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Abstract 

Background:  Urban trees have long been valued for providing ecosystem services (mitigation of the “heat island” 
effect, suppression of air pollution, etc.); more recently the potential of urban forests to store significant above ground 
biomass (AGB) has also be recognised. However, urban areas pose particular challenges when assessing AGB due to 
plasticity of tree form, high species diversity as well as heterogeneous and complex land cover. Remote sensing, in 
particular light detection and ranging (LiDAR), provide a unique opportunity to assess urban AGB by directly measur-
ing tree structure. In this study, terrestrial LiDAR measurements were used to derive new allometry for the London 
Borough of Camden, that incorporates the wide range of tree structures typical of an urban setting. Using a wall-
to-wall airborne LiDAR dataset, individual trees were then identified across the Borough with a new individual tree 
detection (ITD) method. The new allometry was subsequently applied to the identified trees, generating a Borough-
wide estimate of AGB.

Results:  Camden has an estimated median AGB density of 51.6 Mg ha–1 where maximum AGB density is found in 
pockets of woodland; terrestrial LiDAR-derived AGB estimates suggest these areas are comparable to temperate 
and tropical forest. Multiple linear regression of terrestrial LiDAR-derived maximum height and projected crown area 
explained 93% of variance in tree volume, highlighting the utility of these metrics to characterise diverse tree struc-
ture. Locally derived allometry provided accurate estimates of tree volume whereas a Borough-wide allometry tended 
to overestimate AGB in woodland areas. The new ITD method successfully identified individual trees; however, AGB 
was underestimated by ≤ 25% when compared to terrestrial LiDAR, owing to the inability of ITD to resolve crown 
overlap. A Monte Carlo uncertainty analysis identified assigning wood density values as the largest source of uncer-
tainty when estimating AGB.

Conclusion:  Over the coming century global populations are predicted to become increasingly urbanised, leading 
to an unprecedented expansion of urban land cover. Urban areas will become more important as carbon sinks and 
effective tools to assess carbon densities in these areas are therefore required. Using multi-scale LiDAR presents an 
opportunity to achieve this, providing a spatially explicit map of urban forest structure and AGB.
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Background
Urban districts are often namesakes of the forests they 
have since replaced; in London for example, Norwood, 
Oakwood, Colliers Wood and Hainault were all once for-
ests. Although the forest has long been cleared (some 
remnant individual trees may remain), urban landscapes 

still incorporate significant trees and areas of woodland as 
tree-lined streets, public and private gardens and parkland; 
collectively known as the urban forest. The ecosystem ser-
vices provided by urban forests have long been recognised 
[1], for example, mitigating the urban “heat island” effect 
[2], providing habitat for city dwelling flora and fauna [3] 
and abating air pollution [4] (although see [5]) as well as 
aesthetic and well-being benefits [6]. These services have 
been valued at nearly $1 million km2 per annum [7] and 
individual urban trees can have a replacement value of up 
to £450,000 (~ $600,000) [8].
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Another important ecosystem service provided by 
urban vegetation is the sequestration of carbon from the 
atmosphere. This is absorbed into plant tissue through 
photosynthesis and stored (sometimes for centuries) in 
woody tissues as biomass. Urban vegetation plays a dis-
proportionate role in sequestrating anthropogenic car-
bon emissions as it is proximate to major sources i.e. 
vehicle emissions, as well as providing shade for buildings 
which reduce energy consumption [9, 10]. This biogenic 
sequestration of carbon by urban trees has been valued at 
£4.8 M ($6.3 M) per annum or £17.80 per tree in Greater 
London [10] and $2 bn per annum in the USA [11]. Large 
trees are of particular importance as they have the capac-
ity to sequester more carbon than their smaller coun-
terparts [9, 12]. Currently, however, the contribution 
of urban forests in the global carbon cycle is given little 
consideration, owing to their relatively small spatial area 
in terms of global forest cover [13]. Yet, as urban area is 
predicted to increase as a fraction of total land cover [14, 
15], tools to accurately assess and monitor carbon stored 
in urban vegetation are required. Particularly as urban 
vegetation can be highly dynamic e.g. higher mortal-
ity [16] and faster growth rates [17] than natural forests, 
and methods designed for natural ecosystems may not be 
transferable to urban areas [18].

Above ground biomass (AGB) is defined as “the above-
ground standing dry mass of live or dead matter from tree 
or shrub (woody) life forms, expressed as a mass per unit 
area” [19], typically Mg ha–1. Urban trees can account for 
up to 97% of urban AGB [20]. AGB can only be directly 
measured with destructive harvesting, an expensive and 
time-consuming approach that precludes remeasurement 
and is rarely practical beyond a handful of trees. For 
these reasons, AGB is often inferred through the use of 
allometric equations that associate more easily-measured 
parameters, such as diameter-at-breast-height dbh (usu-
ally measured at 1.3 m above the ground), tree height e.g. 
maximum crown height H or projected crown area Ar, 
with either stem volume V or AGB.

To scale up estimates of AGB beyond the tree level, 
inventory techniques are applied in both traditional for-
estry and urban studies [11, 20] where a representative 
sample of trees are measured. However, data acquisition 
for field inventory can be expensive, time-consuming and 
is often incomplete e.g. restricted to public lands; large 
area estimates then rely on scaling factors and land cover 
maps. Further, inventory data does not provide a spatially 
explicit map of the tree canopy and its attributes, which 
is useful for mapping other ecosystem services e.g. habi-
tat extents, pollution dispersal etc.

Remote sensing presents an opportunity to capture 
synoptic, temporally frequent (every few days to weeks), 
fine spatial resolution data. This has already been widely 

applied to estimate AGB, across a range of scales, using 
both active and passive sensors from space based and 
aerial platforms [21–23]. In particular, light detection and 
ranging (LiDAR) techniques provide an unprecedented 
opportunity to capture high resolution, 3D informa-
tion on tree and forest structure, such as canopy height, 
crown size and stem density [24, 25]. LiDAR instruments 
can be mounted on a range of platforms (hand held, tri-
pods, vehicles, aeroplanes, satellites, etc.) that provide 
different scales information and detail. Two commonly 
referred to technologies are terrestrial and airborne laser 
scanning (aka TLS and ALS respectively); the former pro-
vides high fidelity information over a small spatial extents 
(10’s to 100’s of metres) whereas the latter offers synoptic 
data over large regional areas. Both TLS [26–28] and ALS 
[23, 29–31] have been used to estimate individual tree 
and stand level AGB.

Remote sensing methods for estimating AGB can be 
categorised into (i) area-based and (ii) individual tree 
detection (ITD) methods, where the latter are consid-
ered the state-of-the-art [30, 32]. Area-based methods 
use summary statistics of canopy structure to develop 
statistical associations with field inventory data, whereas 
ITD methods measure crown scale metrics to be used 
directly with allometry. LiDAR based ITD approaches 
can be grouped into two further categories dependent on 
data dimensionality; (i) image analysis of the rasterised 
canopy surface model (CSM), and (ii) cluster analysis of 
higher dimension datasets, typically R3 where the point 
cloud xyz coordinates are used. Image analysis often 
detect local maxima within the CSM, followed by expan-
sion or watershed analysis to delineate crowns [16, 33].

Urban areas pose a particular challenge with regard 
to remote sensing of vegetation, where occlusion by tall 
buildings, high species diversity and heterogeneous and 
highly dynamic land cover add complexity to analysis. 
Tigges and Lakes [34] provide a review of the state-of-
the-art of remote sensing to estimate urban AGB.

In urban areas, ITD has been achieved by combining 
ALS with hyperspectral imagery to identify trees [35], 
tree species [36, 37] and estimate leaf area index [38]. 
Regarding AGB, ITD has been applied to RapidEye [16] 
and Quickbird imagery [39] where crowns were subse-
quently attributed with LiDAR derived H to estimate 
AGB. Using a solely LiDAR based approach, Singh et al. 
[40] derived area-based AGB estimates from LiDAR 
predictor variables. Suggested advantages of a LiDAR 
derived ITD method to estimate AGB in urban area (as 
opposed to one from imagery) are (i) LiDAR data are 
more information rich [41] e.g. 3-dimensional and higher 
resolution (e.g. > 1 sample m–2), (ii) data is often acquired 
with greater overlap, including multiple viewing geom-
etries, mitigating occlusion by tall buildings, and (iii) 
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the 3D information inherent in LiDAR data can be used 
to segment trees based on their morphology as well as 
directly measure crown shape.

A common factor amongst the research discussed 
above is the use of high pulse density LiDAR data (e.g. 
> 10 pulses m–2), often acquired with complementary 
high resolution hyperspectral imagery, acquired over 
small spatial domains. Recently, government agen-
cies and local authorities world-wide have opened their 
archives of spatial data, including ALS, under open data 
licence agreements. Harnessing this freely available 
resource could allow for large scale maps of urban vegeta-
tion attributes, such as AGB, to be computed without the 
cost of acquisition. Additionally, data is often acquired 
at regular temporal intervals that would allow for a Life 
Cycle Assessment of urban AGB [34]. However, a com-
prise of using these data is that it they are often captured 
for a different purpose e.g. flood-risk mapping, at a lower 
resolution and without coincident imagery. Therefore, 
newly developed techniques have to be adaptable and 
robust to differences in data quality.

As mentioned, allometric equations have long been 
used to estimate AGB, including in urban forests [9, 
18]. However, the reliability of allometry (and it’s associ-
ated uncertainties) has been questioned owing to small, 
unrepresentative sample of destructively harvested trees 
or application outside the domain of observations (par-
ticularly diameter and mass) [42]. McHale et  al. [18] 
compared allometry derived from trees grown in natural 
forest to that derived specifically for urban areas, not-
ing large variability in AGB particularly at the tree scale. 
Vaz Monteiro et al. [43] computed allometry to estimate 
H and Ar from dbh for different UK cities; allometry for 
smaller trees were transferable between cities, whereas 
larger trees were prone to greater uncertainty. Further, 
understanding the range of allometric properties of 
urban trees, which tend to be grown under a wider range 
of pressures and constraints (water, space etc.) and dis-
play greater morphological plasticity (open-grown vs. 
closed canopy, management etc.), may help better under-
stand the range of allometric variations in natural forests.

Recently, TLS methods have developed to accurately 
estimate the volume of individual trees; an approach 
known as quantitative structure modelling (QSM) [44, 
45]. These methods have been shown to estimate tree 
AGB to within 10% of destructively harvested trees 
compared to up > 35% underestimation when applying 
species specific allometry [26, 27]. Further, as TLS is non-
selective of trees captured, the allometry captures a range 
of structural conditions, including that of large trees. 
Lefsky and McHale [44] applied this approach to urban 
trees, reporting good agreement between QSM and field 
measured stem diameter.

Methods
Here we demonstrate a multi-scale LiDAR based 
approach to determine urban tree AGB for the London 
Borough of Camden, UK (Fig. 1). A new ALS ITD method 
is presented to identify and attribute individual trees with 
structure metrics. TLS is used to derive new allometry at 
four locations across the Borough, transferable tree struc-
ture metrics are identified and used to model tree volume. 
The new allometry is subsequently applied to the ALS 
segmented tree crowns to generate a Borough-wide map 
of AGB. To the best of our knowledge, LiDAR based ITD, 
to derive structural information for use in allometry, has 
not been previously applied in an urban context.

Location
The London Borough of Camden is located in inner north 
west London and comprises an area of 21.8 km2 (Fig. 1). 
The area was once forested but was extensively developed 
during the nineteenth and twentieth centuries to a mix 
of residential and industrial land use. Camden was cho-
sen as it is typical of inner London Boroughs, containing 
a range of urban land cover types (“unmanaged” urban 
forest, large managed parks, tree-lined streets, private 
gardens, industrial areas and transport infrastructure e.g. 
train lines) encompassing a broad range of tree and forest 
management strategies, age structures, species composi-
tion and municipal functions. Camden also has good cov-
erage of recent UK Environment Agency (UK EA) ALS. 
The Borough contains the suburbs of Camden Town and 
Hampstead, large areas of park land, including Hamp-
stead Heath, and a number of smaller public squares and 
private gardens.

The Borough is home to ~ 28,000 street trees with an 
additional 10–15  K trees in parks and nature reserves 
[46]; however, this does not include trees located in City 
of London managed parks as well as other private land. 
For example, there are an estimated 30 K additional trees 
on Hampstead Heath in the north of the Borough (pers. 
comm. David Humphries, Trees Management Officer, 
City of London). Street tree species are dominated by 
Platanus x acerifolia (London Plane) 15% and Tilia euro-
paea (Common Lime) 7%; all other species ( N = 242 ) 
comprise ≤ 4% each.

To derive new allometry for the Borough, four loca-
tions were scanned with TLS (Fig.  1 and Table  1). The 
locations were chosen for their representativeness of 
park and street trees in Camden, Highgate Cemetery was 
chosen after preliminary analysis suggested the area con-
tained very high AGB.

TLS acquisition and processing
TLS was captured with a RIEGL VZ-400 laser scanner 
(RIEGL Laser Measurement Systems GmbH) which has 
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a beam divergence of 0.35 mrad, a pulse repetition rate 
of 300 KHz, a maximum range of 600 m and can record 
multiple returns. For all locations, the scanning resolu-
tion was set to an angular step of 0.04° as this has pre-
viously proved sufficient for tree extraction and QSM 
modelling [47]. As the RIEGL VZ-400 captures data in a 
panoramic field of view (100° in zenith when the scanner 
is upright), it is necessary to tilt the scanner by 90° to cap-
ture the full hemisphere. To capture data from multiple 
viewing positions and reduce the effects of occlusion, a 

number of scan positions were captured at each location 
(Table 2). To co-register scan positions it is necessary to 
have tie-points between scans that are easily identified in 
post-processing, here this was achieved using cylindri-
cal retro-reflective targets mounted on poles [47]. Survey 
pattern was different for each location based upon tree 
density, leaf status, access and time constraints; mean 
distance between scan locations are presented in Table 2.

Point clouds from each scan were co-registered using 
RIEGL RiSCAN Pro software. Individual trees were then 

Fig. 1  A map of the London Borough of Camden and location in UK (right). Field locations are identified in italics. Contains OS data ©Crown 
copyright and database right (2018)

Table 1  TLS scanning location and description

Sites Coordinates Date Leaf status Type Dominant species

Russell Square 51°31′18.0″N 8/2/2018 Off Park P. acerifolia

0°07′33.5″W

Malet Street 51°31′17.8″N 14/2/2018 Off Street P. acerifolia

0°07′49.4″W

St Pancras Old 51°32′08.4″N 18/7/2017 On Churchyard and P. acerifolia

Church and Road 0°07′50.5”W Adjacent street

Highgate Cemetery 51°34′06.3″N 10/8/2017 On Urban forest F. excelsior

0°08′54.4″W
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identified and extracted using the treeseg software library 
[48]. V was estimated using the QSM approach of Rau-
monen et  al. [45], where the patch size variable dmin , 
which controls the size of cover sets used to generate cyl-
inders (and ultimately the topological detail captured), 
was iterated over [48]. As the initialisation of each of 
QSM reconstruction is stochastic, 10 reconstructions for 
each tree point cloud and for each dmin value were gener-
ated [26], this resulted in up to 160 reconstructions per 
tree. The set of reconstructions with the largest value of 
dmin that produced satisfactory results [48] were chosen, 
from these the reconstruction with a volume closest to 
the mean was retained.

To reduce uncertainty in tree volume and subsequent 
allometry, point clouds and QSMs had to meet certain 
quality criteria to be considered for use in allometry 
development. These criteria were; (i) the mean nearest 
neighbour distance (computed as the mean Euclidean 
distance between a point and its four closest neighbours 
[47]) computed for each 1  m slice through a tree point 
cloud had to be ≤ 5 cm (excluding the uppermost slice), 
(ii) the 95% confidence level for the 10 QSM reconstruc-
tions for each tree point cloud had to be ≤  10% of vol-
ume, and (iii) the point cloud had to be unaffected by 
wind i.e. no shadowing of branches visible in the point 
cloud. The set of trees that fulfilled this criteria, referred 
to as QSM trees, were used to construct allometric equa-
tions (see below).

TLS extracted trees could not be reliably mapped to a 
tree species, instead a mean wood density value for the 
dominant species on a per location basis (Table 1) were 
taken from the Global Wood Density Database [49].

ALS acquisition and processing
The UK EA capture ALS data over England primarily for 
flood risk mapping, this is distributed through an Open 
Government Licence by the UK Environment Agency as 
1 km2 .las tiles [50]. Data for the area covering Camden 
were acquired on 6th February, 2015, at a pulse density of 
2 pulses m–2 (calculated as the density of first returns in 
an open area) where for each outgoing pulse a maximum 
of 4 returns were recorded. Environment agency LiDAR 

data are captured to a vertical accuracy of ± 5 cm and a 
horizontal accuracy of ± 40 cm [51].

Data for the area intersecting the Camden Borough 
boundary were extracted from the global dataset. 5% of 
the Borough extent fell outside of the LiDAR footprint, 
previous UK EA acquisitions have been preprocessed to 
remove the majority of vegetation returns (Alastair Dun-
can, UK EA, pers comm) and were therefore unsuitable 
for filling gaps. Data were ground-normalised using the 
LAStools lasheight tool [52] so that z values were rela-
tive to the ground plane. A filter to remove points where 
z ≤ 1 m was then applied to remove ground and other 
low returns.

Segmenting trees from Airborne LiDAR
Clustering techniques group individual data points into 
features sets that share some commonality. With regard 
to LiDAR data, features are often identified as groups of 
points connected in 3D space, such as street furniture 
[53] or tree crowns as discussed here. Some techniques 
require the number of features a priori e.g. k-means 
clustering, local maxima identified in the CSM are used 
to prime the algorithms as well as seed points from 
which clustering is initiated [29, 54]. Examples of cluster 
approaches that rely solely on the 3D point data included 
the Mean Shift algorithm [55] which uses a variable 
kernel to determine the search window size for which 
points are clustered and PTrees [56] which uses a multi-
scale segmentation selecting the most likely segments as 
crown clusters. However, both of these approaches have 
only been applied to small forest plots and may not scale 
to large city-wide datasets owing to their complexity. 
Here we demonstrate a LiDAR point cloud based cluster-
ing approach that identifies individual tree crowns with-
out additional imagery and that is scalable to large urban 
areas (Fig. 2). 

A point cloud D contains points p where D = {pN } and 
N = |D| . Each p ∈ D is a set of coordinates and other 
metadata associated with the .las format, for simplicity 
we need only consider {a, rn} where a = (x,  y,  z) coordi-
nate vector and rn refers to the “Number of Returns” 
metafield [57]. The aim is to compute a set of clusters 
C = {cN } where cluster c corresponds to an individual 
tree crown. Each cluster c = {P,H ,Ar, r} , where P is the 
point cloud that corresponds to the tree crown, H is the 
maximum pz ∈ P , Ar is the projected crown area calcu-

lated as a 2D convex hull ∀p ∈ P [58] and r =
√

Ar

π
 , r was 

derived to simplify regression of crown dimensions with 
H (see below).

As urban areas are a patchwork of buildings, roads, 
trees, other green spaces etc., not all non-ground LiDAR 
returns are backscattered from tree crowns; therefore, 

Table 2  Details of TLS scanning

Area refers to the convex hull computed for the extracted trees

Sites Scan 
positions

Mean distance 
between positions 
(m)

Captured 
area (m2)

Russell Square 11 37 25,616

Malet Street 12 24 7786

St Pancras 19 24 25,392

Highgate Cemetery 25 13 4664
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D = C + ǫ where ǫ needs to be filtered before clustering 
can commence. This was achieved by firstly filtering D 
so that ∀p ∈ D : prn > 1 [59, 60]. This step removes the 
majority of buildings and other hard surfaces, which tend 
to backscatter a single return i.e. prn = 1 (Fig.  2ii). The 
majority of remaining points were resultant from veg-
etation backscatter, as well as from building edges, roof 
mounted air conditioning units and aerials, cranes etc 
[60]. This step also vastly reduces data volume, decreas-
ing processing time in subsequent steps.

D was segmented into C using a two-step cluster 
approach. Here we use Density-Based Spatial Clustering 

of Applications with Noise (DBSCAN) [61] as a low 
pass filter to identify discrete tree crowns and canopies 
(Fig.  2iii) followed by Balanced Iterative Reducing and 
Clustering using Hierarchies (BIRCH) [62] to extract indi-
vidual trees from canopy segments (Fig.  2iv). DBSCAN 
and BIRCH were both implemented using Python Scikit-
Learn [63].

DBSCAN is suited to ITD from LiDAR point data as (i) 
|C| is not required as an a priori input, (ii) features can be 
of an arbitrary shape and size, (iii) outliers ǫ are removed, 
examples here include linear features e.g. building edges, 
where points do not fulfil the criteria (i.e. density) to 

Fig. 2  Individual tree detection work flow (i–vi) for segmenting ALS data into tree crowns, the bottom panel shows a TLS derived crown map as a 
comparison. Letters in panels 4 and 5 refer to common issues with the ITD crown segmentation where; A a small crown subsumed into a larger one, 
B remaining building points increasing crown area, C over segmentation of crowns, D commission errors, E under segmentation of crowns, and F 
omission errors (particularly of suppressed trees). Presented data is of Malet Street (Table 1)
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form a cluster, and (iv) efficient scaling to large datasets. 
Ayrey et  al. [64] used DBSCAN to identify and remove 
understorey shrubs from an ALS dataset captured over 
a conifer forest. DBSCAN requires two parameters, a 
neighbourhood radius eps and a minimum number of 
points min_sample so that c is considered a cluster when 
|cP | > min_sample and p ∈ cP if �p− q� < eps . Values for 
eps and min_sample are a function of crown morphology 
and the ALS point density, min_sample increases mono-
tonically with eps. If eps is too small, crowns tend to be 
split into sub-crown components (both horizontally and 
vertically) as well as an increase in false positive. If eps is 
too large then features of interest are ignored. Here, eps 
and min_sample were set to 3.5 m and 20 points respec-
tively, this allows for smaller features to be identified 
( 
√
π3.5 ≈ 38 m2) where point density ~ 2 points m–2.

DBSCAN will concatenate adjacent, or density-con-
nected, points into larger clusters that have a radius > eps 
[61]. This is desirable as it allows c to have an arbitrary 
shape and size capturing the idiosyncrasies of a tree 
crown. However, this behaviour also leads to the merging 
of c into canopies, where points from adjacent crowns are 
in close enough proximity (Fig.  2). This is further exac-
erbated by low LiDAR point density that require lower 
values of min_sample . BIRCH is therefore applied to fur-
ther segment the output of DBSCAN into its constituent 
crowns if:

where α and β were determined empirically from a 
regression of TLS derived maximum canopy height with 
the 95th percentile prediction interval of crown radius 
(Fig. 3). Prediction interval was chosen as the dependent 
variable to avoid segmenting larger crowns. 

BIRCH is a hierarchical clustering algorithm that 
has two parameters; maximum radius of a cluster Bt (if 
cr > Bt the cluster is split) and the total number of clus-
ters BN . Bt was calculated in a similar way to the left hand 
side of Eq. 1 where instead crown radius was the depend-
ent variable in the regression.

Once BIRCH was initiated, it ran as a loop iteratively 
dividing c into smaller clusters for which Bt was recalcu-
lated. Division of clusters ceased when cr ≥ β + α(cH ) 
for all new clusters. For each iteration of BIRCH was run 
twice; for the first run BN was not set allowing BIRCH to 
return a non-optimal set of clusters constrained only by 
Bt . For the second run BN is set to the number of crowns 
identified in the first iteration, this producing an optimal 
segmentation [63].

ALS ITD models were developed using the set of QSM 
trees from each location (‘local’) and using all QSM trees 

(1)β + α(cH ) < cr

(2)Bt = β + α(cH )

(‘Borough-wide’). For each model, the functions that 
were used to split large c and determine Bt were com-
puted as illustrated in Fig. 3.

Upscaling TLS volume estimates to ALS
Individual tree volume can not be directly measured with 
low pulse density ALS in a similar way to the TLS meth-
ods described above. Instead, ALS derived tree structure 
metrics are often used to infer volume and AGB. How-
ever, regression models computed using a suite of ALS 
variables can be idiosyncratic and only suitable for the 
domain in which they were derived [30]. In an urban 
context, there are a number of different forest types and 
scenarios which may preclude empirical modelling with 
multiple parameters. Further, as the aim is to extract 
and measure individual trees from both TLS and ALS 
instruments, metrics need to have an analogue for both 
measurement techniques. Considering these factors, 
maximum crown height H and projected crown area Ar 
were used as independent variables in the development 
of allometric equations [31, 33].

C was computed using the Borough-wide ALS model 
and exported as polygon vector layer of 2D crown enve-
lopes attributed with Ar and H. Some cleaning was 
required ( < 3% of polygons) to remove duplicate trees 
(usually vertically offset) as well as false positives e.g 
building edges, cranes etc., these were easily identified as 
having maximum crown heights greater than expected. 
Polygons with an area < 10 m2 were also removed as the 

Fig. 3  Local and Borough-wide thresholds for initiating BIRCH as well 
as the Borough-wide Bt regression. Crowns that fall within the shaded 
area were further segmented with BIRCH 
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tended to coincide with building edges. TLS derived allo-
metric equations were then applied to estimate V for each 
polygon. To convert V to AGB, an estimate of mean wood 
density was derived by mapping the trees in the Cam-
den Council street tree database to a wood density value 
in the Global Wood Density Database [49]. Trees were 
first mapped at the species level ( N = 9526 ) and then, 
if no match was found, at the genus level ( N = 10, 973 ); 
287 trees could not be matched at either level and were 
disregarded. A mean wood density of 537  kg  m–3 (s.d. 
0.08 kg m–3) was used to convert V to AGB.

Allometry uncertainty analysis
A Monte Carlo (MC) approach was used to identify and 
quantify uncertainties in allometry-derived AGB estimates 
[65, 66]. MC methods allow for complex and non-linear 
uncertainty to propagate to estimates of AGB. Estimates of 
uncertainty are computed by running the model N times 
where for each iteration the model input parameters are 
drawn from a probability density function (PDF) that char-
acterises the uncertainty. Individual inputs can be also be 
isolated by freezing the other inputs, allowing for an esti-
mate of their contribution to overall uncertainty.

Three potential sources of error were identified in the 
derivation and application of the allometry: (1) QSM 
estimates of V, (2) ALS-derived H and Ar, and (3) wood 
density values. Variability in TLS-derived tree structure 
parameters (H and Ar) were tested by random subsam-
pling of TLS points clouds ( N = 100, σ = 0.75 ); RMSE 
for H was < 0.05 and < 1.8 m for Ar; therefore, TLS-
derived structure was not considered in the MC analysis. 
QSM uncertainty was estimated on a per tree basis using 
the 10 reconstructions, the mean and standard deviation 
of V were used to parametrise a Gaussian PDF. A sam-
ple of c ⊂ C ( N = 250 ) was used to estimate uncertainty 
in ALS derived crown structure. cP were randomly sub-
sampled ( N = 100 , σ = 0.75 ) where H and Ar were cal-
culated for each iteration. The standard deviation of H 
and Ar were then used to generate PDFs of measurement 
uncertainty for each extracted crown in C. Finally, a non-
parametric PDF of wood density was constructed using 
wood density values mapped to each tree in the Camden 
street tree database.

For different scenarios, different sources of uncertainty 
were considered. When computing TLS AGB, wood 
density values were set to that of the dominant species, 
therefore, only QSM uncertainty was considered. When 
calculating ALS derived AGB at each of the TLS loca-
tions wood density was again assumed known and uncer-
tainty in QSM and ALS measurements were computed. 
When computing AGB estimates for the entire Borough 
all sources of uncertainty were considered. For all scenar-
ios, 100 MC simulations were run.

Results
TLS derived tree structure and AGB
A total of 385 trees were identified and extracted from 
the TLS data across the four locations. Of these, 99 trees 
(referred to as QSM trees) met the criteria for estimat-
ing tree volume (Table 3). A large number of trees were 
discarded from the QSM tree set for reasons including; 
(i) scanning domain did not cover the complete region of 
interest, therefore, trees on the periphery suffered from 
low point density, (ii) scan pattern were too sparse, par-
ticularly for St Pancras where leaf-on conditions resulted 
in high occlusion and low point density towards the top 
of the canopy and (iii) wind effects. Even light winds can 
produce “ghosting” in the point cloud which leads to an 
underestimation in stem volume, particularly towards 
the top of the canopy where poorly resolved branches 
are not identified in the QSM (see Fig. 11). Wind was not 
deemed to significantly impact Ar.

Of the QSM trees, the largest by height and volume 
were both Platanus x acerifolia located in Russell Square 
(RS-54 and RS-31 in Fig.  4 respectively). TLS measure-
ments provided precise estimates of tree volume, par-
ticularly when captured in leaf-off conditions where 95% 
confidence level in QSM volume ≤ 4% (Table  3). Tree 
form is highly dependent on location and context e.g. 
trees that are found in street canyons have a strongly 
asymmetric crown shape (e.g. MS-25 and MS-7 in Fig. 4). 
Trees also vary in shape when grown in open parkland 
compared to those found in closed canopy forest, Ar is 
an order of magnitude smaller for closed-canopy forest 
trees (compare Highgate Cemetery and Russell Square 
trees in Fig. 4). Summary statistics of the extracted trees 
are presented in Table 3.

Allometry was derived using the set of QSM trees 
from each location (’local’) and all QSM trees (’Bor-
ough-wide’). Considering all QSM trees, V and dbh, 
Ar and abH (where abH is an exponential function, see 
Fig.  5) all showed r2 > 0.7 . A multiple linear regression 
was computed with Ar and abH as independent vari-
ables ( p < 0.001 ) which explained 93.9% of variance in 
V (RMSE = 3.2  m3), the intercept was forced through 
the origin to avoid negative V for smaller trees. The allo-
metric equation was subsequently applied to the poly-
gon layer to estimate Borough-wide AGB. For the local 
allometry, abH was not a statistically significant term 
( p > 0.01 ). 

A comparison of TLS and allometry derived V (Fig. 6) 
shows that local allometry produced more accurate 
results than the Borough-wide equation (compare Malet 
Street trees in Fig. 6). The Borough-wide allometry tends 
to under and overestimate V of large trees ans small trees 
respectively. Large differences in allometry-derived AGB 
estimates are evident for Highgate Cemetery (Table  3) 
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where the addition of H in the Borough-wide allometry 
significantly increases estimated AGB. This is due to 
the differing crown structure between open-grown and 
closed-canopy trees, where the former is dominant in the 
Borough-wide allometry i.e. open grown trees of a simi-
lar H have a much greater AGB. A comparison of trees 
with similar heights (e.g. MS-25 and HC-98 in Fig.  4) 
reveals that AGB for closed canopy trees can be a factor 
of ~ 5 less.

As all of the large trees (H > 10 m, N = 26 ) along Malet 
Street were successfully extracted from the TLS, a direct 
comparison of QSM computed and allometry estimated 
volume and AGB can be drawn. QSM derived AGB was 
92.5 Mg, compared to local and Borough-wide derived 
allometry values of 93.8  Mg ± 1.1  Mg and 135.8  Mg ± 
2.3  Mg respectively, suggesting allometry for this site 
overestimates AGB by 1.4 and 46.8% respectively. The 
overestimate of Malet Street V by the Borough-wide 
allometry can be seen in Fig. 6b. Applying allometry for 
P. acerifolia street trees from the US [67] estimates a 
growing stock volume of 80.5 m3 for Malet Street, com-
pared to 165.6, 172.6 and 231.0  m3 for QSM, local and 
Borough-wide allometry; highlighting the requirement 
for caution when applying allometry derived for different 
circumstances.

A comparison of TLS and ALS derived tree structure 
and AGB
Summary statistics of ALS-derived crown metrics for 
each location are presented in Table 4 and a comparison 
of crown envelopes produced using TLS and local and 
Borough-wide ALS models is presented in Fig.  7. Both 
local and Borough-wide ALS models underestimate AGB 
by ≤ 25% compared TLS calculated values, where local 
parametrisation is slightly more accurate. The exception 
is Highgate Cemetery where AGB is underestimated by 

up to 55%. Both local and Borough-wide ALS models 
underestimate 

∑

Ar as they are unable to resolve crown 
overlap (Fig.  7). When a model underestimates N trees, 
Ar is often overestimated to compensate and vice versa 
(Table 4).

At Highgate Cemetery, forest structure is not charac-
terised well with either the local or Borough-wide ALS 
models. For example, N trees is underestimated by 14 
and 64% respectively compared to the TLS estimate and 
Ar coefficient of variation is ~ 32% for both ALS mod-
els, compared to 100% for TLS-derived Ar. Differences 
between ALS and TLS identified crowns are caused by 
an uneven age structure of a mix of older trees with large 
crowns and younger trees filling canopy gaps (Fig. 7). All 
trees have similar H however, therefore, BIRCH will com-
pute a similar crown radius during segmentation (Eq. 2). 
Other suggested reasons for poor characterisation 
include low ALS pulse density not characterising individ-
ual crown morphology and a relatively small capture area 
that compounds scaling errors.

Borough wide estimate of AGB
Camden has an estimated median AGB density of 
51.7  Mg  ha–1 (s.d. 68.5  Mg  ha–1) and a maximum 
density of 376.5  Mg  ha–1 situated in the Hampstead 
Heath area (Fig.  8). Maximum values are likely to be 
an overestimate owing to the poor representation in 
the allometry as discussed previously. A total of 84,282 
individual tree crowns were identified across the Bor-
ough, median and maximum tree densities were 36 
and 215  trees  ha–1 respectively. High AGB areas are 
concentrated to the north of the Borough (Fig. 8) and 
are coincident with areas of maximum tree density. 
ALS-derived tree density values for the forested areas 
is likely to be an underestimate as TLS estimates for 

Table 3  Tree structure metrics and AGB estimates generated from TLS

As the volume of all TLS extracted trees could not be calculated confidently, AGB values are calculated using locally and Borough-wide derived allometry. It should be 
noted that AGB values are for inter-comparison purposes only and are not representative of likely AGB densities in a 1 ha area, for example, Malet Street is located in a 
highly developed area which is mostly devoid of trees
a   Tree volumes are for QSM trees only
b   95% confidence level
c   P. acerifolia wood density value used except for Highgate Cemetery where F. excelsior was more common

Location Trees DBH Tree height 
(m)

Projected crown 
area (m2)

Tree volume 
(m3)a

AGB (Mg ha–1)c

N ρ (ha−1) QSM Mean Max Mean Max Mean Max
∑

Meanb Max Local Borough-wide

Russell Square 78 30.4 25 0.78 1.65 20.6 34.1 214.2 694.0 16068 12.3 ± 4% 46.8 201.6 ± 2.2 193.3 ± 1.8

Malet Street 30 38.5 25 0.52 0.76 19.8 26.1 168.2 349.6 5047 6.4 ± 3% 14.3 124.8 ± 1.1 180.2 ± 2.9

St Pancras 97 38.2 9 0.60 1.55 24.7 33.9 214.4 871.9 20799 15.8 ± 7% 44.4 244.7 ± 10.5 258.8 ± 2.7

Highgate Cemetery 180 385.9 40 0.24 0.78 15.9 29.9 36.7 268.0 6604 1.2 ± 6% 8.0 276.3 ± 10.1 485.3 ± 7.6
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tree count in Highgate Cemetery are 385  trees  ha–1 
(Tables 3 and 4). 

Trees in non-forest areas where 10 < H < 15 m 
account for ≥ 25% of trees and ~ 20% of total AGB 
(Fig. 9). Trees in forested areas account for 38% of total 
AGB where forested areas account for < 8% of total land 
cover. Large trees i.e. trees where H ≥ 30 m, account for 
< 2% of total AGB, these large trees are more common in 
non-forest areas in the south of the Borough. The tall-
est and largest volume trees identified in the ALS were 

36.0  m and 35.0  m3 respectively, both were located in 
Gray’s Inn Fields. 

Uncertainty in AGB can be > 100 Mg ha–1 (95% confi-
dence level); however, greatest uncertainty as a propor-
tion of AGB occurs in areas of low AGB (Fig.  8). MC 
simulations indicate AGB is estimated to ± 30%, the larg-
est source of uncertainty is wood density which accounts 
for ~ 65% of overall uncertainty. ALS measurement 
uncertainty and QSM volume uncertainty account for 30 
and 5% respectively.

Fig. 4  Profile (left) and plan (right) views of tree point clouds extracted from the TLS data. Tree codes refer to individual trees from Russell Square 
(RS), St. Pancras (SP), Malet Street (MS) and Highgate Cemetery (HS)
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Fig. 5  Regression between AGB and dbh (left), H (centre) and Ar (right). The top panel is combined frequency for all locations, the centre panel is 
regression of independent variable with V and the bottom panel are regression residuals

Fig. 6  A comparison of QSM derived and allometry estimated V for the QSM trees. a Allometry was derived for each location (‘local’) and b using 
all QSM trees (‘Borough-wide’). Horizontal error bars represent the 95th percentile confidence level of tree volume from the 10× QSM model 
reconstructions and the vertical error bars represent prediction error from the regression. Inset panels magnify V between 0 and 10 m3
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Discussion
Urban areas as a carbon sink
To inter-compare carbon (C) densities with other cities 
and ecotones, AGB values are converted to C by mul-
tiplying by a factor of 0.471 [68]. Median carbon den-
sity for Camden is 24.3  Mg  C  ha–1, this is significantly 
higher than previously published estimates for inner 
(16.1 Mg C ha–1) and Greater London (14.8 Mg C ha–1) 
[10]. The distribution of AGB is likely skewed to the right 
by an overestimate of “forest” C density calculated with 
the Borough-wide allometry (Table 3), although Camden 
does have a greater proportion of park land compared to 
inner London [69]. For non-forest areas, median C den-
sity is 18.9 Mg C ha–1 which is again higher than reported 
inner London values. The ALS predicted number of trees 
is much less than the mean value previously reported for 
London (51  tree  ha–1) [10] and the mean value for UK 
towns (58.4 tree ha–1) [1]; reasons for this include smaller 
trees being either subsumed into or occluded by larger 
trees using ALS ITD, whereas the i-Tree Eco and other 
protocols record all trees where dbh >7 cm [1, 10].

Compared to other UK towns, Leicester has a much 
higher C density (31.6 Mg ha–1) [20] whereas Edinburgh 
(16 Mg C ha–1) [70] and Torbay (15.4 Mg C ha–1 [69] are 
considerably lower. A comparison with other European 
cities suggests that Camden has a much higher biomass 
density, for example, Barcelona [71] and Berlin [34] have 
mean C densities of Berlin 7.3 and 11.2 Mg ha–1 respec-
tively. Lower densities for Berlin could be due to smaller 
mean tree size where mean tree mass is 372 kg compared 
to 882 kg in Camden. A comparison with cities globally; 
major cities in the US have a mean C density of of 7.7 
Mg C ha–1 [72] and major Chinese cities have a mean of 
21.3 Mg C ha–1 [73].

Considering “woodland” areas, using the locally cali-
brated TLS data, estimated C density for Highgate Ceme-
tery is 132.4 Mg C ha–1. This compares to Leicester which 
has a C density of 280.6 Mg C ha–1 for mixed ownership 
woodland and 287.6 Mg C ha–1 for public ownership [20] 
which are considerably higher. UK forest and woodlands 
have a mean density of 53.6 Mg C ha–1 [74]; therefore, 
forested areas of Camden could be considered AGB “hot-
spots”. In the US, the forests surrounding Seattle have a 
density of 104 Mg C ha–1 for mixed forest and 166 Mg C 
ha–1 for conifer forest [75]. US forests have a mean den-
sity of 53.5 Mg C ha–1 [76].

A comparison with C sinks from different ecotones is 
presented in Fig. 10. This shows that, although the con-
tribution of urban areas to global AGB maybe relatively 
small owing to the limited spatial extent, some urban for-
ests have AGB density comparable to tropical and tem-
perate forests. Therefore the importance of conserving 
these areas as AGB sinks can not be understated, particu-
larly locally. 

It should be noted that values presented above were 
computed using very different data processing and 
analysis methods which may hinder inter comparison 
[41]. For example, techniques vary from using ALS 
(this study), interpretation of satellite imagery [16] 
or aerial photos [77], field inventory where plots are 
located per land class [20] or along transects [75]. As a 
comparison, mean C density for Leicester is estimated 
as 31.6 Mg ha–1 using a stratified sample of inventory 
plots in conjunction with published allometry [20]. 
Applying the method presented here to 2014 UK EA 
ALS data captured for the same area (and using the 
Borough-wide allometry) computes a much lower C 
density of 9.1 Mg ha–1.

Table 4  ALS derived crown structure and  AGB estimates where N is  number of  crowns, Z  is  mean height, Ar is  mean 
projected crown area, 

∑

Ar is sum of projected crown area

Values in parentheses indicate the fraction compared to TLS estimated values where > 1 suggests an ALS overestimate and vice versa

Different parameters sets (derived locally or Borough-wide) were used when segmenting crowns (see Eqs. 1, 2 and Fig. 3)

Location N Z  (m)
∑

Ar (m
2) Ar (m2) AGB (Mg ha–1)

Local Borough-wide

Local

 Russell Square 88 (1.44) 17.2 (0.83) 15137.9 (0.95) 172.0 (0.70) 189.9 ± 12.1 (0.94) 164.7 ± 9.0 (0.85)

 Malet Street 25 (0.96) 20.1 (1.02) 3905.1 (0.80) 156.2 (0.93) 96.6 ± 6.7 (0.81) 139.1 ± 8.1 (0.77)

 St Pancras 70 (0.72) 22.6 (0.92) 18233.9 (0.92) 260.5 (1.21) 214.6 ± 13.3 (0.88) 204.3 ± 8.1 (0.79)

 Highgate 84 (0.76) 15.8 (0.99) 3477.2 (0.60) 41.4 (1.13) 158.1 ± 45.7 (0.57) 238.5 ± 47.8 (0.49)

Borough-wide

 Russell Square 98 (1.61) 18.2 (0.88) 14495.7 (0.91) 147.9 (0.60) 181.9 ± 10.9 (0.90) 164.1 ± 9.7 (0.85)

 Malet Street 28 (1.08) 20.3 (1.03) 3846.2 (0.79) 137.4 (0.82) 95.1 ± 7.7 (0.76) 140.0 ± 9.4 (0.78)

 St Pancras 98 (1.01) 20.7 (0.84) 17721.4 (0.89) 180.8 (0.84) 208.5 ± 16.3 (0.85) 202.5 ± 10.5 (0.78)

 Highgate 40 (0.36) 15.6 (0.98) 3809.2 (0.66) 95.2 (2.59) 164.9 ± 15.9 (0.60) 219.1 ± 18.8 (0.45)
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Fig. 7  ALS derived tree crown polygons for local (red) and Borough-wide (black) ALS models, compared with TLS derived crowns (grey)
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Using TLS to estimate AGB and derive allometry
This study highlights the importance of applying allo-
metric equations in the correct context and with prior 
knowledge of their derivation. For example, a differ-
ence of >200 Mg ha–1 was computed at Highgate Cem-
etery by applying location specific and Borough-wide 
(yet still local) allometric equations. A large differ-
ence in total V was also noted when applying an equa-
tion from the literature [67], compared with local and 

Borough-wide allometry for Malet Street. Computing 
locally applicable allometric equations is not always 
feasible, however, as demonstrated by Calders et al. [26] 
and Gonzalez de Tanago Menaca et al. [27], as well as 
here, TLS measurement can be used to derive unbiased 
allometry quickly and non-destructively.

Widely applied allometric equations (e.g. Chave et al. 
[78]) often include a dbh term, due in part to theo-
retical scaling laws of tree mass [79] as well as ease of 

a b

c d

Fig. 8  Borough-wide maps of ALS derived AGB density (a), tree density (b) and absolute (c) and relative uncertainty (d)
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measurement. From an airborne or satellite remote 
sensing perspective, dbh can only be inferred and is 
therefore modelled as a function of other variables 
such as H and Ar [31]. As demonstrated here, a lin-
ear combination of abH and Ar explained 93.9% vari-
ance in V and was therefore suitable for deriving new 
allometry that excludes a dbh term. Others have also 
omitted a dhb term, using H and Ar to estimate V and 
AGB from airborne LiDAR [33, 66]. In fact, both abH 
and Ar explained more variance than dbh for the QSM 
trees; however, this may be unique to urban trees where 
tree management e.g. pollarding, may cause deviation 
from a theoretical ideal. The strong linear association 
between V and Ar can be explained by the relativ-
ity high proportion of V distributed in the tree crown 
(Fig.  11), particularly for small diameter branches 

(ø ≤ 20 cm) which can constitute 20–40 % of AGB. 
Goodman et  al. [80] noted a similar trend for trees in 
tropical forests. 

Using the Borough-wide allometry, RMSE for predicted 
tree level AGB was 1.8 Mg where model residuals show a 
degree of heteroskedasticity. This is likely due to plastic-
ity in crown shape caused by location (open park land, 
closed canopy forest, street canyon) as well as factors of 
competition for space and resources (artificial watering), 
pollution exposure, management strategies etc. Vaz Mon-
teiro et al. [43] conclude that applying allometry to large 
trees grown in different locations across the UK results 
in significant uncertainties. Here, however, error (as a 
proportion of tree volume) is more evident in smaller 
trees (AGB < 10 Mg). This is due to taller QSM trees hav-
ing similar characteristics (open-grown) whereas there a 
larger number of small trees with a high degree of vari-
ability in tree structure.

To convert V to AGB requires an estimate of wood den-
sity, this represented the largest uncertainty when esti-
mating AGB. Here a mean value was applied to all trees 
derived from the Camden street tree database. However, 
in Highgate Cemetery (and most likely other wooded 
areas) the most common species were Fraxinus excelsior, 
fortunately this has a similar wood density to the mean of 
560 kg m–3 [49]. Fusion of LiDAR and spectral data may 
allow for more accurate identification of tree species and 
from which to derive wood density values [34, 37].

Airborne LiDAR to estimate tree volume
Considering ITD methods, applicability of either cluster 
analysis or CSM based methods is likely to be forest type 
(e.g. tree density) and sensor/data dependent [30, 81–84]. 
Currently is dense tropical forests, a CHM approach 

Fig. 9  Histograms of tree count (left), sum of crown area (centre) and proportion of AGB (right) as a function of tree height class. Trees have been 
classified into forest and non-forest using the OSGB forest extent map (see Fig. 1)

Fig. 10  A comparison of median C density for different ecotones [92] 
with TLS and ALS derived values for Camden. AGB was converted to C 
using a conversion factor of 0.471 [68]
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proved more reliable [30]. However, cluster analysis 
are increasing in popularity owing to new techniques, 
increased computing power and instrument capability 
[48]. A cluster approach was developed here that utilises 
the unique characteristics of trees when scanned with 
LiDAR, such as multiple interceptions of LiDAR pulses 
and predictable tree morphology.

An advantage of DBSCAN is that it is responsive to 
tree morphology without a priori information of canopy 
structure. BIRCH, on the other hand, segments larger 
canopy clusters into crowns of similar sizes where H is 
similar regardless of underlying morphology, this caused 
errors in the representation of crown structure e.g. High-
gate Cemetery (Fig.  7). If higher pulse density ALS was 

available, the BIRCH step could possibly be replaced 
by a CSM watershed based approach to identify crown 
extents from canopy clusters. Regardless, it is suggested 
that future urban studies first discard points where 
prn = 1 to facilitate the identification of vegetation.

When compared to TLS estimated canopy and 
crown structure, ALS tended to underestimate crown 
height and projected crown area (Table  4). Underes-
timation of H is a common error associated with ALS 
as pulses often miss the apex of the tree [24], an issue 
exacerbated by low pulse density. Underestimation of 
crown area is caused by ALS not being able to deline-
ate overlapping crowns satisfactorily (Fig. 7). Increased 
crown overlap is common in urban areas owing to tree 

Fig. 11  Vertical profiles of QSM derived tree volume classified into small (0.05–0.1 m diameter) and large (> 0.1 m) branches. Solid lines ( NQSM ) are 
produced using QSM trees only, dashed lines ( NALL ) are for all QSM models (regardless of quality). Number in parentheses are the percentage of 
total AGB. Branches with a diameter of < 0.05 m were removed from analysis
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management practices e.g. closer tree spacing than 
naturally occurring, reduced resource competition, 
pollarding etc. Tigges et  al. [16] reported an underes-
timate of tree numbers (~20%) when applying ITD to 
Rapideye captured over Berlin. Our approach was more 
accurate for street and park trees (Table  4) as smaller 
(i.e. Ar < 100  m2) and sub-dominant trees were iden-
tified [aided by a winter (leaf-off ) ALS capture]. In 
“forest” areas ALS ITD performed less well, underes-
timating the number of trees and overestimating their 
mass. Overestimated mass was caused by under-repre-
sentation of closed-canopy forest in the Borough-wide 
allometry. Applying a land-cover classification and 
computing land-cover specific allometry may reduce 
errors in AGB estimates; however, errors may be exac-
erbated by poor classification or land cover definitions.

The ALS ITD method satisfactorily identified and 
attributed individual trees, despite the relatively low 
pulse density of the data. Maps of individual tree struc-
ture are not only useful for estimating AGB, but could 
also be applied to pollution dispersion [85] and habit 
extent modelling, for example. The utility of open-access, 
large area LiDAR datasets is yet to be fully realised for 
vegetation mapping, particularly LiDAR in urban areas. 
In England for example, 70% of the land area is covered 
by airborne LiDAR data (although see earlier comments 
regarding processing level) with multi-temporal cover-
age available for certain areas. Recent advances in LiDAR 
technology, such as the ability to record full waveform 
backscatter, has also allowed for more accurate map-
ping of urban vegetation i.e. identifying understorey 
and suppressed trees [86, 87]. However, full-waveform 
LiDAR capture at a city wide scale is still experimental, 
expensive to capture and store and complex to analyse 
[87]. Alternatively, data fusion of passive (e.g. multi- and 
hyperspectral sensors) and active sensors (including 
mobile scanners [88]), as well as inclusion of open source 
or freely available data (e.g. Google Street View [89, 90]) 
could be used. Multiple data streams could create a tem-
porally rich analysis that allows for an urban AGB Life 
Cycle Assessment [34] as well as for application in proto-
cols (i.e. i-Tree Eco protocol [91]) which combine mete-
orological data with tree structure metrics to determine a 
suite of ecosystem services.

Conclusions
Increasingly, urban trees are being valued for all the 
ecosystem services they can provide, including as an 
AGB sink. Although urban areas are currently a small 
proportion of total land cover, urbanisation is predicted 
to increase long into the century; therefore, an effec-
tive tool set to measure urban AGB, as well as other 

tree structure metrics, is required. Advances in remote 
sensing technology are allowing for new methods to 
more accurately map forest AGB. In particular, LiDAR 
technologies, both terrestrial and airborne, allow for 
highly detailed information on tree structure to be 
derived over large areas, surpassing the capabilities 
of traditional inventory or image analysis techniques. 
Urban areas pose particular challenges for remote sens-
ing of tree structure, this is due to a heterogeneous and 
complex land cover as well as a wide range of potential 
tree structures. Here we presented methods and results 
for a new ALS Individual Tree Detection (ITD) method 
that is robust to a heterogeneous tree layer, allowing 
attribution of structure metrics from which AGB could 
be estimated. TLS provides highly accurate representa-
tions of tree structure and estimates of volume which 
were then used to develop local allometry. However, 
derivation of representative allometry for larger areas, 
including wood density values, continue to be a major 
source of uncertainty in estimating AGB, both in natu-
ral and urban forest. It should be noted that the ALS 
and TLS methods can be applied independently of each 
other, for example, literature allometry could be applied 
to the ITD method if TLS methods were unavailable. 
Owing to their proximity and inherent variabilities and 
idiosyncrasies in tree structure, urban forests provide 
an excellent testing ground for new methods and tech-
nologies to assess tree AGB.
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