the split

averaging attack. The following attack, called the differ-

ence attack, justifies the need for dynamic noise layers.

For this attack, suppose that an analyst happens to

know that there is only a single woman in the CS depart-

ment. Let’s call her the victim. The analyst could form

the two queries shown in Figure 5.

Both queries produce a histogram of salary counts.

The left query definitely excludes the victim from all an-

swers. The right includes the victim only in the bucket

that matches her salary. We refer to this as isolating the

victim. Suppose we take the difference in the count be-

tween each bucket pair (two buckets representing the

same salary). If we only had static noise layers, then this

difference would be the same for every pair of buckets for

a salary other than that of the victim. This is because the

only difference between each such pair would the static

noise layer for gender=’M’, which is always the same.

However, the bucket pair representing the victim’s salary

would have an additional difference: the count of the vic-

tim herself. As a result, to discover the victim’s salary,

the attacker only needs to observe which bucket pair has

a unique difference.

The dynamic noise layer defends against this attack.

Because the set of uid’s differs between pairs of buckets,

the difference in noise between each pair also differs. As

a result, many pairs would exhibit a different difference,

and the attacker would not know with certainty if the dif-

ference is due to a different count, or due to the dynamic

noise layer.

5.2.3 Equations Attack

The equations attack from Section 2 requires that the

amount of noise (the standard deviation of the noise)

added to each sum be well below a certain threshold.

We assume here that the equations attack also requires

that each query has enough conditions to select the spe-

cific rows required by the attack: for each selected row,

the query has to specify the set of attribute values that

uniquely identify that row. Each such attribute value re-

quires a condition, and each condition adds additional

noise to the sum. Leaving out the details, in our exper-

iments we found that the equations attack fails because

too much noise is added to each sum.

5.2.4 Chaff Attacks

Section 2 briefly described a chaff attack on the simple

sticky noise mechanism of Denning et.al. [3]. Because

Denning’s sticky noise is based on the entire query, the

attack only requires the addition, for instance, of a con-

dition that has no effect on the rows in a bucket, i.e.

age<>1000, age<>1001 etc. This specific simple chaff at-

tack does not work with sticky layered noise because

the additional condition only creates an additional noise

layer, and doesn’t affect the other noise layers.

The attack on Denning’s sticky noise operates by

changing the semantics of the query conditions, and ex-

ploits the fact that the semantic change happens not to ef-

fect the query result. A chaff attack that simply changes

the syntax of the query would also work on Denning.

For instance, the attacker could make a set of queries

each with syntactically different but semantically iden-

tical conditions like age=50, age+1=51, age+2=52 and so

on.

Whether semantic or syntactic chaff attacks work on

Diffix depends entirely on what syntax is allowed in a

query, and on how noise layers are computed from that

syntax. The Diffix design in [10] specified a very sim-

ple syntax, allowing only conditions of the form column

operator constant, where the operators were limited

to =, <>, >, <, >=, and <=. No math, string or datetime

functions, union semantics (OR), or JOIN’s among other

things were allowed. Those constraints prevented syntac-

tic chaff attacks: the semantics of a given query were

always clear and sticky layered noise defended against

semantic chaff attacks (to the best of our knowledge).

The design of Diffix in this paper allows a much richer

subset of SQL, and therefore a much larger attack vector

for chaff attacks. Chaff attacks are informally (and in-

completely) addressed in other parts of this paper.

5.3 Bucket Suppression

Learning the strings or values that exist in a database is

very useful. Simply listing a column’s values, however,

violates singling out when any of the values belong to a

single user. Therefore we wish to suppress any response

where a value represented by a single user.

A simple mechanism for this would be to have a

threshold for the number of distinct users that comprise

a given bucket below which the bucket is suppressed.

7



We need to take care, however, that the suppression or

lack thereof doesn’t itself constitute a signal that might

allow an analyst to obtain individual user information.

For instance, a simple hard threshold, whereby all buck-

ets with fewer than exactly K distinct users is suppressed,

can leak the presence of absence of a specific user in the

case where the analyst knows that there are either K or

K − 1 users with a given value. This Kth user is singled

out in this case.

To avoid this, we use what we call a noisy thresh-

old. This is a threshold whose value for any given

bucket comes from a Gaussian distribution around a

mean threshold. The noisy threshold used for bucket sup-

pression, which we refer to as the low-count threshold,

operates as follows.

If the number of distinct uid’s in the bucket is less than

Th = 2, then suppress the bucket. Otherwise, seed a sticky

noise value Tn with mean µ = 4 and standard deviation

σ = 0.5 using the distinct uid’s from the bucket:

seed = XOR(salt,hash(uid1), hash(uid2), ...)

If the number of distinct uid’s in the bucket is less than

Tn, then suppress the bucket.

These specific values for µ , σ , and Th are a matter of

policy. It is overall good to ensure that the mean µ is

three or four standard deviations from the hard threshold

Th so that the hard threshold is rarely actually invoked

and therefore can’t somehow be exploited. At the same

time, it is safer to have a larger σ , which then implies

a larger mean. Unfortunately, the larger the mean, the

more suppression. Often columns have a lot of distinct

values that are populated by very few individuals, and

much of this information can disappear when µ is too

large. In addition, almost invariably analyst’s like to look

at small groups, and so µ plays in important role in how

fine-grained the analysis can be. Therefore, we select rel-

atively small values for µ , σ , and Th.

5.4 Baseline Noise and Noisy Threshold

The anonymizing aggregation functions use sticky lay-

ered noise it two ways: to add noise to the final answer,

and to select groups of users using a noisy threshold. For

both uses, Diffix uses noise from the summed static and

dynamic noise layers described above. Specifically, Dif-

fix produces a baseline noise value Nb from which other

noise values are derived as needed.

The mean of the baseline noise Nb is µbase = 0, and

its standard deviation is σbase = 1. If a different mean or

standard deviation is required for a given purpose, then

the baseline noise is simply multiplied by a factor to ob-

tain the required standard deviation, and the mean is ad-

justed accordingly.

SELECT sum(salary) SELECT sum(salary)
FROM table FROM table

WHERE dept = ’CS’ AND WHERE dept = ’CS’

warn = 1 AND warn = 1

gender = ’M’

Figure 6: Difference attack to learn whether the isolated

woman has had a disciplinary warning given that she has

a high salary.

For all of the noisy threshold uses in the anonymizing

aggregation functions, the hard threshold is set to Th = 2,

and the noise value is set to Nb/2+ 4 (mean of 4).

5.5 Anonymizing Aggregation Functions

Diffix currently implements the following anonymiz-

ing aggregation functions: count, sum, avg, stddev, min,

max, and median. Each of these functions has a specific

anonymization method that trades off the desire to min-

imize distortion against the goal of ensuring that the ef-

fect of any one individual in the bucket cannot be easily

detected.

The functions count, sum, avg, and stddev are treated

rather differently than the functions min, max, and median.

This is because the former functions compute a value that

is a composite of all values, whereas the latter functions

compute a value that belongs to only a single user.

5.5.1 count, sum, avg, and stddev

The anonymization of these four functions are all based

on that of sum. count is a sum of rows. avg is sum di-

vided by count. stddev is ultimately derived from the

avg function. Specifically for each row stddev computes

the square of the difference between each value and the

true average. It then computes the (anonymized) avg of

these differences, and reports the square root of this avg.

There are two important but contradictory considera-

tions to make when computing the anonymized sum. On

the one hand, the amount of noise needs to be propor-

tional to the largest contribution of any user. This is to

protect against the case where a difference attack can iso-

late a user that contributes an unusually large amount to

the sum.

For instance, consider the attack of Figure 6 which iso-

lates the one woman in the CS department and tries to

learn if she has had a disciplinary warning. She is ex-

cluded from the left query and included in the right if

she has had a warning. Suppose that the amount of noise

added is proportional not to the largest salary but to the

average salary. Suppose also that the woman’s salary is

substantially higher than the average, say $400K versus

$125K. If the difference between the reported sums is

around $400K or higher, then with very high probability

8



� �� ����

�������

� ��� ��

	
���� �
���������������

���������
�

����
���

����������
���
���

�
��������

���
�����
�

���������
�

����
���

� ��� ��

���������	
���������������

Figure 7: To compute sum (and count, avg, and stddev

which are based on sum), the high outliers (group 1) are

”flattened” by assigning the value of the average A2 of

the next highest values (group 2). Noise is proportional

to A2.

the woman is present in the right-hand query and there-

fore has had a warning. This high probability comes from

the fact that $400K is more than three standard deviations

from $125K, so the probability that the difference is due

purely to noise and not the contribution of the woman’s

salary to the sum is very small.

On the other hand, making the noise proportional to

the largest value causes a problem when that value is an

outlier. For instance, suppose instead that the woman’s

$400K salary in the attack of Figure 6 is twice that of

the next highest salary, and that the analyst knows this

fact. Now suppose that the reported sum of the right-hand

query is $800K greater than that of the left-hand query.

If the woman is present in the right-hand query, then this

difference is due to her salary being included plus one

standard deviation of noise. If the woman is not present

in the right-hand query, then the difference would be due

to four standard deviations of noise, a very low probabil-

ity. Therefore the analyst can conclude with high proba-

bility that the woman has had a warning.

Therefore, to effectively hide any given user in a sum,

it is necessary to first remove outliers, and then add noise

proportional to the remaining highest values. Simply re-

moving outliers, however, results in more distortion than

necessary. Instead, we flatten the values of a few dis-

tinct users with the highest values (group 1 in Figure 7

so that they are comparable to those of the next few dis-

tinct users with the highest values (group 2).

The sum (and count) function has two phases, a pre-

processing phase and a summing phase. The input to the

summing phase is:

1. A table with two columns, a uid column and a value

column. The uid’s are distinct, and the value con-

tains each user’s total contribution to the count or

sum.

2. A baseline sticky noise value Nb derived from the

noise layers (see Figure 3 and Section 5.4). Nb has a

standard deviation of σ =
√

L, where L is the num-

ber of noise layers. The actual noise is a multiplica-

tive factor of Nb.

Depending on the function, the pre-processing phase

produces the value as follows:

count(distinct uid): All values are ’1’.

count(*): Each value is the number of rows for the uid.

count(column): Same as count(*), except rows with

NULL values are not counted.

count(distinct column): Same as count(column), ex-

cept duplicate values are removed before counting

each user’s rows.

sum(column): Each value is the sum of the values for the

uid.

sum(distinct column): Same as sum(column), except

duplicate values are removed before summing each

user’s values.

The summing phase consists of the following steps:

1. Generate two noisy thresholds T1 and T2 (see Sec-

tion 5.4).

2. Label the T1 distinct users with the highest values

group 1.

3. Label the T2 distinct users with the next highest val-

ues group 2.

4. Define A2 as the average of the values from group

2.

5. Replace the group 1 values with A2.

6. Define Aall as the average of all values (after re-

placement).

7. Compute a noise value N = Nb ∗max(1/2A2,Aall).

8. Sum the values, and add noise N.

If there are both positive and negative values, then the

above computations are done separately for the positive

and negative values, using lowest values instead of high-

est. The actual added noise is the sum of the two noise

values.

As described above, both the count(distinct

column) and sum(distinct column) functions remove

duplicate values during pre-processing. Duplicates are

removed in such a way as to maximize the resulting num-

ber of distinct uid’s. This minimizes the contribution of

any given user, allowing Diffix to minimize the noise.

Note that in the case of count(distinct uid), there

is no distortion due to flattening. All values are 1, so the

replacement in step 5 has no effect.

The reason in step 7 for computing the noise N as pro-

portional the max of the average of all values Aall or one

half the average of group 2 A2 is to further lower the

amount of noise in the case where the highest values are

substantially higher than the average value. The premise

here is that if the large values are substantially higher

than the average, then there is some spread in the values

9



contributed by different users, and therefore some uncer-

tainty on the part of the analyst as to how much any given

user is contributing to the sum. This uncertainty then re-

duces the need for the uncertainty inherent in the noise.

This is admittedly at this time an unfounded premise,

and more experimentation is needed to ensure that the

premise is correct.

5.5.2 min, max, and median

Since min and max in principle could report the value of

an individual user, it is particularly important that the ef-

fect of extreme values are hidden. Diffix removes noisy

threshold numbers of distinct users from both the high

and low end of the value range (see Figure 8). The av-

erage value of the next highest (lowest) noisy threshold

number of distinct users are then used to compute max

(min). Similarly, the median is computed from the aver-

age of the values of a noisy threshold number of distinct

users above and below the true median.

Once the highest and lowest value are removed, max is

computed as follows:

1. Select a group of values from the values of a noisy

threshold number of distinct (next) highest users.

2. Compute the average A of the group.

3. Compute the standard deviation σ of the group.

4. The anonymized max value is computed as A with

added noise (Nb ∗σ)/8.

The computation of the noise amount in step 4 needs

some explanation. Nb is the noise value generated from

the baseline noise. If all the values in the group are the

same, then the standard deviation of the group is zero,

and there is no noise added. In this case, the exact value

of the group is reported. This is safe, because the group

represents multiple distinct users and so any one user is

hidden in the crowd. Furthermore, the analyst does not

know how many users constitute the group. Indeed, if all

the values in the averaged group and the removed group

are identical, then max or min will report the correct true

max or min.

If however, the values of the group are different, then

we add a little noise to help ensure that the analyst can-

not somehow reverse engineer the specific values in the

group from the exact average A2. In fact, we don’t have

evidence that this reverse engineering would be possible,

but neither do we have evidence that it is not. So the noise

is a fudge factor. With experimentation, we may find that

it is not needed, or for that matter that it should be larger.

5.5.3 median

Like min and max, median can report the value of a single

user, and can report the correct true median. Also like

� �� ����� ��� ��� ��� ��

��������

����
�	
 ����

�	


�����

�����	����� �����	���������	�������

� ��� �� � ��� ��

������������	���

Figure 8: To compute min, max, and median, the highest

and lowest values are removed. min, max, and median are

then computed from the average of the appropriate group

of values as shown.

min and max, the values for the highest and lowest dis-

tinct users are first removed for computing median (see

Figure 8). After that removal, the algorithm is as follows:

1. Order the rows from highest to lowest values.

2. Generate a noisy threshold T (see Section 5.4).

3. Select the true median row and label it.

4. Label the rows for the T distinct users above the

true median, and the T distinct users below the true

median (the same user may appear once above and

once below).

5. Compute A as the average of the labeled rows.

6. Compute σ as the standard deviation of the labeled

rows.

7. The anonymized median value is computed as A

with added noise (Nb ∗σ)/8.

5.6 An Example

Figure 9 illustrates an example query in Diffix. The ana-

lyst requests the sum of salaries with two conditions (on

columns dept and gender).

Diffix processes the query, both to ensure that it con-

forms to the SQL restrictions placed by Diffix, and to

modify the query so that the data required for anonymiza-

tion is retrieved from the database. Both the low-count

threshold and the anonymized sum function require the

list of uid’s, and the sum function additional requires the

list of salary values. As a result, the query is modified

so as to request this data from the database. (Note that

this is somewhat a simplification of what happens in our

implementation.)

The contents of the uid column are used to generate

the uid-seed for the low-count threshold check as well

as for the dynamic noise layers. The low-count threshold

check determines whether the bucket needs to be sup-

pressed.

In this particular example, the seeds for the layered

noise can be generated from examining the SQL itself.

Two static and dynamic noise layers are generated, one

each for the two conditions.

10



�������

����	��


���������	
�����������������

�������������������� 

!�"���#$����

��������%�&�����������������

�������������������� 

!�"���#$����

�%�

�������

����	

�����


�������

���������
 %��%"'�

(������
)��)���

����

����

����

���

�*%��

�����

�*%��

��	

�%�+����

�������

����	����

,�*'-�*

���*.

/��

)��)
�!�"���0���0�#$�0�����

)��)
������0����0���0�����

�*%��

����)��)
������0����0�%�+����0���0�����

)��)
�!�"���0���0�%�+����0�#$�0�����

�

Figure 9: Diffix workflow for an example query

6 Details

The previous section describes the basic concepts of Dif-

fix, giving examples for queries with simple conditions:

AND’d conditions in a WHERE clause with no math or other

functions. With the exception of a few updates, the con-

cepts and examples essentially cover the material de-

scribed in [10]. This section describes how Diffix is ap-

plied to a much richer SQL syntax.

The complete syntax is specified in Appendix A. Note

that this syntax represents not what is possible with Dif-

fix, but what has been implemented so far. As such, the

term ”Diffix” may be thought of as a framework includ-

ing for instance the concepts of sticky layered noise and

the low-count threshold. Any given implementation of

Diffix may have more or less functionality.

There are a number of restrictions on how the syntax

specified in Appendix A may be used. As a rule, the pur-

pose of these restrictions is to prevent an attacker from ei-

ther generating conditions that Diffix does not recognize

as conditions, or generating conditions whose semantics

Diffix mis-interprets.

An example of the latter is given in Section 5.2.4,

where for instance the conditions WHERE age=20, WHERE

age+1=21, WHERE age+2=22 etc. are all semantically iden-

tical and so must produce the same noise layer.

An example of the former is the query shown in Fig-

ure 11, where the two queries both provide row counts

of users age 30 or 40, but where the upper query has

no explicit condition at all. We refer to attacks that em-

ulate conditions without Diffix realizing it as backdoor

attacks.

These restrictions are described throughout this sec-

tion.

6.1 Terminology

A positive condition is one that includes rows that match

the condition. For instance,

WHERE column = value

WHERE column IN (values)

WHERE column LIKE value

A negative condition is one that excludes rows that

match the condition. For instance,

WHERE column <> value

WHERE column NOT IN (values)

WHERE column NOT LIKE value

An equality is a condition that requires an exact match

to include or exclude rows. The version of Diffix in this

paper has equality operators = and <>.

An inequality is a condition with operators like less

than or greater than. Diffix places a restriction on in-

equalities in that the inequalities must express a range:

both lower and upper inequality boundaries must be

specified. Thus the condition WHERE age BETWEEN 10

AND 20 is allowed, but the condition WHERE age < 20 is

not allowed. Both positive and negative ranges may be

expressed (i.e. BETWEEN and NOT BETWEEN).

A query condition may be clear or unclear. Simply

put, a clear condition is one where Diffix understands the

intent of the condition and can therefore derive the condi-

tion’s noise layers directly by examining the SQL. What

passes as clear therefore depends on the sophistication of

the Diffix SQL compiler (see Section 6.2 below).

6.2 Current scope of clear queries

As of this writing, the Diffix SQL compiler is not very

sophisticated. To be considered clear, the column in the

11



SELECT sum(salary) SELECT count(*)
FROM table FROM table

WHERE left(date,4) = ’2009’ WHERE age = 64

SELECT avg(salary) SELECT gender, count(*)

FROM table FROM table

WHERE age WHERE age

NOT IN (25,26,27) BETWEEN 10 AND 20

SELECT sum(salary) SELECT count(*)

FROM table FROM table

WHERE left(date,4) <> year WHERE sqrt(age) = 8

Figure 10: The conditions for the top four queries are

clear. The conditions for the bottom two are unclear.

condition must either be the native column, or a na-

tive column being operated on by one of the follow-

ing string operations: right, left, ltrim, rtrim, btrim,

trim, substring, upper, or lower. To be considered

clear, the condition must also have a simple constant (not

operated on by math or any function). The upper four

queries of Figure 10 are clear, while the bottom two are

not.

The reason we specifically allow the string functions

is because in our experience it is quite common for ana-

lysts to select sub-strings from a string. This is because

strings frequently have an internal structure that the an-

alyst wants to deconstruct (for instance a date encoded

as a string, as in the example of Figure 10). In so doing

we are conceptually treating the substring as a separate

column. Nevertheless, when there is one of these string

functions present, Diffix adds an extra noise layer to de-

fend against potential attacks that try to exploit the func-

tion (Sections 6.13 and 6.14).

Diffix supports use of the HAVING clause in sub-

queries. A HAVING clause necessarily implies an aggre-

gation function and associated GROUP BY which must op-

erate on the uid. Queries where this is not the case are

rejected. The rules for when a HAVING clause is clear in

the current implementation are the same as for the WHERE

clause, with the exception that an aggregation function is

allowed, and the constraint that the aggregation function

must operate on a raw column value. For example, nei-

ther query of Figure 12 is considered clear. (Both would

be clear if the +20 was removed.)

6.3 AND’d conditions

In the current implementation of Diffix, the OR operation

is not allowed. There is no fundamental reason for this.

Indeed the IN operation, which has union semantics, is

allowed.

A Diffix query consists of the intersection of a set

of conditions, where the condition operators may be =,

BETWEEN (or the equivalent pair of inequalities), IN, LIKE,

IS NULL, and the corresponding negative variants (NOT

IN etc.).

SELECT count(*), age 30 or 40 FROM (

SELECT uid,
(age 30 + age 40) % 2 as age 30 or 40 FROM (

SELECT uid,

floor((age greater 29 + age less 31) / 2) AS age 30,

floor((age greater 39 + age less 41) / 2) AS age 40

FROM (

SELECT

uid,

ceil((age - 29) / 100) AS age greater 29,
ceil(0 - (age - 31) / 100) AS age less 31,

ceil((age - 39) / 100) AS age greater 39,

ceil(0 - (age - 41) / 100) AS age less 41

FROM table

) x

) y

) z
GROUP BY age 30 or 40;

SELECT count(*)

FROM table
WHERE age = 30 OR age = 40

Figure 11: Backdoor Conditions: The upper and lower

queries both produce counts of individuals aged 30 or

40. The upper query is disallowed by limiting the num-

ber of discontinuous functions combined with math and

constants that may appear in a query.

SELECT mxage, count(*) SELECT mxage, count(*)

FROM ( FROM (

SELECT uid, SELECT uid,

max(age) AS mxage max(age+20) AS mxage

FROM table FROM table
GROUP BY uid GROUP BY uid

HAVING mxage+20 = 65)t HAVING mxage = 65)t

GROUP BY mxage GROUP BY mxage

Figure 12: Neither of these queries are clear, because of

the math. Both would be clear if the +20 were removed.

12



SELECT age, salary, count(*) SELECT count(*)
FROM table FROM table

GROUP BY age, salary WHERE age = 20 AND

salary = 100000

Figure 13: Selected columns are implicitly AND’d pos-

itive conditions, and are treated as such for the purpose

of seeding noise layers. The bucket produced by the left-

hand query where age=20 and salary=100000 is seeded

identically to that of the right-hand query.

SELECT age SELECT age, count(*)

FROM table FROM table

GROUP BY age

Figure 14: When no anonymizing aggregation function

is present (left-hand query), then for the purpose of

anonymization the query is treated as though count(*)

was used (right-hand query).

A Diffix query may have zero or more conditions. If

a query has zero conditions, then a single dynamic noise

layer is used. The seed components in this case consist

of the table name, the hashed and XOR’d uid’s, and the

secret salt.

When columns are selected, they are treated as posi-

tive AND’d conditions for the purpose of seeding noise

layers. For instance, the left-hand query from Figure 13

generates a set of buckets, one for each unique pair of

age and salary. For each pair of values, noise layers are

seeded as though those values appeared in a WHERE clause

(i.e. the query on the right).

Note that selected columns do not require an asso-

ciated anonymizing aggregation function. For instance,

the query on the left-hand side of Figure 14 is valid. In

this case, however, for the purpose of anonymization the

query is treated as though the count(*) anonymizing ag-

gregation function were present. The only difference is in

the layout of the query answer. For example, the answer

to the right-hand query of Figure 14 would have a single

row for each age. If the noisy count for age=20 from the

right-hand query were 86, then the left-hand query would

simply produce 86 rows each with age=20.

6.4 Floating versus SQL Inspection

In Figure 9, Diffix is shown as requesting the uid col-

umn from the database in order to compute the uid seed

component of the dynamic noise layers. We refer to this

mechanism of requesting a column as floating the col-

umn. Every query requires that at least the uid column

is floated. In the example of Figure 9, however, the other

seed components are generated simply by inspecting the

SQL itself. This is possible because the conditions in the

query are clear.

SELECT count(*) SELECT uid, age
FROM table FROM table

WHERE age+1 = 26 WHERE age+1 = 26

Figure 15: Because the condition is unclear, Diffix ex-

tracts and examines (floats) the column contents to de-

rive the value seed component. When the analyst sub-

mits the left-hand query, Diffix transforms it to the right-

hand query to extract the age column (and uid column)

from the database.

SELECT avtime, count(*) SELECT uid, avtime, mn, mx, ct

FROM ( FROM (

SELECT uid, SELECT uid,

avg(time) AS avtime avg(time) AS avtime,

FROM taxi rides min(time) AS mn,

GROUP BY uid) t max(time) AS mx,

GROUP BY avtime count(time) AS ct
FROM taxi rides

GROUP BY uid) t

Figure 16: The avg aggregation function in the analyst’s

query (left side query) prevents floating the individual

row values for the column time. Instead, min, max, and

count aggregates are floated and used to seed noise lay-

ers (right side query).

There are cases, however, where the seed components

cannot be derived from SQL inspection alone. One such

case is that of selected columns being treated as implicit

positive AND’d conditions as shown in Figure 13. The

selected columns are floated and the values returned by

the database are inspected and used as seed components.

Another example is where conditions are unclear. For

instance, in the left-hand query of Figure 15, the con-

dition WHERE age+1=26 is unclear because of the math.

In this case, the age column is floated (along with the

uid column) in order to compute the seed components of

the noise layers for the age condition (right-hand query).

In this case, the floated value for age used in the seed

would be 25, which indeed captures the ”intent” of the

condition. Floating gives the analyst access to a variety

of math, string, and datetime operations while preventing

chaff attacks that exploit those operations.

In the case of a sub-query with a GROUP BY, the raw

column cannot be floated because it no longer exists af-

ter the aggregation function. For instance in the left-hand

query of Figure 16, the avg function in the sub-query

transforms the individual rows into aggregate rows. It is

therefore no longer possible to float the individual rows

and use their values for seeding.

One way to deal with this would be to somehow in-

corporate the aggregation function into the seed. For in-

stance, for the left-hand query of Figure 16, the noise

layer could additionally be seeded by the name of the

aggregation function. The problem with this is that sev-

13



eral aggregation functions can produce the same results.

In any column where there is one row per distinct user,

then min, max, avg, and median for instance all produce

the same value. This allows the analyst to get four noise

samples and so is a chaff attack, albeit limited by the

number of different aggregation functions.

Rather, Diffix floats pre-specified aggregates, specifi-

cally min, max, and count, and uses the associated val-

ues in the seed. Pre-specified aggregates are chosen so

that the analyst cannot influence what gets floated. These

three particular aggregates are chosen because they work

with numeric, text, and datetime column types, and at the

same time provide good ”coverage” of the column con-

tents.

The specific attack on HAVING that we want to avoid

is one where the analyst isolates a user with two queries

in such a way that the seeds for the noise layers associ-

ated with the aggregated column are the same. This could

happen if the only difference between the two queries is

the choice of aggregation function, the two aggregation

functions change only a single row (that of the victim),

but at the same time does not change the min, max, or

count for the victim. While theoretically possible, we

take it as a given that the probability of this occurring

(and the analyst knowing it occurs) is negligible and does

not need to be defended against.

6.5 Positive equality

Positive equalities are allowed. Positive equalities do not

need to be clear. The seed components for the static noise

layer, not including the salt, are:

[table_name, column_name, value, value, 1]

If the condition is clear, then the value is simply ex-

tracted from the SQL and used to seed the noise layer.

The same seed components are used whether the condi-

tion is in a WHERE or a HAVING clause. If the condition

is not clear, then the column, or in the case of HAVING

its min/max/count aggregates, is floated and the value is

taken from the database.

The reason that the value is repeated, and the 1 in-

cluded, can be explained as follows. Suppose that only

a single instance of the value was used (i.e. [value] in-

stead of [value,value,1] as is the case in the simplified

seed description from Section 5.1, where value=’CS’).

Suppose further than the table has one row per user.

In that case, the analyst could compose a query con-

taining an unclear HAVING that forces Diffix to float

max/max/count aggregate values rather than the native

column values. This would produce a seed that is dif-

ferent from that produced with the corresponding WHERE

clause, thus giving the analyst another random sample.

By using [value,value,1] instead of [value], the same

seed results whether the analyst uses an unclear HAVING

or a WHERE clause.

The seed for the dynamic layer of course additionally

contains the XOR’d hashes of the uid’s. For brevity, in

what follows unless otherwise specified we exclude the

secret salt, table name, and column name from the spec-

ification of the static seed components, and additionally

exclude the XOR’d hashes of uid’s from the specification

of the dynamic seed components.

6.6 Negative equality

Negative equalities are allowed. Negative equalities must

always be clear (in our current implementation). Exam-

ples of queries with negative equalities are the following:

SELECT count(*) SELECT sum(salary)

FROM table FROM table

WHERE age <> 64 WHERE left(date,4) <> ’2011’

The difficulty with generating seeds for negative con-

ditions in general is that floating the column from the

query as-is does not tell Diffix what the condition is ex-

cluding, but rather what happens to be included. In other

words, SQL inspection of the condition WHERE age<>64

tells Diffix what the condition excludes, while floating of

the age column tells Diffix what is included as a result of

the negative condition.

To use floating (and therefore allow unclear condi-

tions), Diffix would have to reverse the condition (change

it from negative to positive), and probe the database with

the modified query to determine what the condition is

meant to exclude. For instance, the unclear condition on

the left query below would be changed to the unclear

condition on the right. An initial probe query would be

made floating the age column. The value returned by the

database would be 65, and this could then be used to seed

the noise layer.

SELECT count(*) SELECT count(*)

FROM table FROM table

WHERE age+5 <> 69 WHERE age+5 = 69

The decision to not implement a probing approach is

simply one of prioritization. There is extra overhead (the

additional query) and extra complexity. Given that in the

future we can expand the set of queries that are clear with

a smarter SQL compiler, the question of whether it is

worth implementing a probing approach is still uncertain.

The seed components for the static noise layer include:

[value]

Note that here there is no need to replicate the value

and include 1. This is because there is no floating, and so

never a need to float min/max/count.

14



6.7 Positive range

Inequalities must always be expressed as ranges. So the

condition WHERE age BETWEEN 10 and 20 is allowed (or

the equivalent using >= and <=), but WHERE age <=

20 alone (without a corresponding >=) is not allowed.

The reason for this restriction is because of snapped

alignment. Inequalities in Diffix are forced into a pre-

determined (snapped) set of exponentially growing range

sizes and offsets [10]. Numbers fall on intuitive bound-

aries like 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 etc., and date-

times fall on natural boundaries (second, hour, day etc.)

and intuitive sub-boundaries. Simply put, in order to for

a snapped size to be enforced, both edges of a range must

be specified by the analyst.

Ranges must be clear. The seed components for the

static noise layer include:

[lower_value, upper_value]

Note that if >=, <= syntax is used, then two condi-

tions are treated as one.

The reason for snapped alignment is to prevent chaff

attacks whereby the analyst repeats a series of queries,

each with a slightly larger range, but in such a way that

the small range change does not change the set of rows

filtered by the condition. As a simple example, if the an-

alyst knows that a given numerical column contains inte-

gers, the analyst could increase the range by increments

of 0.01, thus obtaining many noise samples to average

out.

As of this writing, we have no good ideas on how to

allow unclear range queries. Unlike equalities, a range

naturally allows a variety of different values to pass

(those that fall in the range). If Diffix could deduce from

floating the range’s column what the intended range is,

then Diffix could 1) ensure that the range is snapped,

and 2) use the range to seed the associated noise lay-

ers. The problem is that it is hard to deduce the intended

range. For instance, suppose that Diffix observes values

between 2 and 9 from floating the column. Diffix can-

not tell if the specified unclear range in the query is 0-

10 and therefore properly snapped, or 2-9 and therefore

not snapped, or even 0-20 because the range is properly

snapped but just happens to have no values between 10

and 20.

6.8 Negative range

Negative ranges (i.e. NOT BETWEEN) are allowed. Negative

ranges must of course also be clear. The seed components

are identical to those for positive ranges, but with the ad-

dition of a symbol denoting that the range is negative:

[lower_value, upper_value, ’:<>’]

6.9 IN clause

The IN clause is equivalent to a series of OR’d positive

equalities. For example, the following two queries are

identical:

SELECT count(*) SELECT count(*)

FROM table FROM table

WHERE gen = ’M’ AND WHERE gen = ’M’ AND

age IN (30,31) (age = 30 OR age = 31)

The IN clause must be clear.

There are two ways in which an analyst could attempt

a difference attack based on the IN clause. One is to re-

move the entire clause. Another is to remove or change

one or more of the elements within the IN. As such, there

are noise layers associated with the entire clause (the per-

clause noise layers), and a noise layer associated with

each element (the per-element noise layers).

Regarding the per-clause layer, Diffix creates a static

noise layer (no dynamic layer) by floating the associated

column. The noise layers are seeded with the following

components:

[val1, val2, ...]

Where val1, val2 etc. are the floated column values.

Note that if the IN clause has only a single element then it

is treated identically to the corresponding positive equal-

ity (Section 6.5).

The reason that the IN column is floated, even though

it is clear, is to defend against an averaging attack using

chaff elements. For instance, if Diffix used SQL inspec-

tion to compose the per-clause noise layer, the analyst

could submit a series of queries with age IN (50,1000),

age IN (50,1001), etc.

Regarding the per-element noise layers, Diffix gener-

ates a dynamic noise layer for each element (no static

layer). The seed components include:

[value]

where value is the element itself.

The reason we don’t require a per-clause dynamic

noise layer is because any one of the per-element dy-

namic noise layers is effective in defending against a dif-

ference attack based on removing the clause.

The reason we don’t require a per-element static noise

layer is because a set of per-element static noise layers,

when summed together, behaves like a per-group static

noise layer, but with more noise (a higher standard de-

viation). By having a single per-clause static noise layer,

we reduce the total amount of noise.

6.10 NOT IN clause

A NOT IN clause is equivalent to a set of AND’d negative

equalities. For example, the following two queries are

equivalent.

15



SELECT gender, count(*) SELECT gender, count(*)
FROM table FROM table

WHERE name LIKE ’Murry’ WHERE name LIKE ’%Murry’

GROUP BY gender GROUP BY gender

Figure 17: In this difference attack, the LIKE comparator

isolates the single McMurry in the case where there are

multiple Murry’s.

SELECT count(*) SELECT count(*)

FROM table FROM table

WHERE age NOT IN (30,31) WHERE age <> 30 AND

age <> 31

Recognizing this, Diffix treats any NOT IN clause as

its equivalent set of AND’d negative equality conditions

(Section 6.6).

6.11 LIKE clause

The LIKE and ILIKE clauses enable a difference attack

whereby a victim is isolated by exploiting a unique string

associated with the victim. For example, suppose that

the database has a column name consisting of last names.

Suppose that the following conditions hold:

1. The analyst has prior knowledge of the name col-

umn,

2. the column contains a number of Murry’s (enough

to avoid low-count filtering),

3. the column contains a single McMurry,

4. the column contains no other last names that end

with Murry.

Under these conditions, the analyst could execute the

difference attack on the victim McMurry with the queries

shown in Figure 17. The left-hand query excludes Mc-

Murry while the right-hand query includes him or her

because of the ’%’ wildcard symbol which matches on

any zero or more of any character. As a result, whichever

bucket matches McMurry’s gender will contain Mc-

Murry. LIKE also permits the ’ ’ wildcard, which matches

on exactly one of any character.

Note that, at least with last names, the conditions for

this attack exist surprisingly often. For instance, in a

database of 250K last names with a distribution pub-

lished by the US census, 0.2% of the names had the at-

tack condition. Similar results were measured for Twitter

hashtags.

Diffix defends against this form of difference attack

by more-or-less creating a noise layer per wildcard in the

LIKE expression. The reason we do it this way, rather than

try to create a single noise layer from the complete set of

wildcards, is that it is too easy for an analyst to create

chaff wildcard expressions otherwise. For instance, the

expressions ’Mur y’, ’Murr ’, ’Mu%rry’ etc. might all

filter the same rows. If we had a single noise layer per

expression each seeded differently, then the noise could

be averaged out.

In creating the noise layers, we want to try to best

capture the role that each wildcard plays in the expres-

sion. Note in particular that the ’%’ wildcard can often

be inserted anywhere without having any effect on the fil-

tered rows. For instance, suppose that the analyst wants

to do the condition col LIKE ’abc de’, but would like

to average away the noise layer associated with the ’ ’

wildcard using chaff. The analyst could try ’%abc de’,

’%a%bc de’, ’%ab%%c de’, etc. It could well be that

none of the ’%’ wildcards have any effect, but each new

combination for instance pushes the ’ ’ wildcard into a

different string index position. Therefore we want to en-

sure that this kind of chaff attack also doesn’t work.

Our solution is to use the index position of the wild-

card symbol to seed its associated noise layer, but to ig-

nore ’%’ symbols when determining the index position.

We also automatically ignore any repeated ’%’ symbols,

since such symbols have no effect on the operation of

the LIKE. The creation of the noise layers then takes the

following steps:

1. Modify the original expression by:

(a) Removing all repeating ’%’ symbols.

(b) Modifying any sequence of characters con-

taining both ’%’ and ’ ’ symbols to contain

instead a single ’%’ at the beginning of the se-

quence, followed by the same number of ’ ’

symbols.

2. Generate a temporary expression by removing all

’%’ symbols, and:

(a) Compute N as the number of characters in the

temporary expression.

(b) Compute the index position i of each character

in the temporary expression.

3. For each ’%’ symbol in the modified original ex-

pression, seed a noise layer using the following:

(a) N.

(b) The position i of the character preceding the

’%’ symbol.

(c) The symbol ’%’.

4. For each ’ ’ symbol, seed a noise layer using the

following:

(a) N.

(b) The position i of the ’ ’ symbol.

(c) The symbol ’ ’.

As a result of this algorithm, the three expressions

’%abc de’, ’%a%bc de’, and ’%ab%%c de’ all compute

the same noise layer for the ’ ’ symbol because the index

16



position is always derived from the base string ’abc de’.

The apparnetly unavoidable downside of this approach is

that it can create a lot of noise layers. Analysts must be

aware of this and strive not to include unnecessary wild-

cards in LIKE expressions.

The LIKE clause must be clear.

6.12 NOT LIKE clause

The NOT LIKE and NOT ILIKE clauses must also be clear.

NOT LIKE is seeded identically to LIKE, with the excep-

tion that the :not symbol is included as a seed compo-

nent.

6.13 Character removing string functions

The current implementation of Diffix supports a number

of string functions that can remove characters from the

string. They include right, left, ltrim, rtrim, btrim,

trim, and substring. All of these functions may appear

in positive and negative conditions, including those that

are otherwise clear. As a result, attacks similar to those

for LIKE may be executed.

For instance, the condition WHERE right(name,5) =

’Murry’, which strips all characters but the last five,

matches both Murry and McMurry. As another exam-

ple, if a first name column contained multiple Paul’s

but only one Paula, then both substring(name FROM 0

FOR 4)=’paul’ and WHERE left(name,4)=’Paul’. can

be used to match both names.

For conditions containing these functions, an extra

noise layer is created for the function. For example, given

the condition WHERE right(name,5)<>’Murry’, the noise

layers that would normally be created from the condition

WHERE name<>’Murry’ would be created, and in addi-

tion a dynamic noise layer specifically associated with

the right function would be created.

This extra dynamic noise layer has the following seed

components:

• The function name

• The constant (or constants, in the case of substring)

associated with the function (i.e. the number 5 in the

case of right(name,5))

• The symbol :<> if a negative condition

In the case of trim, we use ltrim, rtrim, or btrim

as the function name depending on whether the trim is

LEADING, TRAILING, or BOTH.

In the case of substring(col FOR X) or

substring(col FROM 0 FOR X), then we treat it as

the equivalent left(col, X) with respect to seeding.

The constant for the trim’s needs to be normalized so

that the analyst can’t add chaff and average out the noise

by for instance scrambling the characters or adding extra

redundant characters. To do this, we remove redundant

characters and put the characters in alpha-numeric order.

6.14 String functions lower and upper

The current implementation also supports the string

functions lower and upper. While these to our knowl-

edge cannot be used in a difference attack, without addi-

tional noise layers they could in many cases be used in

a limited chaff attack to obtain three static noise samples

for the same query. For instance, suppose that the first let-

ter of last names is capitalized. The analyst could obtain

three noise samples with the following three conditions:

WHERE name <> ’Smith’

WHERE upper(name) <> ’SMITH’

WHERE lower(name) <> ’smith’

When upper or lower appears in a positive equality or

with the IN comparator, then nothing special is required

to seed the associated noise layers. The column is floated

(prior to the case change) and handled as usual.

When they appear in a condition that does not float

(negative equality or NOT IN) then an extra static noise

layer is generated. This noise layer is the same regardless

of whether the analyst executes upper or lower: Diffix

forces the string to lower case for the purpose of seeding

the noise layer. As such, seed components include:

[lower(value), ’:<>’, ’:lower’]

where lower(value) is the string in lower case, and

:lower is an extra symbol.

6.15 Functions that produce ranges

There are a number of functions that, when combined

with a condition, effectively produce ranges. For in-

stance, Figure 18 show how trunc and year mimic the

corresponding ranges specified with BETWEEN. These in-

clude all of the datetime functions in Appendix B.2, and

the math functions trunc and round.

Without getting into details, our implementation rec-

ognizes these functions and associated conditions as re-

quiring the same noise layers as their explicit counter-

parts. Note that all of the functions listed above are ”natu-

rally” snapped. trunc and round operate on powers of 10

(0.01, 0.1, 1, 10, ...), and with the exception of weekday

and quarter, the datetime functions operate on the same

natural datetime boundaries as Diffix’ snapped align-

ment. Note that strictly speaking there are other math

functions like floor and ceil, and even casting a real

to an int, that also can generate ranges. These, however,

only operate at the level of single integers, and so we feel

provide inadequate expressiveness from which to effec-

tively be used for attacks.

17



SELECT count(*) SELECT count(*)
FROM table FROM (

WHERE age SELECT uid,

BETWEEN 10 AND 20 trunc(age, -1) AS tr age

FROM table) t

WHERE tr age = 10

SELECT count(*) SELECT count(*)

FROM table FROM (
WHERE date SELECT uid,

BETWEEN ’2016-01-01’ year(date) AS yr

AND ’2016-12-31’ FROM table) t

WHERE yr = 2016

Figure 18: A variety of math and datetime functions can

group rows as ranges. Here the query on the left and right

of each pair produce the same results (using trunc and

year respectively).

SELECT bday,age, SELECT concat(c bday, ’-’, c age),
count(*) count(*)

FROM table FROM (SELECT uid,

GROUP BY bday,age cast(bday, text) AS c bday,

cast(age, text) AS c age

FROM table) t

GROUP BY concat(c bday, ’-’, c age)

Figure 19: The concat function can be used to mimic

positive AND’d conditions. The above queries produce

identical buckets.

6.16 Function concat

Our implementation of Diffix allows the function

concat. concat can be used to mimic AND’d positive con-

ditions. For instance, the two queries in Figures 19 pro-

duce the same buckets.

Without getting into detail, our Diffix implementation

floats the columns used by concat and generates noise

layers identical to those produced by positive AND’d con-

ditions.

6.17 Noise reporting functions

In order to help the analyst gauge the accuracy of query

results, Diffix provides a number of functions that re-

port the amount of the added noise (the standard devi-

ation). Especially for functions that report sums or the

count of rows, the amount of noise may vary substan-

tially since it is proportional to the contribution of some

of the largest users. These functions are count noise,

sum noise, avg noise, and stddev noise.

Since the noise amount is itself based on values from

multiple distinct users, we do not expect it to be at-

tackable. Never-the-less, to stay on the safe side, the re-

ported noise is a rounded value. The unit of rounding in-

creases with the size of the standard deviation such that

the rounded value is within roughly 5% of the true value.

References

[1] European Union Article 29 Data Protection Work-

ing Party Opinion 05/2014 on Anonymization

Techniques.

[2] AGGARWAL, C. C. On k-anonymity and the curse

of dimensionality. In Proceedings of the 31st In-

ternational Conference on Very Large Data Bases

(2005), VLDB ’05, VLDB Endowment, pp. 901–

909.

[3] DENNING, D. E. Secure statistical databases with

random sample queries. ACM Transactions on

Database Systems (TODS) 5, 3 (1980), 291–315.

[4] DENNING, D. E., DENNING, P. J., AND

SCHWARTZ, M. D. The tracker: A threat to

statistical database security. ACM Transactions on

Database Systems (TODS) 4, 1 (1979), 76–96.

[5] DINUR, I., AND NISSIM, K. Revealing infor-

mation while preserving privacy. In Proceed-

ings of the twenty-second ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database sys-

tems (2003), ACM, pp. 202–210.

[6] DWORK, C. Differential Privacy: A Survey of Re-

sults. In TAMC (2008), pp. 1–19.

[7] ERLINGSSON, Ú., PIHUR, V., AND KOROLOVA,

A. Rappor: Randomized aggregatable privacy-

preserving ordinal response. In Proceedings of the

2014 ACM SIGSAC conference on computer and

communications security (2014), ACM, pp. 1054–

1067.

[8] FELLEGI, I., AND PHILLIPS, J. Statistical con-

fidentiality: Some theory and application to data

dissemination. In Annals of Economic and Social

Measurement, Volume 3, number 2. NBER, 1974,

pp. 399–409.

[9] FELLEGI, I. P. On the question of statistical con-

fidentiality. Journal of the American Statistical As-

sociation 67, 337 (1972), 7–18.

[10] FRANCIS, P., PROBST EIDE, S., AND MUNZ,

R. Diffix: High-Utility Database Anonymization.

Springer International Publishing, Cham, 2017,

pp. 141–158.

[11] GEORGE GATEWOOD. A Monograph on Confiden-

tiality and Privacy in the U.S. Census, July 2001.

[12] SWEENEY, L. k-anonymity: A model for protect-

ing privacy. International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems 10, 05

(2002), 557–570.

18



[13] TANG, J., KOROLOVA, A., BAI, X., WANG, X.,

AND WANG, X. Privacy loss in apple’s implemen-

tation of differential privacy on macos 10.12, 2017.

19



A Complete Diffix SQL Syntax

SELECT [DISTINCT]

field_expression [, ...]

FROM from_expression [, ...]

[ WHERE where_expression [AND ...] ]

[ GROUP BY column_expression | position [, ...] ]

[ HAVING having_expression [AND ...] ]

[ ORDER BY column_name [ASC | DESC] | position [, ...] [ LIMIT amount ] [ OFFSET amount ] ]

field_expression :=

* | table_name.* | column_expression [AS alias]

column_expression :=

[table_name.]column_name |

aggregation_function([DISTINCT] column_name) |

function(column_expression) |

column_expression binary_operator column_expression |

column_expression::data_type

binary_operator :=

+ | - | * | / | ^ | %

data_type :=

integer | real | text | boolean | datetime | date | time

from_expression :=

table | join

table :=

table_name [[AS] alias] | (select_expression) [AS] alias

join :=

table CROSS JOIN table |

table { [INNER] | { LEFT | RIGHT } [OUTER] } JOIN table ON where_expression

aggregation_function :=

COUNT | SUM | AVG | MIN | MAX | STDDEV | MEDIAN

where_expression :=

column_expression equality_operator (value | column_expression) |

column_expression inequality_operator (numerical_value | datetime_value) |

column_expression BETWEEN value AND value |

column_expression IS [NOT] NULL |

column_expression [NOT] IN (constant [, ...])

column_expression [NOT] LIKE | ILIKE string_pattern [ESCAPE escape_string]

having_expression :=

column_expression comparison_operator (value | column_expression)

comparison_operator :=

equality_operator | inequality_operator

equality_operator :=

= | <>

inequality_operator :=

> | >= | < | <=

20



B Diffix Supported Functions

B.1 String Functions

• BTRIM()

• CONCAT()

• HEX()

• LEFT()

• LENGTH()

• LOWER()

• LCASE()

• LTRIM()

• RIGHT()

• RTRIM()

• SUBSTRING()

• TRIM()

• UPPER()

• UCASE()

B.2 Datetime Functions

• year()

• quarter()

• month()

• day()

• hour()

• minute()

• second()

• weekday()

• EXTRACT()

– year

– quarter

– month

– day

– hour

– minute

– second

• DATE TRUNC()

– year

– quarter

– month

– day

– hour

– minute

– second

B.3 Math Functions

Operators +, -, *, /, ,̂ and %.

• ABS()

• BUCKET()

• CEIL()

• DIV()

• FLOOR()

• MOD()

• POW()

• ROUND()

• SQRT()

• TRUNC()

B.4 Noise Indicators

• count noise()

• sum noise()

• avg noise()

• stddev noise()

B.5 Casting

The following tables indicate what casting combinations

are allowed.

Casting

from/to text integer real boolean

text X X X X

integer X X X X

real X X X X

boolean X X X X

date X

time X

datetime X

interval X

Casting

from/to date time datetime interval

text X X X X

integer

real

boolean

date X

time X

datetime X X X

interval X

21



This figure "baseflow.png" is available in "png"
 format from:

http://arxiv.org/ps/1806.02075v1

http://arxiv.org/ps/1806.02075v1


This figure "minmaxmedian.png" is available in "png"
 format from:

http://arxiv.org/ps/1806.02075v1

http://arxiv.org/ps/1806.02075v1


This figure "noise.png" is available in "png"
 format from:

http://arxiv.org/ps/1806.02075v1

http://arxiv.org/ps/1806.02075v1


This figure "sum.png" is available in "png"
 format from:

http://arxiv.org/ps/1806.02075v1

http://arxiv.org/ps/1806.02075v1


This figure "system.png" is available in "png"
 format from:

http://arxiv.org/ps/1806.02075v1

http://arxiv.org/ps/1806.02075v1

	1 Introduction
	2 A brief history of anonymization
	3 Definition and measure of anonymity
	3.1 Limitations on GDPR anonymity criteria

	4 Assumptions and terminology
	5 Basic Design
	5.1 Sticky Layered Noise
	5.2 Attacks
	5.2.1 Split Averaging Attack
	5.2.2 Difference Attack
	5.2.3 Equations Attack
	5.2.4 Chaff Attacks

	5.3 Bucket Suppression
	5.4 Baseline Noise and Noisy Threshold
	5.5 Anonymizing Aggregation Functions
	5.5.1 count, sum, avg, and stddev
	5.5.2 min, max, and median
	5.5.3 median

	5.6 An Example

	6 Details
	6.1 Terminology
	6.2 Current scope of clear queries
	6.3 AND'd conditions
	6.4 Floating versus SQL Inspection
	6.5 Positive equality
	6.6 Negative equality
	6.7 Positive range
	6.8 Negative range
	6.9 IN clause
	6.10 NOT IN clause
	6.11 LIKE clause
	6.12 NOT LIKE clause
	6.13 Character removing string functions
	6.14 String functions lower and upper
	6.15 Functions that produce ranges
	6.16 Function concat
	6.17 Noise reporting functions

	A Complete Diffix SQL Syntax
	B Diffix Supported Functions
	B.1 String Functions
	B.2 Datetime Functions
	B.3 Math Functions
	B.4 Noise Indicators
	B.5 Casting


